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Abstract. Automatic segmentation of renal tumors and surrounding
anatomy in computed tomography (CT) scans is a promising tool in as-
sisting radiologists and surgeons in their efforts to study these scans and
improve the prospect of treating kidney cancer. In this paper we describe
our approach to compete in the 2021 Kidney and Kidney Tumor Segmen-
tation (KiTS21) challenge. Our approach is based on the successful 3D
U-Net architecture with our added novelties including the use of transfer
learning, an unsupervised regularized loss, custom postprocessing and
multi-annotator ground truth that mimics the evaluation protocol.
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1 Introduction

Kidney cancer is among the 10 most frequently diagnosed cancer types [12] and
among the 20 deadliest [19]. Surgery is the most common treatment option. Ra-
diologists and surgeons diligently study the appearance of kidney tumors in CT
imaging to facilitate optimal treatment prospects [4][11][15]. Automatic segmen-
tation of kidney tumors and surrounding area is a promising tool in assisting
them. It has already been proposed as a step in surgery planning [16], as well as
enabled medical research around relating tumor morphology to surgical outcome
[4][11].

The Kidney and Kidney Tumor Segmentation challenge of 2019 (KiTS19) [6]
was the first to provide a public dataset with kidney tumor labels [7], boosting the
available selection of segmentation algorithms specifically designed to segment
kidney tumors. In KiTS19, 210 cases were given to participants for training. The
kidneys and kidney tumors were annotated and the goal was to segment them
accurately in 90 additional test cases.

Compared to KiTS19, the main changes in KiTS21 are:

1. The 90 test cases are now added to the training set which now includes a
total of 300 cases. For the 2021 test, 100 additional cases are used.



2 A. Golts et al.

2. A new segmentation class was added to the annotations, denoting cysts.
Three Hierarchical Evaluation Classes (HECs) by which participants are
evaluated are defined:
1) Kidney and Masses: Kidney + Tumor + Cyst
2) Kidney mass: Tumor + Cyst
3) Tumor: Tumor only

3. A Surface Dice metric [13] was added for evaluation in addition to Sørensen-
Dice.

4. Evaluation is performed against a random sample of aggregated segmen-
tation maps which constitute plausible annotations in which different fore-
ground class instances are labeled by different annotators.

Many of the successful algorithms for 3D segmentation in the medical domain
are based on 3D variants of the popular U-Net architecture [3] [14]. Following its
success and dominance as seen in the leading solutions in the KiTS19 challenge
[6], we base our solution on the open source nnU-Net framework [10]. It offers
automatic configuration of the different stages in a medical imaging segmentation
task, including preprocessing, U-Net based network configuration and optional
postprocessing.

Our proposed solution introduces several novelties:

– We employ a label sampling strategy during training to make use of the
available multiple annotations, and to address the new evaluation protocol.

– We perform a form of transfer learning by initializing our network weights
with those of a network pretrained on another public medical task.

– We augment the supervised training loss function with an unsupervised regu-
larized term inspired by [5][17] which encourages similar prediction for neigh-
boring voxels with similar intensity.

– We employ postprocessing which removes implausible tumor and cyst predic-
tions that are disconnected from a kidney, as well as small kidney predicted
fragments surrounded by another class.

The paper is structured as follows. In Sec. 2 we describe preprocessing and ar-
chitectural details which were determined automatically by the nnU-Net frame-
work [10]. Then in Sec. 3 we describe our unique decisions and contribution.
These include our annotation sampling method, pretraining, proposed regular-
ized loss, proposed postprocessing algorithm, and choice of models to use in a
final ensemble. In Sec. 4 we provide experimental results. Finally, in Sec. 5 we
conclude.

2 nnU-Net determined details

2.1 3D U-Net Network architecture

The U-Net [14] is an encoder-decoder network. The decoder receives semantic
information from the end of the encoder (bottom of the “U”) and combines it
through skip connections with higher resolution features from different layers
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of the encoder. In our 3D U-Net variant all convolution kernels are 3 × 3 × 3.
Each block in the encoder consists of a sequence of Conv-InstanceNorm[18]-
LeakyReLU operations repeated twice. In the encoder, one of these Conv opera-
tions has a stride of 2 to facilitate downsampling. In total there are 5 downsam-
pling operations. In the decoder, the same number of upsampling operations is
done via transposed convolutions.

In most of our experiments, we apply the above architecture as a single
stage network which gets a preprocessed image patch (Sec. 2.3 as input and
outputs a final segmentation map. However, we also experimented with a two-
stage architecture described next.

2.2 3D U-Net Cascade Network architecture

The 3D U-Net cascade is another network type offered in the nnU-Net frame-
work. It serves the purpose of increasing the spatial contextual information that
the network sees, while keeping a feasible input patch size with regards to the
GPU memory. This can be achieved by applying a 3D U-Net on downsampled,
lower resolution input data. However, this comes at a cost of reduced detail in
the generated segmentations. Therefore, a second stage is performed in which
another 3D U-Net is applied on high resolution input data. In the second stage,
the high resolution input is augmented with extra channels that contain the
one-hot encoded segmentation maps generated by the ”low resolution” 3D U-
Net from the first stage. These maps are first upsampled to the higher resolution
input data size. Fig. 1 depicts the 3D U-Net cascade in high level. In our case,

3D U-Net
3D U-Net

Low res. 
input

Stage 1 Stage 2

High res. 
input

Input 
patch

High res. 
segmentation

Low res. 
segmentation Upsampling

Fig. 1. The 3D U-Net cascade model. In the first stage, low resolution input enters a 3D
U-Net. The patch size covers a large portion of the image, facilitating rich contextual
information. Then, the low resolution segmentation is upsampled and concatenated
with the high resolution input. In the second stage, the input patch covers a smaller
portion of the input, but global segmentation information is already available. Then,
a second 3D U-Net is applied and refines the segmentations, obtaining them in high
resolution.
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nnU-Net determined the 1st stage 3D U-Net to be of the same structure as the
2nd stage network, as detailed in Sec. 2.1.

2.3 Preprocessing

The median voxel spacing in the original training data is 0.78 × 0.78 × 3.0 mm.
The median volume shape is 512 × 512 × 109 voxels.

We clip each case’s intensity values to the 0.5 and 99.5 percentiles of the in-
tensity values in the foreground regions across the training set, which correspond
to the range [-62, 310]. Then, we subtract the mean and divide by the standard
deviation of the intensities in the foreground regions, which correspond to 104.9
and 75.3, respectively.

During training, patches with shape 128 × 128 × 128 are sampled and input
to the network. To increase training stability, the patch sampling enforces that
more than a third of the samples in a batch contain at least one randomly chosen
foreground class.

2.3.1 Low resolution In the 3D U-Net cascade model, the 1st stage, low
resolution network operates on input data resampled to a common spacing of
1.99 × 1.99 × 1.99 mm. This results in median volume shape of 201 × 201 × 207
voxels for the training cases.

2.3.2 High resolution In the single stage 3D U-Net models, and the 2nd
stage of the 3D U-Net cascade, the network operates on input data resampled
to a common spacing of 0.78 × 0.78 × 0.78 mm. This results in median volume
shape of 512 × 512 × 528 voxels for the training cases.

2.4 Training details

Beside our proposed regularized loss term (Sec. 3.4) all our models are trained
with a combination of dice and cross entropy loss [10]. The loss is applied at the
5 different resolution levels in the decoder.

Training is done on a single Tesla V100 GPU. The models train for 1000
epochs with each epoch consisting of 250 iterations with a batch size of 2. For
the single stage, full resolution 3D U-Net model, training takes about 48 hours.

We use an SGD optimizer with Nesterov momentum of 0.99, and learning

rate which decays in each epoch according to lr = 0.01
(

1 − epoch
1000

)0.9
.

3 Method

Our solution is based on 3D U-Nets with several novel additions. We found that
a 2D U-Net, although faster to train, results in significantly inferior performance
on the tumor and cyst classes. For the kidney class, performance is on par
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with a 3D U-Net. We found at a late stage in the competition that the 3D U-
Net cascade model performs better than the single stage 3D U-Net. Therefore,
most of our unique contribution was demonstrated using the single stage 3D
U-Net model. For the final submission, we ensemble three such models with
one cascade model. Next, we describe the training and validation data followed
by our unique decisions and contribution which include the annotation sampling
method, optional pretraining, proposed regularized loss, proposed postprocessing
algorithm and choice of models for ensemble.

3.1 Training and Validation Data

We use only the official KiTS21 300 training cases for our submission. The only
way in which we indirectly use other publicly available data in some of our
experiments, is by initializing network weights with those of a model pretrained
on the Liver Tumor Segmentation (LiTS) database [1].

We train our models on 5 cross validation splits of 240 training cases and
the remaining 60 used for validation. The splits are randomly decided by nnU-
Net[10]. In Sec. 4 we report average Dice and Surface Dice scores over the cross
validation splits per HEC, as well as global averages across the HECs. The eval-
uation metrics are computed usign the competition’s official evaluation function.

3.2 Pretraining

In Sec. 4.1.2 we show the effect of initializing the network weights from a pre-
trained model trained on LiTS[1]. This is in contrast to other experiments in
which the network weights were initialized randomly. We note that the specific
pretrained model we used is available for download under the nnU-Net frame-
work and fits the 3D U-Net network structure determined for our data without
any modification. This allowed us a simple way of testing a form of transfer
learning for our task.

3.3 Annotations

In KiTS21, each kidney/cyst/tumor instance has been annotated multiple times
by different annotators. The competition organizers provided a script for gener-
ating a (seeded) random plausible aggregated segmentation maps for each case.
There are between 6 and 15 such maps per case, depending on the case’s number
of annotators and class instances. During evaluation, the competition metrics for
each case are computed and averaged against all the case’s sampled plausible
maps.

To resemble the official evaluation protocol, we wanted models to see different
plausible annotations during training. We achieve this by choosing for each slice
within a case (volume), a random plausible annotation map out of the 6 to 15
options that are available after running the sampling script. We use this random
choice as the set of training annotations. In Sec. 4.1.1 we show the effect on
performance of using different random seeds for this training annotation selection
procedure.
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3.4 Regularized loss

Previous works on weakly supervised segmentation tasks have proposed to add
to the “standard” loss term which makes use of the existing supervised label
seeds, another term which is unsupervised. It does not require labels as input,
but only the original signal (raw volume in our case), and the network prediction
[5][17]. Intuitively, this loss term should encourage the predictions to follow a
desired behaviour, such as to be smooth in some sense. In semantic segmentation
we might want the loss to penalize contradicting predictions for neighboring
voxels which are similar in their intensity. We experiment with a regularized loss
proposed in [5] which can be thought of as a special case of the Potts model [2].
We denote the regularized loss Lreg. Then, the total training loss for training
our 3D U-Net becomes

Ltotal = Ldice + LCE + λLreg , (1)

where Ldice and LCE denote the dice and cross-entropy losses, respectively, and
λ is a hyperparameter.

3.4.1 Image loss In one of our attempts, we used the regularized loss pro-
posed in [5] for a 2D image, and applied it to each volume slice. This loss affects
each pixel through its four upper, lower, right and left neighbors. Let I be an
image, i and j denote two neighbors, ε is the pixel’s mentioned 4-neighborhood,
pc is the predicted segmentation softmax score for class c. The loss is then given
by

Lreg(I,p) =
∑
c

∑
(i,j)∈ε

wij
(
pci − pcj

)2
, (2)

where
wij = e−β(Ii−Ij)

2

. (3)

3.4.2 Volume loss Here we generalize the regularized loss to also account for
2 additional forward and backward neighbors from the adjacent slices. Eqs. 2-3
remain the same, but ε now contains 6 neighbors instead of four.

3.5 Postprocessing

We applied a postprocessing algorithm on the segmentation results, that removes
rarely occuring implausible findings. The algorithm consists of two parts

1. Tumor and cyst finding positioned outside of kidney findings are
removed.
We compute a slightly dilated mask of 3D connected components of voxels
classified as tumor or cyst. For each dilated connected component, if it has
no intersection with at least one kidney classified voxel, then we change the
classification of the corresponding tumor of cyst finding to “background”.
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2. Small kidney fragments surrounded by another class are removed.
We compute 3D connected components of voxels classified as kidney. We se-
lect all components smaller in volume than the 3rd largest. Then, we change
the classification of those smaller components, to that of the majority of the
voxels in its slightly dilated surrounding.

3.6 Final submission

For the final submission, we use an ensemble of four models, three single stage
high resolution 3D U-Nets and one 3D U-Net cascade. Each of the four models is
an ensemble on its own, of its 5 trained cross validation folds. Our postprocessing
(Sec. 3.5) was applied on the final segmentations output after the ensemble. The
following is a description of each model in our final ensemble:

1. 3D U-Net trained with the regularized loss from Sec. 3.4.1.
2. 3D U-Net for which training was initialized with a model pretrained on

LiTS. (Sec. 3.2).
3. 3D U-Net trained with a different random seed for the training annotation

generation process (Sec. 3.3) than the other three models in the ensemble.
4. 3D U-Net cascade in which training of the 1st stage, low resolution net-

work was initialized with a model pretrained on LiTS (Sec. 3.2).

4 Results

In all experiments we use the official evaluation code which calculates Dice
and Surface Dice metrics averaged across sampled plausible annotation maps.
The results we show here are all average scores across 5 cross validation splits.
For brevity we denote in the tables in this section the per HEC dice scores as
D1,D2,D3 for the ”Kidney and Masses”, ”Kidney mass” and ”Tumor” HECs,
respectively, and their mean is denoted MD. Similarly, surface dice scores are
denoted SD1,SD2,SD3, and their mean MSD.

4.1 Single stage, high resolution 3D U-Net

The following experiments were made based on the single stage 3D U-Net model
(Sec. 2.1).

4.1.1 Random annotations In Tab. 1 we show how our 3D U-Net trained
with random annotation procedure as described in Sec. 3.3 performed against a
baseline that we trained which used aggregated maps according to a majority
vote (MAJ). We also show results of the baseline published in [9].

We see that the random annotation procedure unfortunately has no signifi-
cant effect on performance. We still decided to add the model with seed 3 to our
final model ensemble. In all the next experiments, we use our random annotation
procedure with seed 1.
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Model D1 D2 D3 SD1 SD2 SD3 MD MSD

baseline ([9]) 0.9666 0.8618 0.8493 0.9336 0.7532 0.7371 0.8926 0.8080
baseline (our) 0.9660 0.8589 0.8444 0.9334 0.7506 0.7320 0.8897 0.8053
seed 1 0.9662 0.8583 0.8449 0.9335 0.7513 0.7330 0.8898 0.8059
seed 2 0.9655 0.8581 0.8419 0.9324 0.7500 0.7297 0.8885 0.8040
seed 3 0.9668 0.8645 0.8478 0.9347 0.7567 0.7356 0.8930 0.8090

Table 1. Our random annotation procedure vs. baseline MAJ annotations

4.1.2 Pretraining In Tab. 2 we show the effect of transfer learning, namely
initializing our 3D U-Net model from weights of a model pretrained on LiTS.

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

baseline ([9]) 0.9666 0.8618 0.8493 0.9336 0.7532 0.7371 0.8926 0.8080
baseline (our) 0.9660 0.8589 0.8444 0.9334 0.7506 0.7320 0.8897 0.8053
with pretraining 0.9674 0.8651 0.8518 0.9346 0.7563 0.7396 0.8948 0.8102

Table 2. Transfer learning from LiTS

We see some improvement, therefore we add the model with initialization
from a model pretrained on LiTS to our final model ensemble.

4.1.3 Regularized loss In Tab. 3 we show the effect adding regularized loss,
as described in Sec. 3.4. Following limited hyperparameter search, we use β = 10
for the image loss, β = 5 for the volume loss, and λ = 1 for both versions. We

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

baseline ([9]) 0.9666 0.8618 0.8493 0.9336 0.7532 0.7371 0.8926 0.8080
baseline (our) 0.9660 0.8589 0.8444 0.9334 0.7506 0.7320 0.8897 0.8053
image loss 0.9659 0.8615 0.8493 0.9341 0.7528 0.7370 0.8922 0.8080
volume loss 0.9663 0.8609 0.8482 0.9336 0.7512 0.7337 0.8918 0.8062

Table 3. Performance with regularized loss

add the model with image regularized loss to our final model ensemble, as it
showed slight improvement over at least our baseline. Our experiments showed
that hyperparameter tuning for β and λ are important for the regularized loss.
This could be one of the reasons we did not manage to better optimize the
volumetric version of the loss within our time and resources constraints. It is
also why we did not choose to employ this loss in conjuction with other steps
like initializing with a pretrained model, or the next experiment with the 3D
U-Net cascade model. We suspected that separate hyperparameter tuning could
need to be performed for each scenario.
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4.2 3D U-Net cascade

In Tab. 4 we show the performance of our trained 3D U-Net cascade model
(Sec. 2.2 compared to the baseline published in [9] (for the same model type).

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

cascade baseline ([9]) 0.9747 0.8799 0.8491 0.9453 0.7714 0.7393 0.9012 0.8187
our cascade 0.9747 0.8810 0.8583 0.9459 0.7709 0.7461 0.9046 0.8210

Table 4. Performance of our 3D U-Net cascade model

We see some improvement for our cascade model over the published baseline.
This could be owed to our random annotation procedure (Sec. 3.3) and our
initialization of the 1st stage low resolution 3D U-Net with a model pretrained
on LiTS (Sec. 3.2).

4.3 Model ensemble

In Tab. 5 we show the effect ensembling four models as described in Sec. 3.6. We
also show for comparison an ensemble of only the three single-stage 3D U-Net
models, as well as best single models (without ensemble), out of both single-stage
and cascade. Again, metrics are averaged across all 5 cross validation splits.

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

best model (cascade) 0.9747 0.8810 0.8583 0.9459 0.7709 0.7461 0.9046 0.8210
best 1-stage model 0.9674 0.8651 0.8518 0.9346 0.7563 0.7396 0.8948 0.8102
ensemble of 1-stage models 0.9674 0.8667 0.8535 0.9363 0.7610 0.7442 0.8959 0.8138
final ensemble 0.9702 0.8751 0.8597 0.9400 0.7709 0.7525 0.9017 0.8211

Table 5. Model ensemble

We see that the cascade model, which outperformed all the others, is alone
better than the final ensemble in terms of the average Dice score. But we do see a
slight improvement in average Surface Dice, and also in the tumor class metrics,
which are arguably the most critical in practice (and also the tumor Dice is used
as a tiebreaker in KiTS21). We also see that ensembling the three single-stage 3D
U-Net models improves over the best model among them. Therefore we decided
to ensemble all four models in our final submission.

4.4 Postprocessing

In Tab. 6 we show the result of applying our proposed postprocessing algorithm
(Sec. 3.5) to the segmentation results of our final ensemble. Again, metrics are
averaged across all 5 cross validation splits. We see improvement across all met-
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Model D1 D2 D3 SD1 SD2 SD3 MD MSD

without postprocessing 0.9702 0.8751 0.8597 0.9400 0.7709 0.7525 0.9017 0.8211
with postprocessing 0.9715 0.8790 0.8638 0.9415 0.7751 0.7569 0.9047 0.8245
Table 6. Results with postprocessing applied to our final ensemble segmentations

rics.
Fig. 4.4 shows an example from case 16 in the database, predicted using our

model ensemble. Specifically, for the demonstration to be fair, the ensembled
model of cross validation fold 0, in which case 16 was part of the validation
set. In the first row, we see slice 60, which contains kidney (red) and tumor
(green) findings. In the second row, slice 105, in which a false tumor finding was
predicted, and successfully removed after applying our postprocessing algorithm,
since it has no contact with a kidney prediction.

original image prediction without prediction with ground truth
postprocessing postprocessing

Table 7. Example predictions for case 16. Top row: slice 60 which contains kidney
(red) and tumor (green) findings. Bottom row: slice 105 which contains a false tumor
prediction, successfully removed by our postprocessing algorithm.

5 Discussion and Conclusion

We presented results of our 3D U-Net based approach to solving the KiTS21
challenge. We managed to demonstrate minor improvements over published base-
lines based on a single-stage 3D U-Net, as well as a two-stage 3D U-Net cascade.
Improvements are owed, to varying degrees, to our following contributions: a
method for utilizing multiple annotations during training, weight initialization
from a model pretrained on a different task, an unsupervised term added to
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the loss function that encourages smoothness in the segmentation predictions,
ensembling of multiple models, and a proposed postprocessing algorithm.

The participation in the challenge leaves us with quite a few interesting
directions for future research. We now realize that better performance could be
reached if we applied some of our contributions to the better performing 3D
U-Net cascade model, rather than the single-stage 3D U-Net. The regularized
loss could benefit from more thorough hyperparameter tuning as well as further
generalization to use more neighboring voxels. Additionally, more recent network
architectures for semantic segmentation are worth exploring. Outside the scope of
this particular challenge, it is worth investigating the trade-off between accuracy
and runtime in medical imaging segmentation, for example as is evident when
comparing 2D and 3D U-Net architectures.

As we look to experiment with different network architectures, or work on
extending the idea of regularized losses for medical imaging segmentation, we
may opt for open source frameworks designed for flexible and efficient research
in the medical imaging domain. One such promising framework is the recently
released FuseMedML library [8].
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