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Abstract

Clustering is a fundamental unsupervised learning problem where a dataset is
partitioned into clusters that consist of nearby points in a metric space. A recent
variant, fair clustering, associates a color with each point representing its group
membership and requires that each color has (approximately) equal representation
in each cluster to satisfy group fairness. In this model, the cost of the clustering
objective increases due to enforcing fairness in the algorithm. The relative increase
in the cost, the “price of fairness,” can indeed be unbounded. Therefore, in this
paper we propose to treat an upper bound on the clustering objective as a constraint
on the clustering problem, and to maximize equality of representation subject to it.
We consider two fairness objectives: the group utilitarian objective and the group
egalitarian objective, as well as the group leximin objective which generalizes
the group egalitarian objective. We derive fundamental lower bounds on the
approximation of the utilitarian and egalitarian objectives and introduce algorithms
with provable guarantees for them. For the leximin objective we introduce an
effective heuristic algorithm. We further derive impossibility results for other
natural fairness objectives. We conclude with experimental results on real-world
datasets that demonstrate the validity of our algorithms.

1 Introduction

Machine learning algorithms are increasingly being applied to settings that directly influence human
lives. This has spurred a growing fair machine learning community [9], which develops machine
learning algorithms that are made to satisfy certain fairness criteria. Choosing an appropriate
definition of fairness—and even deciding if explicitly defining fairness is appropriate to begin with—
is a morally-laden and application-specific decision [28, 43]. We make no normative statements here;
rather, we focus on a commonly-used and often legally-backed family of fairness definitions—group
fairness—in the context of clustering, arguably the most fundamental unsupervised learning problem.

A recent group-membership fairness definition, called fair clustering in the literature, has received
significant interest [20, 10, 11, 2, 7, 31, 22, 8, 3, 33, 1]. In fair clustering, each point has a color that
designates its group membership, and a clustering objective such as k-median or k-means is given.
The goal is to find a clustering that minimizes the objective subject to the constraint that each cluster
has each color represented within some pre-specified proportions. For example, there may be two
colors, red and blue, and the constraint could require per-color representation between 40% and 60%.

An acknowledged fact in fair clustering—and, indeed, in many allocation and matching settings—is
that the fairness (e.g., proportion) constraint could cause degradation in the clustering objective [12,
19]. A point may be assigned to a further away center (cluster) to satisfy the proportion constraint [20].
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The degradation in the objective due to the imposed fairness constraint is called the price of fairness
(PoF), mathematically defined as PoF = (cost of fair solution) / (cost of agnostic solution).
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Figure 1: Comparison between group fair
(left) and color-blind (right) clustering. Un-
like color-blind clusters, group fair clusters
may combine faraway points (bottom-left).

Unlike some examples in the literature [12, 21], the price
of fairness in the case of fair clustering is unbounded, as
seen in Figure 1. By enforcing a form of group fairness
requiring an even split across colors in each cluster, a fair
clustering algorithm would perform arbitrarily poorly as
the two groups of points separate in space, while a “color-
blind” algorithm would remain unchanged (bottom-left
and bottom-right of Figure 1, respectively). The possibly
unbounded increase in the clustering cost (unbounded
price of fairness) indicates that fair clustering can yield
clusters consisting of points that are far apart in the metric
space instead of combining nearby points—often the main
motivation behind clustering in machine learning and data
analysis. Furthermore, the legal notion of disparate impact does not force an organization to output
a fair clustering if it can justify an unfair one due to “business necessity,” i.e., potential loss in
quality [45, 44]. This possible conflict between the clustering objective and the fairness constraint
indicates the need for fair clustering algorithms that operate in a setting where the clustering cost
cannot exceed a pre-set upper bound.

Our Contributions. In this paper, we address fair clustering under an exogenous threshold on the
clustering objective. We formulate the problem mathematically in a general setting that captures all
of the traditional k-clustering objectives, i.e. k-center, k-median, and k-means. Throughout, we focus
on two general formulations of group fairness: GROUP-UTILITARIAN and GROUP-EGALITARIAN,
along with the GROUP-LEXIMIN objective which generalizes the traditional GROUP-EGALITARIAN
definition. We show that these objectives lead to problems that are NP-hard in general. Further,
assuming P 6= NP we derive lower bounds on the additive approximation of any polynomial
time algorithm for the GROUP-UTILITARIAN and GROUP-EGALITARIAN objectives. We provide
bi-criteria approximation algorithms for the GROUP-UTILITARIAN and GROUP-EGALITARIAN
objectives in which the constraint has a bounded violation and the objective is bounded from the
optimal value by an additive error. For the GROUP-LEXIMIN objective we provide an effective
heuristic. Further, we consider other possibly more “flexible” fairness objectives, but demonstrate
inapproximability results for them. Finally, we test the performance of our algorithms on a collection
of datasets and see that we obtain good solutions with low “fairness violations.” We note that due to
the page limit, all proofs are placed in Appendix A.

2 Related Work

The metric clustering problems k-center, k-median, and k-means are fundamental in unsupervised
learning and operations research. All are NP-hard with a long line of research on approximation
algorithms. For k-center, two distinct algorithms achieve a 2-approximation which is tight assuming
P 6= NP [26, 23, 27]. The current best approximation for k-median is a (2.675 + ε)-approximation
in nO((1/ε) log(1/ε)) time [18], and for k-means, there is a 6.357-approximation [4].

The fair clustering problem with group fairness constraints was proposed by [20]. They studied
k-center and k-median in a setting with only two colors. Followup work by [11, 10, 7, 31] gave
extensions to the k-means objective, more than two colors, multi-color points (i.e., intersecting
demographic groups), and scalability. Other works by [38, 15, 16] look at non-group-fairness
definitions; the former investigates individual fairness, while the latter two address probabilistic
fairness guarantees for pairs or communities of points. The aforementioned works optimize the
clustering objective subject to fairness constraints; however, satisfying the fairness constraints may
come at the expense of a significant increase in the clustering objective. Accordingly [48] and
very recently [37] explored the cost/fairness tradeoff, but using a multi-objective approach. Unlike
our work they do not establish approximation guarantees. Further, the fairness objectives used are
different from ours, i.e. in [48] the fairness objective is penalized for proportions that are not precisely
equal to the population level while in [37] it is penalized for color ratios that are not equal to 1.
Moreover, in [48] the cost/fairness tradeoff is a non-monotone function of a parameter which the user
must adjust, while [37] only focuses on the k-means objective and provides convergence guarantees
only for a smoothed version of the original problem.
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We focus on the formal tradeoff between fairness and the clustering objective. We note that the
clustering objective can be replaced by the price of fairness (PoF). However, in our setting, the
results are clearer if we refer to the clustering objective instead of the PoF. Ultimately a higher PoF
corresponds to a weakly higher fair clustering objective and vice versa. In fact, they are multiples
of one another: PoF = (cost of fair solution) / (cost of agnostic solution). This tradeoff between
fairness and efficiency manifested the PoF concept, in operations research by [12] and simultaneously
in computer science by [19], showing general approaches to defining and measuring it. Similar to our
work, others have adapted PoF as a hard constraint in emergency response [30], organ allocation [39],
and rideshare [36, 42], and a partial constraint in scarce resource allocation for kidney dialysis [29]
and organ exchange [40]. We propose a framework for balancing PoF for a traditional “efficient”
objective in clustering, which finds application in areas such as advertising, network analysis, and
data summarization.

3 Preliminaries
In a clustering problem, we are given a set of points C in a metric space. A distance function d(i, j)
specifies the distance between each pair of points i, j ∈ C. Furthermore, d is symmetric, non-negative,
and satisfies the triangle inequality. Common clustering cost (loss) functions (e.g., k-means or

k-median) can be written as min
S:|S|≤k,φ

Lkp(C) = min
S:|S|≤k,φ

(∑
j∈C d

p(j, φ(j))
)1/p

where k is the

number of clusters, S is the set of cluster centers chosen from a candidate set of centers S, and
φ : C → S is an assignment function that assigns points to cluster centers. The value p determines
the type of clustering, i.e., p =∞, 1, and 2 for k-center, k-median, and k-means, respectively.

In fair clustering, each point has a color associated with it to indicate its group membership. Specifi-
cally, we have a function χ : C → H whereH is the set of possible colors. We denote the set of all
points of color h by Ch. The fair clustering problem (FC) [20, 10, 11, 2, 7, 31, 8] is to minimize the
clustering objective while satisfying additional fairness constraints:

min
S:|S|≤k,φ

(∑
j∈C

dp(j, φ(j))
)1/p

(1a)

s.t. ∀i ∈ S,∀h ∈ H : βh| Ci | ≤ | Chi | ≤ αh| Ci | (1b)

where Ci is the set of points in cluster i and Chi ⊆ Ci is the subset of points in cluster i with color h.
βh and αh are pre-specified lower and upper proportion bounds for color h, respectively. Clearly,
0 < βh ≤ αh < 1.

In “unfair” clustering problems, the assignment function φ maps points to the nearest center in S,
i.e., φ(j) = argmini∈S d(i, j) since this minimizes the objective. However, satisfying the added
constraints in fair clustering may cause points to be assigned to clusters that are farther away. This
motivates the fair assignment problem (FA), in which the set of centers S is given and the objective
is to minimize the clustering cost subject to fairness constraints:

min
φ

(∑
j∈C

dp(j, φ(j))
)1/p

(2a)

s.t. ∀i ∈ S,∀h ∈ H : βh| Ci | ≤ | Chi | ≤ αh| Ci | (2b)
The only difference between the fair assignment (2) and fair clustering (1) problems is that S is not
an optimization variable in the fair assignment problem.

4 Fair Clustering Under a Bounded Cost (FCBC)
The fundamental idea of fair clustering under a bounded cost (FCBC) is to minimize a measure of
unfairness subject to an upper bound on the clustering cost:

min Unfairness (3a)
s.t. Clustering Cost ≤ Given upper bound (3b)

Next, we transform (3a) and (3b) above into a clear mathematical optimization problem.
The Constraint (3b): The clustering cost is

(∑
j∈C d

p(j, φ(j))
)1/p

. Let U denote the exogeneous

upper bound on clustering cost. Then, (3b) becomes
(∑

j∈C d
p(j, φ(j))

)1/p ≤ U . Note that
for the case of the k-center where p = ∞, the constraint reduces to a simpler form, specifically
∀j ∈ C, d(j, φ(j)) ≤ U .

3



The Objective (3a): In prior work, a given clustering is considered fair if for each cluster, the
proportions of each color lie within pre-specified lower and upper bounds, i.e.: ∀i ∈ S, ∀h ∈ H :
βh| Ci | ≤ | Chi | ≤ αh| Ci |. However, bounding the clustering cost may make it impossible to have
a fair feasible solution. Therefore, we instead set a measure of unfairness for each color and try to
minimize this measure. Let ∆h denote the worst proportional violation across the clusters for a color
h. Specifically, for a given clustering, ∆h ∈ [0, 1] is the minimum non-negative value such that:

∀i ∈ S : (βh −∆h)| Ci | ≤ | Chi | ≤ (αh + ∆h)| Ci |. (4)

Clearly, if ∆h = 0, then color h is within the desired proportion in every cluster. Having set ∆h to
be a measure of the unfair treatment that group h receives, we are faced with the question of setting
the fairness objective, for which there are many reasonable options. We consider two prominent and
intuitive fairness objectives [14]:

GROUP-UTILITARIAN = min
∑
h∈H

∆h , GROUP-EGALITARIAN = min max
h∈H

∆h

The GROUP-UTILITARIAN objective minimizes the sum of proportional violations for all of the
colors, treating all points of a specific color as a single player in a game. The GROUP-EGALITARIAN
objective minimizes the maximum proportional violation across the colors. We also consider a more
generalized version of the GROUP-EGALITARIAN objective, the GROUP-LEXIMIN objective. Like
GROUP-EGALITARIAN, the GROUP-LEXIMIN objective minimizes the maximum (worst) violation,
but it goes further to minimizes the second-worst violation, then the third-worst violation, and so on
until no further improvement can be made. We now state the fair clustering under a bounded cost
problem (FCBC):

min
S:|S|≤k,φ

UNFAIRNESS-OBJECTIVE (5a)

s.t.
(∑
j∈C

dp(j, φ(j))
)1/p ≤ U (5b)

where the UNFAIRNESS-OBJECTIVE could equal GROUP-UTILITARIAN, GROUP-EGALITARIAN, or
GROUP-LEXIMIN. Similar to the fair assignment FA problem (2), we may define the fair assignment
under a bounded cost (FABC) problem as:

min
φ

UNFAIRNESS-OBJECTIVE (6a)

s.t.
(∑
j∈C

dp(j, φ(j))
)1/p ≤ U (6b)

where similarly the optimization is over the assignment function φ while the set of centers S is fixed.

5 Hardness of FCBC & FABC
First, we formally state the hardness of the fair clustering FC and the fair assignment FA problems.
Theorem 5.1. The fair clustering FC (1) and fair assignment FA (2) problems are NP-hard.

We now establish the hardness of fair clustering under a bounded cost FCBC and fair assignment
under a bounded cost FABC. We note that these hardness results follow for all objectives (GROUP-
UTILITARIAN, GROUP-EGALITARIAN, and GROUP-LEXIMIN).
Theorem 5.2. Fair clustering under a bounded cost FCBC and fair assignment under a bounded
cost FABC are NP-hard.

Although we have shown that both the fair clustering and fair assignment problems under a bounded
cost are NP-hard, the reductions rely on setting the upper bound U to a small enough value, precisely
that of the optimal fair clustering cost. It seems reasonable to expect both problems to transition into
being polynomial time solvable if the upper bound becomes sufficiently large. We show in Section 8
that such a result is not easy to establish and would lead to a true approximation for fair clustering
which is yet to be produced in the fair clustering literature for arbitrary metric spaces and arbitrary
lower and upper color proportion bounds.

For a given clustering cost U , there are many clusterings (solutions) of cost not exceeding U . Let SU
be the set of those solutions, i.e. if (St, φt) ∈ SU , then (St, φt) is a clustering with a cost that does
not exceed U . Further, let Lt be the size of the smallest non-empty cluster1 in the clustering (St, φt),

1An empty cluster is a cluster with no points assigned to it. This could happen if for example the assignment
function φ does not map any point to a a given center including the center itself.

4



then we define L(U) to be the size of the smallest cluster across all clusterings of cost not exceeding
U , i.e. L(U) = min(St,φt)∈SU Lt. Clearly, for U1 and U2 such that U2 ≥ U1, then L(U2) ≤ L(U1)
since SU1

⊆ SU2
. We can conclude the following fact from the definition of L(U):

Fact 5.1. For a given upper bound U , no clustering with cost less than or equal to U can have less
than L(U) many points in a non-empty cluster.

We show that the quantity L(U) plays a fundamental role. In fact, lower bounds on the additive
approximation2 for the proportional violations and fairness objectives are related to L(U) as shown
in the following theorem:

Theorem 5.3. For a given instance of the FCBC or FABC problem with an arbitrary upper bound
U , unless P = NP no polynomial time algorithm can produce a solution with a cost not exceeding
U that satisfies any of the following conditions: (a) The proportional violation of any color h ∈ H is
∆h <

1
8L(U) . (b) The additive approximation for the GROUP-UTILITARIAN objective is less than

|H |
8L(U) . (c) The additive approximation for the GROUP-EGALITARIAN objective is less than 1

8L(U) .

6 Algorithms for FCBC

Our main result for the FCBC problem is the following theorem which follows as a direct conse-
quence of the guarantees of Theorems 6.2, 6.4, 6.5, 6.6, and 6.7:

Theorem 6.1. For any clustering objective, given a boundU on the clustering cost, Algorithm 1 solves
the fair clustering under a bounded cost FCBC problem at a cost of at most U ′ = (2 + α)U where
α is the approximation ratio of the color-blind clustering algorithm. The additive approximation is
|H |(ε+ 2

L(U ′) ) for the GROUP-UTILITARIAN objective and ε+ 2
L(U ′) for the GROUP-EGALITARIAN

objective.

From the theorem above, it is clear that the additive approximation guarantees we have improve when
the cost does not permit small clusters. Indeed, in the absence of outlier points and for reasonable
values of k, small clusters are unlikely to exist. Further, empirically we verify the smallest cluster
size and find that the smallest cluster size is 159 points (see Section 9.3). See Appendix C for more
discussion.

We now provide our general algorithm for fair clustering under a bounded cost FCBC which we
denote by ALG-FCBC(U,UNFAIRNESS-OBJECTIVE) where we have made explicit reference to
the dependence of ALG-FCBC on the given cost upper bound U and the desired UNFAIRNESS-
OBJECTIVE which could either be the GROUP-UTILITARIAN,GROUP-EGALITARIAN, or GROUP-
LEXIMIN objective.

ALG-FCBC(U,UNFAIRNESS-OBJECTIVE) (see Algorithm 1) involves two steps, in step (1): we
use a color-blind approximation algorithm to find the cluster centers S, in step (2): we call the
algorithm ALG-FABC(S,U ′,UNFAIRNESS-OBJECTIVE) for the FABC problem. It should be
noted that we have fed ALG-FABC the set of centers S from step (1), further the cost upper bound
for ALG-FABC is set to U ′ = (2 + α)U while the UNFAIRNESS-OBJECTIVE remains unchanged.
We further note that ALG-FABC will have the same clustering objective as ALG-FCBC, e.g. if
ALG-FCBC is given the k-median objective so well ALG-FABC.

Clearly, from algorithm ALG-FCBC the FCBC problem is closely related to the FABC problem.
In fact, we establish the following general theorem for all clustering objectives: k-center, k-median,
and k-means that shows that an algorithm which solves the FABC problem with provable guarantees
can be used to solve the FCBC problem with provable guarantees:

Theorem 6.2. For any clustering objective and both the GROUP-UTILITARIAN and GROUP-
EGALITARIAN objectives, given an algorithm that solves fair assignment under a bounded cost
FABC with additive approximation µ, the fair clustering under a bounded cost FCBC problem
can be solved with an additive approximation of µ and at a cost of at most (2 + α)U , where α is the
approximation ratio of the color-blind clustering algorithm.

2An algorithm for a minimization problem with additive approximation µ > 0, returns a value for the
objective that is at most OPT +µ where OPT is the optimal value.
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Algorithm 1 :ALG-FCBC(U,UNFAIRNESS-OBJECTIVE)

1: Choose a set of centers S by running a color-blind clustering algorithm of approximation ratio α.
2: Set U ′ = (2 + α)U and call ALG-FABC(S,U ′,UNFAIRNESS-OBJECTIVE)

6.1 Fair Assignment Under a Bounded Cost

Algorithm block 2 shows the steps of our algorithm ALG-FABC for the FABC objective. In step
(1): we search for the optimal proportional violations given the bound on the clustering cost U using
LPs. Having found the near-optimal solution, in step (2): we round the possibly fractional solution to
a feasible integer solution using a netowk flow algorithm. We note that the details of the search done
in step (1) depend on the objective, i.e., GROUP-UTILITARIAN or GROUP-EGALITARIAN.

Algorithm 2 :ALG-FABC(S,U,UNFAIRNESS-OBJECTIVE)

1: Given the UNFAIRNESS-OBJECTIVE, search for the optimal proportion violation values ∆h at a
cost upper bound of U using the feasibility LPs of (7).

2: Apply network flow rounding to the LP solution with the optimal value.
3: return the set of centers S and the assignment function φ (resulting from the rounded LP

solution).

We note that in fair assignment under a bounded cost FABC the set of centers S has already been
chosen and the optimization is done only over the assignment φ of points to centers. We let xij be a
decision variable that equals 1 if point j is assigned to center i ∈ S and 0 otherwise. Note that the
values of xij are a way to represent the assignment function φ. Regardless of the objective that is
being minimized, the following set of constraints must hold:∑

i,j

dp(i, j)xij ≤ Up (7a)

∀j ∈ C :
∑
i∈S

xij = 1, xij ∈ [0, 1] (7b)

∀h ∈ H : ∆h ∈ [0, 1] (7c)

∀h ∈ H, ∀i ∈ S : (βh −∆h)
(∑
j∈C

xij
)
≤
∑
j∈Ch

xij ≤ (αh + ∆h)
(∑
j∈C

xij
)

(7d)

For the k-center problem, the first constraint (7a) is replaced by ∀j ∈ C : xij = 0 if d(i, j) > U .
Note that in the above we have xij ∈ [0, 1] which is a relaxation of xij ∈ {0, 1}, as the latter would
result in an intractable mixed-integer program. With our variables being xij and ∆h it is reasonable
to consider a convex optimization approach. That is, we could choose to minimize the objective
GROUP-UTILITARIAN or the objective GROUP-EGALITARIAN with our set of constraints being (7).
Looking at the form of the GROUP-UTILITARIAN and the GROUP-EGALITARIAN objectives, it is
not difficult to see that they are linear (and therefore convex) in the parameters xij and ∆h, however
as the following theorem shows, the constraint set (7) is not convex. In fact, either of the proportion
bounds alone in constraint (7d) would lead to a non-convex set. The non-convexity of the constraint
set implies that the resulting optimization problem would also be non-convex:
Theorem 6.3. The constraint set (7) is not convex.
Although the constraint set (7) is not convex, if we fix the values of ∆h then we clearly have a
simple feasibility LP with variables xij . We therefore take an approach where for a given objective
(GROUP-UTILITARIAN or GROUP-EGALITARIAN), we search for the corresponding optimal values
of ∆h by running the feasibility LP of (7). Note that with a given set of values for ∆h, we can
obtain the corresponding value for the GROUP-UTILITARIAN or GROUP-EGALITARIAN objectives
and therefore the LP does not need an objective: a feasibility check suffices. Further, since we
only use non-trivial values for ∆h ∈ [0, 1], constraint (7c) can be omitted. Sections 6.1.1 and 6.1.2
detail how we use the feasibility LPs of (7) to obtain LP solutions that are approximately optimal
(having bounded additive approximation from the optimal) for the GROUP-UTILITARIAN and GROUP-
EGALITARIAN objectives, respectively. Since these resulting LP solutions could contain fractional
values, i.e., it is possible to have a value xij /∈ {0, 1}, the approximately optimal LP solution would
have to be rounded to an integral solution. This rounding further degrades the approximation, but we
show that this degradation is not large and can be bounded. The details of the rounding are shown
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in Section 6.1.3. The search algorithms of Sections 6.1.1 and 6.1.2, followed by the rounding of
Section 6.1.3, lead to an algorithm for FABC.

6.1.1 Search Algorithm for the GROUP-UTILITARIAN Objective

We are searching for the optimal proportional violations ∆∗h ∈ [0, 1] for the GROUP-UTILITARIAN
objective. The first step we take is to discretize the space by a parameter ε ∈ (0, 1). For convenience,
we set ε = 1

r where r ∈ Z+, i.e., r is a positive integer. Accordingly, instead of interacting
with the continuous interval [0, 1] for the proportional violations, we instead interact with Eε =
{ε, 2ε, . . . , . . . , ( 1

ε − 1)ε, 1}, with |Eε | = 1
ε . Therefore, we have a set of ( 1

ε )|H | many possibilities
for the proportional violations and we can obtain the optimal solution for the GROUP-UTILITARIAN
objective through exhaustive search by checking the feasibility of LP (7) and picking the feasible
combination of proportional violations which leads to the smallest value for the GROUP-UTILITARIAN
objective, i.e., GROUP-UTILITARIAN =

∑
h∈H∆h.

The above approach would take O(( 1
ε )|H |) many LP runs. Therefore, we show a faster search that

tries instead O(( 1
ε )|H |−1). The key to this speed up comes from the fact that for the two-color case,

we only need to evaluate O( 1
ε ) many possibilities.

Theorem 6.4. For FABC with GROUP-UTILITARIAN objective, we can use O
((

1
ε

)|H |−1)
–many

LP runs to obtain an LP solution with additive approximation |H |ε.
Furthermore, for the important two-color case with symmetric upper and lower bounds we show a
search algorithm that requires only O

(
log 1

ε

)
LP runs. The two color case with symmetric upper

and lower bounds is that where the two colors h1 and h2 are present with proportions r1 and r2 in
the dataset, and the proportion bounds are set to αi = ri + λi, βi = ri − λi for i ∈ {1, 2} and some
valid λ1, λ2 ∈ [0, 1]. The key observation for the two-color symmetric case is that the proportion of
one color implies the proportion of the other; hence, we can run binary search over the set Eε.
Theorem 6.5. For FABC with two colors, symmetric lower & upper bounds, and the GROUP-
UTILITARIAN objective, we can use O

(
log( 1

ε )
)

–many LP runs to get a solution with an additive

approximation of |H |ε = 2ε.

6.1.2 Search Algorithm for GROUP-EGALITARIAN and GROUP-LEXIMIN Objectives

For the GROUP-EGALITARIAN objective we follow the same discretization step as for the GROUP-
UTILITARIAN objective. For all colors, their violation ∆h is set to the same value and the optimal
solution is found simply by doing binary search over the set Eε by running the feasibility LP (7).
Theorem 6.6. For FABC with the GROUP-EGALITARIAN objective, we can use O

(
log
(

1
ε

))
–

many LP runs to get a solution with an additive approximation of ε.

We provide a heuristic algorithm for the GROUP-LEXIMIN objective; a rough sketch follows. In the
first step, it obtains the GROUP-EGALITARIAN solution. Then, it proceeds by finding a color that
cannot improve beyond the current optimal violation; if more than one color is found, then one of
these colors is randomly picked. The algorithm then looks for the optimal violation for the remaining
colors, having the violations of the previous colors fixed. These steps are followed until no color can
have its proportional violation improved. See Appendix B for the full details.

6.1.3 The Rounding Scheme and ALG-FABC Guarantees

Having obtained the optimal LP solutions for either the GROUP-UTILITARIAN or GROUP-
EGALITARIAN objectives, we now round the solutions to integral values at a bounded increase
to the additive approximation. To do the rounding, we apply the network flow method of [11] (see Ap-
pendix E for details), although other rounding methods are applicable. Given the LP solution xij
and its associated proportional violations ∆h, if we denote the rounded integral solution by x̄ij and
∆̄h, then network-flow rounding guarantees the following: (i)

∑
i,j d

p(i, j)x̄ij ≤
∑
i,j d

p(i, j)xij .

(ii) ∀i ∈ [k] :
⌊∑

j∈C xij

⌋
≤
∑
j∈C x̄ij ≤

⌈∑
j∈C xij

⌉
. (iii) ∀h ∈ H,∀i ∈ [k] :

⌊∑
j∈Ch xij

⌋
≤∑

j∈Ch x̄ij ≤
⌈∑

j∈Ch xij

⌉
.
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Property (i) ensures that the clustering objective will not increase beyond the LP value, and thus,
provided the LP cost does not exceed the upper bound on the cost U , the cost of the rounded
assignment will not exceed U as well. Property (ii) guarantees that the total number of points
assigned to a cluster will not vary by more than 1 point. Property (iii) guarantees that the total number
of points of a given color assigned to a cluster will not vary by more than 1 point. We can use the
above properties along with with the lower bound on the size of any cluster L(U) to establish the
following theorem:
Theorem 6.7. For the FABC problem, the rounded solution has cost of at most U and an additive
approximation of: (1) |H |(ε+ 2

L(U) ) for the GROUP-UTILITARIAN objective and (2) ε+ 2
L(U) for

the GROUP-EGALITARIAN objective.

Recalling the additive approximation lower bounds of Theorem 5.3 for the FABC problem, we see
that we obtain a solution for FABC of cost at most U with near-optimal additive approximation.
Specifically, our additive approximations for the GROUP-UTILITARIAN and GROUP-EGALITARIAN

are 2|H |
L(U) and 2

L(U) compared to their lower bounds of |H |
8L(U) and 1

8L(U) , respectively.

A randomized extension. We also briefly mention a randomized rounding algorithm’s guarantees;
the description of this algorithm (which is motivated by an approach of [35]) is detailed in Appendix
G. This algorithm efficiently constructs a random vector X̄ with entries X̄i,j in {0, 1} such that:
(a) Properties (ii) and (iii) hold with probability 1, and (b) the expected value E[X̄i,j ] equals xi,j
for all (i, j). This has three consequences: (b1) the fairness guarantee for each cluster and color
become better in expectation: for all h ∈ H and for all i ∈ S: E[

∑
j∈Ch X̄ij ] indeed lies between

(βh − ∆h)
(∑

j∈C xij

)
and (αh + ∆h)

(∑
j∈C xij

)
. (b2) The expected value of the objective

function (the left-hand side in (i)) is at most the right-hand side of (i). (b3) Even if we had multiple
linear objective functions, they will all be preserved in expectation.

7 Fairness Across the Clusters is not Possible
It is tempting to modify both the GROUP-UTILITARIAN and GROUP-EGALITARIAN (or GROUP-
LEXIMIN) objectives to sum across the clusters instead of taking the maximum violation
across the clusters. More specifically, we can replace the objectives by the following:
GROUP-UTILITARIAN-SUM, which equals

∑
h∈H,i∈[k]

∆i
h, and GROUP-EGALITARIAN-SUM, which

equals min max
h∈H

∑
i∈[k]

∆i
h, where ∆i

h is the violation of color h in cluster i; clearly the previously-

considered violation ∆h is max
i∈[k]

∆i
h. It can be seen that such an objective is more flexible. For

example, the maximum violations might occur in a cluster that cannot be improved within the given
bound on the clustering cost, while it may be possible to improve it for other clusters. The original
GROUP-UTILITARIAN and GROUP-EGALITARIAN objectives may bring no improvement in such a
situation but their above modifications could. We prove a negative result. Specifically, while we were
able to approximate FABC by small additive values for the original objectives (Theorem 6.7), for the
new objectives we cannot efficiently approximate the FABC problems within even relatively-large
additive approximations:
Theorem 7.1. For FABC, the objectives GROUP-UTILITARIAN-SUM and GROUP-EGALITARIAN-
SUM that sum across the clusters cannot be approximated in polynomial time to within an additive
approximation of O(nδ) where δ is a constant in [0, 1), unless P = NP .

8 Solving the Problem Optimally for a Large-Enough Cost
It seems reasonable to assume that when the upper bound on the cost U is large enough, the problem
becomes solvable in polynomial time. It is not difficult to devise such guarantees for some special
cases. However, in the theorem below we show that an algorithm with such a guarantee would
imply a true approximation3 for fair clustering. Since fair clustering has remained resistant to a true
polynomial-time approximation for general metric spaces and arbitrary lower- and upper- proportion
bounds [13, 8], this suggests that the problem is indeed nontrivial. Furthermore, we also show the
converse, i.e., a true approximation algorithm for fair clustering would imply an exact algorithm for
fair clustering under a bounded cost FCBC.

3A true approximation algorithm yields a solution that approximates the optimal objective value with no
constraint violation, in contrast to bi-criteria algorithms which have a bounded violation in the constraints.
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Theorem 8.1. Suppose that there is a polynomial time algorithm which can obtain the optimal
solution for FCBC for the upper bound of U if U ≥ α(I) OPTcb(I) where I is a specific instance
of FCBC and OPTcb(I) is the optimal cost of its color-blind clustering. Then we have a true
polynomial time approximation algorithm for fair clustering. Further, a true polynomial time
α′(I)-approximation algorithm for fair clustering implies that FCBC can be solved optimally in
polynomial time for U ≥ α′(I) OPTFC(I).
9 Experiments
We validate our algorithms on datasets from the UCI repository [24]. The results here are for k-means
clustering; additional experiments are in Appendix F.

Hardware, Software, and Algorithms: We only use commodity hardware for all experiments with
our programs running on Python 3.6. For the color-blind k-means clustering, we use the k-means++
algorithm [5] which has an approximation ratio of O(log k). Our LPs are solved using CPLEX [32].
Scikit-learn [46] is called for subroutines such as k-means++. The network-flow rounding is
handled using NetworkX [25].

Datasets: We use all 32,561 entries of the Adult dataset [34]. For the Census1990 dataset [41],
because of its large size (over 2 million points) we sub-sample the dataset to a range similar to that
considered in the fair clustering literature [20, 10]; specifically we use 20,000 data points. We also
use the CreditCard dataset [47] which has 30,000 points (results are in Appendix F). For all datasets
we use the numeric attributes to assign the coordinates in the space and the distance between any two
points is set to the Euclidean distance.
Setting and Measurements: Each color h ∈ H has proportion rh, i.e., rh = | Ch |

| C | . We set the upper
and lower bounds for each color to αh = (1 + δ)rh and βh = (1− δ)rh. This means that each cluster
should have each color with the same proportion as in the population with a possible deviation of δ.

We first do color-blind clustering using the k-means++ algorithm. The clustering cost we obtain
from the k-means++ is a proxy of the lowest possible value of the clustering cost (since the hardness
of clustering forbids the calculation of the true optimal value). We gradually increase the upper bound
cost from the color-blind cost to higher values and for each choice of the upper bound, we minimize
either the GROUP-UTILITARIAN or GROUP-LEXIMIN objectives using our algorithms and record the
objective value. For better interpretation, instead of showing the value of the upper bound, we show
its ratio to the color-blind clustering, which is the PoF. Further, for all experiments we discretize the
space by ε = 1

27 < 0.008.

9.1 GROUP-UTILITARIAN Experiments

We use the Adult and Census1990 datasets with self-reported gender (male or female) as the attribute.
We note that both datasets explicitly use categorical labels for this socially-complex concept, and
acknowledge that this is reductive [17]. Figure 2 shows the PoF versus the achieved GROUP-
UTILITARIAN objective, with δ = 0.1. As expected, as the price of fairness increases (higher
bound on the cost), we can further minimize the proportional violations. Eventually the GROUP-
UTILITARIAN objective becomes less than 0.1 and even very close to zero. We also observe that at a
given cost upper bound, we can achieve lower values for the GROUP-UTILITARIAN objective when
the number of clusters (k) is lower.

Figure 2: PoF vs the GROUP-UTILITARIAN objective for the Adult and Census1990 datasets.
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9.2 GROUP-EGALITARIAN and GROUP-LEXIMIN Experiments

We again use the Adult and Census1990 datasets. However, for Adult, we set the fairness attribute
to race which—in this dataset, and with the same inherent social caveats as the categorization of
gender—has 5 groups (colors). For Census1990, we set the fairness attribute to age where we have
three age groups.4 We set δ = 0.05 and k = 10 for Adult and δ = 0.1 and k = 5 for Census1990.
Figure 3 shows the results of our algorithm. We notice that for some colors smaller violations are
harder to achieve and we need to set the maximum allowable clustering cost to larger values to reduce
their violations.

Figure 3: PoF versus the proportional violation for different groups (each colored graph is a group) in the Adult
and Census1990 datasets.

9.3 Checking the Size of the Smallest Cluster
As mentioned in Section 5 and Theorem 6.1 our approximations are dependent on the size of the
smallest cluster in the solution. While it is not tractable to obtain the value of L(U) for a given
U , we can still empirically check the size of the smallest cluster in the cost bounded clusterings
we obtain. We note that, throughout, we do not impose any lower bound on the cluster size in our
algorithm. For the above experiments we considered, we find that the minimum cluster size (across
all choices of k) are as follows: Adult (159 points), Census1990 (171 points). The fact that the size
of the smallest cluster is large means that we are achieving small (accurate) additive approximations
with near-optimal objective values and when we obtain a large objective value it is because of how
stringent the cost upper bound is.
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