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Abstract

We say that a classifier is adversarially robust to perturbations of norm r if, with
high probability over a point x drawn from the input distribution, there is no point
within distance < r from « that is classified differently. The boundary volume is
the probability that a point falls within distance r of a point with a different label.
This work studies the task of computationally efficient learning of hypotheses with
small boundary volume, where the input is distributed as a subgaussian isotropic
log-concave distribution over R%.

Linear threshold functions are adversarially robust; they have boundary volume
proportional to r. Such concept classes are efficiently learnable by polynomial
regression, which produces a polynomial threshold function (PTF), but PTFs in
general may have boundary volume §2(1), even for r < 1.

We give an algorithm that agnostically learns linear threshold functions and returns
a classifier with boundary volume O(r+¢) at radius of perturbation r. The time and

sample complexity of d%(1/=*) matches the complexity of polynomial regression.
Our algorithm augments the classic approach of polynomial regression with three
additional steps:

a) performing the ¢;-error regression under noise sensitivity constraints,

b) a structured partitioning and rounding step that returns a Boolean classifier
with error opt + O(¢) and noise sensitivity O(r + ¢) simultaneously, and

¢) alocal corrector that “smooths” a function with low noise sensitivity into a
function that is adversarially robust.

1 Introduction

A predictor is robust to adversarial examples if for most possible inputs, a small perturbation will not
cause the input to be misclassified. We define the boundary volume as the probability, over the input
distribution, that a point is close to the boundary:

Boundaryp,, (f) = Pr [32: |2, < rand f(2) # f(z + 2)].

The sum of the boundary volume and the classification error is a natural upper bound on the standard
notion of robust risk:

RobRiskp ,(f) = Pr [Fz:|z|, <randy # f(z+ 2)].

(z,y)~D

In this work, we discuss computationally efficient learning of classifiers with optimal classification
error and boundary volume, thus minimizing the robust risk.

* Alphabetical order.
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There is a large body of research on adversarial robustness in machine learning, the focus of which
is to assess the robustness of classifiers commonly deployed in practice — see [BCM™ 13, GSS14,
SZSt14], as well as [KM18] for an overview of the topic. It is well known that deep networks trained
on classic benchmark data sets, such as ImageNet, can be “tricked” into misclassifying a test input by
making a perturbation so small that it cannot be detected by humans, and that training robust models
is a challenge in practice.

In this work we consider linear threshold functions (halfspaces), one of the most basic and well-
known concept classes. As a robustness benchmark, we consider the robustness of a proper learning
algorithm — one that outputs a hypothesis that is a halfspace. For a halfspace, when the input
is distributed according the d-dimensional standard Gaussian — or more generally, a subgaussian
isotropic log-concave distribution — the probability that an input falls within Euclidean distance r
of the classification boundary is O(r); thus a 1 — O(r) fraction of inputs are robust to adversarial
perturbations of norm r. A proper agnostic learner would output a hypothesis with the following
guarantees:

* Agnostic approximation: Pr(, ,y.p[y # h(z)] < opt + ¢, where opt is the classification
error of the best halfspace, and

* Adversarial robustness: Boundaryp, ,.(h) < O(r).

However, the state of the art for agnostically learning halfspaces is an improper algorithm — an
algorithm that does not output a halfspace, but instead outputs a polynomial threshold function (PTF).
Polynomial regression with randomized rounding learns halfspaces over A/(0, I;) with time and

sample complexity d°(1/ <*) and satisfies the accuracy guarantee [DGJT09, KKMSO08]. In fact, the
efficiency of polynomial regression is due to the inherent robustness of halfspaces — their small
surface area! However, there exist degree-1/¢2? PTFs with boundary volume §2(1) even at a small
radius of perturbation,” and this algorithm makes no guarantee that its output is robust.

No proper agnostic learning algorithm with 2°(9) running time for general subgaussian isotropic
log-concave distributions is known, and for the Gaussian distribution the state of the art for proper
learning is d°(1/¢") [DKK*21]. The complexity of proper learning in these settings is still an open
question.We circumvent the possible difficulty of proper learning by giving an improper algorithm
that still satisfies both the accuracy and robustness properties. Our algorithm has time and sample
complexity d©(1/ 52), matching the run-time of the best (improper and non-robust) agnostic learning
algorithm [DGJ*09]. Up to polylogarithmic factors in the exponent, this also matches the statistical
query lower bound for agnostically learning halfspaces [DKPZ21].

1.1 Main result

Our main result is an improper agnostic learner (Algorithm 1) for halfspaces that outputs an adversar-
ially robust hypothesis.

Theorem 1.1 (Adversarially robust learning of halfspaces, informal version of Theorem 3.1). Let
D be a distribution over R? x {—1,1} such that the R%-marginal is subgaussian, isotropic, and
log-concave. There is an algorithm that takes a robustness radius r, an accuracy parameter €, and
a sample of size doa/e*) from D. With high probability, it outputs a hypothesis h : R¢ — {—1,1}
with the following guarantees:

* Agnostic approximation: Pr(, ,)..plh(x) # y] < opt 4+ O(g), where opt is the classifica-
tion error of the best halfspace.

s Adversarial robustness: Boundaryp, ,.(h) < O(r).

1.2 Technical overview and intermediate results

Our algorithm and its analysis have three main components, which may be of independent interest.
Two of the components solve a relaxation of the robust learning problem, and the third transforms the
almost-robust hypothesis into a robust one. The relaxed learner produces a hypothesis with small

?Consider the PTF sign(Hl.li 512 x;), which has boundary volume (1) over A'(0, I) at any radius > £2.



noise sensitivity (a notion of boundary volume with random perturbations instead of adversarial
perturbations) and small isolation probability (the probability that the local noise sensitivity around a
point is very high). To formally define these two quantities, we need the following notion:

Definition (Local noise sensitivity). We define the local noise sensitivity ¢ ,(x) at noise scale n as

o) = B [317() ~ fa+n2)]

We remark that when f is Boolean-valued, this is equivalently

Gpa(x) = Pr [f(z) # flx+n2)].

2~N(0,14)

We now define the noise sensitivity and the isolation probability:

Definition (Distributional noise sensitivity). The noise sensitivity of a function f at noise scale n on
distribution D is defined as

NSo.,(f) = E_[o1.4(2)] (1)

We remark that when D = N(0, 1), our definition of distributional noise sensitivity differs from the
standard definition of Gaussian noise sensitivity.

Definition (Isolation probability). We call a point isolated if its local noise sensitivity is over a
threshold. The isolation probability of a function f relative to a threshold t is

is0m,0(f,1) 1= Pr[bq(2) > 1]

Intuitively, a function can have low distributional noise sensitivity and still not be adversarially robust,
if the classification boundary lies near many isolated points scattered throughout the domain. For this
reason, after learning a hypothesis with low noise sensitivity, we apply the local correction algorithm
which we describe below, which eliminates regions of high local noise sensitivity (isolated points).

1.2.1 Local correction of adversarial robustness (Algorithm 3)

The part of our algorithm that transforms an almost-robust hypothesis into a robust one is a local
corrector for adversarial robustness. Local correctors are part of the family of local computation
algorithms, or LCAs [RTVX11, ARVXI12]: fast randomized algorithms that compute parts of a large
object without constructing the object in its entirety. Local correctors, also known as local property
reconstructors [ACCLO08], are LCAs that evaluate queries to a nearby object that satisfies a desired
property; in our case that object is an adversarially robust hypothesis. Our algorithm uses local
correction in the fashion of [LRV22]: to “append” a local corrector with a fixed random seed to a
non-robust hypothesis in order to globally correct the hypothesis.

We analyze a very simple LCA that makes queries to a function and outputs queries to a nearby
function with reduced boundary volume. This algorithm estimates the local noise sensitivity at x,
and changes the label of x if the local noise sensitivity is too high. This is, in essence, the smoothing
procedure discussed in [LAG™19, LCWC, CRK19]. We give guarantees on the boundary volume
and the error introduced by the smoothing procedure in terms of the relaxed robustness properties of
the input function (the noise sensitivity and isolation probability).

Lemma 1.2 (Local corrector for adversarial robustness, informal version of Theorem C.1). Let
g, 8,7 € (0,1). Let f : RY — {—1,1} be a degree-k polynomial threshold function with
noise sensitivity < « and isolation probability < 3. There is an efficient randomized algorithm
ROBUSTNESSLCA that makes black-box queries to f and answers black-box queries to a function
g: RY — {—1,1} that satisfies the following with high probability:

* Adversarial robustness: Boundaryp . < O(a + ¢).
* Small distance: Pr,..plg(z) # f(z)] < O(B +¢).

We use this algorithm in a “deterministic” fashion, where all calls to the local corrector share the same
random seed, which is good with high probability. When the random seed is good, the guarantees



hold for all z € R?.? This allows us to append the local corrector and its fixed seed to some degree-k
PTF, creating a deterministic robust hypothesis that can be evaluated in d°(*) time.

From the guarantees of the local corrector and the desired guarantees of the overall algorithm, we
determine that we must feed the local corrector a PTF of error opt + O(e), noise sensitivity O(r),
and isolation probability O(¢).

1.2.2 Polynomial regression under noise sensitivity constraints (Algorithm 2)

Our first step in finding such a PTF is to learn a polynomial with low error, noise sensitivity, and
isolation probability in the ¢;-distance regime.

Theorem 1.3 (Learning a polynomial, informal version of Theorem 3.3). There is an algorithm
with time and sample complexity dO(/) that takes samples from the distribution D and, with high
probability, returns a degree-O(1/2) polynomial p with the following properties:

* Accuracy: err(p) < opt + O(e),
* Low noise sensitivity: NS(p) < O(r + ¢), and
* Low isolation probability: iso(p) < O(e).

We achieve this with convex programming. The /1 noise sensitivity is a convex constraint, and we
use a convex upper bound on the ¢; analogue of the isolation probability. We minimize error over the
set of degree—é( 1/&?) polynomials under these constraints. To show that a feasible polynomial of
error opt + O(e) exists, we show that the halfspace-approximating polynomial given in [DGJT09]
satisfies the constraints under any subgaussian isotropic log-concave distribution.

1.2.3 Randomized partitioning and rounding (Algorithm 5, Algorithm 4)

With p in hand, we must then round p to some polynomial threshold function sign(p — ¢) that satisfies
the error, noise sensitivity, and isolation probability constraints. Simply rounding at a uniformly
random threshold ¢ ~ [—1, 1], as in [KKMSO08], does result in error opt + O(e), noise sensitivity
O(r), and isolation probability O(¢) in expectation, but doesn’t guarantee that the conditions ever
hold simultaneously for the same ¢. Thus, running the local corrector on just one rounded function
would not guarantee a hypothesis with the right properties. In this step, we find a “deterministic
mixture” of rounded functions that simultaneously satisfies the three conditions: a partition of the
domain into parts, where each part is rounded at a different threshold. The corrector is run on each
part separately.

A first attempt at finding such a partition would be to allow it to have O(1/e?) parts. Observe that
the error, noise sensitivity, and isolation probability concentrate with deviation € when averaging
over O(1/£?) random thresholds. Thus, an equal-weighted mixture of O(1/¢2) independent random
roundings would satisfy all of the guarantees simultaneously with high probability. But suppose we
partitioned the domain into 1/&? sets of equal mass — we can’t guarantee robustness for any point
near the boundaries of these sets, and the total volume of these boundaries scales inversely with ¢,
which is undesirable. To minimize the increase in boundary volume due to partitioning, it is necessary
to find a partition of constant size.

We show that there exists a mixture of four rounded functions satisfying all the constraints simultane-
ously by applying Carathéodory’s theorem ([Car07]), and we find the mixture by linear programming.

To understand how to turn the mixture into a partition, consider the example of handling just the error
when y is a deterministic function of x. The error of the mixture is

Z w - err(sign(p — ¢;)) < opt + O(e),
i1€[4]

3We remark that in a setting where each call to the corrector is allowed to fail independently with probability
8, the query complexity can be reduced from d°*) - log(1/5) /€2 to O(log(1/8) /&%) and the assumption that
f is a degree-k PTF can be dropped. This is not applicable in our setting but might be desired in a non-learning
application of local correction for robustness.



where w; is the mixing weight of the 7*" PTF. For each i in the mixture, there is a set of volume
err(sign(p — t;)) consisting of the points misclassified by sign(p — ¢;). We want to partition the
domain such that a w;-fraction of this set falls into the " part, so that

Z 1[2 is in the i*" part and y # sign(p(z) — ;)] = Z w; - err(sign(p — t;)).
i€[4] i€[4]

We cite a theorem of [DHV06], which says, essentially, that projecting on a random unit vector causes
the set to be very close to normally-distributed with high probability. Thus, our partition is according
to the inner product with a random unit vector u, and the parts are intervals Ji, . . ., J4 of Gaussian
mass wy, . . . , w4 respectively. With high probability, the sets of misclassified points and the sets for
which robustness is guaranteed by the corrector are all partitioned with the correct weights.

Theorem 1.4 (Randomized partitioning, informal version of Theorem 3.4). Let p be a polynomial
satisfying the guarantees of Theorem 1.3. There is an algorithm that outputs a unit vector u, rounding

thresholds t1, . .. ,t4, and a partition of the real line into intervals J, . . . J4 such that the hypothesis
4
h(z) =)  ROBUSTNESSLCA (sign(p(z) — t;)) - L[{z,u) € J;]
i=1

has the following properties with high probability:
* Accuracy: err(h) < opt + O(e),
* Robustness: Boundaryp, ,.(h) < O(r + ¢).

The time complexity is 01/,

1.3 Verifiable robustness

The work of [GKVZ22] discusses the planting of “backdoors” in learned classifiers — structured
violations of the robustness condition — and the impossibility of efficiently distinguishing a robust
model from a backdoored one in the most general case. The takeaway is that when training is
performed by an untrusted service, it is not generally possible to verify that a hypothesis is robust,
even if a description of the hypothesis is available. However, our learning algorithm produces a
hypothesis with a specific structure that can be checked, and the reduced expressivity of this structure
allows robustness to be verifiable. Under complexity assumptions, the robustness of our algorithm’s
output can be verified in the following way:

Corollary 1.5 (Deterministic verifiability, informal version of Corollary D.1). If P = BPP, then
there is a learning algorithm B that, given access to labeled samples from a subgaussian isotropic
log-concave distribution, runs in time d°(/ ) and produces a hypothesis h with the following
guarantees”:

* Agnostic approximation: h satisfies Pr(, ,yp[h(z) # y] < opt + O(e), where opt is the
misclassification error of the best halfspace.

* Verifiable robustness: There is an efficient deterministic verifier that takes as input a
hypothesis g and a point x € R, and always rejects if

3 ¢ ||z, < 7 and g(w) # gla + 2).

If g is the output of B, then the verifier accepts with probability at least 1 — O(r + €) over x
drawn from D.

As a result, training can be done entirely by an untrusted service who claims to be using our learning
algorithm, but may not be. The verifier checks whether the hypothesis matches the format our learning
algorithm produces, rejects if it doesn’t match, and performs a robustness test that is sound if it does
match. The user must trust that the error of the hypothesis really is opt + O(¢), but does not have
to place any trust in the service to guarantee robustness — there is a deterministic algorithm that

4 Agnostic approximation holds with high probability, whereas verifiable robustness always holds (determin-
istically).



the user can perform to verify that most points are not near the boundary. Furthermore, in a setting
where the user performs some of the construction of the hypothesis (but need not access any training
data), verifiable robustness can be made unconditional, but the soundness of the verifier can fail with
small probability over the randomness of the hypothesis construction. See Appendix D for further
discussion.

1.4 Related work.

Adversarially robust learning. Several recent papers study adversarially robust learning of various
concept classes in the distribution-free PAC setting. These papers also generalize the set of adversarial
perturbations beyond the ¢, ball. Some consider ¢, perturbations and some consider fully arbitrary
sets.

The works of [CBM 18, MHS19] show that there is essentially no statistical separation between robust
learning and standard learning; thus any gap in the hardness of these tasks must be computational. The
works of [BLPR19, DNV19, ADV19] exhibit concept classes and perturbation sets such that, under
standard hardness assumptions, robust learning is computationally harder than standard learning. The
work of [SHST 18] exhibits some concept classes and perturbation sets such that a high robust risk is
inevitable.

The work of [MGDS20] gives an algorithm for robustly learning halfspaces in the realizable setting
where the data is assumed to be labeled by a halfspace with random classification noise. The works
of [DKM20, DKM 19] give algorithms for robust, proper, agnostic learning of halfspaces; however,
the data distributions are assumed to be supported on the unit ball. When scaled up to match the
parameters of our setting — distributions concentrated on a radius-v/d ball — the running times of
these algorithms have an exponential dependence on v/d.

The work of [ADV19] also studies robust learning in the distribution-free setting. They give an
algorithm for learning halfspaces and degree-2 PTFs with robustness under /.-bounded perturbations.

In the distribution-specific setting, [GKKW21] gives an algorithm for learning monotone conjunctions
with robustness to perturbations of O(log n) Hamming distance, under log-Lipschitz distributions
on the Hamming cube. As mentioned earlier, the proper agnostic learner of [DKK™21] is a robust
learner for halfspaces under the Gaussian distribution.

Other work on learning halfspaces. See Section 1 for comparison of our work with [DGJT09,
KKMSO08]. Under general log-concave distributions, [ABL17] gives an algorithm for semiagnostic
proper learning of origin-centered halfspaces under log-concave distributions, i.e. the algorithm
gives a halfspace with error O(opt) + €, where opt is the error of best halfspace. In contrast to
this, our work focuses on obtaining the optimal opt + ¢ error. [Dan15] gives a poly-time method of
achieving error (1 4+ «)opt + ¢ under for any constant «, but via an improper learning algorithm that

uses polynomial regression®. The work of [DKK*21], in addition to the d°(1/ ") _time algorithm for
achieving error opt 4 ¢ for halfspaces under the Gaussian distribution (discussed in Section 1), gives a
poly-time proper learning algorithm for origin-centered halfspaces that achieves error (1 + «a)opt +
(similar to [Dan15]). All algorithms in [DKK™¥21] are highly specific to Gaussian distributions and
do not extend to, for example, to the uniform distribution over [—1,1]¢ and other sub-Gaussian
log-concave distributions.

2 Preliminaries

When dealing with a distribution D over R? x {1}, we will sometimes overload the notation to use
the symbol D to refer to the R%-marginal of D. Analogously, when dealing with a collection S of
pairs {(z;,y;)} in R? x {£1} we will sometimes write Pr,g[- - -] to refer to Pr(, ,)s[ - -] when
the values of y are not referenced.

5The algorithm of [Dan15] also applies only to the Gaussian distribution, and not to general sub-Gaussian
log-concave distributions.



2.1 Perturbation and robustness models

Definition 2.1 (r-boundary volume). The boundary volume of a function f at radius r on distribution
D is defined as

Boundaryp,, () = Pr [3: [sll, < rand f(x) # f(x +2)].

Definition 2.2 (Local noise sensitivity). We define the local noise sensitivity ¢ ,,(x) at noise scale 1
as
= E L — + .
bale) = B @)~ flz )]
We remark that when f is Boolean-valued, this is equivalently

Gpa(x) = Pr [f(z)# f(z+n2)].

2~ N(0,1q)

Definition 2.3 (Distributional noise sensitivity). The noise sensitivity of a function f at noise scale n
on distribution D is defined as
NSp,,(f) = mLED[d)fm(x)]-

Definition 2.4 (Isolation probability). We call a point isolated if its local noise sensitivity is over a
threshold. The isolation probability of a function f relative to a threshold t is

i50p,, (/1) = Pr[67,0(x) > 1.
We also use a convex relaxation of the isolation indicator and define 1) to be its expectation:
Upn(f) =10 B [1[61,(2) > 06] - (610(x) — 0.6)].

Note that ¥ (f) is an upper bound on iso( f,0.7).

2.1.1 Noise sensitivity approximators

Below, we introduce the notion of a local noise sensitivity approximator. Many of the algorithms we
introduce will use such an approximator as a black box they can query (see Algorithm 1, Algorithm 5,
Algorithm 4 and Algorithm 3). We first introduce a local noise sensitivity approximator and some
related notions, and present a randomized method for efficiently instantiating it.®

Definition 2.5 (Local noise sensitivity approximator for PTFs). For a degree parameter k, an
algorithm (Z) is an e-accurate noise sensitivity approximator if whenever it is given (i) a degree-k
polynomial threshold function f, (ii) a noise rate n € (0,1), and (iii) a point x € R%, it outputs a
value qgf’n(ac) such that

drn(@) — dpn(@)| <.

Definition 2.6. Let ngS be as in the definition above. Then we define the empirical noise sensitivity and
isolation probabilities as

NSp,(f) = E b(@) and isop,(f.t) = E 1[ds,(x) > 1]

We also define . R
Foa(f) =10 B [[dsr0(x) > 0] - (67,(x) —0.6)]

2.2 Distances and errors

Definition 2.7 (Error and optimal error). We will denote the error of a hypothesis on a distribution

erp(h) = B [3lh(@) -]

and remark that when h is Boolean-valued this is equivalently
errp(h) == Pr [h(zx y).
p()i= Pr [h(z) #1]

s

In Appendix A.1 a randomized construction of qB is given and in Appendix D a deterministic method is
presented assuming BPP = P.



Relative to a sample set we use

_ 1 1
errg(h) = 5] Z slh(x) —yl.

(z,y)€s
We will often denote by opt the optimal error of a function f with respect to a concept class F:

opt := inf e .
pt = inf errp(g)
In this work, F is always the class of linear threshold functions over R,

2.3 Miscellaneous

We will use the notation of the form a = b £ ¢ as a shorthand for |a — b| < ¢. We will also drop

subscripts, particularly on ¢ and q@, when they are clear from context. Throughout this work, wherever
there is noise, the noise scale 7 is always 107, where r is the desired robustness radius. We use the
notation ¢ ~ [—1, 1] to denote that ¢ is drawn uniformly from [—1, 1].

3 Results and pseudocode of our main algorithm

Our main result is the following. It states the correctness and running time of the main algorithm,
ROBUSTLEARN.

Theorem 3.1 (Correctness and complexity of Algorithm 1). Lete > d='/7, letr,6 € (0,1), and let
C be a sufficiently large absolute constant. Furthermore, let ¢ be an e-accurate local noise sensitivity

Clog?(1/¢)
22

approximator for degree-k PTFs over RY, where k = , and let the running time and query

complexity of qAS be T.

Let F be the class of linear threshold functions over R® and D be a distribution over R® x {—1,1}
whose Re-marginal is isotropic, subgaussian and log-concave. The algorithm ROBUSTLEARN, given
i.i.d. sample access to the distribution D, with probability at least 1 — O(0) returns a hypothesis
h : RY — {£1} for which the following hold:

errp(h) < opt + O(e)
Boundaryyp ,.(h) < O(r +¢).

The running time and sample complexity are poly (dlogz(l/a)/52 -log(1/9) - 7').

Corollary 3.2. By instantiating ¢ with the algorithm of Appendix A.l, which evalu-
ates queries in poly (dlogz(l/g)/ez-log(l/é)) time, ROBUSTLEARN runs in total time

poly (dlogz(l/e)/‘fz : log(l/d)).

Algorithm 1 ROBUSTLEARN(D, ¢, 6, 7):

1: Input: sample access to distribution D over R¢ x {41}, error bound ,

2: confidence bound §, robustness radAius r

3. Uses: local noise sensitivity approximator ¢. (See Definition 2.5)
4: Output: hypothesis h : R — {—1,1}

5: p:= LEARNREALVALUED(D, ¢, 7). (See Algorithm 2)
6: return COMPUTECLASSIFIER(D, p, 1, ¢,0). (See Algorithm 5)

The algorithm has two “phases”: LEARNREALVALUED, which solves a convex relaxation of the
learning task, and COMPUTECLASSIFIER, which rounds the real-valued hypothesis to a Boolean
one with small boundary volume. We present and analyze these algorithms in Appendix B.3 and
Appendix C.3 respectively.



Theorem 3.3 (Correctness of Algorithm 2, LEARNREALVALUED). Let v € (0,1), and let D
be a distribution over R? x {£1} whose R%-marginal is a subgaussian isotropic log-concave
distribution over R%. Let F be the class of halfspaces on RY. Then, for some sufficiently large
absolute constant C, the algorithm LearnRealValued, given ¢, d and sample access to D, runs in time
poly (do(logQ(l/E)/52)) and will with probability at least 1 — O(0) return a degree-O(log®(1/¢)/€?)
polynomial p for which the following hold:

E E Osi T <1 + 0 2
t~[—1,1] _(m,y)ND[ Mgn(pit)’lor( )]] =100 ©) @
E |[¢g _ ~(2)] > 0.7 <O(e), 3
(w,y)I:\/l) _tN[_Ll][ sign(p()—¢),10 ( )] =0 7:| o (5) ©
Pr [sign(p(x) —t) # < opt+ Of(e). 4
tm 1] _(m,y)ND[ gn(p(z) ) y]] p (e) “

Theorem 3.4 (Correctness of Algorithm 5, COMPUTECLASSIFIER). Lef ¢ > d=Y7" and 5,7 > 0.
Let QAS be an s-accurate local noise sensitivity approximator for degree-k PTFs over R%. Let D
be a distribution over R% x {—1,1} such that the R%-marginal is isotropic and log-concave. Let
p : R — R be a polynomial of degree at most k satisfying

B B [fs <1

t~[—1,1] |:(z7y)ND[¢51gn(pt),10r (.’)3)]:| < 1007 + O(E)7 5)
. E  [Psin(p(e)- >0.7] <0().

(w,y)r~D |:t~[171] wﬁlgn(?(w) t)710r($)] >0 7] < 0(6) ©6)

Then the algorithm COMPUTECLASSIFIER(D, p, 1, &, ), given sample access to D and query access

to ¢, outputs a hypothesis h : R? — {—1, 1} such that the following properties hold with probability
at least 1 — O(9):
errp(h) < [El 1][elrrp(sign(p —t))] + O(e)
t~[—1,

Boundaryp ,.(h) < O(r +¢).
The running time and number of queries to ¢ are poly(d* - 1/e - log(1/9)).

3.1 Proof of Theorem 3.1.

In this section we prove the main theorem assuming Theorem 3.4 and Theorem 3.3.

Proof of Theorem 3.1. By Theorem 3.3, with probability 1 — O(J), the output p of LEARNREAL-
VALUED is a degree-k polynomial satisfying

E E fon (1 <1 7

tmo[—1,1] |:(:E,y)~D [¢51gn(p t),lOr(x)]:| < 1007 + 0(5)7 @)
; > 0. <

(;C,ZP/))I:\/D |:t~[I—El,1] [QSSlgn(p(z)—t),lOr(m)] >0 7:| = 0(5), (8)

B [Pr (2 )~ [sign(p(z) —t) # y]] < opt+O(e). ©)

This polynomial p is the input to COMPUTECLASSIFIER. We see that the premises of Theorem 3.4 are
satisfied by the guarantees of Equation (7) and Equation (8). Taking the conclusions of Theorem 3.4
and combining it with Equation (9) we see that the hypothesis h we return satisfies
errp(h) < El 1][errp(sign(p — )]+ O(e) < opt+ O(e),
t

)

Boundaryp ,.(h) < O(r +¢),

which concludes the proof of correctness.



We now analyze the sample complexity and running time. By Theorem 3.3, LEARNREALVALUED
takes d9(1°e”(1/2)/2*) poly(log(1/6)) time and samples. By Theorem 3.4, since the degree of p is
O(log?(1/¢)/e?) and € > d~1/7, COMPUTECLASSIFIER takes d© (18" (1/2)/=) poly(log(1/6)) time
and queries to ngS Evaluations of ¢Z take time 7, so the total running time is

poly(d10g2(1/6)/62) log(1/6) - 7),
and all components succeed with probability > 1 — O(9). O

Acknowledgments

We thank Ronitt Rubinfeld for proving insightful comments on a draft of this paper. We are
also thankful to Vinod Vaikuntanathan for helpful discussions regarding backdoors and verifiable
robustness.

Jane Lange is supported by NSF Awards CCF-2006664 and CCF-2310818, and NSF Graduate
Research Fellowships Program, and Arsen Vasilyan is supported in part by NSF Al Institute for
Foundations of Machine Learning (IFML), NSF awards CCF-2006664, CCF-2310818 and Big
George Fellowship. Part of this work was conducted while the authors were visiting the Simons
Institute for the Theory of Computing.

References

[ABL17] Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power of localization
for efficiently learning linear separators with noise. Journal of the ACM (JACM),
63(6):1-27, 2017.

[ACCLO8] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Property-preserving
data reconstruction. Algorithmica, 51:160-182, 2008.

[ADV19] Pranjal Awasthi, Abhratanu Dutta, and Aravindan Vijayaraghavan. On robustness
to adversarial examples and polynomial optimization. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 13737-13747, 2019.

[Ant95] Martin Anthony. Classification by polynomial surfaces. Discrete Appl. Math.,
61(2):91-103, July 1995.

[ARVX12] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computa-
tion algorithms. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 1132—-1139. SIAM, 2012.

[BCM™13] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning
at test time. In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip
Zelezny, editors, Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013,
Proceedings, Part III, volume 8190 of Lecture Notes in Computer Science, pages
387-402. Springer, 2013.

[BLPR19] Sébastien Bubeck, Yin Tat Lee, Eric Price, and Ilya Razenshteyn. Adversarial examples
from computational constraints. In International Conference on Machine Learning,
pages 831-840. PMLR, 2019.

[Car07] C. Carathéodory. Uber den variabilititsbereich der koeffizienten von potenzreihen,
die gegebene werte nicht annehmen. (mit 2 figuren im text). Mathematische Annalen,
64:95-115, 1907.

[CBM18] Daniel Cullina, Arjun Nitin Bhagoji, and Prateek Mittal. Pac-learning in the presence
of adversaries. Advances in Neural Information Processing Systems, 31, 2018.

10



[CRK19]

[Dan15]

[DGIT09]

[DHV06]

[DKK*21]

[DKM19]

[DKM20]

[DKPZ21]

[DKS18]

[DMR18]

[DNV19]

[Duc23]

[GKK23]

[GKKW21]

[GKVZ22]

Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness

via randomized smoothing. In international conference on machine learning, pages
1310-1320. PMLR, 2019.

Amit Daniely. A ptas for agnostically learning halfspaces. In Conference on Learning
Theory, pages 484-502. PMLR, 2015.

Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco Servedio, and Emanuele
Viola. Bounded Independence Fools Halfspaces, February 2009. Number:
arXiv:0902.3757 arXiv:0902.3757 [cs].

Sanjoy Dasgupta, Daniel Hsu, and Nakul Verma. A concentration theorem for projec-
tions. In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial
Intelligence, pages 114-121, 2006.

Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, Christos Tzamos, and Nikos
Zarifis. Agnostic proper learning of halfspaces under gaussian marginals. In Mikhail
Belkin and Samory Kpotufe, editors, Proceedings of Thirty Fourth Conference on
Learning Theory, volume 134 of Proceedings of Machine Learning Research, pages
1522-1551. PMLR, 15-19 Aug 2021.

Ilias Diakonikolas, Daniel Kane, and Pasin Manurangsi. Nearly tight bounds for robust
proper learning of halfspaces with a margin. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’ Alché-Buc, Emily B. Fox, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 10473-10484, 2019.

Ilias Diakonikolas, Daniel M. Kane, and Pasin Manurangsi. The complexity of adver-
sarially robust proper learning of halfspaces with agnostic noise. In Proceedings of the
34th International Conference on Neural Information Processing Systems, NIPS ’20.
Curran Associates Inc., 2020.

Ilias Diakonikolas, Daniel M Kane, Thanasis Pittas, and Nikos Zarifis. The optimality
of polynomial regression for agnostic learning under gaussian marginals in the sq model.
In Conference on Learning Theory, pages 1552—-1584. PMLR, 2021.

Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Learning geometric concepts
with nasty noise. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1061-1073, 2018.

Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The total variation dis-
tance between high-dimensional gaussians with the same mean. arXiv preprint
arXiv:1810.08693, 2018.

Akshay Degwekar, Preetum Nakkiran, and Vinod Vaikuntanathan. Computational
limitations in robust classification and win-win results. In Conference on Learning
Theory, pages 994-1028. PMLR, 2019.

John Duchi. VC-dimension, covering, and packing, 2023. Accessed: 2025-05-11
https://web.stanford.edu/class/stats300b/Notes/vc-dimension.pdf.

Aravind Gollakota, Adam R Klivans, and Pravesh K Kothari. A moment-matching
approach to testable learning and a new characterization of rademacher complexity.
In Proceedings of the 55th Annual ACM Symposium on Theory of Computing, pages
1657-1670, 2023.

Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell. On the
hardness of robust classification. Journal of Machine Learning Research, 22(273):1-29,
2021.

Shafi Goldwasser, Michael P Kim, Vinod Vaikuntanathan, and Or Zamir. Planting
undetectable backdoors in machine learning models. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 931-942. IEEE, 2022.

11



[GM11] Olivier Guédon and Emanuel Milman. Interpolating thin-shell and sharp large-deviation
estimates for isotropic log-concave measures, 2011.

[GSS14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. CoRR, abs/1412.6572, 2014.

[KKMS08] Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio. Ag-
nostically learning halfspaces. SIAM Journal on Computing, 37(6):1777-1805, 2008.

[KM18] Zico Kolter and Aleksander Madry. Adversarial robustness — theory and practice.
2018.

[LAG™19] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman Jana.
Certified robustness to adversarial examples with differential privacy. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 656—-672, 2019.

[LCWC] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. Second-order adversarial
attack and certifiable robustness.

[LRV22] Jane Lange, Ronitt Rubinfeld, and Arsen Vasilyan. Properly learning monotone func-
tions via local correction. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 75-86. IEEE, 2022.

[MGDS20] Omar Montasser, Surbhi Goel, Ilias Diakonikolas, and Nathan Srebro. Efficiently
learning adversarially robust halfspaces with noise. In International Conference on
Machine Learning, pages 7010-7021. PMLR, 2020.

[MHS19] Omar Montasser, Steve Hanneke, and Nathan Srebro. Vc classes are adversarially
robustly learnable, but only improperly. In Conference on Learning Theory, pages
2512-2530. PMLR, 2019.

[RTVX11] Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algo-
rithms. arXiv preprint arXiv:1104.1377, 2011.

[SHS™18] Ali Shafahi, W Ronny Huang, Christoph Studer, Soheil Feizi, and Tom Goldstein. Are
adversarial examples inevitable? arXiv preprint arXiv:1809.02104, 2018.

[SW14] Adrien Saumard and Jon A Wellner. Log-concavity and strong log-concavity: a review.
Statistics surveys, 8:45, 2014.

[SZST14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In
Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings, 2014.

[VDVWO09] Aad Van Der Vaart and Jon A Wellner. A note on bounds for vc dimensions. Institute of
Mathematical Statistics collections, 5:103, 2009.

[VW97] AW van der Vaart and Jon A Wellner. Weak convergence and empirical processes with
applications to statistics. Journal of the Royal Statistical Society-Series A Statistics in
Society, 160(3):596-608, 1997.

A Further preliminaries

A.1 Randomized implementation of )

Let T be a sufficiently large set of i.i.d. samples from A/ (0, I;). Below, we show that the choice of d3
as the following empirical estimate will satisfy Definition 2.5 with high probability over the choice of
T:

~ 1 f(z)— f(x+nz
brnate) - 3 M=)
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Fact A.1 ([Ant95]). The VC dimension of the class of polynomial threshold functions of degree k is
0((£)) = O(d").

Fact A.2 (Concentration of expectations from VC dimension). Let C be a concept class and D be
a distribution over R?. For some sufficiently large absolute constant C, the following is true. With
probability at least 1 — & over a sample S of i.i.d. samples from D, with |S| > C-VC(C)log(1/6) /<2,
the following holds:

sup
fec

E | <x>]—|}zf<x>‘<e.

x~D
xzeT

We will call a sample set “representative” of distribution D for a concept class if it satisfies the above
success condition.

Claim A.3 (Representative samples provide accurate noise sensitivity estimates). Let C be the class
of degree-k PTFs. Let T be a set of points in R? that is representative for N'(0, 1) for C (in the
sense of Fact A.2). Then with probability > 1 — & over T, the following holds for all f € C, x € RY,
andn € (0,1):

‘q;f’T*"(w) - ¢f,n(ff)’ <e.

Proof. Observe that for any fixed z, the function g(z) = — f(z) - f(z + nz) is a member of C. Thus
by Fact A.2, we have with probability 1 — § that

E -~ E
Ll = B

z ‘Se.

The claim follows from observing that ¢, (z) = % (E[g(2)] + 1), and thus

<e.

[65:7() — bp0(@)] = 5

E l9(2)] — ZNNI(EOJd)[g(Z)]

A.2 Distances and errors

The following facts about the error and local noise sensitivity after rounding a real-valued function to
Boolean follow directly from linearity of expectation.

Fact A.4 (Randomized rounding). Let f and g be real-valued functions. Let the rounded function f;
be defined as

fe(x) = sign(f(z) — 1),
and likewise for g;. Then,

B | P w2 < B |

t~[—1,1] T (zy)~D
|f(z) — g(z)]
5 )

If(w)zyl} .

B |2l 2ol < B

t~[-1,1] | (z,y)~D (z,y)~D

Similarly,7 } 3
[br.n(@)] < Opn(z) and B [65,15(@)] < ¢p10(2)

E
t~[=1,1] ~[=1,1]

forany x, nand T.

Finally, the following is a standard fact, see for example [DMR18].

Fact A.5 (TV distance between one-dimensional Gaussians). For all p1, o in R and 01,05 in R~
we have

3|02 — o2 —
Ay (N0, N pa, ) < A2 02] 1=
o1 201

"See Appendix A.1 for the definition of d~>
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A.3 Miscellaneous

We say that f is a randomized Boolean function over R? if f maps every point in R? to a random
variable f(x) over {0,1}. Sometimes we will write f(z) = Ber(p), to denote that f(x) = 1 with
probability p and 0 with probability 1 — p. In Appendix E, miscellaneous claims about uniform
convergence are shown, which are used in the analysis of Algorithm 2.

B Pseudocode and analysis of LearnReal Valued

In this section we present and analyze our algorithm for learning a polynomial with small noise
sensitivity and isolation probability.

Algorithm 2 LEARNREALVALUED(D, ¢, r):

1: Input: Sample access to distribution D, error bound €, robustness radius r
. Output: hypothesis i : {—1,1}¢ — R

2

: Stk = Clog(1/e)
: foriin {1, --- ,log(1/4)} do

S; == {Cd°* -log(1/5)/e? i.i.d. draws from D}.

T; == {Cd°* -log(1/6)/£? i.i.d. draws from N(0, I4)}
Let p; be the output of the following convex program:
 Domain: polynomials over R? of degree k.
* Minimize: }, e p(%) =y
¢ Constraints:
Define ¢(x)p,1,10r = 7y 3, LELEHE

Define "Lp,T,lOr =10 - ]l~[(;~5(x)p’T710T > 06] . (qz(x)pyT,lor — 06)
Constraint 1: ﬁ > wes p,rior(@) < 100r + &

— Constraint 2: ‘1?' Y owes Yprior(z) <€

8 i* := argmin, (E<x,y>~si [WD

9: pi=p;=.
10: return p

B.1 Facts about log-concave distributions.

Definition B.1. A distribution D over R? is is called C-sub-Gaussian, if for any unit vector u.:
Pro.pl|u-z| > t] < exp(—Ct?)

foranyt > 0. We say D is sub-Gaussian, if D is C-sub-Gaussian for some absolute constant C.

See e.g. [SW14] for the following fact:

Fact B.1. If D; and Dy are log-concave distributions over RY, then the convolution of D1 and Do
is also a log-concave distribution over R

Likewise, the following fact follows directly from the definition of a sub-Gaussian distribution:
Fact B.2. If Dy and D5 are sub-Gaussian distributions over R, then the convolution of D1 and Do
is also a sub-Gaussian distribution over R

The following fact can be found in [SW14]:

Fact B.3. If a distribution D over R is isotropic log-concave, then the projection of D on any linear
subspace in R? is likewise log-concave.

The following two facts can be found in [GKK?23], [ABL17] and the references therein.

Fact B.4. If a distribution D over R? is isotropic log-concave, then for some absolute constant Cs,
for any unit vector u and every interval J C R, we have Pr,.p[(u,x) € J| < |J|.

14



Remark B.5. It follows from a direct change-of-basis argument that Fact B.4 still holds if the premise
that the distribution D is isotropic® is replaced by a slightly more general premise that D mean zero
and satisfies:

Iixa = Banplza’] < 20014xq
For the following fact, see e.g. [DKS18] and the references therein:
Fact B.6. If a distribution D over R is log-concave, then for some absolute constant Cy, if p is a
degree-k polynomial for which E,.p|(p(z))?] < 1, then for any B > € it is the case that

Pr.~p|(p(x))? > B] < exp(—C4B'/*¥)

One can use the fact above to conclude the following:

Observation B.7. If a distribution D over R% is log-concave, then for some absolute constant C,
for every degree-k polynomial p it is the case that

Bz~ p[(p(2))?]

E.~pllp(z)]] > (Csk)CsF

Proof. Without loss of generality, we can assume that IE, . p[(p(z))?] = 1. For any B > 0, we have

Eenp(IP(@)]* Lp@y<s] _ 1= Bonn[p()? Ljpe) > 5]

E.nlp(o)]) 2 5 :

Using Fact B.6, we have

(10)

+oo

Beepllp)') < 20 4 [ Prplpte)f® > 814 <

O + / +OO(B’)3’“/2’1exp(me’)dﬂ’ < (O(k))°™,
B'=0

which allows us to conclude that

Esp(lp(2)]*] _ (O(k))°™
Epnpllp(@)* Lp)> 5] < =5 = —5

Taking B to equal (C’ k)clk for a sufficiently large absolute constant C’, and substituting the bound

above into Equation (10) finishes the proof. O

B.2 Approximating halfspaces with polynomials

Claim B.8. Let h be a linear threshold function over R® . Then, for every absolute constant C, there
exists a polynomial p of degree O(1/e%log®(1/¢)), such that for any C-sub-Gaussian log-concave
distribution D over R? satisfying Ijxq = Epop[rzT] < 200I1x4 we have

Eo~p[lh(z) — p()[] < O(e)

Remark B.9. Recall that a distribution D is log-concave if the logarithm of the probability density
function of D is concave. Note that the constants hidden by the O(-) notation in Claim B.8 are
allowed to depend on the sub-Gaussianity constant C'.

To prove the claim above, we will need the following proposition from [DGJT09]:
Fact B.10 ([DGJT09)). There exist absolute constants Cy and Cs, such that for every € € (0,0.1),
there exists a univariate polynomial P satisfying the following. Denoting a = Wil/s) and

log X 2 .
K = 05% =0 (logsizl/s) it is the case that

e The degree of P is at most K.
* P(t) € [sign(t),sign(t) + €] forall t in [-1/2,—2a] U [0,1/2].

8Recall that the condition that D is isotropic means that D has zero mean and covariance /;x 4.
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* P(t) € [-1,1+¢] fort in[—2a,0]
s |[P(t)| <2 (4)K forall |t| > 1/2.

The proof below follows closely the line of reasoning in [DGJT09] and is included for completeness.

Proof of Claim B.8. For a unit vector u h(x) = sign(u -  — 7) (assuming 7 = 0 for now)

If |7] > log(1/¢) the statement follows immediately by taking P to be the constant polynomial that

equals to sign(7) everywhere in R?. The error between h and P will be upper-bounded by O(e) via
Definition B.1 and Remark B.5.

Otherwise, we have |7| < log(1/e). Let P be the polynomial in Fact B.10 and take w :=

1/2
Cs 1og§721/5 for a sufficiently large absolute constant Cs. Denoting by Dygjccied the projec-

tion of distribution D on the unit vector u, we can bound the error as follows using Fact B.10:

Ey~pllsign(u-z —7) = P((u-z = 7)/w)|] = Ezn Dy [Isign(z = 7) = P((z = 7) /w)[] <

Z—T K
(2'<4' " > +1) 11|<“>/w|>1/z]

(I

The second term above is bounded by O(aw) due to Fact B.4 and Remark B.5. We also note that

log? 1/¢ 1
2

5+2 Prz~Dprojec(ed[_2a S Z/w_T S 0]+E2Nmejected

2
since |7| < log(1/e) and w := Cg , for sufficiently large absolute constant Cs we gave

|7|/w < 0.1. Therefore, whenever (z — 7)/w| > 1/2 we also have z > 0.4w. This allows us to
upper bound

Ey~pllsign(u-z —7) = P((u-z —7)/w)|] <

z K
€ + O(aw) + ]EZNDPTOJccmd |:<2 : (4 ! E + 01) + 1) ]]'|Z|ZO.4U):| S

2\ K
€+ O(aw) + EZNDP'Ojecled |:<3 : (5 ’ E) ) ]]'|Z|204w:| (12)

Decomposing the interval [0.4, oc] into a union [ J;2,[0.4 - 2%, 0.4 - 2¢7!] and using Definition B.1
and Remark B.5 we can now upper-bound the last term above as follows:

2\ K
EzNmejcacd |:<3 : (5 ! E) ) ]]-|z|20.4w:| <

23 (3- (42X Procpy 121 > 2771 0.4w]) <
1=0
62 ((4- 29K exp(—C(2"3w)?))  (13)

=0

2 2 1/2
Substituting K = O (1og8721/s) and w = Cg (logaizl/s) , we can bound each term in the sum above

2 2
(4 . 27/>K eXp(_c(Qi—3w)2) S exp ((2 + 2) -0 (logéj21/8> —C - 062i—310g€21/€)

For a sufficiently large absolute constant Cg the above is at most £/2°"1, which substituted into

Equation (13) gives us
I\K
EzNDPn’jcclcd |:<3 : (5 ! E) ) Il|Z|ZO.4w:| <e.

Finally, substituting the inequality above into Equation (12), we get
Eq.p(lsign(u - z) — P(u- z/w)|] = O(e),
finishing the proof. O
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B.3 Analyzing LearnReal Valued.

Theorem 3.3 (Correctness of Algorithm 2, LEARNREALVALUED). Let r € (0,1), and let D
be a distribution over R? x {£1} whose R%-marginal is a subgaussian isotropic log-concave
distribution over R%. Let F be the class of halfspaces on R, Then, for some sufficiently large
absolute constant C, the algorithm LearnRealValued, given ¢, § and sample access to D, runs in time
poly (dO(10g2(1/£)/52)) and will with probability at least 1 — O(0) return a degree-O(log*(1/¢) /€2)
polynomial p for which the following hold:

tm[=1,1] | (z,5)~D [¢sign(p—t),107" (SL’)]:| S 1007 + 0(6)7 (2)

E ign — r Z 0.7 S O 5 3
(w,y)rND _t~[—1,1][¢5g (p(x)—t),10 (CU)] ] (5) ( )

By | e <) 2 y]] < opt 1 O(2). @

We first argue that the run-time is indeed dO(og®(1e)/* The algorithm operates with polynomials of
degree k = O(log?(1¢) /2 over RY, which are described via d (k) coefficients. It remains to show
that the constraints for the optimization task are indeed convex in the coefficients in the polynomial p.
Recall that the constraints are:

e Constraint 1: |—é‘ ers ¢~)p,T,10r(iU) <100r +¢

 Constraint 2: |—é‘ > zes ?/;p,T,wr(m) <e

To see that these constraints are indeed convex, first note that, by definition of ¢, 710, (2) and the
triangle inequality, we have for any pair of polynomials p;, ps,  in R% and o € [0, 1]

q;(apl-ﬁ-(l—a)sz)aT,lO?"(x) < aqul,T710T($) + (1 - a)(rgmeleT(x)? (14)
which implies that Constraint 1 is convex. Likewise, reclalling the definition of ¢
Up.r10r = 10+ 1[6(2)p 1100 > 0.6] - (6(2)p,1,10, — 0.6),
and combining it with Equation (14) we see that

1quol-s-(l—oz)p:z,T,10r(95) < a'lszl,T,l(]r(x)(l - a)"/;pz,T,l()r(x)

We now proceed to the proof of correctness, the following claim will be key to our argument, which
will be proven in the next subsection (Appendix B.4):

Claim B.11. For any specific iteration i of the algorithm, the polynomial p; will satisfy the following:

E(e y)s. |fpiiri10r()| < 1007+ O(e), (15)
Eeys, [Vp.1i10r(2)] < OC), (16)
and the following holds with probability at least 0.9:
pi\Z) —Y .

We now prove Theorem 3.3 assuming Claim B.11.

Proof of Theorem 3.3. First we note that for sufficiently large value of the absolute constant C, with
probability at least 1 — O() forall 4 in {1,--- ,log 1/0}, the set S; will satisfy Claim E.2, Claim E.3
and Fact E.5, and the set T;; will satisfy Claim E.2. Furthermore, since the main iteration is repeated
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O(log 1/6) times, the we see that with probability 1 — O(J) the polynomial p = p;« will satisfy
Equations 15, 16 and 17. Denoting S = S;« and T = T;~, we have

Since S satisfies Claim E.2

Ein-1,1) [Ba,y)~s [Dsigno—0),10-(2)]] + O(e) <
+ < ]E(;c y)~S |:¢p,T,107‘(x):| -+ O(E) < 1007 + 0(5),
—_—

By Equation (15)

Etw[ 1,1] [E(r y)~D [¢%1gn(p t), 10r( )]] <
< Etw[—l,l] {E(;c,y)NS |:¢sign(p—t),T,10r x }:|

Since T satisfies Claim A.3, and WLOG € < 0.02. By Fact A.4
which gives us Equation (2). We now derive Equation (3) as follows:

Since S satisfies Claim E.3

Pr [Ete[fl 1] [¢sign(p(a:)7t) 101’] > 07} < Pr [Ete[fl,l] [(bsign(pft),lOr(x)] > 067] + O(‘S) <

(z,y)~D ’ ' (z,y)~S
< Pr [Eio—1,1)[@signp—t),1,10-(2)] 2 0.65] + O(e) < O(1) E(y ) s [qz;p’T’wr(z)} +0(). <O0(e)
(@,y)~S
L ~ . By Equation (16)
Since T satisfies Claim A.3, and WLOG & < 0.02. By Fact A.4 and definition of ¢ (Section 2.1)

Finally, we derive Equation (4) as follows:
Since S satisfies Fact E.5
Ey(—1,1) [errp [sign(p — )] < By, [€rTs [sign(p — 1)]] + O(e) <

<Eiyes |70 06 om0

By Equation (17) and defn of opt

By Fact A4

B.4 Proving Claim B.11

Finally, we finish this section by proving Claim B.11. Inspecting the algorithm LearnReal Valued,
we see that the linear program is always feasible for any input dataset .S;, because the all-zeros
polynomial will satisfy the constraints in the linear program (i.e. Equations 15 and 16). It remains to
show that with probability at least 0.9 there exists a polynomial p; satisfying all three of Equations
15,16 and 17.

Suppose f* is the optimal halfspace for D, i.e.
Pr(eyy~n (@) # 9] = min (Prie)~p [f(2) # 9]) (18)

Let Darginal denote the Ré- -marginal of D, and let Dmargmal denote distribution of  + 107z, where
2 is sampled from Dparginal and 2z is sampled from N(0, I;). Since Dinarginal 18 assumed to be sub-
Gaussian log-concave, Fact B.1 and Fact B.2 tell us that Dy, is also sub-Gaussian log-concave.

Furthermore, since Dyyarginal 1S isotropic (i.e. has mean zero and identity convariance) and r is in
(0,1) we see that

Iy =< EZ~Dm,g"a][ 7] < 1011,.
Therefore, Claim B.8 tells us that for a sufficiently large absolute constant C” there is a polynomial of
p* of degree Clogi(l/s) for which
B Dna (|7 (2) = p"(2)[] < O(e) (19)
Eanpy (17 (@) = p"(2)[] < O(e) (20)

marginal
Recall that for each element (x y) in S;, the variable « is distributed according to Diarginai- Similarly,
for each (z,y) in S; and 2 in T; the sum z + 107z is distributed Dy, ;- This allows us to use
inequalities above to conclude that with probability at least 0.99 we have

By~ [P () = f7(2)]] < O(e) 21
Eey)~s, o [P (€ +10r2) = f*(x +10r2)[] < O(e) (22)

In the remainder of this section we show that with probability at least 0.9 over the choice of S; and
T; the choice p; = p* will indeed satisfy Equations 15, 16 and 17.
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B’4'1 Bounding ]EmNDmarginal [¢f* 710T(x)] and ]EINDmarginal [wf* (m)]

Recall that f*(x) = sign(u -z — 7) for some unit vector u and real 7. Here, we show that f* satisfies
the following two inequalities

E-’CNDmarginal [st* , 107 (I)] < 60r, (23)

EINDmargiml Wf* (l‘)] =0. (24)
Indeed, fix a specific value of x. Recall that ¢ ¢ 10, (x) is the probability that sign(u - x — 7) #
sign(u-(z+10rz)—7) where z is sampled from N (0, I;). With probability at least 0.5 over the choice
of Z we have sign(u - z) = sign(u-x —7) which leands to sign(u -« —7) # sign(u - (z+10rz) — 7).
Thus, ¢+ 10, (x) < 0.5 and substituting this into the definition of 1) we see that ¢»(x) = 0, which
proves Equation (24).

Now consider points  in R such that |u - z — 7| is in the interval [10r - (i — 1), 107 - 4] for an integer
1. We have the following two observations:

* By Fact B.4, we see that the probability over x sampled from Diyarginal that |u-x—7|isin
the interval [10r - (¢ — 1), 10r - ¢] can be upper-bounded by 20r.

* For a fixed « for which |u - 2 — 7] is in the interval [10r - (¢ — 1), 10r - 4], via Chebyshev’s
inequality, it follows that

2 2
Pt n0,1,) [sign(u-x—7) # sign(u-(x+10rz)—7)] < max <1, <10r1?7;1)) > = max (1, (z i 1) )

Combining the two observations above, we see that

00 2
1
EI"’Dmarginal [(bf*:lor (‘/E)] S Z 20T max (17 <Z . 1) > S 607"

=0

which yields Equation (23).

B.4.2 Bounding E(m,y)NSi [(E)p*’T“wr(:L’)] and E(w7y),\,5’i [ij*,Ti,lOr (I)].
‘We observe that
p*(z) — p*(x + 10rz2)

E(zy)~s, [Ppr, 7 (2)] = E(gg)ns, [

zr~ 1y

H f(z) - f*2(x + 10rz)

p(z) = f*(x)

Ez,y)~s;
ZNTi

E(z,y)~s; (@5 710 ()] +E(,y)~s;

| <

p*(x + 10rz) — f*(x + 10rz2)
}+E<m,y>~si { 5 }+E<w,y>;‘si { 5

p*(x) = [ ()| + Eg s, o [P7(2 +10r2) — f*(z + 1072)] .

=0O(¢e) by Equations 21 and 22

(25)
Analogously, by inspecting the definition of v, we see that for any x we have
Yy 1, (@) = g 1 (fﬂ)’ < (@) —p* (@) + O) - Bz, [[f*(2 +102) — p*(x + 102)]]]
Averaging over z in .S;, we have
E(I’y)Nsi ['&P’ﬂTi (l‘)} <
]E(f”sy)NSi [(bf* , 15,107 (.%‘)]+O(1) (]E(zay)NSi

p*(x) = (@) + Egyy~s, oo, [P (2 4 1072) — f* (2 + 10rz)|) )

=0 (&) by Equations 21 and 22

(26)

Recall that f* is a {+1}-valued function, which implies that ¢ s+ 7, 10, (z + 10r2) is in [0, 1] for all
x and z. This allows us to use the Chebyshev’s inequality to conclude that:

ETi Hqgf*,T,;,lor(x) o (f)f*,lOr(x)H =9 <\/1Tl|> .
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Inspecting the definition of 1& we see that for any z it is the case that

\wf* (@) = bpe(a )‘ (1)"ﬂgf*,n,mr(w)—¢f*,10r($)7

which implies that
Ez, |45 a(2) - vy @) <0 <|1T|>

Averaging the inequalities above over x in S;, we have:

1

Er, [E(I,y)Nsi Héf*,n,mr(x) - ¢f*,107'(”3)m =0 <|T|>

Er, [E(ﬁ,y)NSi HlZfT, (z) = 1/’f*(x)m =0 <\/|1TT|>

Thus, with probability at least 0.99 over the choice of T}, we have

‘]E (o), {(bf Ti,lor(l‘)} — E(yy)~s; [qbf*,mr(x)]‘ S Ey)~s, H¢f 7100 () — ¢f*,10r(-'1f')):| <0 (Isz|>
(27)

‘E(W)N& [1;, o (w)} — Eiayyos, [V (x)]‘ < E(y)s, H@Z;f*,n. (z) — wf*(x)H <0 (\/|1T7|>

(28)

Again, recalling that f* is a {#1}-valued function, we see that ¢+ 10,() is in [0, 1] for all x and
Yy« (x) is likewise bounded by O(1) in absolute value. This allows us to use the Chebyshev’s
inequality to conclude that with probability at least 0.99 over the choice of .S; we have:

1
B (@,5)~5, [05.100 (€)] = B Dy [05+,107 ()] < O (\/m) (29)
1
|E($,y)NS¢ WJf* (‘T)] - ErNDmmginal [wf* (I)H <0 <\/m> (30)

Overall, combining Equation (23), Equation (29), Equation (27) and Equation (25) we see that with
probability at least 0.97 over the choice of S; and T; it is the case that

Bz y)~s: [0p+ 100 (2)] < 60r + O(e).

Similarly, combining Equation (24), Equation (30), Equation (28) and Equation (26) we see that with
probability at least 0.97 over the choice of S; and T; it is the case that

E (s, )~s:[Up1, (2)] < O(e).

B.4.3 p* has a small empirical error.

Finally, we argue that with probability 0.99 we have E(, ,)~s, [ p (3;)_3/‘ } < E@,y)~D {W} +
O(e). Indeed, Hoeffding’s inequality implies that with probability at least 0.995 we have
[f*(x) — vl £ (=) —yl
Ea.y)~s. [ 2 < By)~p 9 te
whereas Markov’s inequality tells us that with probability 0.995 we have

(1000 < o1 [ L2

()]
B y)~si 5 = O(e).
Overall, we see that with probability at least 0.99 it holds that

2 2

B y)~s: [W] B y)~s; [lf () - |:|+E(z,y)~5i Pp*(x)—f*(x)q < Ey)~D [W} +0(e)
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C Pseudocode and analysis of ComputeClassifier

C.1 Local correction of adversarial robustness

Theorem C.1 (Correctness and complexity of Algorithm 3). Let ngS be an e-accurate local noise
sensitivity approximator for degree-k PTFs over RY, and let T be the run-time and query complexity

of ¢. Then there exists an algorithm ROBUSTNESSLCA (z, g, r) that takes x in R?, query access to
a function g : R — {—1,1}, perturbation size parameter r in (0, 1). The algorithm makes O(T)
queries to g, runs in time O(7 + d), and satisfies the specifications below.

Let D be a distribution over R%, and let g be a degree-k PTF. Let the function h : R — {—1,1} be
defined as h(z) := ROBUSTNESSLCA(z, g, ). Then the following properties hold:

a) Pryplg(x) # h(w)] < isop,10-(g,0.8).
b) Prypldgior(z) <0.1] >1-0 (N\SD,M)T(Q))-

c) For every z in R4, iquﬁgJOT(z) < 0.1, then for every x’ with ||z’ — x| < r we have
h(z") = h(z) .

Algorithm 3 ROBUSTNESSLCA(z, g, 7):

1: Input: point z € RY, black-box representation of a function g : R% — {—1,1},

2: robustness radius r .

3. Uses: local noise sensitivity approximator ¢. (See Definition 2.5)
4: Output: b € {—1,1}

5: if ¢g,10r(l‘) > 0.8 then

6: return —g(z)
7: else
8 return g(x)

Proof. Inspecting the algorithm ROBUSTNESSLCA, we see that condition (a) follows directly, as
only isolated points have their labels changed. Meanwhile, condition (b) follows directly from

Markov’s inequality and the definition of NS (Section 2.1.1).

To show condition (c), we first recall that by the assumption that dA) is an e-accurate approximator, for
every degree-k polynomial threshold function g and every z in R¢ we have

9100 (%) = bg 100 ()| < £ <001, 31

where for the last we assumed without loss of generality that € < 0.01. This implies that whenever

¢g,10r(2) < 0.1 we have ¢ 10-(z) < 0.11. Suppose =’ has distance at most r from z. Since ¢q (z)
is defined as

(bg,l()r(x) = ZNJ\]f:ngd)[g(x) 7é g(m + 107’2)]7
we see that
P "1 10r2)] <
o @) # 9@+ 10r2)] <
o l0(@) # 9@+ 10r2)] + drv (N, 100r°1,), N((2'), 100r215)) <
zn »Ad
|z — 2
P 10 =2
ZNN(ng)[g(w) # gla +10r2)] + S,

where the last inequality is implied by Fact A.5. Overall, since we know that ¢4 19, () < 0.11 and
|z — 2’| < r, we have

P "+10 < 0.16.
B lala) # (e’ 4+ 10r)] <

Now, we consider the following two cases:
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* Suppose g(z') = g(z): then the above implies that ¢, 10-(2") < 0.16, which combined

with Equation (31) implies that ég,loT(x’ ) < 0.17. Therefore, by inspecting the algorithm
ROBUSTNESSLCA we see that h(z') = g(z') = g(x) = h(z).

* On the other hand, suppose g(z') = —g(x). Then, we have ¢4 1o-(z') > 1 — 0.16 = 0.84,

which combined with Equation (31) implies that ¢Zg, 10r(z") > 0.83. Therefore, by inspecting
the algorithm ROBUSTNESSLCA we see that h(z') = —g(2') = g(z) = h(x).

In either case, we have h(z’) = h(x).

C.2 Finding good rounding thresholds

Theorem C.2 (Correctness of Algorithm 4). Let ¢ € (0,1) and D be a distribution over R x {£1}.

Let dg be an e-accurate local noise sensitivity approximator for degree-k PTFs over R%. Letp : R4 —
R be a polynomial of degree < k satisfying the following:

E E sign(p— r S ].00 O s 32
B s Psieno—1).10r (@) r+0(e) 32)

= I;){VD [Eio(—1,1)[@sign(p(z)—t),10- ()] = 0.7) < O(e). (33)

The algorithm COMPUTEROUNDINGTHRESHOLDS outputs real numbers ti,to,t3,t4 and
wi, wa, w3, wy € [0,1] such that ), w; = 1. Let the hypotheses g1, g2, g3, ga be defined as

gi(x) = sign(p(x) — ;).
Then the following properties hold with probability at least 1 — O(0):

o > wi-errp(g;) < Byo_y qy[errp(sign(p —t))] + O(e)
YW l<I\SD,mr(gi) <2007 + O(e).
* 3, w; +is0p 10, (:,0.8) < O(e).

We argue that with high probability over the choice of the O(1/£?) random rounding thresholds, the
equal-weighted mixture of the rounded functions has each of the desired properties.

Claim C.3 (Properties of the equal mixture of all rounding thresholds). Lete € (0,1). Letp : R —
R be a polynomial of degree < k satisfying the following:

* Etw[—l,l] [E(x,y)ND[qgsign(p—t),lOr(x)]} <a

« Pr {Ete[q,u [Pign(p(z)—t),100 ()] > 0-75} < O(e).
(z,y)~D

Let © be a set of 100/c? real numbers drawn uniformly and independently from [—1,1]. Then the
following hold with probability > 0.99:

(a) Eieolerrp(sign(p — t))] < E;of1 yjferrp(sign(p — )] + O(e)
(b) Ete@[EmN'D[ésign(p—t),lOr(x”] < 2a0 + 0(5)

(c) EtE@[PerD[Qgsigrl(p—t),lo’f‘(x) > 08“ < 0(5)

Proof of Claim C.3. We will show that each of the conditions holds with high probability, then union
bound.
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Algorithm 4 COMPUTEROUNDINGTHRESHOLDS (D, p, €, 9):

Input: sample access to D, robustness radius r,
error bound ¢, confidence bound &
Uses: local noise sensitivity approximator ¢. (See Definition 2.5)
Output: thresholds t = t1, to, t3,t4 € [—1, 1] and weights 1 = wy, wa, w3, wy € [0, 1]
Initialize QQ := @.
M < 100/&® - log®(1/6) i.i.d. samples (z,y) from D
for i € [log(1/6)] do
for j € [100/£%] do

Draw rounding threshold ¢ u.a.r from [—1,1] and define rounded function p;(x) =

sign(p() — 1).

—_

PRI NHE LN

10: Let erry := errps(pe).

11: Let NS; := ﬁ .ZZGM ¢pt710T(IL‘).

12: Let iso; := ﬁ Y wem Lép, 100 () > 0.8].
13: Let g; := (err;, NS, iso).

14: Add ¢; to Q.

. S |
15: opt = 5 Z(errhNShiSOt)eQ(errt)
16: for tuple q1, g2, g3, g4 € Q* do

17: Solve the linear program with variables w;, we, w3, wy defined by the following con-
straints:
4
* s wi=1
. Zle w;igi1 < opt + Ce C is a sufficiently large absolute constant.

b Z?:l w;q;.2 S 200r + Ce
4
> wigiz < Ce
18: If a solution is found, return = t1,to,t3,t4 and W = w1, wo, w3, Wy.
19: return L

(a) Let X = ), g errp(sign(p — t)). We have Eg [X] = |O] - By _1 1j[errp (sign(p — 1))]
and we apply Hoeffding’s inequality:

Pr t]E@[eer(sign(p —t))] > . []El 1][eer(sign(]D —t)]+e

=Pr[(X — E[X])/|6] > ¢] < exp(—2¢? - 100/?) < 0.001.
(b) We have by assumption that

to=1,1] zLE,D[gbsign(p—t) (‘T)] S .

Let X = 3,0 Emwp[ésign(p,t%lor(x)], which has expectation < |©| - @. Then by
Hoeffding’s inequality, we have

Pr[X/|0| > a +¢] < Pr[(X — E[X])/|0] > ¢] < exp(—2¢? - 100/£?) < 0.001.
(c) We have by assumption that Pr,p[IE;_1,1 [i)sign(p_t)] (z) > 0.75] < O(e). We want to
bound .
E Pr [(bsign(p_t) (z) > 0.75].

t~O x~D

We can upper bound this by

O(E) + E Pr [(ngign(p—t) (ﬁ) -

$mo©® D t,NE171][¢sign(p—t)($)] > 005] =

O(e) + 1;12]53 tEIé[q;sign(pft)(x) —Eyo—1y [Qgsign(p—t')(x)} > 0.05].
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Let X =3, ¢ qgsign(p,t) (2); by Hoeffding’s inequality we have

P@I‘ [til?é[ésign(pft) (.’L‘)} > Et’w[fl,l] [qgsign(pft’)(m)] + 005] = PY[(X - ]E[X]/‘GH > 0.05

< exp(—2-0.025 - (100/¢?))
< £/1000.

Thus, combining all three probabilities, we have:

TE% %I’ tEIé[qgsign(pft),lor(x) - Et/N[fl,l} [ésign(pft/),lor (.Z')] > 005] < 5/1000

Then we apply a Markov bound:

Per glCN,E};N@[¢sign(pft),10r(m) - Et’w[fl,l] [(bsign(pft’),lOr(m)] > 005] >¢e| <£0.001

Union bounding over all the conditions, we have that all three conditions hold simultaneously with
probability at least 0.99 over the choice of ©.

O

Now we will show the existence of a mixture using four rounding thresholds from ©, and show that
COMPUTEROUNDINGTHRESHOLDS finds it. We will make use of the following well-known theorem
of Carathéodory.

Theorem C.4 (Carathéodory’s theorem [Car07]). Let P C R* be a set of points and Conv(P) be
its convex hull. For any p € Conv(P), there exists a set S C P of k + 1 points such that p can be
written as a convex combination of points in S.

Proof of Theorem C.2. We first note that since gfg is an e-accurate local noise sensitivity approximator
for degree-k PTFs, Equations 32 and 33 respectively imply that’

E E 5 ign(p— r < 100 O s 34
1] (I}y)w[‘f’sg (r—0),10r(7)]| < 1007 + O(e) (34)
P [duigntp-n.10r(@) > 0.75] < O(e). (35)

[~ 1,1]

Thus, the assumptions of Claim C.3 hold with v = 100r. For a threshold ¢, let the three-dimensional
point ¢; := (errs, NS¢, iso;) be defined as in COMPUTEROUNDINGTHRESHOLDS. First we argue
that each of these estimates is O(¢)-accurate. Each estimate is the expectation of a random variable
bounded in [0, 1], so by Hoeffding’s inequality we have

Pr[lerr; — errp(sign(p — t))| > €] < eXp(7252 - M),

and likewise for each NS; and iso;. We set M large enough that this probability is < §/2 -
exp(—100/¢), giving us more than enough room to union bound over the log(1/4) - 300/ es-
timates. Likewise, by the Hoeffding bound, we have with probability 1 — § that

|o/p\t — ;1 y[errp(sign(p — t))]| <e.

Thus with probability at least 1 — 4, all estimates are e-accurate. Then, by Claim C.3, we have that
with large constant probability over the randomness of the set O, there exists a convex combination
g* of the points {q; : t € O} that satisfies the linear constraints

o ¢*[1] < B¢y ylerrp(sign(p — )] + O(e) < opt + Ce
e ¢*[2] < 200r + Ce
* ¢*[3] < Ck,

“We assume £ < 0.05 without loss of generality.
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for a sufficiently large constant C. That linear combination is the equal-weighted mixture E;co[q:].
By Theorem C.4, since the ¢;’s are points in R3, it is possible to write ¢* as a convex combination
of four members of {g; : t € ©}. Thus, for some 4-tuple in Q*, the linear program is feasible.
COMPUTEROUNDINGTHRESHOLDS searches every possible tuple, guaranteeing that a solution is
returned.

By repeating log(1/) times with independent draws of ©, the large constant success probability is
boosted to 1 — 4. O

C.3 Randomized set partitioning

Algorithm 5 COMPUTECLASSIFIER(D, p, 1, €, 6):
1: Input: sample access to D, polynomial p,
robustness radius 7, error bound ¢, confidence parameter ¢
Uses: local noise sensitivity approximator gzg (See Definition 2.5)
Output: Classifier h : R — {£1}.
(t1,t2,ts, ts, w1, wa, w3, wy) $ COMPUTEROUNDINGTHRESHOLDS (D, p, 1, ¢,4).
(See Algorithm 4).

Stest < C'log?(1/6) /e samples from D (for sufficiently large constant C')
for i € [log(1/6)] do

M « 10d3 i.i.d. samples (z,y) from D

For i € {1, ...,4}, define the following Boolean functions: let

LRI

h;(x) = ROBUSTNESSLCA(x, sign(p — t;),7) (See Algorithm 3)
RobustIndicator;(z) = ]l[g{)sign(p_timo,«(x) <0.1]
10 Foreachi € {1,...,4}, let
fli < r,E L[y # hi(z)]

j; <+ E  RobustIndicator;(z).

(z,y)eM

11: Obtain an orthonormal collection of vectors {uy,---,ug/p} orthogonal to

span(p1, -+, flay 0 1)
12: Generate a uniformly random unit vector u* in span(uy, - - -, ug/2).
13: Compute a partition of the real line into intervals J, ... J4 of Gaussian mass wj ..., wy

respectively.
14: Check if the following hold for each ¢ € [4]:

E [lly#hi(x)]A{z,u)ye J]= E [lly # hi(z)] w; £ C'e
(2,y)~Stest (z,y)~Stest
(for sufficiently large constant C”).
( )ES [RobustIndicator;(z) A (z,u*) € J;] = IsE‘) [RobustIndicator;(x)] - w; + C'¢)
X,Y)~Otest T Otest
15: If so, return the function h defined
4
h(z) = th‘(f) L[(u*, z) € Jj]
=1

16: return L

In this section, we will prove the correctness of COMPUTECLASSIFIER. As explained in the previous
section, the output of COMPUTERANDOMTHRESHOLDS is a list of four weights and four thresholds
for rounding. The goal is for a small collection of sets — the sets of points misclassified by each
threshold and the sets of points for which ROBUSTNESSLCA guarantees robustness — to each be
partitioned such that w; of their mass falls into the i*" part for each .
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The partition is a set of intervals along a unit vector chosen uniformly from the subspace orthogonal
to the estimated mean vectors of the sets we want to partition. The intervals are chosen to have mass
wy, . .., wyq under the one-dimensional standard Gaussian. We will argue that with high probability
over the choice of the random unit vector, all of our sets will be approximately normally distributed
in their projections on this vector, and thus the intervals will contain the right proportion of their mass.
The key fact underlying this argument comes from the following theorem of [DHV06]:

Theorem C.5 (Concentration of random projections: special case of Theorem 11 of [DHVO06]). Let
D be a distribution over R® with mean zero and covariance bounded by Amax in operator norm.
Assume also that D is supported only on points x satisfying ||z||, > vv/d. For a unit vector v, let D,

denote the distribution of (x,v),x ~ D, and let D). denote the distribution of ||z||, /v/d,z ~ D.
With probability at least

Amax In(1/¢) etv?d
1= e3p? FexXP <—Q ()\max In(1/¢)

over a uniformly random unit vector v, the following holds for all intervals J:

PrzeJ]— Pr [zel]]|<e
ZND,U O'ND”_H
2~N(0,62)

We apply this theorem to the distributions induced by a set we aim to partition. This is our underlying
distribution D conditioned on a (potentially randomized) indicator, such as the indicator of a point
being misclassified by a hypothesis; we will represent that indicator as r(z). After projecting on
the subspace orthogonal to our mean estimates, these distributions will still not have mean exactly
7ero, SO we incorporate an error term into our analysis to account for that. The resulting claim is the
following:

Claim C.6 (Masses of intervals under random projections). Let r(x) be a randomized Boolean
function over R P bea d/2-dimensional linear subspace in RE, and J C R be an interval. Let
P be a d/2 x d matrix whose rows are an orthonormal basis for P. Assume the following hold for

some 31, B2 € (0,1) and B3 € ((d/2)~/?,1):
* Bounded mean: ||PE, p[r(z)z]||l, < b

o Thin-shell support: Every x for which r(x) can be nonzero satisfies % =1+ 0.

e Large support: £, p[r(z)] > Bs.

For unit vector v, let D}, denote the distribution of (x,v),x ~ D conditioned on r(x) = 1. With
probability at least

L LA (g (02200

 e3B3(1— 28, — 2B1) In(1/)(1 + 51/53)

over v drawn uniformly from unit vectors in P, we have

Prlredl- P e J]‘ < O(B1/Bs + o+ ).

Proof. Let p := Eyp [z | r(z) = 1]. We will define D}, 5 to be the distribution of P(z — u)
and Dj.| to be the distribution of ||P(z — u)||, /+/d/2, where z is drawn from D conditioned on
r(z)=1.

We aim to apply Theorem C.5 to the zero-mean distribution D, 5 in the d /2 dimensional space P,
and find the appropriate bounds for v and A, ax.-

* Bounding v: By the thin-shell assumption, every « for which r(z) can be nonzero satisfies

Pz, > \/d/2(1 — B2). Thus for any such z, we have ||P(z — p)|, > /d/2(1 — B2) —
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| Ppll, by triangle inequality. Now we just need to bound ||Ppl|,:

IPuly = |P Efe | (@) = 11|
_ PP =1]
= P/gcem Pro, @) =1 |,
B E, ,[r(z)x]
=P E., @) |,

_IPE@ell,
o[ (@)] _63

by the bounded-mean and large support assumptions. This givesus v > 1 — 55 — E %,
and thus 12 > 1 — 285 — 26 % > 1— 285 — 234, by the assumption that 83 > 1/+/d/2.

* Bounding )\ ,.: We want a spectral bound on IEQJND; » [m:T] We have:

B et - Ensr@)(Ple— )Pl )]
~Dy p B Ezr[r(x)]

< 6—7? E [(zz” + pp” —ap” — pa™)] P
3 z~D
Since D has mean zero, P and E[zx”] has operator norm 1, and Puu® PT has operator
norm < ||Ppl|,, we have

L+ |[Pully _ 1+ B1/Bs
E [zz7 2 < .
x~Dp P[ ] 63 a 63

<

)\max =

op

Substituting these parameters into Theorem C.5 gives us the claimed failure probability bound. The
condition that holds with high probability is that for all intervals J, we have

Pr [zeJ]— Pr [zelJ]|<e
z~(D), p)v a~Dy.
2N (0,02)

By the thin-shell assumption, the bound on ||P|,, and the triangle inequality, D).|| is supported on
[1 —B1/B3 — B2, 1+ B1/B3 + B2]. Then by the TV distance bound for Gaussians, we have for any o
in the support of D :

31 — o2

dry (N(0,1), N(0,6%)) < 5 | < O(B1/B3 + p2),

so we have

'y J- P J|<o ,
Z"’(Di?)v[z < ] ZNN{OJ)LZ < } - (5 + /81/53 + 62)

We now substitute the definition of (D; p)v and use the fact that v is in P.

Pr [zeJ]= Pr [(Plx —p),v)yed
LB Eedl= PriPE -0 €]

= P [(@,0) +(u,v) €]

Pr [y + (u,v) € J].
y~Dj

So we have

LE%;[Z * <ﬂ’v> < J} B ZNA];/)(I‘O,I)[Z © J] = O(E - ﬂl/ﬁg * 52)
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By applying the uniform convergence property of Theorem C.5 for all intervals to shift J, we have

ZE%;[Z cJ] - ZNAP;{OJ)[,Z —{p,v) € J]‘ < O(e+ B1/B3 + P2).

By anticoncentration of the Gaussian distribution and the fact that |(u, v)| < 81/83, we have

p - ’ €J|=P zr e J|+2 .
z~N(r0,1)[Z {p,0) ] r N(OJ)[Z ] 51/0s3

Combining everything, we have

zf&;[z eJ]— ZNAI?(rOJ)[z € J}‘ < O(e+ p1/B83 + B2)

with probability at least

(14 B1/PBs)In(1/e) exp (Q <E4ﬁ3(1 — 2835 — 2ﬂ1)d)>

e383(1 — 282 —261) In(1/e)(1 + 51/Bs)

as desired. O

1-—

We now argue that for 7 indicating a set of large Gaussian volume and P being orthogonal to a good
approximation to the mean of r, the assumptions of Claim C.6 are satisfied with small values of j3.
The following facts are relevant to this proof.

Fact C.7 (Thin-shell concentration of log-concave variables [GM11]). Let X be an isotropic random
vector with log-concave density in R%. Then there are universal constants c, C > 0 such that for all
t >0,

|

1X1l, = V| = ] < Cexp(—cd"/? min((t/Vad)*,t/Vd)).

Corollary C.8. Let X be an isotropic random vector with log-concave density in R%. Then there is a
universal constant C' such that for any € > 0,

|

X, = V| > C(dlog(1/2))"?] <.

Fact C.9 (Thin-shell concentration of Gaussian variables (standard fact)). Let X be a standard
Gaussian in R%. Then

Pr[|I1X1l, - V| > ] < 2exp(—t/4).

Claim C.10 (Log-concave distributions satisfy assumptions of Claim C.6). Let D be an isotropic
log-concave distribution over R* and K be a sufficiently large constant depending on those given by
Fact C.7. Let r be a randomized Boolean function such that B, .p[r(z)] > 5, and let i(r) be such
that for all i € [d],

<1/d.

plr)s = (B, fr(x)a])

z~D

Let P be a d/2-dimensional linear subspace orthogonal to [i(r), and P be a d/2 x d matrix whose
rows are an orthonormal basis for P. Let riunc be the truncation of r defined as

10Kd'/31
Ttrunc(x) = 7"(37) Al ||PZL’||2 =1+ Lﬂd
d/2 2

Then the following conditions hold:

* Bounded mean: ||P Eyp[rtrunc(x)z]||y < O(y/1/d).

o Thin-shell support: Every x for which ri.unc(x) can be nonzero satisfies Hjﬂ;

=1+
a/
10Kd'/3Ind

/2
* Large support: B, .p[rirunc(z)] > 8 — O(1/d).
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Furthermore, Pryp[r(x) # ryunc(@)] < O(1/d).

Proof. First we will prove the final inequality,
Pr[r(@) # riune(x)] < O(1/d).

Since the projection of D by P is a log-concave distribution over R%/? (Fact B.3), this inequality
follows from from Corollary C.8 applied to P(D) with £ = 1/d. We now prove the other conditions.

¢ Bounded mean: Let

1(Trune) = ED[rtrunC(x):v] and p(r) = E [r(z)z].

T~ x~D

First we claim that for every 4, |(7trunc )i — 1(r):| < 1/d. We have

p(r)i = p(Perunc)i + E[r(@)z; - 1[r(z) # rerunc(2)]]
< p(Torunc)i + ]E[Hxll : IL[?“(x) a TtrunC(x)]

< p(Torunc)i + / t-Cexp(—ct®/d)dt
t=10Kd'/3Ind
[e9)

< w(Ttrunc)i + C t3 - exp(—ct®/d)dt
t=10Kd/3Ind
o0

< w(Ttrunc)i + C u - exp(—cu/d)du
u=(10K Ind)3d

< t(Terune)i + exp(—(10K Ind)? - ¢) - (10K Ind)® - ¢ + 1) - (d/c)?
< w(rerune)i + 1/d. (by setting K sufficiently large)
A symmetric argument lower bounds p(r); by p(rtrunc)i — 1/d. Now we bound

[Pra(reranc)|lo- We have |Pu(rivunc)lly < SuPuep, jujj, =1, #(Ttrunc)). Consider a unit
vector u € P. We have

(u, p(Torunc)) = (U, 1(Terunc) — p(r)) + (u, p(r) — fo(r)) + (u, (1))
]
1€[d) 1€[d)

< 2/Vd.

* Thin-shell support: This follows immediately from the definition of r¢ypc.
* Large support: This follows immediately from the assumption that £, zr(0,7,)[7(z)] > 3
and the fact that Py ar(0,7,)[7(%) # Ttrunc(2)] < O(1/d).
O

Claim C.11 (Accuracy of the mean estimates). Let S be a set of 10d® points drawn from a distribution
D with covariance 1. Let F be a collection of eight (possibly randomized) Boolean functions over
RY. Then with probability at least 1 — O(d~3), the following holds for all f € F and i € [d):

1
T Z zif(x) — ZINEDJCz'f(x)

xzeT

<1/d.

Proof. By the fact that D has covariance I, we have Var(z;) = 1 and Var(ﬁ Sa)=1/|T
by Chebyshev’s inequality

, SO

10d?

>——| <0.01d %
||

Pr
T

E [:f(z)] - ﬁ S i (2)

r~D
zeT
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Set |T'| := 10d?; then the deviation becomes % = L. Union bounding over F and i € [d], we have

with probability at least 1 — O(d~2), all f and all i satisfy

=Yl @)~ B rif() <1/

zeT
O

Claim C.12 (Accurate partitioning of (randomized) sets). Let D be a distribution over R% x {—1,1}
such that the R%-marginal is isotropic log-concave. Lete > d~'/7. Let F be the set of eight (possibly
randomized) Boolean functions over R? given by RobustIndicator; and ErrorIndicator; () =
1[y # hi(x)] fori € [4]. Let w1, . .., w4 be the weights returned by COMPUTEROUNDINGTHRESH-
OLDS and Jy, ..., Jy be the intervals generated by COMPUTECLASSIFIER. Then with probability at
least 1 — O(0), the following holds for all f € F and all i € [4]:

Pr((r,u) € Ji A f(2) = 1] = Pr[f(@) = 1] wi +O).

Proof. First we will claim that each iteration succeeds with probability 1 — 1/ poly(n). Consider
only the functions f € F such that Pr[f(x) = 1] > &; for the others, the statement holds trivially.
COMPUTECLASSIFIER estimates the means p;, u; ¢ € [4] of the functions from its sample of size
10d3, then sets P to be a linear subspace orthogonal to all of these. By Claim C.11 we have that
with probability 1 — O(d~3) the mean-accuracy assumption of Claim C.10 is satisfied. Thus, by
Claim C.10, the assumptions of Claim C.6 are satisfied with the following parameters:

* B =0(y1/d)
* By =0(d""/51nd)
* B3 =¢c—0(1/d).

COMPUTECLASSIFIER then generates a uniform random unit vector v € P and four intervals
Ji ... Jy of Gaussian volume wy, . .., wy. By Claim C.6, with high probability over u, the following
holds for each J;:

zNDll?l(rz):l[(x, u) € Ji] =w; £O(B1/Bs + P2 +¢) = w; £ O(e);

taking the conjunction with the event that f(x) = 1 gives us the desired
Py [(e,u) € J; A f(2) = 1) = Pr[f(e) = 1] (w; £ 0()) £ Pr[f(z) = 1] - w; £ O()
The failure probability is

(1+:1/B3)In(1/¢) exp <_Q <E453(1 — 2B — 2ﬁ1)d)>

e3B3(1 — 282 — 261) In(1/e)(1+ B1/B3)
(I4+0(1))In(1/e) Coxn [ — e?(1—o(1))d
(1 o(1)) p( Q(mukx1+ou»>)

1n(€14/5) -exp <—Q (mi;ls)))

1/e° - exp (—Q(e°))

By our assumption that ¢ > Q(d~'/7), this term is dominated by exp(—(d'/7)). The total failure
probability is dominated by the O(d~3) probability of failure for the mean estimation. Thus, we
have that with probability > 1 — 1/ poly(d), no bad tail events occur, and the guarantee holds for all
feFandie€ [4].

The following boosting argument is relevant only when § is smaller than this ~ d—? failure probability.
In each iteration we test the accuracy of the partition by comparing

Pr[{z,u) € J; A f(z) =1] to Pr[f(z)=1] w;
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for each function f. It suffices for these estimates to be accurate up to € additive error. By a Chernoff
bound, for a test set of size Q(log(1/d)/e?), all estimates are e-accurate with probability at least
1 — 62, so that after union bounding over all iterations the estimates are still accurate with probability
atleast 1 — §. Since d > 2, the probability that a good partition is not found in any of the log(1/4)

independent attempts is at most 2~ 1°8(1/9) = §_ Thus, the total failure probability is at most 25. []

C.4 Correctness and complexity of Algorithm 5.

Now we will finish the analysis of COMPUTECLASSIFIER, restated here for convenience.

Theorem 3.4 (Correctness of Algorithm 5, COMPUTECLASSIFIER). Let ¢ > d~'/7 and 6,1 > 0.

Let (b be an e-accurate local noise sensitivity approximator for degree-k PTFs over R%. Let D
be a distribution over R% x {—1,1} such that the R%-marginal is isotropic and log-concave. Let
p : RY — R be a polynomial of degree at most k satisfying

t~[—1,1] |:(x,y)~D[ sign(p—1),1 7"(1')]:| ( )7 (5)
gn T > O.I < O .
(Jc,y)ND |:t~[_171][ si t) 10 ( )] - :| (6) (6)

Then the algorithm COMPUTECLASSIFIER (D, p, 1, €, 0), given sample access to D and query access

to (b outputs a hypothesis h : RY — {—1, 1} such that the following properties hold with probability
at least 1 — O(9):
errp(h) < K [errp(sign(p — t))] + O(e)

t~[=1,1]
Boundaryyp, ,.(h) < O(r +¢).

The running time and number of queries to ¢ are poly(d* - 1/¢ - log(1/9)).

Proof of Theorem 3.4. By Theorem C.1 and the triangle inequality, we have that all 7 € [4] satisfy

(1) Pl‘(w y)wD[ ( ) 75 y} < errp(81gn( ti)) + i/SE)DJOr (Sign(p — ti), 08)
(ii) E;~p[RobustIndicator;(z)] > 1 — O(l\/T\SDJOT(Sign(p —t;))
(iil) For every x such that RobustIndicator;(z) = 1 and 2’ : || — 2’| < r, we have h;(2’) =
hi (:l?)

First we will handle the error condition. By Theorem C.2, we have that with probability 1 — O(9),

Z w; - (errp(sign(p — ;) + i/sz)p,loT(sign(p —t;),0.8))
i€[4]
< E [errp(sign(p —t))] + O(e).

T ot~[-1,1]

Thus, we have

Z w;- Pr [hi(x)#y] < E ][errp(sign(p —t))] + O(e).

il 7y)~D t~v[—-1,
By Claim C.12, we then have with probability > 1 — O(9),

> Pr [hi(x) FyAlzut) e J) < B [errp(sign(p — )] + O(e).
il (z,y)~D t~[—1,1]

Therefore, applying the definition of h, we have
errp(h) < By qy[errp(sign(p — t))] + O(e).
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Now we analyze the robustness condition. By Theorem C.2, we have that with probability > 1—0O(9),

Z w; - 1<T\SD,107~(Sign(P —t)) < O(r +e).
ic(4]

By a Markov bound and the definitions of RobustIndicator and N\S, we have the following for each
1

E[RobustIndicator;(z)] = Pr[ésign(p,ti)(x) <01]=1- Pr[cf)sign(p,ti)(a:) > 0.9
=1 - Pr[(x) > 0.9/NS(sign(p — 1:)) - E[p(a)
~ 1ONS(sign(p — t.).
Thus we have

Z w; - ]g[RobustIndicatori(x)] > Z w; - (1 — 19—0 Ep [(isign(pfti),l()r(x)])
i€[4] i€[4]

>1- Z wj - 1?0 ED[Qgsign(pfti),lor(m)]
i€[4]
>1-0(r+¢).
By Claim C.12 we then have with probability > 1 — 4,

Z E_[RobustIndicator;(z) - 1[{x,uv*) € J;]] > 1 — O(r +¢).
ic) ™

We now claim that for each .J;, all  with RobustIndicator;(z) = 1 such that (x, u*) is at least r
away from the interval boundary satisfy the adversarial robustness condition

Va': ||lz — 2’|, < rand h(z) = h(z').

Since x is r away from the interval boundary, all ' such that ||z — 2|, < r satisfy (z/,u*) € J;,
so they are also labeled by h;. By Theorem C.1, all  with RobustIndicator;(z) = 1 satisfy
the robustness condition in h;, so, since they are also r away from the boundary, they satisfy the
robustness condition in h. Thus we have

Boundaryp, ,.(h) > Z ( IED [RobustIndicator;(x) - 1[{z,u*) € JJ])

i€[4]

- P% [{(x,u*) within 7 of an interval boundary]
>1—-0(r+¢)—O(r),

where the boundary probability is bounded by O(r) due to Fact B.4. Thus when all subroutines are
successful, the guarantees of the theorem hold. The total success probability is > 1 — O(¢) after
union bounding the failure probabilities of all subroutines. This concludes the proof of correctness.

We now analyze the running time and query complexity to (ZS COMPUTEROUNDINGTHRESHOLDS is
called once. For log(1/4) iterations, it estimates err, NS;, iso, for each of 100/£? rounding thresh-
olds ; this step makes O(log(1/8)/e2) queries to ¢ and takes poly(d* - 1/¢ - log(1/4)) additional
time, due to the evaluations of the degree-k polynomial p. Then it solves a linear program of constant
size for (100/£%)* iterations. The total running time and query complexity of COMPUTEROUND-
INGTHRESHOLDS are dominated by the first term, which is poly(d* - 1/ - log(1/9)).

The rest of COMPUTECLASSIFIER repeats log(1/6) times and does the following each repetition:
a) evaluate 1[h;(x) # y] and RobustIndicator;(x) for each i € [4] and (x, y) in M,

b) obtain a basis orthogonal to the estimated mean vectors, a random unit vector in this space,
and a partition of the real line into intervals

¢) check accuracy of the partition with respect to Siest.
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Each evaluation of 1[h;(x) # y] makes one query to ¢ and takes d°*) time, as it simply calls
ROBUSTNESSLCA, which makes one evaluation of a degree-k PTF and one call to ¢. Each evaluation
of RobustIndicator; (x) makes one query to ¢ and takes O(1) additional time. Thus items (a) and

(c) take d°®) time and queries. For item (b), obtaining the basis takes poly(d) time by Gaussian
elimination, and approximating the interval boundaries can be done in poly(1/¢) time by using a
numerical e-approximation to the error function'”

1 L
erf(t) = ﬁ . 67t /2.

Overall, the total time and query complexity of COMPUTECLASSIFIER is poly(d® - 1/¢ - log(1/9)),
as desired. O

D Verifiable robustness

In this section we prove that under complexity assumptions, the robustness guarantee of our learning
algorithm can be made efficiently verifiable as discussed in Section 1.3. The verifier certifies that a
point satisfies the robustness condition. We formally state this result:

Corollary D.1 (Deterministic verifiability). If P = BPP, then there is a learning algorithm B that,
given access to labeled samples from a subgaussian isotropic log-concave distribution, runs in time
do/e) . log(1/8) and produces a hypothesis h with the following guarantees:

* Agnostic approximation: With probability at least 1 — O(0), Pr(, yp[h(z) # y] <
opt + O(e), where opt is the misclassification error of the best halfspace.

. . . . . 9 2 .
« Verifiable robustness: There is a verifier that runs in time d°(*/”) that takes as input a
circuit g and a point x € R? that always rejects if

3 ¢ ||z, < 7 and g(w) # gla + 2).

If g = h, then with probability at least 1 — O(6) over the randomness of B, the verifier
accepts with probability at least 1 — O(r + ¢) over x ~ D.

We use the following fact:

Fact D.2 (Derandomized estimation of ¢). If P = BPP, then there exists a deterministic algorithm
running in time d°®) - poly(1/¢) that takes as input a degree-k PTF f, a radius r, and an input

x € RY and outputs an estimate ¢ ¢ 10, (x) such that ¢ 5 10,(x) = ¢ 1100 () £ €.

Proof. Observe that there is a randomized algorithm running in d°(*) /e2 time that takes as input a
threshold ¢ and decides if ¢ (x) > ¢, succeeding with probability > 2/3 whenever ¢ (z) >t +¢
or ¢¢(x) < t — e. This is the algorithm that samples O(1/£?) points z from N (0, I;) and evaluates
f(z + 10rz) on each of them to estimate ¢; its analysis is a Chernoff bound. If P = BPP, then there
exists a deterministic algorithm for this decision problem also running in time d°(*)-poly(1/¢). Since
¢¢(z) € [0, 1], we can binary search with log(1/¢) iterations to find a ¢ such that ¢, (z) € t +e. O

The learning algorithm is simply ROBUSTLEARN, augmented to provide some extra information,
with the estimates of ¢ provided by the deterministic estimator. The verifier checks that the hy-
pothesis matches a “template;” this will prove that the unknown circuit is in fact of the form that
ROBUSTLEARN is supposed to return, and for which our correctness analysis holds. Since for any
hypothesis matching the template, any point « for which ¢(2) < 0.1 satisfies the robustness condition,
the verifier will then deterministically estimate ¢(z).

We define the template below:

19Such numerical approximations are standard and take poly(1/¢) time. Alternatively, one could use a
randomized algorithm that takes poly(1/<) samples from the gaussian and uses them to approximate the relevant
values w;. Note that we presented the w;’s as exact for conciseness, but since Claim C.12 already guarantees
only an O(g)-accurate partition, we see that an additional € error in the estimation of the w;’s is asymptotically
irrelevant.
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Lemma D.3 (Hypothesis template). Fix a set B of basis functions for the set of degree-k polymomials
over R%. There is an algorithm COMPILE that takes as input a | B|-length vector ¥ of real-valued

coefficients, real numbers t1, ... ,t4, a unit vector u € RY, and real numbers ¢; < ¢y < c3. For each
i € [4], let the PTF h; be defined

h;(z) = sign ((Z vp - b(:z:)) - t7;> .
beB

Let the intervals Ji, ..., Jy be the partition of the real line induced by c1, ca, cs. The algorithm
outputs a circuit computing the hypothesis

h(z) = ROBUSTNESSLCA(z, hi,r) - 1[(z,u) € Ji].
i€4

It also outputs each of the PTFs h1, . . ., ha. The running time is d°®).

Proof. Observe that there is a deterministic algorithm running in d°(*) time that takes as input all of
the given parameters and the input z, and evaluates h(z), using the deterministic implementation
of gﬁ in ROBUSTNESSLCA. Therefore there is a circuit of size d°(*) with the same behavior. The
algorithm COMPILE takes this circuit and hardcodes all the input parameters except for z, then
outputs the resulting circuit. This takes time d°(*) and the output is a circuit that takes z as input

and evaluates h(z). By the same argument, in d°(*) time COMPILE can also output the PTFs
hi,...,ha. O

We include pseudocode of the verifier below. For brevity we will refer to the package of data taken as
input by COMPILE as data.

Algorithm 6 VERIFY (g, z, 1, ¢, data):
1: Input: circuit g, point z € R", robustness radius r, error tolerance ¢, hypothesis parameters
data
2: h,hy, ho, hs, hy < COMPILE(data)
if g # h then return reject.
Let u be the unit vector in data and J1, . . ., J4 be the partition induced by the interval boundaries
c1, c9, c3 in data.
Let ¢ be the interval such that (z, u) € J;.
if ¢p; 10-() > 0.1 — £ then return reject.

Rl

if | (x, u) — ¢;| < r for any of the interval boundaries ¢, ¢z, c3 in data then return reject.

return accept.

Proof of Corollary D.1. The learning algorithm B is ROBUSTLEARN, but with the following modifi-
cation: it records its parameters in a data package, outputs COMPILE(data) as its final hypothesis,
and outputs data as well. By the guarantees of ROBUSTLEARN, with probability at least 1 — O(4), h
satisfies the agnostic approximation guarantee. When VERIFY is called on the output % of 3, since it is
the output of COMPILE, it always passes the first check. By inspecting the proof of Theorem C.1, we
see that in fact robustness holds for all x such that (;Bhi () < 0.1 — ¢ and z is at least r distance from
each of the interval boundaries. By Fact D.2, we have |¢, () — ¢n. ()] < €, thus the verifier rejects
all points such that ¢, (z) > 0.1. Since it also rejects if x is within r of a boundary, all accepted
points satisfy the robustness condition. Furthermore, by inspecting the proofs of Theorem 3.4 and
Theorem C.1, we see that whenever ROBUSTLEARN succeeds (probability 1 — O(¢)), we have that
atleast 1 — O(r + ¢) fraction of points z ~ D satisfy ¢, (z) < 0.1 — ¢ and are at least 7 away from
any boundary, and are thus verifiably robust. Thus, the verifiable robustness guarantee holds.

The running time of COMPILE for PTFs of degree O(1/e2) is d°(1/¢") (Lemma D.3). The running
time of VERIFY is this plus the running time of the deterministic estimator for ¢, which is also
dO(/=*) (Fact D.2). Thus the total running time is d°(1/<”), O
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Remark D.4. We note that without the assumption that P = BPP, there is a randomized analogue of
Corollary D.1 where the user compiles the final hypothesis, rather than verifying the one provided by
ROBUSTLEARN. Rather than outputting a circuit h, ROBUSTLEARN can just output data, and the user

can COMPILE it with a randomized implementation of ROBUSTNESSLCA in time d©(/=”) .1og(1/6),
in which case the soundness of the verifier holds with probability 1 — § for the compiled hypothesis.

E Uniform convergence claims

Finally, we will need to following observation about the uniform convergence fo empirical approxi-
mations of local noise sensitivity ¢. First, we need the following fact:

Fact E.1 ([VW97], also see lecture notes [Duc23]). A function class C of VC dimension A and every
distribution Dy, there is an e-cover H of C of size at most 3 := (O(1)/)° D). Le. H is a discrete
subset of C of size 3 and for every f in C we have h in H for which

Pr,p,[f(x) # h(z)] < <,
Claim E.2. Let C be the class of degree-k PTFs over R?, let D be a probability distribution over R?

and let 1) € [0, 1] be fixed. Then, for some constant C, if S is a collection of (d* /)¢ log1/6 i.i.d.
examples from D, then with probability at least 1 — O(6),

max | Eysldy.0(@)] - Eonpldrn(2)]] < O() (36)

Proof. We now use Fact E.1. For us, C is the class of degree-k PTFs, and we have A = dOk)
Taking the distribution Dy to be an equal-weight mixture of (i) the distribution D in the premise of
this claim and (ii) the convolution of D with the normal distribution N'(0,714) we see that for every
fin C there is h in H for which'!

PrmND[f(x) 7& h(x)] < 2, (37)
Pr [f(z +nz) # h(z +nz)] < 2, (38)

2N (0,1)
[EznD[¢fn(2)] = Eznp[dnn(2)]] < Eznp { bfn(x) — dny(T) }

which via the definition of ¢ and the triangle inequality implies that
< 2Bepllf(r) =@+ B _gp 17 +02) = hia +02)]] < Oe). (39)
zn s4d

By the standard Hoeffding bound, since ¢ and £ are always in [0, 1], with probability 1 — /2 for
every h in H we have

1
Eyns[dny(2)] — Eonp|dny(2)]]| < ﬁO
where the last step for both inequalities follows by substituting |H|, |S|, A and taking C' to be a
sufficiently large absolute constant. We also know that with for a sufficiently large absolute constant
C, with probability 1 — § the set S satisfies Fact E.6, which means that:

Sup [Pro~slfi(z) # fa(2)] = Pro~plfi(z) # f2(2)]] < O(e). (41)
1,/2€
From the above, we can also conclude that with probability 1 — ¢ over S for every pair fi, fo in C we
have the following:

(log(|H|/0)) <¢, (40)

‘ szwmgld) [fi(z +nz) # fa(z +n2)] - Przwm&d) [fi(z +nz) # fa(z + nZ)]’ <

EZNN(O,IUL)

Pro sfi(z +nz) # fo(z +12)] = Pra~plfi(z +n2) # fale + 772)]‘ <0(e)

<O(e) by defining f5(z) := f1(z + n2), fa(z) := f2(z + n2),
observing f3 and f4 are also degree-k PTFs and using Equation (41)

(42)

"Note that the error over Dy is the average of the two errors in the inequalities below.
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Using the definition of ¢, the triangle inequality, and Equations 41 and 42 we also see that

[Bans[6n1(2)] ~ Buvslor (o] <
2Pronslh() £ f@)] +Pr_gos [hiat02) # fla +02)] <

~N (0,14
2Prenph(z) # f(z)] + Prmi”v”((?z )[h(w +12) # f(z +12)] < O(e), (43)

where in the last step we substituted Equation (37) and Equation (38). Finally, we put all the
inequalities together. By combining the triangle inequality with Equations 39, 40 and 43 we derive
Equation (36). O

Claim E.3. Let C be the class of degree-k PTFs over R?, let D be a probability distribution over R?
and let n € [0, 1] be fixed. Then, for some constant C, if S is a collection of (d* /) log 1/ i.i.d.
examples from D, then with probability at least 1 — O(9), for every polynomial p it holds that

P [Ere11)[@sign(p(e) 1) ()] 2 0.7] < Pr [Bre—1,1)[bsign(p-t).n(2)] > 0.67] + O(e) (44)

Proof. Let C'PPd be the class of degree-k clipped polynomials, i.e. functions p<iPPed : R4 — [—1, 1]
of the form

1 ifp(z) >1

plirred () = & 1 ifp(z) < -1

p(x) otherwise
where p is a degree-k polynomial. We first argue the following
Observation E.4. For any distribution Dj over R%, there is a subset H of CCPred of gize
(O(l)/s)o(dk/s), i.e. such that for every pcliPPed jn CeliPPed we have

min .o, [77%(z) — h(2)]]) < O(e). 45)

Proof. We form H by considering an £2-net HS;F for degree-2k PTFs, and taking H to consist of

functions of the form
h(z) = Z 7 fr(2),
Te{—1,—1+4e,—1+42¢,...,+1}
where each f, (z) is some function in f, (z). By Fact E.1, we see that Hsyy. has size (O(l)/s)o(dk),
and therefore (by a counting argument) the size of H defined above is indeed (O(1)/ s)o(dk /e,

We can write for every x and p!iPPed in CliPped the following inequality:

> r 1 () € (7,7 + ) < pI(e) <
Te{—1,—1+4¢e,—1+42¢,...,+1}

> (1 +e) - 1[pPP(g) € (1,7 +¢]], (46)

Te{—1,—1+4¢e,—1+42¢,...,+1}

we observe that each indicator 1[piPPd(z) € (7,7 + €]] equals to a degree-2k polynomial threshold
function, and therefore there is some f in Hli;F for which

Eqnp, |1 (2) € (7 +€]] = f[ < O(?),

which substituted into Equation (46) allows us to conclude that

Eqgnp, P77 (z) — > - fr(2)| < O(e),

Te{—1,—14e,—1+2¢,...,+1}

which concludes the proof that for p<liPPed in C<liPPed we have h : RY in H for which Equation (45)
holds.
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We finish the proof of the observation, by resolving one last issue: as defined the set H is not a subset
of Cclirred However, if we consider the set H' consisting of functions f of the form

H' = {f = argmin[B.p, [lg(z) — h()[]] : h € H, }

gecclipped
then we see by the triangle inequality that H still satisfies Equation (45), has a size of at most | H|
and H' is a subset of CcliPPed O

We continue the proof of Claim E.3 We can wite:

EtE[—l,l] [Qbsign(p(x)—t),n(x” = Prte[—l,l] 2~N(0,14) [|sign(p(:£) - t) 74‘ sign(p(:c + 772) - t)H =
|pchpped ) pclipped(x 4 7’]Z)|
2

EZNN(O,Id) = ¢pclipped’n(m) (47)

We will overload the notation for ¢ and define ¢,cimea ,, () to be the expression above. We further
define the following auxiliary quantity:

0 if @petipea () < 0.67
Epetinead () = 4 1 if Gpeivpea () > 0.7
199 (@peimea () — 0.67)  if ¢p.p(x) € (0.67,0.7)
By construction, the function satisfies the following properties for every z,

]l[(bpchppcdm (CI’,‘) Z 067] S gpclippcd,n (.’1?) S ]1[¢pclippcd717 (CC) Z 07] (48)
£ e () — gpgippedm(x)] <0(1)- ’(;spclupp%(x) — 6 e, () (49)
Taking the distribution Dy to be an equal-weight mixture of (i) the distribution D in the premise of

this claim and (ii) the convolution of D with the normal distribution N(0,7n14) we see that for every
pelipped jp celipped there is h in H for which'”

Prop[|p™PP(z) — h(z)|] < 2, (50)
Pr .wp ’pcnpped +nz) — h(z+ nz)H < 2, (51)
ZNN(O,Id

which via the definition of ¢ for clipped polynomials and the triangle inequality implies that

‘EIND[¢pclippcd7n(m)] — IEQJND[Qﬁh’n(x)H S EIND |: ¢pc]ippcd7.’7(x) — (ﬁh,n(x) :|

< 2B, p (B w) ~ A +B_gop [P+ 02) — hle 4 2)] < O). (5)

Together with Equation (49), this implies that

|Eanp €t ()] = Bonp[€nn(2)]] < O(1)  Eonp { Ppetined i (€) = b, ()

] <0(e). (53)

By the standard Hoeffding bound, since ¢ and £ are always in [0, 1], with probability 1 — 6/2 for
every h in H we have

‘Ez~s[¢h,n($)] — Eunplny(2)]] < —==O0(og(|H|/0)) <&, (54)

’EwS[ﬁhm(ﬂf)] — Eenp[énn(@)]] £ —=O0(log(|H|/d)) <, (55)

sufficiently large absolute constant.

I2Note that the error over Dy is the average of the two errors in the inequalities below.

37



We observe that Fact E.6 and Equation (46) together imply that'*:

sup
clipped _clipped i
j2) Do eccllpped

E:vNS[

(@) = 5™ (@) - Banol

pcllipped(m) _ pczlipped(x)‘]‘ < 0(5).

(56)

From the above, we can also conclude that with probability 1 — § over .S for every pair pcllip P ed,pglippec‘

in C°liPred we have the following:

(o412 <

‘ E S [ pilipped@: + 7]2) _ pcllipped (Jj + 772) ‘]—E oD [ pcllipped(x + 773) _ chlipped
ZN./\/(O,Id) ZNN(O,Id)
Eern(0,10) | Bans P17 (@ +02) — 05 ™ (@ + 12) ’] — Barop ([P (2 + 12) — py ™z + n2) ‘]’ < O(e)

<O(e) by defining p§ ™ (z) := p{™(z + n2), piP (@) 1= PP (z + n2),
and using Equation (56)

We now come back to the setting of Equation (50). piPPed is a function in C¢'PP*d and h in H satisfies
Equation (50). Using the definition of ¢, the triangle inequality, and Equations 56 and 57 we also see
that

|Eans [ (2)] = Bons[dpama y (2)]] <

2Prw~s[|h(x) _pc]ipped(;(;)H + Pr N/ﬂ\;fw(osl )Hh(x +nz) — pcliPPed(aj i 772)“ <
2Pryplh(z) # f(x)] + Prmfv”(oDz )[h(x +n2) # f(z+n2)] <O(e), (58)

where in the last step we substituted Equation (50) and Equation (51). By Equation 49, we see that
Eons[Enn ()] = Exnsl€r.n(2)]] < O) - [Eons[dny(2)] = Bensldrn(@)]| < O(e),  (59)

Analogously, by combining the triangle inequality with Equations 53, 55 and 59 we derive the
following:

I?gé( ExNS[gf,n(x)] - ]EZL’ND[é-f,T](:I;)] < 0(5)7 (60)
which together with Equation (48) and Equation (47) implies Equation (44).

The following claims follow from VC theory (see e.g. [VDVWO09] and the references therein):

Fact E.5 (Generalization bound from VC dimension). Let C be a concept class and D be a distribution
over R%. For some sufficiently large absolute constant C, the following is true. With probability
at least 1 — & over a sample S of i.i.d. samples from D, with |S| > C - VC(C)log(1/68)/e* the
following holds:
sup lerr(f) — &t )] < O(e)
€

Fact E.6. Let C be a concept class with VC dimension A and D be a distribution over R%. For a
sufficiently large absolute constant C, let S be a collection of (,’;_—ZA log(1/0) i.i.d. examples from D.
Then, the following holds with probability at least 1 — §

sup |Prons[fi(2) # fo(2)] = Pro~plfi(z) # f2(2)]] < O(e). Q)

fi.f2€C

BEquation (46) tells us that the difference p; — p2 can be e-approximated in Lo, norm by a function of the
form > o 5 oo 1yse.. 42y T fr(@), where each f- is a degree-2k PTF. Then, Fact E.6 together with
triangle inequality tells us that the inequality above holds when C' is a sufficiently large absolute constant.

38

(57)



	Introduction
	Main result
	Technical overview and intermediate results
	Local correction of adversarial robustness (alg: RobustnessLCA)
	Polynomial regression under noise sensitivity constraints (alg: LearnRealValued)
	Randomized partitioning and rounding (alg:ComputeClassifier, alg:ComputeRoundingThresholds)

	Verifiable robustness
	Related work.

	Preliminaries
	Perturbation and robustness models
	Noise sensitivity approximators

	Distances and errors
	Miscellaneous

	Results and pseudocode of our main algorithm 
	Proof of thm:main.

	Further preliminaries
	Randomized implementation of 
	Distances and errors
	Miscellaneous

	Pseudocode and analysis of LearnRealValued
	Facts about log-concave distributions.
	Approximating halfspaces with polynomials
	Analyzing LearnRealValued.
	Proving claim: augmented regression gives good polynomial
	Bounding ExDmarginal[f*,10r(x)] and ExDmarginal[f*(x)]
	Bounding E(x,y)Si[p*,Ti,10r(x)] and E(x,y)Si[p*,Ti,10r(x)].
	p* has a small empirical error.


	Pseudocode and analysis of ComputeClassifier
	Local correction of adversarial robustness
	Finding good rounding thresholds
	Randomized set partitioning
	Correctness and complexity of alg:ComputeClassifier.

	Verifiable robustness
	Uniform convergence claims

