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ABSTRACT

In this paper, we revisit the problem of differentially private empirical risk min-
imization (DP-ERM) and differentially private stochastic convex optimization
(DP-SCO). We show that a well-studied continuous time algorithm from statis-
tical physics, called Langevin diffusion (LD), simultaneously provides optimal pri-
vacy/utility trade-offs for both DP-ERM and DP-SCO, under ε-DP, and (ε, δ)-DP
both for convex and strongly convex loss functions. We provide new time and
dimension independent uniform stability properties of LD, with which we pro-
vide the corresponding optimal excess population risk guarantees for ε-DP. An
important attribute of our DP-SCO guarantees for ε-DP is that they match the
non-private optimal bounds as ε→ ∞.

1 INTRODUCTION

Over the last decade, there has been significant progress in providing tight upper and lower
bounds for differentially private empirical risk minimization (DP-ERM) (Chaudhuri et al., 2011;
Kifer et al., 2012; Bassily et al., 2014; Song et al., 2013; McMahan et al., 2017; Smith et al., 2017;
Wu et al., 2017; Iyengar et al., 2019; Song et al., 2020; Chourasia et al., 2021) and differentially
private stochastic optimization (DP-SCO) (Bassily et al., 2019; Feldman et al., 2020; Bassily et al.,
2020; Kulkarni et al., 2021; Gopi et al., 2022; Asi et al., 2021b), both in the ε-DP setting and in the
(ε, δ)-DP setting1. While we know tight bounds for both DP-ERM and DP-SCO in the (ε, δ)-DP
setting (Bassily et al., 2014; 2019), the space is much less understood in the ε-DP setting (i.e., where
δ = 0). First, to the best of our knowledge, tight DP-SCO bounds are not known for ε-DP. In
this paper when we say a bound is tight for any problem, we implicitly always expect the bound
to reach the optimal non-private bound (including polylogarithmic factors) for the same task as
ε → ∞. Second, the algorithms for both DP-ERM and DP-SCO in the ε-DP setting are inherently
different from the (ε, δ)-DP setting. While all the algorithms in the (ε, δ)-DP setting are based on
DP variants of gradient descent (Bassily et al., 2014; 2019; Feldman et al., 2020; Bassily et al., 2020),
the best algorithms for ε-DP are based on a combination of exponential mechanism (McSherry &
Talwar, 2007) and output perturbation (Chaudhuri et al., 2011). Third, we know that as we move
from ε to (ε, δ)-DP, for convex problems, we gain a polynomial improvement in the error bounds
in terms of the model dimensionality, p. It is unknown if such an improvement is even possible
when the loss functions are non-convex. In this work, we close these gaps in our understanding
of DP-ERM and DP-SCO via the following contributions.

1We only focus on `2-Lipschitz losses and the constraint set is bounded in the `2-norm; the non-Eucledian
setting (Talwar et al., 2015; Asi et al., 2021a; Bassily et al., 2021) are beyond the scope of this work.
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1. We provide a unified framework for DP-ERM/DP-SCO via an information theoretic tool
called Langevin diffusion (Langevin, 1908; Lemons & Gythiel, 1997) (LD) (defined in eq. (1)
and eq. (2)), which under appropriate choice of parameters interpolates between opti-
mal/tight utility bounds for both DP-ERM and DP-SCO, both under ε and (ε, δ)-DP.

2. We provide tight DP-SCO bounds for both convex and strongly convex losses under ε-
DP. To achieve these bounds, we show uniform stability of the exponential mechanism
on strongly convex losses (which was to the best of our knowledge unknown prior to
our work). Notably, our proof of uniform stability is almost immediate given the unified
framework from item 1.

3. We provide a lower bound showing that if the loss functions are non-convex, it is not
possible to obtain any polynomial improvement in the error in terms of the model di-
mensionality when we shift from ε-DP to (ε, δ)-DP. This is in sharp contrast to the convex
setting.

4. Along the way we provide a set of results, which may be of independent interest:
(a) A simple Rényi divergence bound between two Langevin diffusions running on loss

functions with a bounded gradient difference.
(b) For strongly convex and smooth losses, a Rényi divergence bound between two

Langevin diffusions that approaches the Rényi divergence between their stationary
distributions.

(c) Improved analyses for ε-DP-ERM: For strongly convex losses we improve the bound
by log factors via a better algorithm, and for non-convex losses we remove the as-
sumption of Bassily et al. (2014) that the constraint set contains a ball of radius r.

(d) A last-iterate analysis of Langevin diffusion as an optimization algorithm, using con-
tinuous analogs of techniques in Shamir & Zhang (2013). To the best of our knowl-
edge, this is the first analysis tailored to a continuous-time DP algorithm.

Our work initiates a systematic study of DP continuous time optimization. We believe this may
have ramifications in the design of discrete time DP optimization algorithms analogous to that in
the non-private setting. In the non-private setting, continuous time dynamical viewpoints have
helped in designing new algorithms, including the celebrated mirror-descent (see the discussion
in Chapter 3 of Nemirovskij & Yudin (1983)) and Polyak’s momentum method (Polyak, 1964), and
understanding the implicit bias of gradient descent (Vardi et al., 2022). Extending the dynamical
viewpoint to private optimization would help us understand the price of privacy for the conver-
gence rate of private optimization. Further, it is known that privacy helps in generalization and
implicit bias underlies the generalization ability of (non-private) machine learning models trained
by stochastic gradient descent. Taking the dynamical viewpoint would help us understand if there
is a more fundamental reason for the generalization ability of differential privacy.

In the rest of this section, we elaborate on each of these conceptual contributions, and alongside
highlight the technical advances that were required. At the end, we provide comparison to most
relevant works. We defer a broader comparison to other works in the area to Appendix A.
Problem description: Consider a data set D = {d1, . . . , dn} drawn from some domain τ and
an associated loss function ` : C × τ → R, where C ⊂ Rp is called the constraint set. The ob-
jective in DP-ERM is to output a model θpriv while ensuring differential privacy that approxi-

mately minimizes the excess empirical risk, RiskERM(θpriv ) = 1
n

n
∑

i=1
`(θpriv ; di) −min

θ∈C
1
n

n
∑

i=1
`(θ; di).

For brevity, we will refer to 1
n

n
∑

i=1
`(θ; di) as L(θ; D), or the empirical loss. For DP-SCO, we as-

sume each data point di in the data set D is drawn i.i.d. from some distribution D over the
domain τ, and the objective is to minimize the excess population risk given by RiskSCO(θ

priv ) =
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Ed∼D
[
`(θpriv ; d)

]
−min

θ∈C
Ed∼D [`(θ; d)]. In other words, the goal of DP-ERM is to output θpriv that

minimizes the average loss on D while the goal of DP-SCO is to output a θpriv that performs well
on the ‘unseen’ data sampled from D. It is easy to see that DP-SCO is a stronger requirement.

Throughout the paper, we make two standard assumptions in differentially private optimization:
(i) the loss function `(θ; d) is L-Lipschitz w.r.t. `2-norm, i.e., ∀θ ∈ C, d ∈ τ, ‖∇θ`(θ; d)‖2 ≤ L and (ii)
constraint set has bounded diameter. W.l.o.g., we assume the loss functions are twice continuously
differentiable within the constraint set C – if not, we can ensure this by convolving the loss function
with finite variance Gaussian kernel (Feldman et al., 2018). Depending on the problem context, we
make additional assumptions like m-strong convexity, i.e., ∇2

θ`(θ; D) � mI, and M-smoothness,
i.e., ∇2

θ`(θ; D) � MI, where A � B denotes that B− A is a positive semidefinite matrix. We drop
the subscript θ when it is clear from the context. We provide notational details in Appendix A.
Langevin Diffusion (LD): We will start with the Langevin Diffusion (LD) algorithm in eq. (1)
which forms the building block for all the algorithms considered in this paper. Intuitively, one
should think of (1) as the limit of noisy gradient descent and (2) as the limit of projected noisy
gradient descent, both as η → 0.

Langevin diffusion. Let Wt be the standard Brownian motion in p-dimensions, and βt > 0
be the so called inverse temperature. Then Langevin diffusion is the following stochastic
differential equation:

dθt = βt

(
−∇L(θt; D) · dt +

√
2

βt
· dWt

)
. (1)

“Projected” Langevin diffusion. Sometimes, we will only have the Lipschitz guarantee
within a constrained set. We can also consider the following “projected” version of LD:

dθt = βt

(
−∇L(θt; D) · dt +

√
2

βt
· dWt + νtL(dt)

)
, ∀t ≥ 0 : θt ∈ C. (2)

where L is a measure supported on {t : θt ∈ ∂C} and νt is an outer unit normal vector at θt for
all such θt. See e.g. (Bubeck et al., 2018, Section 2.1, 3.1) for a discussion of (2)/verification that
a solution exists for convex C under M-smoothness for some finite M (which can be enforced
with arbitrarily small perturbations to the loss via convolution).

1.1 OUR RESULTS AND TECHNIQUES: CONCEPTUAL CONTRIBUTIONS

Optimal Excess Population Risk for DP-SCO under ε-DP: DP-SCO, at this point, is a very well-
studied problem in the literature (see references of previous works above). One approach towards
obtaining the optimal excess population risk is to first prove an optimal DP-ERM bound, and then
use uniform stability property (Bousquet & Elisseeff, 2002) (Definition B.14) of the underlying DP
algorithm to obtain a population risk guarantee. These two steps indeed provides the optimal

bounds of Θ
(

1√
n +

√
p log(1/δ)

εn

)
for convex losses and Θ

(
1

mn +
p log(1/δ)

mε2n2

)
for m-strongly convex

losses under (ε, δ)-DP via variants of DP-SGD (Bassily et al., 2020). One crucial aspect of these
bounds is that they reach the non-private optimal SCO bounds as ε → ∞. In our work, we obtain

Θ
(

1√
n + p

εn

)
for convex losses and Θ

(
1

mn +
p2 log n
mε2n2

)
for m-strongly convex losses, under ε-DP.

Analogous to the (ε, δ)-DP setting, these bounds reach the non-private optimal as ε → ∞. As
mentioned earlier, such bounds for the ε-DP setting was unknown prior to this work. Our optimal
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Assumption ε-DP (ε, δ)-DP
Excess Risk Time Excess Risk Time

ERM
Convex Lp

εn ∞ L
√

p log(1/δ)
εn

1
p

m-SC L2(p2+p log n)
mε2n2 ∞ L2 p log(1/δ)

mε2n2 log2(pεn) L2 log(1/δ) log4(pεn)
m2ε2n2

Non-convex Lp
εn log

(
εn
p

)
∞ Lp

εn log
(

εn
p

)
∞

SCO Convex L√
n + Lp

εn ∞ L√
n +

L
√

p log(1/δ)
εn min

{
1
p , log(1/δ)

ε2n

}
m-SC L2

mn +
L2 p2 log n

mε2n2 ∞ L2

mn +
L2 p log(1/δ) log2(pεn)

mε2n2
L2 log(1/δ) log4(pεn)

m2ε2n2

Table 1: Summary of our upper bounds for DP-ERM and DP-SCO. The bounds marked in blue
were not known even via different algorithms. Every bound is tight up to polylog (p, ε, n) factors.
Convex: Class of convex bounded Lipschitz losses, m-SC: Convex with ∇2`(θ; ·) < mI. Non-
convex: Class of losses with ‖∇`(θ; ·)‖2 ≤ L. Here, time (T) refers to the length till which we
run the Langevin Diffusion algorithm; for the ε-DP results, T = ∞ means we use the stationary
distribution of the Langevin diffusion. We set the diameter of the constraint set ‖C‖2 = 1.

DP-SCO bound is obtained by proving a dimension independent uniform stability guarantee for
the standard exponential mechanism on the loss function L(θ; D) + m

2 ‖θ‖
2
2. The translation to DP-

SCO guarantee is immediate (Bousquet & Elisseeff, 2002) by appealing to the DP-ERM guarantee
for exponential mechanism for such score functions, and combining with the uniform stability
guarantee.

To show dimension-independent uniform stability of the exponential mechanism on the regular-
ized loss L(θ; D) + m

2 ‖θ‖
2
2, we view the exponential mechanism as the limiting distribution of

LD, and provide a time independent O
(

L2

mn

)
-uniform stability of LD. Here, L is the `2-Lipschitz

parameter of the loss function `(θ; ·). Equipped with this bound, we can easily combine with the
DP-ERM bound to obtain the excess population risk bound we intended to achieve. We believe the
above proof technique can be of independent interest, as it allows one to reduce showing the ex-
ponential mechanism is uniformly stable to showing gradient descent has time-independent uniform
stability, which is a more well-understood problem.

Unification of DP-ERM and DP-SCO via LD: In this work we show that LD (Langevin, 1908;
Lemons & Gythiel, 1997), defined in (1) and (2), interpolates between optimal known utility
bounds for both DP-ERM and DP-SCO, and both under ε- and (ε, δ)-DP. Based on the inverse tem-
perature, βt, and the length for which the diffusion process is run, T, Langevin diffusion not only
recovers the best known bounds in all the settings mentioned above, but also provides new pre-
viously not known results. For example, it recovers the optimal excess population risk bound for
convex and strongly convex DP-SCO under ε-DP improving on the previous best known bounds
of Asi et al. (2021b). A summary of the results we achieve in this paper are given in Table 1.

While our algorithm is purely information theoretic, it is worth highlighting that it was not clear
whether such a universal object that achieves optimal excess risk for both ε- and (ε, δ)-DP even
exists. As we discuss later, the inverse temperature settings of LD that gives rise to the best al-
gorithms for ε-DP and (ε, δ)-DP are off by roughly a factor of

√
p (p being the number of model

parameters or the dimension of the parameter space). Hence, under constant ε regime for (ε, δ)-DP,
we analyze LD far before it has converged to a stationary distribution.
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Two-phase analysis of DP-Langevin diffusion: In the process of demonstrating the universality
of LD, we discovered two clear phases in the diffusion process, which enable us to obtain either
(ε, δ)-DP or ε-DP results. For the purposes of brevity, it is easiest to explain this in the context of
Lipschitz convex losses. We provide details for other losses in the remainder of the paper. As evi-
dent from Table 1 to obtain the DP-ERM and DP-SCO bounds in the (ε, δ)-DP setting, the LD runs
for T ≈ 1

p , whereas, in the ε-DP setting, it needs to run until it convergences to a stationary distri-

bution. It is easy to show that, when T ≤ 1
p , the diffusion process cannot converge to a stationary

distribution under reasonable choice of inverse temperature required to ensure DP. This follows
from the fact that, within the mentioned time period, for certain loss functions and constraint sets,
with high probability, LD does not escape a ball of diameter c ‖C‖2 for c < 1 which contains cΩ(p)

of the probability mass of the stationary distribution. However, LD is still able to obtain the de-
sired ERM bounds in this time because the desired ERM bounds are satisfied by points at distance
Ω(
√

p/εn) from the empirical minimizer (see Appendix H for a more detailed discussion). In the
ε-DP case, however, we run LD till it has converged to the stationary distribution, which is the
exponential mechanism (see Appendix D for a more detailed discussion).

As a result, the utility analysis for these phases are very different. In the (ε, δ)-DP case, we analyze
the algorithm as a noisy gradient flow and use tools from optimization theory (Wilson et al., 2021),
whereas, in the ε-DP setting, we analyze the utility in terms of the stationary distribution that the
diffusion process converge to, i.e., the Gibbs distribution. Following this viewpoint, if one studies
DP-SGD (Bassily et al., 2014) (which is a typical optimization algorithm in the (ε, δ)-DP case) as
a discretization of the LD process, one can observe that under optimal parameter settings it does
not converge to anywhere near the stationary distribution (see Appendix H).

1.2 OUR RESULTS AND TECHNIQUES: TECHNICAL CONTRIBUTIONS

In this section we give an overview of our technical results. Due to space constraints, we only give
formal statements for our most novel results and high-level descriptions for remaining results.

Rényi divergence bounds for LD (Appendix C and Appendix I): We cannot use standard com-
position theorems of DP (Dwork & Roth, 2014) because the underlying algorithm is a continuous
time process. One main technical contribution of this work is to quantify the Rényi divergence
between two LD processes when run on neighboring data sets:
Lemma 1.1 (Simplified version of Lemma C.1). Let Θ[0,T] be the distribution of the trajectory {θt}t∈[0,T]
in (2). Suppose we have that ‖∇L(θ; D)−∇L(θ; D′)‖2 ≤ ∆ for all θ. Then for all α ≥ 1:

Rα(Θ[0,T], Θ′[0,T]) ≤
α∆2

4

T∫
0

β2
t dt.

The idea behind the above lemma is to define an infinite sequence of pairs of DP-SGD runs on
D, D′ with decreasing step sizes, such that (i) there is a fixed Rényi divergence bound that holds for
all pairs in the sequence and (ii) the trajectory of (2) is the limit of the sequence. We then conclude
using Fatou’s lemma. This result forms the foundation of the privacy analysis in the rest of the
paper. A similar result was also provided in Chourasia et al. (2021). Our result is stronger in that
it proves a divergence bound between the entire histories {θt}0≤t≤T rather than just the last iterate
θT , which enables us to output weighted averages of θt privately. Furthermore, it is proven using
only tools from the differential privacy literature and Fatou’s lemma, providing an arguably much
simpler proof. Additionally, for the special case of strongly convex and smooth loss functions,
we leverage techniques from Vempala & Wibisono (2019) and Ganesh & Talwar (2020) to show
a Rényi-divergence bound (Lemma I.1) that approaches the divergence between the stationary
distributions of the LD processes, i.e., the privacy guarantee of the exponential mechanism. Since
this bound is not needed for our DP-ERM or DP-SCO results, we defer it to Appendix I.
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LD as exponential mechanism, DP-ERM under ε-DP (Appendix D): The observation made in
privacy analysis of Langevin diffusion (LD) allows us to derive the results on private optimization
using exponential mechanism (McSherry & Talwar, 2007). One technical challenge that we need
to overcome while mapping LD to exponential mechanism is the issue with optimizing within the
constraint set C. We do this via a result of Tanaka (1979), stated in Lemma D.2. This, in turn, read-
ily gives us optimal empirical risk for `2-Lipschitz convex functions (described in Appendix D)
using the utility analysis in Bassily et al. (2014) (see Theorem D.1). To get optimal empirical risk
for strongly convex Lipschitz functions requires an algorithmic improvement. Recall the algo-
rithm in Bassily et al. (2014) for strongly convex losses uses a two step process: output pertur-
bation (Chaudhuri et al., 2011), and then a one shot exponential mechanism. In Algorithm 3, we
propose an iterated exponential mechanism which can be of independent interest. This algorithm
allows us to define an algorithm purely based on an exponential mechanism over the loss function
L(θ; D). The idea is to iteratively run the exponential mechanism on a sequence of constraint sets
(C = C0 ⊇ C1 ⊇ . . . ⊇ Ck), where Ci+1 = B(θi, ri) ∩ Ci, θi being the output of the εi-DP exponential
mechanism on Ci. For appropriate choices of εi, ri we get the following ERM bound for θk that is
the output of the exponential mechanism on the final constraint set:
Theorem 1.2 (Simplified version of Theorem D.3). Algorithm 3 is ε-DP and for m-strongly convex
losses, outputs θk such that

E [RiskERM(θk)] = O
(

L2(p2 + p log n)
mε2n2

)
.

This is a mild improvement on the excess empirical risk over Bassily et al. (2014), who achieved
O(L2 p2 log n/mε2n2). For non-convex functions, the results of Bassily et al. (2014) either assume a
small ball of radius r is contained in the constraint set C, with utility depending on log(‖C‖2 /r),
or use the discrete exponential mechanism on a ball-covering of C. One of our technical contri-
butions is to show that the continuous exponential mechanism achieves the optimal excess loss
without the small ball assumption (Theorem D.5). Our algorithm is (arguably) more flexible than
the ball-covering algorithm in Bassily et al. (2014), since for certain classes of non-convex losses,
one can still approximately sample from the continuous exponential mechanism efficiently (e.g.,
if the stationary distribution satisfies a Poincaré inequality or isoperimetry (Chewi et al., 2021)).
Table 1 summarizes these results.

LD as noisy gradient flow, and DP-ERM under (ε, δ)-DP (Appendix F.1): The view of LD we took
for the ε-DP case was when the diffusion has converged to a stationary distribution. We also study
LD in the setting when it is far from convergence. In fact, we argue in Appendix H that, under the
settings we operate with, the algorithm’s convergence to the stationary distribution is not much
better than a point distribution2. We present two results under (ε, δ)-DP: i) LD achieves optimal
excess empirical risk bounds for convex losses (Theorem F.1), and ii) LD achieves optimal excess
empirical risk bounds for strongly convex losses (Theorem F.2). The optimality of these algorithms
follow from the standard lower bounds in Bassily et al. (2014) and privacy guarantee follows from
the privacy accounting machinery described above (see Table 1 for a summary of the bounds).

Our utility bound holds for the last model θT output by LD. On the technical side, for the convex
case, we derive a continuous analogue of the excess empirical risk bound for the last iterate of
noisy SGD in Shamir & Zhang (2013). One of the technical challenges in extending Shamir &
Zhang (2013) to continuous case is in finding the best potential function to bound the lossL(θT ; D).

2There is a setting of parameters obtaining the optimal (asymptotic) excess empirical loss, loss function L,
and constraint set C such that the total variation (1-Wassertein, resp.) distance to the stationary distribution
can be as large as 1− o(1) (Ω(‖C‖2), resp.).
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Unfortunately, as Shamir & Zhang (2013) also mentions, a direct comparison to min
θ∈C
L(θ; D) does

not result in the optimal error. Shamir & Zhang (2013) get around this by bounding the error

in terms of the tail averaged loss for a small number of iterates, i.e., Sk = 1
k+1

T
∑

t=T−k
L(θt; D).

They then use a recursive argument to compare Sk with Sk−1, Sk−2, · · · , to finally relate to the
required error bound. This approach fails in the continuous setting because there is no concept of
a time step. In order to get our bound, we extend the operator Sk to operate over small discretized
windows of width γ and then use Fatou’s lemma to take lim

γ→0
to obtain the continuous analogue.

We believe this technique could be of independent interest.

The case for strongly convex loss function is more challenging as the usual choice of
potential/Lyupanov3 function, ‖θ − θt‖2

2, does not immediately provide the right rate of con-
vergence. We pick emBt ‖θt − θ∗‖2

2 (based on Wilson (2018)) as the Lyupanov function instead of
‖θt − θ∗‖2

2. (Here, Bt is some fixed function of t.) The choice of this Lyupanov function now allows
us to get an optimal excess empirical risk guarantee for θpriv = 1

emBT−1

∫ T
0 θtdemBt .

Uniform stability of LD, and unifying convex DP-SCO (Appendices E and F.2): We finally show
the empirical risk to population risk transformation by showing uniform stability bounds for both
ε-DP and (ε, δ)-DP. For the ε-DP setting, standard transformation from empirical risk to population
risk in Bassily et al. (2014) (either via `2-regularization, or the stability property of DP itself) leads
to a bound sub-optimal by a

√
p-factor. We improve this and get an optimal bound as follows:

Theorem 1.3 (Simplified version of Theorem E.4). Let θpriv be the output of the exponential mechanism
when run on the regularized loss Lm(θ; D) := L(θ; D) + m

2 ‖θ‖
2
2. For an appropriate choice of m we have:

Eθpriv [RiskSCO(θ
priv )] = O

(
Lp ‖C‖2

εn
+

L ‖C‖2√
n

)
.

The above bound is obtained by showing a dimension-independent uniform stability result for the
exponential mechanism on strongly convex losses by viewing the exponential mechanism as the limit as
as η → 0, T → ∞ of gradient descent, which has a dimension and time-independent uniform stability
bound for strongly convex losses (see Corollary E.3). While Raginsky et al. (2017) as well as exten-
sions of results in Bassily et al. (2014) give dimension-dependent uniform stability bounds for the
exponential mechanism, a dimension-independent bound was not known prior to this work. A
dimension-independent uniform stability bound was also proven independently of us in the con-
temporary work of Gopi et al. (2022) (Theorem 6.10), albeit using a different proof. We discuss it
in more detail in Appendix A. Given uniform stability of the exponential mechanism on strongly
convex losses, we apply it in the convex case by adding a regularizer to the loss function. In the
strongly convex case, where we use the iterated exponential mechanism, we show that the pop-
ulation and empirical minimizers of a strongly convex loss function are close to each other with
high probability. Given this claim and the uniform stability bound, only a slight modification of
our DP-ERM analysis is needed to get the desired DP-SCO bound informally stated as below:
Theorem 1.4 (Simplified version of Theorem E.6). Let θk be the output of Algorithm 3 with slight
modification to the algorithm’s parameters. Then it is ε-DP and for m-strongly convex losses satisfies

E [RiskSCO(θk)] = O
(

L2 p2 log n
mε2n2 +

L2

mn

)
.

3A Lyapunov function maps scalar or vector variables to real numbers (Rp → R) and decreases along the
solution trajectory of an SDE. They are primarily used in ordinary differential equation to prove stability and
in continuous optimization to prove convergence.
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We also prove uniform stability of LD in the (ε, δ)-DP setting via analyzing noisy gradient de-
scent when learning rate tends to zero. The optimality of the results above follows from standard
arguments (see Appendix C in Bassily et al. (2019)4).

Lower-bound for non-convex functions (Appendix G): In the case of convex loss functions, it
is known that we can improve the excess error by

√
p factor by going from ε-DP to (ε, δ)-DP.

However, the excess empirical risk of our algorithm for non-convex loss function under (ε, δ)-DP
is the same as that under ε-DP. We finally show that it is not an artifact of our algorithm or analysis,
rather, in general, it is not possible to get an improvement by going from ε-DP to (ε, δ)-DP for non-
convex loss functions:

Theorem 1.5 (Simplified version of Theorem G.1). There exists a dataset D = {d1, · · · , dn} and
1-Lipschitz non-convex function L such that for every p ∈ N, there is no (ε, δ)-differentially private
algorithm A that outputs θpriv such that RiskERM(θpriv) ∈ o (p log (1/δ)/ (nε)) .

The lower bound uses a reduction to the top-k-selection problem defined over the universe of size
s. In particular, we define a packing over the p-dimensional Euclidean ball such that there is an bi-
jective mapping between the centers of the packing and [s]. Then we define a non-convex function
such that the function attains the minimum at the center that corresponds to the coordinate j ∈ [s]
with maximum frequency. Since the size of the α-net is ≈ 1/αp and there is a bijective mapping,
this gives the desired lower bound using Steinke & Ullman (2017).

1.3 RELATED WORKS

Comparison to Gopi et al. (2022): In a concurrent, independent, and complementary work5 on convex
losses, Gopi et al. (2022) showed that the stationary distribution of a Metropolis-Hastings style
process provides the optimal algorithm both for DP-SCO and DP-ERM under (ε, δ)-DP for `2-
Lipschitz and convex losses. Their results immediately imply a single algorithm that spans across
ε and (ε, δ)-DP for DP-ERM. In comparison, our work captures a much larger spectrum of unifica-
tion, i.e., DP-ERM and DP-SCO, under ε and (ε, δ)-DP, for `2-Lipschitz losses with/without strong
convexity. Furthermore, unlike Gopi et al. (2022) our privacy analysis does not rely on convexity.
In terms of gradient oracle complexity, Gopi et al. (2022) give oracle efficient algorithms for their
construction. While we acknowledge that the oracle complexity of our LD based algorithm is an
important research question, we leave it for future work (see Section 1.4), and focus on statistical
efficiency only. The DP-SCO result in Gopi et al. (2022) relies on uniform stability property of expo-
nential mechanism, analogous to our work. While their result relies on bounding the Wasserstein
distance between two exponential mechanisms run on neighboring data sets, our uniform stabil-
ity guarantee follows immediately from the uniform stability guarantee of the diffusion process
(which in limit matches the exponential mechanism).

Comparison to Chourasia et al. (2021); Altschuler & Talwar (2022); Ryffel et al. (2022): Recently,
Chourasia et al. (2021) studied discretization of the LD algorithm as DP-(Stochastic) Gradient
Langevin Dynamics (DP-SGLD), and Ryffel et al. (2022) extended these results of Chourasia et al.
(2021) to the mini-batch setting. They show that under smoothness and strong convexity on the
loss function L(θ; D), the privacy cost of DP-SGLD converges to stationary finite value, even when
the number of time steps goes to ∞. This in-turn improves the gradient oracle complexity over
differentially private stochastic gradient descent, dubbed as DP-SGD, (Algorithm 1). Our anal-
ysis of DP-LD improves on the result of Chourasia et al. (2021) by allowing divergence bounds

4The lower bound in Bassily et al. (2019) is technically for (ε, δ)-DP, but can be interpreted as that for ε-DP
up to slack factors of polylog(n).

5The authors of Gopi et al. (2022) also formally acknowledged the independence claim.
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between the entire histories {θt}0≤t≤T rather than just the last iterate θT , which enables us to out-
put weighted averages of θt privately, which is necessary for some of our (ε, δ)-DP guarantees.
Altschuler & Talwar (2022) in a follow-up work to ours, removes the requirement of strong con-
vexity in Chourasia et al. (2021) and provides an analogous bound only for the last iterate θT using
a different technique based on optimal transport. In general, these results are orthogonal to us
since they do not seek to either unify the existing algorithms or provide tighter utility/privacy
trade-offs via the Langevin dynamics/diffusion view point.

Comparison to Asi et al. (2021b): Asi et al. (2021b) showed DP-SCO bounds under a general con-
dition called κ-growth via a custom localization based algorithm. A corollary of their results is

that under ε-DP one can obtain a excess population risk of O
(

log3/2 n√
n +

p log n
εn

)
for Lipschitz con-

vex losses, and O
(

log3 n
mn +

p2 log2 n
mε2n2

)
for Lipschitz and m-strongly convex losses under ε-DP. Notice

that the bounds do not reach the non-private optimal bounds of O
(

1√
n

)
and O

(
1

mn

)
, respectively

as ε → ∞. Our bounds on the other hand have the property of matching the non-private optimal
bounds as ε → ∞. To the best of our knowledge, the polylog(n) dependence in the non-private er-
ror bounds of Asi et al. (2021b) is not a slack in the analysis, but is unavoidable for their algorithm.
We note that Asi et al. (2021b) has the advantage of requiring weaker primitives (solving an ERM
problem instead of the exponential mechanism) and thus being easier to implement. However, our
improvements are not solely due to using stronger primitives; e.g., our uniform stability bound is
a generalization of a uniform stability bound implicitly used in their paper.

We provide a thorough comparison to other related works in Appendix A.

1.4 FUTURE DIRECTIONS

While we know that most of the DP-ERM and DP-SCO bounds are optimal, our understanding of
the optimal rates of convergence (in terms of gradient oracle complexity (Bubeck, 2015)) to these
error bounds is far from being complete. For example, Kuru et al. (2020) shows DP algorithms
with accelerated oracle complexity for strongly convex and smooth losses; can we obtain optimal
DP-SCO/DP-ERM rates with accelerated oracle complexity without strong convexity?

Understanding the trajectory of private optimization has further ramifications, such as an under-
standing of the natural scope of higher order descent methods under privacy constraints, and
phenomena that gradients are heavy tailed and lie in a low dimensional subspace. For example, in
the non-private setting, higher order methods can be naturally explained using variational meth-
ods that study the trajectory of optimization (Wibisono et al., 2016). For DP, one can study the
corresponding stochastic variational methods. Here, we can use differentiation as a linear opera-
tor and then use the machinery of operator algebra to understand the necessary conditions for the
calculus that allows us to derive stochastic variational methods.

From a practical perspective, these methods can be helpful in understanding whether DP-SGD
converges to robust network or not when training deep neural network. Without privacy, we know
that there is an implicit bias of gradient descent towards non-robust local minima of non-convex
problems even though robust networks exist (Vardi et al., 2022). However, because of stochastic-
ity, DP-SGD behaves as the so called Ornstein-Uhlenbeck process. An immediate consequence of
this phenomenon is that it activates the second-order Taylor’s expansion adding a regularizer-like
behavior. This phenomenon does not exist in gradient flow and we conjecture that it might be the
critical aspect of DP-SGD that allows convergence to a robust network.
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Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.
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A OTHER RELATED WORK

Work on optimization: Although optimization methods in computer science have been mostly
discrete, there is a vast literature that studies optimization from a continuous time dynamical point
of view, with the earliest example being the mirror-descent (see the discussion in Nemrivosky and
Yudin (Nemirovskij & Yudin, 1983, Chapter 3)) and Polyak’s momentum method (Polyak, 1964).
In fact, Polyak in his 1964 paper motivated his approach using heavy ball moving in a potential
and used this physical intuition to give rigorous proof for quadratic loss. More recent works
have also shown a closer connection between gradient flow and gradient descent (Wilson, 2018)
and between accelerated methods and second-order ordinary differential equations by taking a
variational perspective (Hu & Lessard, 2017; Li et al., 2017; Su et al., 2014; Wibisono et al., 2016;
Wilson et al., 2021). This, in the case of the unconstrained case, can be interpreted as a damped non-
linear oscillator (Cabot et al., 2009). This observation has led to fruitful works to get an averaging
interpretation of accelerated dynamics (Krichene et al., 2015; 2016) and also a cornerstone of the
“restarting” heuristic (O’donoghue & Candes, 2015).

The idea of approximating discrete-time stochastic algorithms by continuous time equations can
be traced back to the vast literature of stochastic approximation theory. We refer the readers to
the excellent monograph by Harold, Kushner and Yin on the same topic (Harold et al., 1997). In
optimization theory with machine learning as the motivation, the earliest work to the best of our
knowledge that studied the dynamical properties of stochastic gradient descent algorithms are
the independent and concurrent works of (Li et al., 2017; Mandt et al., 2017; Vollmer et al., 2016).
Li et al. (2017) and Mandt et al. (2017) independently gave the first asymptotic convergence of
stochastic gradient descent and momentum method as an approximation to stochastic differential
equation while Vollmer et al. (2016) gave a non-asymptotic bound on convergence of the stochastic
gradient LD algorithm by using the Poisson equations.

The idea of discretizing stochastic differential equations (and by extension stochastic gradient de-
scents and its variants) can be dated back to the seminal work of Mil’shtejn (1975) who performed
an extensive numerical analysis of stochastic differential equations. Since then, several works have
studied continuous time gradient descent (Hu et al., 2019; Feng et al., 2017), mirror descent (Mer-
tikopoulos & Staudigl, 2018; Raginsky & Bouvrie, 2012), and stochastic variance reduced gradient
LD (Dubey et al., 2016) for Bayesian posterior inference.

Some attempts have been made to even study the non-convex setting, considering dissipative loss
functions (Raginsky et al., 2017) as well as acceleration (Krichene & Bartlett, 2017) for the vanishing
noise limit. In a recent work, Tzen et al. (Tzen et al., 2018) introduced the concept of meta-stability
to study the generalization properties of LD for nonconvex functions. This was further generalized
and extended by Erdogdu et al. (Erdogdu et al., 2018).

Work on sampling: Central to this has been the use of Langevin dynamics that has played a sig-
nificant role in sampling algorithms. A large line of recent work (including e.g., Dalalyan (2017);
Durmus & Moulines (2016); Cheng & Bartlett (2018); Cheng et al. (2018); Vempala & Wibisono
(2019); Ganesh & Talwar (2020); Erdogdu et al. (2021); Chewi et al. (2021)) show that using the
Langevin dynamics, under certain assumptions (often strong convexity and smoothness or vari-
ants thereof) one can efficiently obtain an approximate sample from the stationary distribution.
In particular, the gradient oracle complexity of these results is often linear in the dimension and
inverse polynomial in the approximation error. The error metric varies from paper to paper; orig-
inally, total variation distance, Wasserstein-distances, and KL-divergences were more commonly
studied but starting with Vempala & Wibisono (2019), recent works have focused on Rényi diver-
gence bounds.
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Work on DP and optimization: The connection between dynamical systems and differential pri-
vacy is also not new. Chourasia et al. (2021) and Ryffel et al. (2022) study discretization of the
LD algorithm as DP-(Stochastic) Gradient Langevin Dynamics (DP-SGLD). They show that un-
der smoothness and strong convexity on the loss function L(θ; D), the privacy cost of DP-SGLD
converges to a stationary finite value, even when the number of time steps goes to ∞. Wang et al.
(2019) used the result by Raginsky et al. (2017) to prove a sub-optimal excess empirical risk of
Õ
(

p log(1/δ)
ε2 log(n)

)
for non-convex loss functions. In a concurrent, and complementary work on con-

vex losses, Gopi et al. (2022) study private optimization and show the universality of exponential
mechanisms for both stochastic convex optimization and empirical risk minimization. Their anal-
ysis takes the sampling perspective when the diffusion process has completed.

It is probably important to mention that objective perturbation (Chaudhuri et al., 2011; Kifer et al.,
2012) can be potentially thought of as a (near) universal algorithm for the problem classes con-
sidered in this paper, albeit the following two caveats: i) The instantiation of the algorithm for
ε-DP and (ε, δ)-DP require two different noise models to be drawn from, namely, Gamma distribu-
tion, and Normal distribution, and ii) It requires the loss functions `(θ; ·) to be twice-continuously
differentiable, and ∇2

θ`(θ; ·) to have a near constant rank. As mentioned in the remainder of our
paper, Langevin diffusion does not require any such assumptions.6

B NOTATION AND PRELIMINARIES

In this section, we give a brief exposition of the concepts and results required used in the rest of
the paper. In Table 2 we provide a summary of all the notation used in the paper.

Background on Langevin dynamics. One of the important tools in stochastic calculus is Ito’s
lemma (Itô, 1944). It can be seen as the stochastic calculus counterpart of the chain rule and be
derived from Taylor’s expansion and noting that the second order does not go to zero under
quadratic variation:

Lemma B.1 (Ito’s lemma (Itô, 1944)). Let xt ∈ Rp be governed by the Langevin diffusion process dxt =
µt · dt + σt · dWt, where Wt is the standard Brownian motion in p-dimensions, µt ∈ Rp is the drift, and
σ2

t ∈ R is the standard deviation. We have the following for any fixed function f : Rp → R:

d f (xt) =

〈∇x=xt f (x), µt〉+
σ2

t
2

 p

∑
i=1

∂2 f (x)
∂x2

i

∣∣∣∣∣
x=xt

 · dt + σt · 〈∇x=xt f (x), dWt〉 .

Here, ∇x=xt corresponds to
[

∂
∂x1

, . . . , ∂
∂xp

]
evaluated at xt.

Rényi divergence and differential privacy. Rényi divergence is the generalization of KL diver-
gence to higher order and satisfies many useful properties (van Erven & Harremos, 2014). More
formally,

Definition B.2 (Rényi Divergence). For 0 < α < ∞, α 6= 1 and distributions P, Q, such that supp(P) =
supp(Q) the α-Rényi divergence between P and Q is

6In particular, we can always ensure twice differentiability by convolving the loss function with the bump
kernel (Kifer et al., 2012), and then make the smoothness parameter finite but arbitrarily large which does not
affect the Lipschitzness.
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Notation
D = {d1, · · · , dn} data set

D data distribution
τ domain set of data

C ⊂ Rp convex set/parameter space
` loss function
L empirical loss function

RiskERM excess empirical risk
RiskSCO excess population risk

m strong convexity parameter
M smoothness parameter
L Lipschitz constant

θpriv private model output
θ∗ optimal model
βt inverse temperature
φ Potential/Lyupanov function

Wt standard Brownian motion
Rα(·, ·) Renyi divergence of order α

T continuous time
A � 0 A is positive semidefinite
A � B A− B is positive semidefinite

Ip p× p identity matrix

Table 2: Notation Table

Rα(P, Q) =
1

α− 1
ln

∫
supp(Q)

P(x)α

Q(x)α−1 dx =
1

α− 1
ln Ex∼Q

[
P(x)α

Q(x)α

]
.

The α-Rényi divergence for α = 1 (resp. ∞) is defined by taking the limit of Rα(P, Q) as α approaches 1
(resp. ∞) and equals the KL divergence (resp. max divergence).

We next define differential privacy, our choice of the notion of data privacy. Central to the notion
of differential privacy is the definition of adjacent or neighboring datasets. Two datasets D and D′
are called adjacent if they differ in exactly one data point.
Definition B.3 (Approximate Differential privacy (Dwork et al., 2006b;a)). A randomized mechanism
M : Dn → R is said to have (ε, δ)-differential privacy , or (ε, δ)-DP for short, if for any adjacent D, D′ ∈
Dn and measurable subset S ⊂ R, it holds that

Pr[M(D) ∈ S] ≤ eεPr[M(D) ∈ S] + δ.

When δ = 0, it is known as pure differential privacy, and we denote it by ε-DP.
Definition B.4 (Renyi Differential privacy (Mironov, 2017)). A randomized mechanismM : Dn → R
is said to have (α, ε)-Rényi differential privacy, or (α, ε)-RDP for short, if for any adjacent D, D′ ∈ Dn it
holds that

Rα(M(D),M(D′)) ≤ ε.

It is easy to see that ε-DP is merely (∞, ε)-RDP. Similarly, the following fact relates (ε, δ)-DP to
(α, ε)-RDP:
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Fact B.5 ((Mironov, 2017, Proposition 3)). If M satisfies (α, ε)-RDP, then M is (ε +
log 1/δ

α−1 , δ)-
differentially private for any 0 < δ < 1.

Rényi divergences satisfy a number of other useful properties, which we list here.
Fact B.6 (Monotonicity (van Erven & Harremos, 2014, Theorem 3)). For any distributions P, Q and
0 ≤ α1 ≤ α2 we have Rα1(P, Q) ≤ Rα2(P, Q).
Fact B.7 (Post-Processing (van Erven & Harremos, 2014, Theorem 9)). For any sample spaces X ,Y ,
distributions P, Q over X , and any function f : X → Y we have Rα( f (P), f (Q)) ≤ Rα(P, Q).
Lemma B.8 (Gaussian dichotomy (van Erven & Harremos, 2014, Example 3)). Let P = P1 ×P2 ×
· · · andQ = Q1×Q2× · · · , where Pi andQi are unit variance Gaussian distributions with mean µi and
νi, respectively. Then

Rα(Pi,Qi) =
α

2
(µi − νi)

2,

and by additivity for α > 0,

Rα(P ,Q) = α

2

∞

∑
i=1

(µi − νi)
2.

As a corollary, we have:

Rα(N(0, σ2Ip), N(x, σ2Ip)) ≤
α ‖x‖2

2
2σ2 .

Fact B.9 (Adaptive Composition Theorem (Mironov, 2017, Proposition 1)). Let X0, X1, . . . ,Xk be ar-
bitrary sample spaces. For each i ∈ [k], let fi, f ′i : ∆(Xi−1)→ ∆(Xi) be maps from distributions over Xi−1
to distributions overXi such that for any distribution Xi−1 overXi−1, Rα( fi(Xi−1), f ′i (Xi−1)) ≤ εi. Then,
for F, F′ : ∆(X0) → ∆(Xk) defined as F(·) = fk( fk−1(. . . f1(·) . . .) and F′(·) = f ′k( f ′k−1(. . . f ′1(·) . . .)
we have Rα(F(X0), F′(X0)) ≤ ∑k

i=1 εi for any X0 ∈ ∆(X0).
Fact B.10 (Weak Triangle Inequality (Mironov, 2017, Proposition 11)). For any α > 1, q > 1 and
distributions P1,P2,P3 with the same support:

Rα(P1,P3) ≤
α− 1/q

α− 1
Rqα(P1,P2) + R qα−1

q−1
(P2,P3).

We discuss two differentially private mechanisms for optimization in this paper. The first one
is the exponential mechanism. (McSherry & Talwar, 2007). Given some arbitrary domain D and
range R, the exponential mechanism is defined with respect to some loss function, ` : D×R→ R.
Definition B.11 (Exponential mechanism (McSherry & Talwar, 2007)). Given a privacy parameter ε,
the range R and a loss function ` : D×R→ R, the exponential mechanism samples a single element from
R based on the probability distribution

πD(r) =
e−ε`(D,r)/2∆`

∑r∈R e−ε`(D,r)/2∆`

where ∆` is the sensitivity of u, defined as ∆` := max D∼D′ ,
r∈R
|u(D, r)− u(D′, r)|. If R is continuous, we

instead sample from the distribution with pdf:

pD(r) =
e−ε`(D,r)/2∆`∫

r∈R e−ε`(D,r)/2∆`dr
.
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Algorithm 1 Differentially private stochastic gradient descent (DP-SGD) (Bassily et al., 2014)

Require: Data set D = {d1, · · · , dn}, loss function: ` : C × D → R, gradient `2-norm bound: L,
constraint set: C ⊆ Rp, number of iterations: T, noise variance: σ2, learning rate: η.

1: Choose any point θ0 ∈ C.
2: for t = 0, . . . , T − 1 do
3: Sample dt uniformly at random from D with replacement.

4: ∇θpriv ← ∇`(θt; dt) +N
(
0, σ2I

)
, where σ2 =

8TL2 log(1/δ)
ε2 .

5: θt+1 ← ΠC
(
θt − η · ∇θpriv

)
, where ΠC(v) = arg min

θ∈C
‖v− θ‖2.

6: end for
7: return θt.

The second algorithm that we discuss is the stochastic gradient descent used in Bassily et al. (2014)
and presented in Algorithm 1. The algorithm can be seen as noisy stochastic variant of the classic
gradient descent algorithm, where stochasticity comes from two sources in every iteration: sam-
pling of dt and explicit noise addition to the gradient before the descent stage.

We use the result by Steinke & Ullman (2017) for our lower bound proof. We use their equivalent
result for empirical mean (see equation (2) in Steinke & Ullman (2017)) and for privacy parameters
(ε, δ) using a standard reduction (Bun et al., 2018; Steinke & Ullman, 2015)7:

Theorem B.12. Fix n, s, k ∈ N. Set β = 1 + 1
2 log

(
s

8 max{2k,28}

)
. Let P1, · · · , Ps ∼ Beta(β, β) and

let X := {x1, · · · , xn} be such that xi ∈ {0, 1}s for all i ∈ [n], xi,j is independent (conditioned on P) and

E[xi,j] = Pj for all i ∈ [n] and j ∈ [s]. Let M : ({0, 1}s)n → {0, 1}d be (1, 1
ns )-differentially private.

Suppose ‖M(x)‖1 = ‖M(x)‖2
2 = k for all X with probability 1 and

E
M

 1
n

n

∑
i=1

∑
j∈[s]

M(x)j=1

xi,j

 ≥ 1
n

max
S⊂[d]
|S|=k

n

∑
i=1

∑
u∈S

xi,u −
k

20
. (3)

Then n ∈ Ω
(√

k log
( s

k
))

.

Results from statistics and machine learning: We will sometimes use Fatou’s lemma in our
proofs. The form we will use is stated here for convenience:
Lemma B.13 (Fatou’s Lemma). Let {Xi} be a sequence of random variables such that there is some
constant c such that for all i, Pr[Xi ≥ c] = 1. Then:

E

[
lim inf

i→∞
Xi

]
≤ lim inf

i→∞
E [Xi] .

For our SCO bounds, we will use uniform stability. Uniform stability of a learning algorithm is a
notion of algorithmic stability introduced to derive high-probability bounds on the generalization
error. Formally, it is defined as follows:

7Steinke & Ullman (2017) present their result in the terms of population mean and privacy parameters
(1, 1

ns ).

20



Under review as a conference paper at ICLR 2023

Definition B.14 (Uniform stability (Bousquet & Elisseeff, 2002)). A mechanismM is µ(n)-uniformly
stable with respect to ` if for any pair of databases D, D′ of size n differing in at most one individual:

sup
d∈τ

[
EM [`(M(D), d)]−EM

[
`(M(D′), d)

]]
≤ µ(n).

In this paper, we will need the following result.

Lemma B.15 (Bousquet & Elisseeff (2002)). SupposeM is µ(n)-uniformly stable. Then:

ED∼Dn ,M[RiskSCO(M(D))] ≤ ED∼Dn ,M[RiskERM(M(D))] + µ(n).

C RÉNYI DIVERGENCE BOUND FOR LANGEVIN DIFFUSION (LD)

This section is devoted to proving the divergence bounds between two LD processses when run
on neighboring datasets. It forms the basis of the privacy analysis in the rest of the paper.

Lemma C.1. Let θ0, θ′0 have the same distribution Θ0, θT be the solution to (2) given θ0 and database D,
and let θ′T be the solution to (2) given θ0 and database D′, such that D ∼ D′. Let Θ[0,T] be the distribution
of the trajectory {θt}t∈[0,T]. Suppose we have that ‖∇L(θ; D)−∇L(θ; D′)‖2 ≤ ∆ for all θ. Then for all
α ≥ 1:

Rα(Θ[0,T], Θ′[0,T]) ≤
α∆2

4

T∫
0

β2
t dt.

The idea behind the proof is to use a bound on the divergence between Gaussians and RDP com-
position to provide a bound on the divergence between the projected noisy gradient descents on
datasets D and D′. Then, taking the limit as the step size in gradient descent goes to 0 and applying
Fatou’s lemma (Lemma B.13), we get the bound above.

Proof. For ease of presentation, we will show a divergence bound between ΘT , Θ′T which are the
distributions of θt, θ′t, and then describe how to modify the proof to show the same bound between
Θ[0,T], Θ′[0,T].

Let ΨD,m,i be a map from (distributions over) Rp to (distributions over) Rp that takes the point θ

to the distribution ΠC

(
N

(
θ −

(
iT/m∫

(i−1)T/m
βtdt

)
∇L(θ; D), 2 T

m I

))
, where ΠC is the `2-projection

into C. It is well known (see e.g. Lemma B.8) that:

Rα(N(0, σ2I), N(x, σ2I)) ≤ α ‖x‖2
2

2σ2 .

So by post-processing (Fact B.7) and the Lipschitzness assumption, Rα(ΨD,m,i(θ), ΨD′ ,m,i(θ)) is
bounded by
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Rα

N

θ −

 iT/m∫
(i−1)T/m

βtdt

∇L(θ; D),
2T
m

I

 , N

θ −

 iT/m∫
(i−1)T/m

βtdt

∇L(θ; D′),
2T
m

I




= Rα

N
(

0,
2T
m

I

)
, N


 iT/m∫
(i−1)T/m

βtdt

 (∇L(θ; D)−∇L(θ; D′)), 2
T
m

I




≤ α∆2

4
·

(
iT/m∫

(i−1)T/m
βtdt

)2

T/m
.

Let ΨD,m denote the composition ΨD,m,m ◦ΨD,m,m−1 ◦ . . . ◦ΨD,m,1. By Fact B.9, we have

Rα(ΨD,m(Θ0), ΨD′ ,m(Θ0)) ≤
m

∑
i=1

max
θ

{
Rα(ΨD,m,i(θ), ΨD′ ,m,i(θ))

}
.

Plugging in the bound on Rα(ΨD,m,i(θ), ΨD′ ,m,i(θ)), we get

Rα(ΨD,m(Θ0), ΨD′ ,m(Θ0)) ≤
α∆2

4
· m

T

m

∑
i=1

 iT/m∫
(i−1)T/m

βtdt


2

Note that ΘT = limm→∞ ΨD,m(Θ0), and Θ′T = limm→∞ ΨD′ ,m(Θ0). Since exp((α− 1)Rα(P ,Q)) is
a monotone function of Rα(P ,Q) and is the expectation of a positive random variable, by Fatou’s
lemma we have:

Rα(ΘT , Θ′T) ≤ lim
m→∞

Rα(ΨD,m(Θ0), ΨD′ ,m(Θ0))

≤ α∆2

4
· lim

m→∞

m
T

m

∑
i=1

 iT/m∫
(i−1)T/m

βtdt


2

=

α∆2
T∫
0

β2
t dt

4
.

This gives the bound on Rα(ΘT , Θ′T). To obtain the same bound for Rα(Θ[0,T], Θ′[0,T]), we modify
ΨD,m,i so that instead of receiving Θ(i−1)T/m and outputting ΘiT/m, it receives the joint distribution
{ΘjT/m}0≤j≤i−1 and outputs {ΘjT/m}0≤j≤i by appending the (also jointly distributed) variable

ΘiT/m = ΠC

N

θ −

 iT/m∫
(i−1)T/m

βtdt

∇L(Θ(i−1)T/m; D), 2
T
m

I


That is, we update ΨD,m,i so it outputs the distributions of all iterates seen so far instead of just
the distribution of the last iterate; the limiting value of the joint distribution {ΘjT/m}0≤j≤i is then
Θ[0,T] according to eq. (2), and the same divergence bound holds.
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D LD AS EXPONENTIAL MECHANISM AND DP-ERM UNDER ε-DP

In this section, we study the privacy-utility trade-offs of LD when viewed as variants of exponen-
tial mechanism (McSherry & Talwar, 2007). Using this view point we show that LD can achieve
the optimal excess empirical risk bounds for `2-Lipschitz losses, including non-convex, convex,
and strongly convex losses.

D.1 BOUND FOR CONVEX LOSSES

We revisit the result from Bassily et al. (2014) for convex losses, and quote the result for complete-
ness purposes. Notice that the privacy guarantee in Theorem D.1 does not rely on convexity.

Algorithm 2 Exponential mechanism
Input: Loss function L, constraint set C ⊂ Rp with bounded diameter, Lipschitz constant L,
number of iterations k, privacy parameter ε, data set D of n-samples.

1: Sample and output a point θpriv from the constraint set C w.p. ∝ exp
(
− εn

2L‖C‖2
· L(θ; D)

)
.

Theorem D.1. Assume each of the individual loss function in L(θ; D) is L-Lipschitz within the constraint
set C, individual loss function `(θ; ·) is convex, and the constraint set C is convex. Then, Algorithm 2
is ε-differentially private. Furthermore, for θpriv as specified in Algorithm 2, over the randomness of the
algorithm,

Eθpriv [RiskERM(θpriv )] = O
(

Lp · ‖C‖2
εn

)
.

Equivalence of Algorithm 2 and Langevin diffusion: The following lemma, which is implied by,
e.g. (Tanaka, 1979, Theorem 4.1), shows that one can implement Algorithm 1 using only solutions
to eq. (2); note that this does not necessarily mean solutions to eq. (2) are efficiently sampleable.
Lemma D.2. Let L be a M-smooth function for some finite M. Then if βt = β for all t, then the stationary
distribution of (2) has pdf proportional to exp(−βL(θ; D)) ·1(θ ∈ C), where 1(·) is the indicator function.

We recall that one can ensure smoothness by convolving L (appropriately extended to all of Rp)
with the Gaussian kernel of finite variance (Feldman et al., 2018, Appendix C). In particular, since
we only need M to be finite, we can take the convolution with the Gaussian kernel N (0, λ2Ip) for
arbitrarily small λ > 0, and in turn the result of the convolution is L/λ-smooth (which is perhaps
arbitrarily large but still finite) and differs from L by an arbitrarily small amount everywhere in C.

D.2 BOUND FOR STRONGLY CONVEX LOSSES

Our algorithm for strongly convex losses, given as Algorithm 3, is an iterated version of the expo-
nential mechanism. Again, we note that Algorithm 3 can be implemented using only the Langevin
Diffusion as a primitive.
Theorem D.3. For any ε, suppose we run Algorithm 3 with k = 1 + dlog log( εn

(p+log n) )e, and εi =

ε/2k−i+1. Assume each of the individual loss function in L(θ; D) is L-Lipschitz within the constraint set
C0. Then Algorithm 3 is ε-differentially private. Additionally, if the loss function L(θ; D) is m-strongly
convex, and the constraint set C0 is convex, then over the randomness of the algorithm, the output θk of
Algorithm 3 satisfies:

E [RiskERM(θk)] = O
(

L2(p2 + p log n)
mε2n2

)
.
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Algorithm 3 Iterated Exponential Mechanism (ITERATED-EXP-MECHANISM)
Input: Loss function L, constraint set C0 ⊂ Rp with bounded diameter, Lipschitz constant L,
strong convexity parameter m, number of iterations k, privacy parameter sequence {εi}k

i=1, and
data set D of n samples.

1: for i = 1 to k do
2: Sample θi from Ci−1 with probability proportional to exp(− εin

2L‖Ci−1‖2
L(θ; D)).

3: Ci ←
{

θ ∈ Ci−1 : ‖θ − θi‖2 ≤
√

cL(p+3 log n)‖Ci−1‖2
mεin

}
.

4: end for
5: return θk

The theorem follows by solving a recurrence for ‖Ci‖2 to bound the diameter of the final set Ck−1.
Then, we show that the minimizer over C0 is also in Ck−1 with high probability, so the analysis
of the exponential mechanism gives the theorem. We also note that a similar result is achieved
by Bassily et al. (2014). However, we improve the p2 log n in their result to p2 + p log n, and only
need the exponential mechanism as a primitive (whereas their algorithm requires computing the
minimum of L).

To bound the prove Theorem D.3, we first need the following lemma, which shows that with high
probability we choose a series of Ci that all contain the optimal θ for C0.
Lemma D.4. Suppose we sample θ from the convex constraint set C ⊂ Rp with bounded diameter with
probability proportional to exp

(
− εn

2L‖C‖2
L(θ; D)

)
, where L(·; D) is an m-strongly convex function. Let

θ∗ = arg minθ∈C L(θ; D). Then for any t ≥ 0 and for some sufficiently large constant c we have

Pr

[
‖θ − θ∗‖2 ≤

√
cL(p + t) ‖C‖2

mεn

]
≥ 1− 2−t.

The lemma follows from a tail bound on the excess loss of the exponential mechanism, and using
m-strong convexity to translate this into a distance bound. The proof is given below.

Proof of Lemma D.4. By e.g. the proof of (Bassily et al., 2014, Theorem III.2), we know that for some
sufficiently large constant c:

Pr
[
L(θ; D)−L(θ∗; D) ≤ cL ‖C‖2

2εn
(p + t)

]
≥ 1− 2−t. (4)

We now show that the claim holds conditioned on this event. By optimality of θ∗ and convexity of
C, we know

〈∇L(θ∗; D), θ − θ∗〉 ≥ 0. (5)

So, by m-strong convexity, we have

cL ‖C‖2
2εn

(p + t) ≥
(4)
L(θ; D)−L(θ∗; D) ≥ 〈∇L(θ∗; D), θ − θ∗〉+ m

2
‖θ − θ∗‖2

2 ≥
(5)

m
2
‖θ − θ∗‖2

2 .
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Rearranging gives the claim.

Given Lemma D.4, we can now prove Theorem D.3.

Proof of Theorem D.3. The privacy guarantee is immediate from the privacy guarantee of the expo-
nential mechanism, composition, and the fact that for this choice of εi, k, we have ∑k

i=1 εi < ε.

Setting t = 3 log n in Lemma D.4, in iteration i, letting θ∗i = arg minθ∈Ci−1
L(θ; D), we have that

with probability 1 − 2−t = 1 − 1
n3 , θ∗i ∈ Ci, and thus θ∗i = θ∗i+1. Then by a union bound, we

have that with probability 1− k
n3 ≥ 1− log log(εn)

n3 , θ∗1 ∈ Ck−1 (equivalently, θ∗1 = θ∗2 = . . . = θ∗k ).
When this event fails to happen, our excess loss is at most L ‖C0‖2, and in turn the contribution of

this event failing to hold to the expected excess loss is O(
L‖C0‖2 log log(εn)

n3 ), which is asymptotically
less than our desired excess loss bound. So it suffices to provide the desired expected excess loss
bound conditioned on this event. By the analysis of the exponential mechanism, conditioned on
this event, we have that

Eθk [L(θk; D)]−L(θ∗1 ; D) = O
(

Lp ‖Ck−1‖2
εkn

)
= O

(
Lp ‖Ck−1‖2

εn

)
. (6)

Note that L(θ∗1 ; D) = minθ∈C0 L(θ; D) by definition, so it now suffices to bound ‖Ck−1‖2 by

O
(

L(p+log n)
mεn

)
. To do this, we have the recurrence relation:

‖Ci‖2 ≤ 2

√
cL(p + 3 log n) ‖Ci−1‖2

mεin
.

Solving the recurrence relation for Ck−1, we get:

‖Ck−1‖2 ≤
(

4cL(p + 3 log n)
mn

)1−2−(k−1)

· (‖C0‖2)
2−(k−1) ·

k−1

∏
i=1

ε−2−(k−i)

i

=

(
4cL(p + 3 log n)

mεn

)1−2−(k−1)

· (‖C0‖2)
2−(k−1) ·

k−1

∏
i=1

(2(k−i+1))2−(k−i)
.

(7)

We claim the following:

‖C0‖2 ≤
2L
m

. (8)

Let θglobal be the minimizer of L(θ; D) over all of Rp. By triangle inequality, there exists a point θ
in C0 which is at distance at least ‖C0‖2 /2 far from θglobal. By m-strong convexity, this implies that
the gradient at θ has `2-norm at least m ‖C0‖2 /2. Now, by Lipschitzness over C0, we know that
the gradient at θ has `2-norm at most L. This gives us eq. (8).

Using eq. (8), we can simplify eq. (7) to
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‖Ck−1‖2 ≤
2L
m
·
(

2c(p + 3 log n)
εn

)1−2−(k−1)

·
k−1

∏
i=1

(2(k−i+1))2−(k−i)
.

We have:

log2

(
k−1

∏
i=1

(2(k−i+1))2−(k−i)

)
=

k−1

∑
i=1

(k− i + 1)2−(k−i) ≤
∞

∑
j=1

(j + 1)2−j = 3.

In other words, ∏k−1
i=1 (2

(k−i+1))2−(k−i)
is at most 8, regardless of the value of k. Now, using the fact

that m1/ log m = O(1) is a constant, our final upper bound on ‖Ck−1‖2 is:

‖Ck−1‖2 = O

(
L
m
·
(
(p + log n)

εn

)1−2−(k−1))
= O

(
L(p + log n)

mεn

)
.

Plugging in eq. (6) gives us Theorem D.3.

D.3 BOUND FOR NON-CONVEX LOSSES

If the loss function L is non-convex but still L-Lipschitz, we can still obtain a comparable error
bound for Algorithm 2 as long as the constraint set C is convex.
Theorem D.5. Assume the constraint set C ⊂ Rp with bounded diameter is convex, and each of the
individual loss function in L(θ; D) is L-Lipschitz within C. Then for p ≤ εn/2, over the randomness of
Algorithm 2, the output θpriv satisfies

E
[
RiskERM(θpriv )

]
= O

(
Lp · ‖C‖2

εn
log
(

εn
p

))
.

Note that the assumption on p can easily be removed: if p > εn/2, any θ ∈ C achieves
RiskERM(θ) ≤ L ‖C‖2 <

2Lp·‖C‖2
εn by L-Lipschitzness. To prove Theorem D.5, we show there is

a “good” subset of C, CGood ⊂ C, with large volume and only containing points with small excess
loss. We note that Bassily et al. (2014) also gave an analysis for the continuous exponential mecha-
nism on non-convex losses, although their analysis assumes C contains an `2-ball of radius r > 0,
which they use to choose CGood in their analysis. In turn, their error bound is roughly proportional
to log(1/r). In contrast, by choosing CGood more carefully, we remove this dependence on r.

Proof. By the analysis of the exponential mechanism, for any G ⊆ C we have:

Eθpriv

[
L(θpriv ; D)

]
−max

θ∈G
L(θ; D) = O

(
L ‖C‖2

εn
· log

(
Vol(C)
Vol(G)

))
.

Let us define G to be
G := {θ∗ + r(θ − θ∗) : θ ∈ ∂C, 0 ≤ r ≤ R} ,

for some R ≤ 1 we will choose later, where θ∗ is a minimizer of L(θ; D) in C, and ∂C is the
boundary of C. By convexity of C, G is contained in C. Furthermore, G is simply C rescaled by
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R in all directions around the point θ∗ (i.e., if θ∗ were the origin, G would simply be RC), so
Vol(C)
Vol(G) = (1/R)p. So the analysis of the exponential mechanism gives

Eθpriv

[
L(θpriv ; D)

]
−max

θ∈G
L(θ; D) = O

(
Lp ‖C‖2

εn
· log

(
1
R

))
. (9)

By L-Lipschitzness of L(θ; D) and since G is C rescaled by R, and thus maxθ∈G ‖θ − θ∗‖2 ≤ R ‖C‖2,
we have:

max
θ∈G
L(θ; D)−L(θ∗; D) ≤ RL ‖C‖2 . (10)

Combining (9) and (10), we get:

Eθpriv

[
RiskERM(θpriv )

]
= O

(
L ‖C‖2

(
p

εn
· log

(
1
R

)
+ R

))
. (11)

The above bound is minimized by choosing R = p
εn , which is at most 1 by assumption, giving the

theorem.

E UNIFORM STABILITY OF LD AND OPTIMAL DP-SCO UNDER ε-DP

In this section we provide the uniform stability bounds for LD in the setting of ε-DP. These bounds
combined with excess empirical risk bounds in Section D provide us optimal excess population
risk bounds for convex losses and strongly convex losses.

E.1 BOUND FOR CONVEX LOSSES

All our algorithms in the ε-DP case are primarily based on the exponential mechanism. Therefore,
to get SCO bound, we establish uniform stability of the exponential mechanism on regularized
losses. To the best of our knowledge, such uniform stability bounds for exponential mechanism
were unknown prior to this work. We first recall the following fact about projected noisy gradient
descent on strongly convex (and smooth) losses.
Lemma E.1. Let f , f ′ be m-strongly convex, M-smooth functions such that ‖∇ f (θ)−∇ f ′(θ)‖2 ≤ ∆
for all θ ∈ C. Recall that given convex set C, projected noisy gradient descent on f performs the following
random update: sample ξt ∼ N(0, σ2Ip) and compute θt+1 = ΠC (θt − ηt∇ f (θt) + ξt) . Here ΠC is the
Euclidean projection onto C. Let {θt}t, {θ′t}t be the trajectories given by running projected noisy gradient
descent on f , f ′ respectively starting from the same point θ0, and suppose M ≤ 1/ maxt ηt. Then for any
(shared) fixed realization of the noise {ξt}t, ‖θt − θ′t‖2 ≤

∆
m .

Lemma E.1 is implied by e.g. the proof of (Hardt et al., 2016, Theorem 3.9). We have the following
corollaries:
Corollary E.2. If ` is m-strongly convex and L-Lipschitz, then for any βt such that

∫ b
a βtdt is finite if

0 ≤ a ≤ b, and any t > 0, outputting θt that is the solution to (2) (given some fixed θ0 independent of L)
is 2L2

mn -uniformly stable.
Corollary E.3. If ` is convex and L-Lipschitz, then running Algorithm 2 on the regularized loss function
Lm(θ; D) := L(θ; D) + m

2 ‖θ‖
2
2 is 2L2

mn -uniformly stable (with respect to the unregularized loss L).
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The idea behind the proofs is that the uniform stability bound implied by Lipschitzness and
Lemma E.1 is independent of t, η, and so it applies to the limiting distribution as η → 0 (giv-
ing Corollary E.2) and as t → ∞, which by Lemma D.2 is the exponential mechanism (giving
Corollary E.3). We believe that this proof demonstrates the power of the unified framework that is
the focus of this paper; once we have this framework in mind, we can almost immediately obtain
optimal SCO bounds under ε-DP and also improve on Asi et al. (2021b) by polylog (n) factors.

Proof of Corollary E.2. Since the regularizer does not depend on the dataset, D, by L-Lipschitzness
we have

∥∥∇L(θ; D)−∇L(θ; D′)
∥∥

2 ≤
2βL

n
.

Fix some η > 0 and set f = L, ηt =
∫ tη
(t−1)η βtdt, σ2 = 2η in Lemma E.1, and note that the

bound in Lemma E.1 does not depend on σ2. We will assume L is M-smooth for some finite
M, since per the discussion in Section D, we can easily replace L with a smoothed version of
L that differs from L by an arbitrarily small amount. Lemma E.1 then gives that, if θt, θ′t are
the result of running projected noisy gradient descent on L using D, D′ respectively (from the
same initial θ0), then we have ‖θt − θ′t‖2 ≤

2L
mn for any fixed realization of the noise {ξt}t as long

as the smoothness assumption is satisfied. Taking the limit as η goes to 0, the trajectory of this
projected noisy gradient descent approaches the solution to (2). Furthermore, taking this limit the
smoothness assumption in Lemma E.1 is trivially satisfied as all ηt go to 0. Therefore, by Fatou’s
lemma (Lemma B.13), we have the following: for all t, if θt, θ′t are the solutions to eq. (2) using
D, D′ respectively and a fixed realization of the Brownian motion, then∥∥θt − θ′t

∥∥
2 ≤

2L
mn

.

Taking the expectation over the Brownian motion and using L-Lipschitzness of `, we can conclude
that for any t and all d ∈ τ,

Eθt ,θ′t
[`(θt; d)− `(θ′t; d)] ≤ 2L2

mn
.

Proof of Corollary E.3. Similarly to the proof of Corollary E.2, if θt, θ′t are the solutions to eq. (2) (run
on the regularized loss function Lm) using D, D′ respectively with βt = β and fixed realization of
the Brownian motion, then

Eθt ,θ′t
[
∥∥θt − θ′t

∥∥
2] ≤

2L
mn

,

and thus

Eθt ,θ′t
[`(θt; d)− `(θ′t; d)] ≤ 2L2

mn
.

Note that the above inequality holds for the unregularized loss. Taking the limit as t → ∞ and use
Lemma D.2 to conclude that, for θpriv and θpriv

′
output by Algorithm 2 using D and D′, respec-

tively,

E
θpriv ,θpriv′ [`(θ

priv ; d)− `(θpriv
′
; d)] ≤ 2L2

mn
for all d ∈ τ.
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Then, from Corollary E.3 and Theorem D.1, we have the following theorem:

Theorem E.4. Let θpriv be the output of Algorithm 2 when run on the regularized loss Lm(θ; D) :=
L(θ; D) + m

2 ‖θ‖
2
2. If each ` is convex and L-Lipschitz, then for m = L

‖C‖2
√

n we have:

Eθpriv [RiskSCO(θ
priv )] = O

(
Lp ‖C‖2

εn
+

L ‖C‖2√
n

)
.

Furthermore, outputting θpriv is (ε, δ)-differentially private.

Proof. Assume wlog that 0 ∈ C. Let θ∗ be the empirical minimizer of L. If m ≤ L
‖C‖2

, the Lipschitz
constant does not change by more than a constant factor, so we have by Theorem D.1,:

Eθpriv [Lm(θ
priv ; D)]−Lm(θ

∗; D) ≤ Eθpriv [Lm(θ
priv ; D)]−min

θ∈C
Lm(θ; D) = O

(
Lp ‖C‖2

εn

)
.

The functions Lm and L differ by at most m
2 ‖C‖

2
2 everywhere in C, so in turn:

Eθpriv [RiskERM(θpriv )] = O
(

Lp ‖C‖2
εn

+ m ‖C‖2
2

)
.

Finally, we apply the uniform stability bound from Corollary E.3 to get:

Eθpriv [RiskSCO(θ
priv )] = O

(
Lp ‖C‖2

εn
+ m ‖C‖2

2 +
L2

mn

)
.

The theorem follows by setting m = L
‖C‖2

√
n .

E.2 BOUND FOR STRONGLY CONVEX LOSSES

Under strong convexity, using a similar proof to the proof of Theorem E.4, we can obtain near-
optimal DP-SCO bounds for ε-DP.

We first show that the empirical minimizer is close to the population minimizer with high proba-
bility:

Lemma E.5. Let ` be a m-strongly convex function and C ⊂ Rp be a convex set with bounded diameter
such that for any d, θ,

‖∇`(θ; d)−Ed∼D [∇`(θ; d)]‖2 ≤ ∆,

and let θ∗ := arg minθ∈C Ed∼D [`(θ; d)] and θemp := arg minθ∈C `(θ; D). Then for D ∼ Dn, with
probability 1− β, we have:

‖θemp − θ∗‖2 = O

(
∆
√

log(1/β)

m
√

n

)
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Proof. Consider a function ˜̀ over Rp which has gradient∇˜̀(θ) = ∇`(ΠC(θ)) +m(θ−ΠC(θ)). We
will show that the assumptions on ` in the lemma statement also hold for ˜̀, and that the distance
between the empirical and population minimizers of ˜̀ over Rp dominates the distance between
the empirical and population minimizers of ` over C. So proving the lemma holds for ˜̀ and Rp

implies it holds for ` and C, i.e. it suffices to prove the lemma assuming C = Rp.

By m-strong convexity of ` in C, ˜̀ is also m-strongly convex8. Also, for any d, θ we have

‖∇`(θ; d)−Ed∼D [∇`(θ; d)]‖2 =
∥∥∥∇˜̀(θ; d)−Ed∼D

[
∇˜̀(θ; d)

]∥∥∥
2
≤ ∆.

So, we have shown the assumptions in the lemma hold on ˜̀ as desired.

From strong convexity of ˜̀, the empirical/population minimizers of ˜̀ over Rp are the unique
points with gradient 0. This gives us that for any D, the empirical minimizer of ˜̀ over Rp is equal
to

θ̃emp := θemp − 1
m
· ∇`(θemp; D),

where θemp is the minimizer of `(θ; D), and the population minimizer of Ed∼D
[˜̀(θ; d)

]
is

θ̃∗ := θ∗ − 1
m
·Ed∼D [∇`(θ∗; d)] .

Note that by convexity either∇`(θemp; D) = 0 or−∇`(θemp; D) is a tangent vector of C at θemp (and
the same is true for θ∗). In turn, θemp = ΠC(θ̃emp) and θ∗ = ΠC(θ̃∗), and since projection is a non-
expansive operator,

∥∥∥θ̃emp − θ̃∗
∥∥∥

2
≥ ‖θemp − θ∗‖2. This shows the distance between minimizers of˜̀ dominates the distance between minimizers of ` as desired.

We now turn to proving the lemma assuming C = Rp. If C = Rp then Ed∼D [∇`(θ; d)] = 0.
Now, by the assumptions in the lemma and a vector Azuma inequality (see e.g., Hayes (2003)),

we have ‖∇`(θ∗; D)‖2 = O(
∆
√

log(1/β)√
n ) with probability 1− β over D. Furthermore, we know

∇`(θemp; D) = 0 by strong convexity and since C = Rp. Then by strong convexity, we have

‖θ∗ − θemp‖2 ≤
‖∇`(θ∗; D)−∇`(θemp; D)‖2

m
=
‖∇`(θ∗; D)‖2

m
= O(

∆
√

log(1/β)

m
√

n
)

with probability 1− β as desired.

Given Lemma E.5, if we want to ensure the population minimizer rather than empirical minimizer
remains in the sets we choose in Algorithm 3, we just need to choose a slightly larger ball. From
this modification and uniform stability, we get the following DP-SCO bound:
Theorem E.6. Let m, n, p, ` be as in lemma E.5. Let θk be the output of Algorithm 3 except we let the

radius of Ci be
√

cL(p+3 log n)‖Ci−1‖2
mεin

+
cL
√

log n
m
√

n instead of
√

cL(p+3 log n)‖Ci−1‖2
mεin

(chosen in Theorem D.3 to
obtain optimal ERM bound). Then

E [RiskSCO(θk)] = O
(

L2 p2 log n
mε2n2 +

L2

mn

)
.

8This follows since ˜̀(θ) is m-strongly convex iff ˜̀(θ)− m
2 ‖θ‖

2
2 is. By m-strong convexity of ` in C, ˜̀(θ)−

m
2 ‖θ‖

2
2 is convex in C, and then its convexity over Rp then follows from e.g. Theorem 4.1 in Yan (2012).
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Proof. Note that by L-Lipschitzness of ` in C, we have ‖∇`(θ; d)−Ed∼D [∇`(θ; d)]‖2 ≤ 2L. By
Lemma D.4, Lemma E.5, and a triangle inequality, we have that if c is sufficiently large then the
population minimizer of ` in Ci is in Ci+1 for each i with probability 1− 2/n3. Then by a union
bound, we have that the population minimizer is in Ck−1. When this event fails to hold, our excess
population loss is O(L ‖C0‖2) and so the contribution of this event to the expected excess loss is

O
(

L‖C0‖2 log log(εn)
n3

)
= O

(
L2 log log(εn)

mn3

)
, which is asymptotically less than our desired bound. So

it suffices to provide the desired expected excess loss bound conditioned on this event. We can
bound the diameter of Ck−1 similarly to the proof of Theorem D.3, by noting that:

‖Ci‖2 ≤ 2 ·max

2

√
cL(p + 3 log n) ‖Ci−1‖2

mεin
,

cL
√

log n
m
√

n


Then, rolling out the recursion, we have similarly to the proof of Theorem D.3:

‖Ck−1‖2 = O

(
L(p + log n)

mεn
+

L
√

log n
m
√

n

)
.

Now, combining Theorem D.1 and the uniform stability bound of Corollary E.3, we get that the
expected excess population loss of θk compared to the population minimizer over Ck−1 is:

O
(

Lp ‖Ck−1‖2
εn

+
L2

mn

)
= O

(
L2

mn
·
(
(p2 + p log n)

ε2n
+

p
√

log n
ε
√

n
+ 1

))
= O

(
L2 p2 log n

mε2n2 +
L2

mn

)
.

In the final equality, we use the fact that
p
√

log n
ε
√

n is the geometric mean of p2 log n
ε2n and 1 and thus

p
√

log n
ε
√

n ≤ max{ p2 log n
ε2n , 1}. We conclude by noting that conditioned on the event the population

minimizer over C0 is contained in Ck−1, θk has this same excess population loss bound compared
to the population minimizer over C0.

F LD AS NOISY GRADIENT FLOW AND DP-ERM AND DP-SCO UNDER
(ε, δ)-DP

We now investigate LD (defined in (1) and (2)) as a noisy gradient flow algorithm (i.e., for finite
time T or when it is far from convergence). In fact, in Section H, we argue that the setting of
parameters we operate with, the algorithm could not have converged to a limiting distribution in
any reasonable sense. In the following, we provide optimal DP-ERM and DP-SCO bounds via LD
for both convex and strongly convex losses. All the proofs are deferred to Appendix J.

F.1 DP-ERM BOUNDS FOR CONVEX AND STRONGLY CONVEX LOSSES

We first provide the excess ERM bounds for the LD in (2) for convex losses.
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Theorem F.1. Let the inverse temperature βt = β for all t > 0. Then for an appropriate choice of β, T, the
solution to (2), θpriv = θT is (ε, δ)-differentially private and

E
[
RiskERM(θpriv )

]
= O

(
L ‖C‖2

√
p log(1/δ)

εn

)
.

The proof of this theorem can be viewed as a continuous analogue of Shamir & Zhang (2013). We
sketch the proof here. We define a potential φt ∝ ‖θt − θ∗‖2

2, and use Ito’s lemma to analyze the
rate of the change of φt. Rearranging the resulting inequality and using convexity, we then bound
the integral of the excess loss of θt over any interval of time [a, b]. Using techniques similar to
those in Shamir & Zhang (2013), we translate this into a bound on the excess loss of θT in terms of
T and β. We use Lemma C.1 to choose the value of β that preserves privacy, and then optimize the
resulting bound over T.

We now provide the excess ERM bounds of LD in (2) for strongly convex losses. To simplify the
presentation, we assume only in this theorem alone L satisfies 2m-strong convexity instead of
m-strong convexity - this does not affect our final bound by more than constant factors.

Theorem F.2. Let θt be the solution to (2) if we set βt = ta . Suppose L is 2m-strongly convex. Then

for any ε, δ and an appropriate choice of a, T, for Bt = ta+1

a+1 , and θpriv = 1
emBT−1

T∫
0

θtdemBt , over the

randomness of the algorithm,

E
[
RiskERM(θpriv )

]
= O

(
pL2 log(1/δ)

mε2n2 log

(
εn

L
√

log(1/δ)

)
log
(

pε2n2

log(1/δ)

))
.

Furthermore, outputting θpriv is (ε, δ)-differentially private.

The proof is fairly similar to that of Theorem F.1; the main differences are that we now define
the potential φt to be proportional to emBt ‖θt − θ∗‖2

2 instead of ‖θt − θ∗‖2
2, and there is no need to

translate to a bound on the final iterate like in Theorem F.1.

F.2 DP-SCO BOUNDS FOR CONVEX AND STRONGLY CONVEX LOSSES

The uniform stability bound of LD in the case of (ε, δ)-DP follows from taking the limit as the step
sizes go to 0 in the bound presented in (Bassily et al., 2020, Lemma 3.1):

Lemma F.3. Let θT be the solution to (2) at time T, and suppose each ` is L-Lipschitz. Then outputting θT

satisfies µ-uniform stability for: µ = 4L2

n

T∫
0

βtdt.

Combining Lemma F.3 with Theorem F.1, we obtain tight DP-SCO guarantees for convex losses.

Theorem F.4. If each ` is convex and L-Lipschitz, then for an appropriate choice of βt, T, for θpriv = θT
that is the solution to (2), we have:

Eθpriv [RiskSCO(θ
priv )] = O

(
L ‖C‖2

√
p log(1/δ)

εn
+

L ‖C‖2√
n

)
.

32



Under review as a conference paper at ICLR 2023

We can also combine Corollary E.2 and Theorem F.2 to obtain tight DP-SCO guarantees for strongly
convex losses.

Theorem F.5. Suppose ` is m-strongly convex and L-Lipschitz, then for an appropriate choice of βt, T, for
θpriv as defined in Theorem F.2, we have:

Eθpriv [RiskSCO(θ
priv )] = O

(
pL2 log(1/δ)

mε2n2 log

(
εn

L
√

log(1/δ)

)
log
(

pε2n2

log(1/δ)

)
+

L2

mn

)
.

In both cases, outputting θpriv is (ε, δ)-differentially private.

G LOWER BOUND ON DP-ERM FOR NON-CONVEX LOSSES

In this section, we show the following lower bound on the excess empirical risk for 1-Lipschitz
non-convex loss functions. The lower bound implies that that there is no advantage, in terms of
the dependence on dimensions (p), to move from ε-DP to (ε, δ)-DP.

Theorem G.1. Let ε ≤ 1, 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), and B(0, 1) be a unit Euclidean ball centered
at origin. Then there exists 1-Lipschitz non-convex function L : B(0, 1) × X → R and a dataset 9

D = {d1, · · · , dn} such that for every p ∈ N, there is no (ε, δ)-differentially private algorithm A that
outputs θpriv such that

E

[
L(θpriv; D)− min

θ∈Bp(1)
L(θ; D)

]
= o

(
p log (1/δ)

nε

)
, (12)

Proof. We first perform two translations of Theorem B.12: first from (1, 1
ns ) to (ε, δ) from Steinke &

Ullman (2015) and then from sample complexity to a result stated in the terms of accuracy bound.
A direct corollary of Theorem B.12 with k = 1 is as follows: for every s ∈N, no (ε, δ)-differentially
private algorithm on input X satisfying the premise of Theorem B.12 outputs an index j ∈ [s] such
that

E
M

[
1
n

n

∑
i=1

xi,j

]
−max

u∈[s]

1
n

n

∑
i=1

xi,u = o
(

1
nε

log(s) log (1/δ)

)
, (13)

where ε ≤ 1 and 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1).

Using this lower bound on top-selection, we give our lower bound by defining an appropriate
non-convex loss function. In particular, we define a packing over the p-dimensional Euclidean
ball such that there is an bijective mapping between the centers of the packing and [s]. Then the
function attains the minimum at the center of packing which corresponds to the coordinate j ∈ [s]
with maximum frequency. Since the size of the α-net is ≈ 1/αp and there is a bijective mapping,
this gives a lower bound using eq. (13).

Let B(0, 1) be the p-dimensional Euclidean ball centered at origin and let α ∈ (0, 1/2) be a constant.
Consider an α-packing with centers C = {c1, c2, · · · ,}. It is known that the size of such packing,

9The dataset, D = {d1, · · · , dn} is such that di ∈ {0, 1}s for all i ∈ [n], di,j is independent (conditioned on
P) and E[di,j] = Pj for all i ∈ [n] and j ∈ [s]. Here P is the distribution that is defined in Theorem B.12.
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N(α) is
(

1
α

)p
≤ N(α) ≤

( 3
α

)p
. Let s = N(α). Further, let f : B(0, 1) → {1, · · · , s} be an injective

function defined as follows:

f (θ) =

{
j : cj = arg min

c∈C
‖θ − c‖2

}
.

In particular, f is the function that maps a point on the unit ball to its closest point in C.

We now define our loss function as follows:

L(θ; D) :=
1
n ∑

di∈D
`(θ; di) where `(θ; di) = min

cj∈C

(∥∥θ − cj
∥∥

α
− 1

)
di,j. (14)

For Lipschitz property, note that each loss function is 1/α-Lipschitz because the gradient when it

is defined is just
θ−cj

α‖θ−cj‖2
. We prove it formally.

Consider any θ, θ′ in B(0, 1) and a data point di ∈ D. We wish to show |`(θ; di) − `(θ′; di)| ≤
1
α ‖θ − θ′‖2. We can split the line segment from θ to θ′ into a sequence of line segments
(θ0, θ1), (θ1, θ2), . . . , (θk−1, θk) where θ0 = θ, θk = θ′, such that for any line segment (θm, θm+1),

θm and θm+1 share a minimizer in C of
(
‖θ−cj‖2

α

)
di,j.10

It now suffices to show |`(θm; di)− `(θm+1; di)| ≤ 1
α ‖θm − θm+1‖2 for each m, since we then have:

|`(θ; di)− `(θ′; di)| ≤
k−1

∑
m=0
|`(θm; di)− `(θm+1; di)| ≤

1
α

k−1

∑
m=0
‖θm − θm+1‖2 =

1
α

∥∥θ − θ′
∥∥

2 .

Let cj be a shared minimizer of
(
‖θ−cj‖2

α

)
di,j for θm and θm+1. If di,j = 0, then trivially |`(θm; di)−

`(θm+1; di)| ≤ 1
α ‖θm − θm+1‖2. Otherwise di,j = 1 and by triangle inequality, we have:

|`(θm; di)− `(θm+1; di)| =
∣∣∣∣∣
∥∥θm − cj

∥∥
2

α
−
∥∥θm+1 − cj

∥∥
2

α

∣∣∣∣∣ ≤ 1
α
‖θm − θm+1‖2 .

Now let us suppose there is an (ε, δ)-differentially private algorithmA that on input a non-convex
function L and n data points {d1, · · · , dn}, outputs a θpriv such that

E
A

[
L(θpriv; D)

]
− min

θ∈B(1)
L(θ; D) = o

(
p log (1/δ)

nε

)
, (15)

where D = {d1, · · · , dn}.

10In particular, for each cj let Bj be the set of points in B(0, 1) such that cj is a minimizer of
(
‖θ−cj‖2

α

)
di,j.

We can split the line segment from θ to θ′ at each point where it enters or leaves some Bj to get this sequence
of line segments, and by this construction each line segment’s endpoints are both in Bj for some j.
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We will construct an algorithm that uses A as subroutine and solve top-selection problem with an
error o(log(s)), contracting the lower bound of Theorem B.12.

Algorithm B:

• On input X = {x1, · · · , xn}, invokes A on the function defined by eq. (14) and data points
X to get θpriv as output.

• Output f (θpriv).

Since the last step is post-processing, B is (ε, δ)-differentially private. We now show that if A
outputs a θpriv satisfying eq. (15), then j := f (θpriv) satisfies eq. (13) leading to a contradiction.

First note that, for any c ∈ C and all θ ∈ Bp(c, α) such that ‖θ − c‖2 ≤ α
2 ,

L(c; D) = − 1
n

n

∑
i=1

xi, f (c) ≤ L(θ; D).

Therefore,

L(θ∗; X) := min
c∈C
L(c, X) = min

c∈C

(
− 1

n

n

∑
i=1

xi, f (c)

)

This implies that

f (θ∗) = arg max
1≤j≤s

1
n

n

∑
i=1

xi,j,

which is exactly the top-selection problem. Therefore, eq. (15) implies eq. (13) because p log
(

1
α

)
≤

log(s) ≤ p log
( 3

α

)
and α ∈ (0, 1/2) is a constant.

H ON THE CONVERGENCE TIME OF LD UNDER (ε, δ)-DP

In this section we provide a discussion into the choice of the time for which LD was run for our ap-
proximate DP results. In particular, we will discuss why for convex losses, the optimal runtime in
Theorem F.1 is ∝ 1/p, and why for the setting of parameters in Theorem F.1, the diffusion process
does not come close to converging to the stationary distribution. We show that such properties are
present even in DP-SGD (Bassily et al., 2014), when analyzed carefully while taking the learning
rate and the number of time steps into account.

On Optimal Time for DP-ERM with Approximate DP: For DP-ERM with a convex loss and ap-
proximate DP, our eventual choice of T is ‖C‖2

2 /p, i.e. decreasing in the dimension if ‖C‖2 is
fixed. We note that this phenomenon is not unique to our analysis; e.g., for learning rate η > 0,
the eventual value of Tη in the same setting in Bassily et al. (2019) also is roughly proportional
to 1/p. This is perhaps counterintuitive, as in the non-noisy setting, the amount of time one runs
gradient descent for is generally independent of the dimension. We can provide some intuition
for this phenomenon from the perspective of the Langevin diffusion.

As an example, consider the loss function L(θ) = ‖θ‖2, and suppose C = B(0, 1), i.e. an `2 ball
of radius 1 centered at the origin. For privacy, per Lemma C.1 we will set β ∝ 1/

√
T =

√
p. At
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Figure 1: An abstract visualization of how the gradient drift and Brownian motion counteract each
other in Langevin diffusion for L(θ; D) = ‖θ‖2 , C = B(0, 1) is the unit Euclidean ball centered at 0.
The blue arrow shows the integral of gradient drift over time η. The red arrow shows the integral
of Brownian motion over time η perpendicular to the gradient drift. In the left picture, we can see
that when we are close to the minimizer (the center of the circle), Brownian motion has a stronger
effect than gradient drift. In the right picture, we see that when we are far from the minimizer,
the opposite is true. In the middle picture, we see the equilibrium point where the two counteract
each other. As the dimension increases, the ratio of the red arrow’s length to blue arrow’s length
increases, and so the equilibrium point will get further from the minimizer.

distance proportional to p/β ∝
√

p from the minimizer, Langevin diffusion stops making progress
towards the minimizer in expectation, as at this distance the progress towards the minimizer due
to the drift −∇L(θ) is cancelled out by the movement in perpendicular directions due to the
Brownian motion (see Figure 1 for a visualization of this phenomenon). This suggests that we only
need to run the diffusion until θt reaches this distance from the minimizer, as past that point, we do
not expect the diffusion to make progress. Now, the distance

√
p is increasing with the dimension,

and in turn the distance from the ball of radius
√

p centered at the origin to the boundary of C
is decreasing since ‖C‖2 is a constant. So even if we start at the boundary of C (the worst case for
this loss function) the distance the Langevin diffusion needs to travel to be within

√
p distance of

the origin is decreasing with the dimension. The total distance we travel due to the gradient drift
is roughly Tβ ∝

√
T, and thus the time we need to run the diffusion for to reach this ball also

decreases with the dimension. In particular, once the dimension is large enough, the diffusion will
stay very close to the boundary of C with high probability, i.e. taking an arbitrary initial point and
outputting it is about as good as in this example as running the diffusion for any amount of time.

On Non-Convergence of DP-SGD/Finite Time Diffusion: We show here that while both the
Langevin diffusion and DP-SGD achieve optimal error rates in finite time, for the same parameter
settings they do not converge to the stationary distribution. This in part explains why e.g. the
finite-time Langevin diffusion for convex losses achieves a much better privacy parameter than
its stationary distribution. We use the same example as in the preceding discussion, i.e. L(θ) =
‖θ‖2 , C = B(0, 1). In the proof of Theorem F.1, we show optimal error rates are achieved when
Langevin diffusion runs for time T = 1

2p . Asymptotically, we get the same bound if we use e.g.

T = 1
100p , so let us instead consider this choice of T. Since β ∝ 1/

√
T, and the movement due to the

gradient drift is proportional to Tβ, the movement due to gradient drift for our parameter choices
decreases with p. The integral from 0 to T of the Brownian motion has distribution N(0, TIp), i.e.
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with probability 1− e−Ω(p), the total movement due to Brownian motion is at most, say, 2
√

Tp =
1
5 . In particular, we get that for all sufficiently large p, with probability 1 − e−Ω(p), Langevin
diffusion does not move more than a total distance 1

3 . If θ0 is on the boundary, then the probability
a random point from the stationary distribution is in a ball of radius 1

3 centered at θ0 is e−Ω(p).
So even though θT in expectation obtains the (asymptotic) optimal excess empirical loss, the total
variation distance between θT and the stationary distribution is at least 1− e−Ω(p), and similarly
e.g. any p-Wasserstein distance between θT and the stationary distribution is Ω(1) = Ω(‖C‖2).

I SPLIT REGIMES FOR RÉNYI DIVERGENCE BOUNDS ON LANGEVIN DIFFUSION

In this section, we show that when the loss functions are strongly convex and smooth, we can
show a bound on the Rényi divergence between two diffusions using different loss functions that
converges to roughly the divergence between the stationary distributions of the diffusions. In
doing so, we show that Rényi divergence bounds between two diffusions exist in two different
regimes, where for small T it is advantageous to analyze privacy of LD as a noisy optimization
algorithm, and for large T it is advantageous to analyze privacy of LD to an algorithm which
samples from approximately a Gibbs distribution.

I.1 “LONG TERM” RÉNYI DIVERGENCE BOUND

Under m-strong convexity and M-smoothness, using the results in Vempala & Wibisono (2019)
we can also give a bound on the Rényi divergence depending on the closeness to the station-
ary distribution. Since we rely on the bounds in Vempala & Wibisono (2019) which apply to
the unconstrained setting, we will also focus only on the unconstrained setting here. In order to
ensure the initial Rényi divergence to the stationary distribution is finite, we assume that both
L(θ; D),L(θ; D′) have minimizers θopt, θ′opt respectively such that ‖θopt‖2 ,

∥∥θ′opt
∥∥

2 ≤ R.

Lemma I.1. Suppose we sample θ0 = θ′0 from Θ0 = N(0, 1
βm Ip). Let Θt, Θ′t be the resulting distributions

of θt, θ′t according to (1) using D, D′ respectively. Let P ,P ′ be the stationary distributions of (1) using
D, D′ respectively. Then for any T ≥ t0 := 2 log((α− 1)max{2, M/m}) and α ≥ 2:

Rα(ΘT , Θ′T) ≤ O
(

βmR2((M/m)2 + α) +
pM
m

log
(

M
m

))
· exp

(
− (T − t0)βm

3α

)
+

4
3

R3α(P ,P ′).

Proof. Since adding a constant to L does not affect the sampling problem, assume without
loss of generality that there is a density function P such that P(θ) = exp(−βL(θ; D)). Let
Q = N(θopt, 1

βm Ip). By m-strong convexity of L, L(θ; D) − L(θopt; D) ≥ m
2 ‖θ − θopt‖2

2, so we
have:
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exp((α− 1)Rα(P ,Q)) =
∫

Rp

P(θ)α

Q(θ)α−1 dθ

=

(
2π

βm

)p(α−1)/2 ∫
Rp

exp(α logP(θ) + (α− 1)βm
2

‖θ − θopt‖2
2)dθ

≤ P(θopt)α

(
2π

βm

)p(α−1)/2 ∫
Rp

exp(− βm
2
‖θ − θopt‖2

2)dθ

= P(θopt)α

(
2π

βm

)pα/2

≤
(

βM
2π

)pα/2 ( 2π

βm

)pα/2
=

(
M
m

)pα/2
.

where the first inequality uses strong convexity, and in the second inequality, we use the fact
that the βm-log strongly convex, βM-log smooth distribution with mode θopt that has the largest
density function at θopt is N(θopt, 1

βM Ip).

The above bound thus implies that

Rα(P ,Q) ≤ pα

2(α− 1)
log
(

M
m

)
.

By a similar argument, but instead using M-smoothness and the fact that the βm-log strongly
convex, βM-log smooth distribution with mode θopt that has the smallest density function at θopt
is N(θopt, 1

βm Ip), for α < M
M−m :

exp ((α− 1)Rα(Q,P)) =
∫

Rp

Q(θ)α

P(θ)α−1 dθ

= (
βm
2π

)αp/2
∫

Rp

exp

(
−αβm

‖θ − θopt‖2
2

2
+ (α− 1) logP(θ)

)
dθ

≤ (
βm
2π

)αp/2P(θopt)−(α−1)
∫

Rp

exp

(
(αβ(M−m)− βM)

‖θ − θopt‖2
2

2

)
dθ

≤ (
βm
2π

)p/2
∫

Rp

exp

(
(αβ(M−m)− βM)

‖θ − θopt‖2
2

2

)
dθ

(∗)
= (

m
M− α(M−m)

)p/2

=⇒ Rα(Q, P) ≤ p
2(α− 1)

log
(

m
M− α(M−m)

)
.
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In (∗), we use the assumption on α to ensure the integral does not diverge. In particular, choosing
α = 1 + m

M satisfies the assumption and gives:

R1+ m
M
(Q, P) ≤ pM

2m
log
(

M
m

)
.

The same bounds hold for P ′,Q′ defined using D′ and θ′opt instead of D, θopt respectively.

Using the weak triangle inequality for Renyi divergences (Fact B.10), letting Θ0 = N(0, 1
βm Ip), we

have for any α ≥ 1, q ≥ 1:

Rα(P ′, Θ0) ≤
α− 1/q

α− 1
Rqα(P ′,Q′) + R qα−1

q−1
(Q′, Θ0).

Setting q = 2, plugging in our above bound and Lemma B.8 we get:

Rα(P ′, Θ0) ≤
pα

2(α− 1)
log
(

M
m

)
+

βm(2α− 1)R2

2
.

If α ≥ 2, this can be simplified to:

Rα(P ′, Θ0) ≤ p log
(

M
m

)
+

βm(2α− 1)R2

2
.

Then following the proof in (Ganesh & Talwar, 2020, Lemma 20), we get that if α ≥ 2:

Rα(P ′, Θ′T) ≤ Rα(P ′, Θ0) · exp(−Tβm
α

) ≤
[

p log
(

M
m

)
+

βm(2α− 1)R2

2

]
· exp

(
−Tβm

α

)
Similarly we have:

Rα(Θ0,P) ≤ α− 1/q
α− 1

Rqα(Θ0,Q) + R qα−1
q−1

(Q,P).

Letting q = max{2, M/m}, α = 1 + q−1
q2 and again plugging in our above bound and Lemma B.8:

R
1+ q−1

q2
(Θ0,P) ≤ (1 + q)Rq+1−1/q(Θ0,Q) + R1+1/q(Q,P)

≤ (1 + q)Rq+1−1/q(Θ0,Q) + R1+m/M(Q,P)

≤ βm(q2 + 2q− 1/q)R2

2
+

pM
2m

log
(

M
m

)
.

Now, using (Vempala & Wibisono, 2019, Theorem 2 and Lemma 14), we have that for any α ≥ 2
and T ≥ t0 := 2 log((α− 1)q):
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Rα(ΘT ,P) ≤ Rα(Θt0 ,P) · exp
(
−2tβm

α

)
≤ (q− 1)

q2(1− 1/α)
· R

1+ q−1
q2

(Θ0,P) · exp
(
−2(T − t0)βm

α

)
.

To simplify, we will use the fact that q ≥ 2, α ≥ 2 in conjunction with our bound on R
1+ q−1

q2
(Θ0,P)

to upper bound this by:

≤
[

βm(q2 + 2q− 1/q)R2

2
+

pM
2m

log
(

M
m

)]
· exp

(
− (T − t0)βm

α

)
.

We can now use the weak triangle inequality (Fact B.10) twice and monotonicity of Renyi diver-
gences (Fact B.6) to directly prove a divergence bound between ΘT and Θ′T for α ≥ 2:

Rα(ΘT , Θ′T) ≤
α− 1/3

α− 1
R3α(ΘT ,P) + 3α/2− 1

3α/2− 3/2
R3α−1(P ,P ′) + R3α−2(P ′, Θ′T)

≤ 5
3

R3α(ΘT ,P) + 4
3

R3α(P ,P ′) + R3α(P ′, Θ′T) (16)

Substituting the bounds on R3α(ΘT ,P), R3α(P ,P ′), and R3α(P ′, Θ′T), we have a bound

(16) ≤
[

βmR2 · max{30, 5(M/m)2 + 10M/m}+ 18α− 3
6

+
5pM/m + 3p

6
log
(

M
m

)]

· exp
(
− (T − t0)βm

3α

)
+

4
3

R3α(P ,P ′).

This completes the proof of Lemma I.1.

One can modify the proof such that the bound converges to Rα(P ,P ′) rather than 4
3 R3α(P ,P ′). To

do so, note that both the leading 4/3 and the leading constant in 3α arise from applying Fact B.10
in (16) with fixed parameter q. By instead applying Fact B.10 with parameter q depending on T,
we can replace 4

3 R3α(P ,P ′) with the expression c(T)Rα(T)(P ,P ′) for some functions c(T), α(T)
approaching 1 and α respectively. The cost of doing this is that the coefficient 5/3 in front of the
first term in (16), and the orders 3α in the first and last term in (16) will become larger over time;
however, for a fixed order α these terms decay as exp(−T/α), so if we choose q in our application
of Fact B.10 such that these values grow sub-linearly, the first and last term in (16) will still decay
as exp(−Tc) for some 0 < c < 1.

This modification heavily complicates the proof and the form of the final bound, so we omit a
proof including this modification and instead opt for a simpler presentation and weaker bound
here.

I.2 SWITCHING BETWEEN “SHORT” AND “LONG” TERM

If both loss functions are m-strongly convex and we use a fixed βt = β, then Chourasia et al.
(Chourasia et al., 2021, Corollary 1) implies the following:
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Lemma I.2. Suppose ‖∇L(θ; D)−∇L(θ; D′)‖2 ≤ ∆ for all θ, and L(θ; D),L(θ; D′) are both m-
strongly convex with respect to θ. Then if θ0 and θ′0 are sampled from Θ0 = N(0, 1

βm Ip), for all α ≥ 1 and
T ≥ 0:

Rα(ΘT , Θ′T) ≤
αβ∆2

m
· (1− e−βmT/2).

When we have m-strongly convexity, M-smoothness, and a bound of ∆ on the `2-norm of the
difference between the gradients of L(θ; D) and L(θ; D′), both Lemma I.1 and Lemma I.2 give a
bound on the Renyi divergence. Intuitively, Lemma I.2 bounds the divergence between the noisy
gradient flows. Therefore, it is initially 0 when there is no history of the noisy gradient flows and
the distributions are the same. However, it worsens as T increases, since the distribution at time
T becomes more dependent on the difference between the history of the noisy gradient flows and
less dependent on the shared initial distribution. On the other hand, Lemma I.1 effectively is a
bound on the “sampling error” between the finite-time distribution and stationary distribution of
each diffusion, plus the divergence between the stationary distributions of the two diffusions. The
former improves as T increases, and the latter is fixed. In turn, as long as

4
3

R3α(P ,P ′) ≤ αβ∆2

m
.

That is, the asymptotic bound of Lemma I.2 is worse than the asymptotic bound of Lemma I.1.
Since the sampling error goes to 0 as T goes to infinity, there is a shift in regimes where roughly
speaking the divergence due to sampling error becomes smaller than the divergence between the
noisy gradient flows. At this point, it directs us to use the “long” term bound instead of “short”
term bound. In particular, this regime shift occurs roughly when:

O(βmR2((M/m)2 + α) +
pM
m

log
(

M
m

)
) · exp

(
− (T − t0)βm

3α

)
≤ αβ∆2

m
− 4

3
R3α(P ,P ′),

Rearranging, we get that we shift regimes at roughly a time T∗ such that

T∗ ≈ 2 log((α− 1)max{2, M}) + Θ

 α

βm
· log

 βmR(M/m + α) + pM
m log

(
M
m

)
αβ∆2

m − 4
3 R3α(P ,P ′)

 .

Again, we remark that one can modify Lemma I.1 to approach Rα(P ,P ′) instead of 4
3 Rα(P ,P ′).

For this asymptotic bound, the inequality

Rα(P ,P ′) ≤ αβ∆2

m
,

is always satisfied, i.e., either the limiting bound of Lemma I.2 is tight for the stationary distribu-
tion, or such a regime shift always exists.

J DEFERRED PROOFS FROM SECTION F

Proof of Theorem F.1. Let φx(θt) = 1
2β ‖θt − x‖2

2 be the potential w.r.t. a fixed x ∈ C. We will write

dφx(θt) as the sum of two terms, dφA
x (θt), which is equal to dφx(θt) if we used eq. (1) instead of
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eq. (2), and dφB
x (θt), which is simply the difference dφx(θt)− dφA

x (θt). For example, dφB
x (θt) is 0

when θt is not on the boundary of C. Since C is convex, if θ is a point on the boundary of C and t is
a normal vector of C at θ, then 〈θ − x, t〉 ≥ 0. Then by definition of ΠC,θt , this implies dφB

x (θt) ≥ 0
always, so dφx(θt) ≤ dφA

x (θt).

By Ito’s lemma (Lemma B.1), we have the following:

dφA
x (θt) =

p
β

dt +

〈
θt − x,−∇L(θ; D)dt +

√
2

β
dWt

〉
. (17)

Combining eq. (17) with the fact that dφx(θt) ≤ dφA
x (θt), we get:

dφx(θt) ≤
(

p
β
− 〈θt − x,∇L(θt; D)〉

)
· dt +

√
2

β
· 〈θt − x, dWt〉 . (18)

Furthermore, by linearity of expectation we have the following:

E [dφx(θt)] ≤
p
β
· dt−E [〈θt − x,∇L(θt; D)〉] · dt +

√
2

β
·E [〈θt − x, dWt〉]

⇔ E [〈θt − x,∇L(θt; D)〉] · dt ≤ p
β
· dt +

√
2

β
·E [〈θt − x, dWt〉]−E [dφx(θt)] =

p
β
· dt−E [dφx(θt)]

(19)

The last equality in eq. (19) follows from the following observation:

E [〈θt − x, dWt〉] = E [〈θt, dWt〉]−E [〈x, dWt〉]
= E [〈θt, dWt〉] (20)

= −β ·E

〈 t∫
τ=0

∇L(θτ ; D) · dτ, dWt

〉+
√

2 ·E

 t∫
τ=0

〈dZτ , dWt〉

 (21)

=
√

2 ·E

〈E

 t∫
τ=0

dZτ

∣∣∣∣∣∣ dWt

 , dWt

〉 = 0, (22)

where in eq. (21), Zτ is the standard Brownian motion, and in eq. (22) we used the law of iterated
expectations and the fact that in the Ito integral, dWt is independent of {Wτ}0≤τ≤t.

By convexity of the loss function L we have:

L(θt; D)−L(x; D) ≤ 〈θt − x,∇L(θt; D)〉 . (23)

Combining eq. (19) and eq. (23) we have the following:

E [(L(θt; D)−L(x; D)) dt] ≤ p · dt
β
−E [dφx(θt)] (24)
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Let a ≤ b. Integrating eq. (24) from [a, b], we have the following:

E

 b∫
t=a

(L(θt; D)−L(x; D)) dt

 ≤ p ·
b∫

t=a

dt
β
+ E

 a∫
t=b

dφx(θt)


= p ·

b∫
t=a

dt
β
+ E [φx(θa)− φx(θb)]

=
p · (b− a)

β
+ E

[
1

2β
‖θa − x‖2

2 −
1

2β
‖θb − x‖2

2

]
(25)

by the definition of the potential φx(θt) =
1

2β ‖θt − x‖2
2.

Consider two non-negative real numbers k and γ such that γ < k. Define

Sk,γ =
1

k + γ

T∫
t=T−k

L(θt; D)dt and S̄k = lim
γ→0

Sk,γ.

That is, S̄k is the average value of L(θt; D) over the interval [T − k, T], and in particular S̄0 =
L(θT ; D). We have the following:

E
[
k · Sk−γ,γ

]
= E

 T∫
t=T−(k−γ)

L(θt; D)dt

 = E

 T∫
t=T−k

L(θt; D)dt

−E

 T−(k−γ)∫
t=T−k

L(θt; D)dt


= E

[
(k + γ) · Sk,γ

]
−E

 T−(k−γ)∫
t=T−k

L(θt; D)

 dt (26)

To upper bound−E

[
T−(k−γ)∫
t=T−k

L(θt; D)dt

]
above, we use eq. (25) as follows, while setting a = T− k

and b = T.

−E [L(x; D)] ≤ p
β
+

1
2β(b− a)

E
[
‖θa − x‖2

2

]
− 1

b− a
E

 b∫
a

L(θt; D)dt


=

p
β
+

1
2β · k E

[
‖θT−k − x‖2

2

]
− k + γ

k
E
[
Sk,γ

]
This implies that

−E

 T−(k−γ)∫
t=T−k

L(θt; D)dt

 ≤ pγ

β
+

1
2β · k E

 T−(k−γ)∫
t=T−k

‖θT−k − θt‖2
2 dt

− (1 +
γ

k

)
· γ ·E

[
Sk,γ

]

≤ pγ

β
+

γ · ‖C‖2
2

2β · k −
(

1 +
γ

k

)
· γ ·E

[
Sk,γ

]
(27)
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Plugging in eq. (27) into eq. (26) we have the following:

E
[
k · Sk−γ,γ

]
≤ E

[(
k− γ2

k

)
Sk,γ

]
+

pγ

β
+

γ · ‖C‖2
2

2β · k
Dividing by k, we get

E
[
Sk−γ,γ

]
≤ E

[(
1− γ2

k2

)
Sk,γ

]
+

pγ

βk
+

γ · ‖C‖2
2

2β · k2

Rearranging the terms, we get

E

[
Sk−γ,γ −

(
1− γ2

k2

)
Sk,γ

]
≤ pγ

βk
+

γ · ‖C‖2
2

2β · k2

This gives the following set of implications

E

[
lim
γ→0

Sk−γ,γ − Sk,γ

γ

]
≤
(∗)

lim
γ→0

E

[
Sk−γ,γ − Sk,γ

γ

]
≤ p

βk
+
‖C‖2

2
2β · k2

⇒ d
dc

E [S̄k−c] ≤
p

βk
+
‖C‖2

2
2β · k2

⇒ E [S̄0] ≤ E [S̄k] +
p
β
+
‖C‖2

2
2β · k . (28)

Where the inequality (∗):

E

[
lim
γ→0

Sk−γ,γ − Sk,γ

γ

]
≤ lim

γ→0
E

[
Sk−γ,γ − Sk,γ

γ

]
(29)

follows because of the following argument. Using the definition of
Sk−γ,γ−Sk,γ

γ we get:

Sk−γ,γ − Sk,γ

γ
=

1
kγ

T∫
t=T−k+γ

L(θt; D)dt− 1
(k + γ)γ

T∫
t=T−k

L(θt; D)dt

=
1

k(k + γ)

T∫
t=T−k+γ

L(θt; D)dt− 1
γ(k + γ)

T−k+γ∫
t=T−k

L(θt; D)dt

≥ k− γ

k(k + γ)
min

t
L(θt; D)− 1

(k + γ)
max

t
L(θt; D). (30)

Since θt ∈ C for all t, and L is L-Lipschitz, we get that L(θt, D) is lower and upper bounded

by some constants for all t. Using eq. (30), this implies that
Sk−γ,γ−Sk,γ

γ is lower bounded by some
constant for all γ < k. In other words, we can apply Fatou’s lemma to upper bound the expectation
of the limit by the limit of the expectation, hence the inequality (∗).
Now setting k = T in eq. (28), we get:

E [S̄0] ≤ E [S̄T ] +
p
β
+
‖C‖2

2
2βT

. (31)
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If we set a = 0, b = T in eq. (25) and then divide by T we have:

E [S̄T ]−L(x; D) ≤ p
β
+ E

[
1

2βT
‖θ0 − x‖2

2 −
1

2βT
‖θT − x‖2

2

]
≤ p

β
+
‖C‖2

2
2βT

. (32)

Combining eq. (31) and eq. (32) and setting x = θ∗ where θ∗ is any minimizer over C, we get:

E [L(θT ; D)−L(θ∗; D)] ≤ 2p
β

+
‖C‖2

2
βT

. (33)

We now need to choose β, T to minimize the above bound while satisfying privacy. By setting ∆ =

2L/n in Lemma C.1 and setting α = 1 + 2 log(1/δ)
ε in Fact B.5, we get that as long as 2 log(1/δ)

ε ≥ 1 to
satisfy (ε, δ)-differential privacy it suffices if:

4 log(1/δ)L2β2T
εn2 ≤ ε

2
=⇒ β ≤ εn

L
√

8T log(1/δ)
. (34)

Plugging β = εn
L
√

8T log(1/δ)
into eq. (33) we get:

E [L(θT ; D)−L(θ∗; D)] ≤ 4pL
√

2T log(1/δ)

εn
+

2L
√

2 log(1/δ) ‖C‖2
2√

Tεn
. (35)

The above bound is optimized by choosing T =
‖C‖2

2
2p , giving the theorem statement.

Proof of Theorem F.2. Note that βt = d
dt Bt by definition, and let φt = emBt ‖θt − θ∗‖2

2. Similarly to
eq. (19), by Ito’s Lemma we have:

dφt ≤mβtemBt ‖θt − θ∗‖2
2 dt− emBt

〈
θ∗ − θt,−Bt∇L(θt; D)dt +

√
2

Bt
dWt

〉
+ pemBt dt

Taking expectation on both sides,

E [dφt] ≤βtemBt E
[
m ‖θt − θ∗‖2

2 + 〈θ
∗ − θt,∇L(θt; D)〉

]
dt + pemBt dt. (36)

By 2m-strong convexity we have

L(θ∗; D)−L(θt; D) ≥ 〈∇L(θt; D), θ∗ − θt〉+ m ‖θt − θ∗‖2
2 . (37)

Note that demBt = mβtemBt dt. Then plugging eq. (37) into eq. (36) we get:

E [dφt] ≤ βtemBt [L(θ∗; D)−E [L(θt; D)]] dt + pemBt dt (38)
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This implies that

1
m

[E [L(θt; D)]−L(θ∗; D)] demBt ≤ −E [dφt] + pemBt dt. (39)

Now, integrating eq. (38) from t = 0 to T and noting that φt ≥ 0 for all t we get:

T∫
0

[E [L(θt; D)]−L(θ∗; D)]demBt ≤ mφ0 + mp
T∫

0

emBt dt. (40)

By Jensen’s inequality,

(emBT − 1)L(θpriv ; D) ≤
T∫

0

L(θt; D)demBt . (41)

Plugging eq. (41) into eq. (40) and using linearity of expectation we have:

E
[
L(θpriv ; D)

]
−L(θ∗; D) ≤

mφ0 + mp
T∫
0

emBt dt

emBT − 1
. (42)

We now determine what choice of a as a function of T ensures privacy when βt = ta. Our final
choice of a will satisfy a ≥ 0 for all sufficiently large n. Recall from Lemma C.1 that for (ε, δ)-
differential privacy, since we have L-Lipschitzness it suffices if:

4L2 log(1/δ)
T∫
0

β2
t dt

εn2 ≤ ε

⇔
T∫

0

t2adt ≤ ε2n2

4L2 log(1/δ)

⇔T2a+1 ≤ (2a + 1)ε2n2

4L2 log(1/δ)
(43)

Note that we use the assumption a ≥ 0 to show the integral is equal to T2a+1 rather than
diverging. For eq. (43) to hold, assuming a ≥ 0, we have 2a + 1 ≥ 1, so letting a =

logmax{2,T}

(
εn

2L
√

log(1/δ)

)
− 1

2 suffices. We will eventually choose T that is at most 2 for suffi-

ciently large n, which implies that a ≥ 0 for all sufficiently large n as promised. We now wish to
evaluate from eq. (42) the integral:
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T∫
0

exp(mBt)dt =
T∫

0

exp(
mta+1

a + 1
)dt =

T∫
0

exp

mt
logmax{2,T}

(
εn

2L
√

log(1/δ)

)
√

t
a + 1

 dt (44)

≤
T∫

0

exp

(
mεn
√

t
2(a + 1)L

√
log(1/δ)

)
dt. (45)

Let c = mεn
2(a+1)L

√
log(1/δ)

, and x = c
√

t. Then dx
dt = c

2
√

t
= c2

2x . So the last integral in eq. (44) can be

upper bounded as:

T∫
0

exp(c
√

t)dt =
2
c2

c
√

T∫
0

xexdx = 2 · ec
√

T(c
√

T − 1) + 1
c2 ≤ 2 ·

√
T(ec

√
T − 1)

c
(46)

Where the last inequality follows from the inequality ex ≥ 1 + x. We also have that the denom-
inator of eq. (42) is equal to emBt − 1 = ec

√
T − 1. So plugging eq. (44), eq. (46) into eq. (42) we

have:

E
[
L(θpriv ; D)

]
−L(θ∗; D) ≤ mφ0

ec
√

T − 1
+

2mp
√

T
c

(47)

If we choose T =
log2(R+1)

c2 and plug in the expression for c, eq. (47) becomes:

E
[
L(θpriv ; D)

]
−L(θ∗; D) ≤ mφ0

R
+

2 log(R + 1)
c2 =

mφ0

R
+

8p(a + 1)L2 log(1/δ) log(R + 1)
mε2n2 .

(48)

Note that φ0 = ‖θ0 − θ∗‖2
2 ≤ ‖C‖

2
2 ≤ L2

m2 . So to complete the proof, we can choose

R =
m2ε2n2 pφ0

2L2 log(1/δ)
≤ pε2n2

2 log(1/δ)
, (49)

Which causes the second term in eq. (48) to be larger than the first term and gives the theorem
statement.

Proof of Theorem F.4. We again choose β = εn
L
√

8T log(1/δ)
as in Theorem F.1. Then combining

Lemma F.3 with eq. (35), we get the following bound

Eθpriv [RiskSCO(θ
priv )] ≤

√
T

(
4pL

√
2 log(1/δ)

εn
+

√
2εL√

log(1/δ)

)
+

1√
T

(
2L
√

2 log(1/δ) ‖C‖2
2

εn

)
(50)
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To minimize the right hand side of the above inequality, we choose T =

Θ(min{ ‖C‖
2
2

p , log(1/δ)‖C‖2
2

ε2n }). The result follows.
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