
Data Portraits: Recording Foundation Model Training
Data

Marc Marone Benjamin Van Durme
Johns Hopkins University

{mmarone1,vandurme}@jhu.edu

Abstract

Foundation models are trained on increasingly immense and opaque datasets. Even
while these models are now key in AI system building, it can be difficult to answer
the straightforward question: has the model already encountered a given example
during training? We therefore propose a widespread adoption of Data Portraits:
artifacts that record training data and allow for downstream inspection. First we
outline the properties of such an artifact and discuss how existing solutions can be
used to increase transparency. We then propose and implement a solution based
on data sketching, stressing fast and space efficient querying. Using our tools, we
document a popular language modeling corpus (The Pile) and a recently released
code modeling dataset (The Stack). We show that our solution enables answering
questions about test set leakage and model plagiarism. Our tool is lightweight and
fast, costing only 3% of the dataset size in overhead. We release a live interface of
our tools at dataportraits.org and call on dataset and model creators to release Data
Portraits as a complement to current documentation practices.

1 Introduction

Modern AI is driven by large models trained on large datasets, displaying emergent capabilities as
they scale [5]. Despite the foundational nature of these models, it is a natural question to ask of some
example, “Was this seen during training?” Understanding the contents of large, opaque, web-scraped
datasets is important to assessing downstream model behavior. Web datasets can contain leaked
test sets, harmful text, or low quality information; these impact downstream models [12, 26, 15, 8].
Documentation artifacts for datasets and models have been proposed and adopted by the community
[14, 27, among others]. However, less work has dealt with tooling to support large dataset inspection.

We suggest that existing practices around foundation models can be improved through the widespread
adoption of Data Portraits: artifacts that record training data and allow for efficient inspection.
The critical property of a data portrait is membership inference: whether an example was part of a
data collection. In discussing these tools we consider three perspectives: content creators (owners),
scientists, and content consumers. Creators wish to know whether a dataset contains their content (e.g.
copywritten code). Scientists may seek to understand model behavior by assessing test set leakage
or knowledge memorization. Content consumers (including downstream applications) may want to
know if a model is plagiarizing or citing existing resources.

Our contributions are two-fold. First we call for documentation artifacts based on membership
inference, discussing the properties and tradeoffs around existing solutions. We then introduce our
own implementation of such an artifact and use it to document a widely used large language model
(LLM) corpus: the Pile [13]. We also document a recent code language modeling corpus: the Stack
[22]. Our artifact uses data sketching (compressed or approximate views of data, [6]) to enable
millisecond latency and minimal compute requirements, using only ∼ 3% of the original dataset size.
We release our tools and a live demo at dataportraits.org.
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Table 1: Properties of various membership testing tools. Our proposed implementation, the strided
Bloom filter, is probabilistic because it uses hash-based matching, but avoids lossless redistribution
of data. ∼ indicates that a tool might support a property. See Table 2 and Section 3 for further
discussion about performance.

Method Avoids Redistribution Local Index Fuzzy Probabilistic
grep ✗ ✓ ✓ ✗ ✗
Full Text Index ✗ ∼ ✓ ∼ ✗
Suffix Array ✗ ✓ ✓ ✗ ✗
Strided Bloom Filter ✓ ✓ ✗ ✗ ✓

2 Background and Related Work

2.1 Documentation Artifacts

Figure 1: Output from ChatGPT [29] when asked
to explain Bloom filters using text from Wikipedia.
The highlighted string is the longest overlapping
string with the Pile. Other overlapping spans are
grey. See our demo: dataportraits.org

Much recent work has called for additional ar-
tifacts documenting datasets and models [2, 27,
14, among others]. Gebru et al. [14] argues that
creators should release a Datasheet artifact doc-
umenting the “motivation, composition, collec-
tion process” for a dataset. Mitchell et al. [27]
earlier proposed a related artifact called Model
Cards for trained models. These suggestions
have been taken up within the AI community:
new models are released with these artifacts (e.g.
Zhang et al. [37] provide a Datasheet and Model
Card for their models intending to be an open
source parallel to OpenAI’s closed models) and
many resources hosted by Huggingface now in-
clude documentation artifacts.1

We view a Data Portrait as a complementary
type of documentation artifact - one that answers
the membership question. There already exist
examples of what we would describe as a por-
trait. Dodge et al. [12] studied multiple aspects
of the C4 corpus and released a searchable in-
dexed version.2 Contemporaneously with this
work, Piktus et al. [30] released a search tool for
the ROOTS corpus [23]. These tools are increas-
ingly important as web-text corpora continue to
outscale the resources of many academic groups.

Datasheets Gebru et al. [14] acknowledge that the contents of a complete datasheet will vary
depending on research circumstances.

... datasheets will necessarily vary depending on factors such as the domain
or existing organizational infrastructure and workflows ... [such as] academic
researchers publicly releasing datasets ... [or] product teams creating internal
datasets for training proprietary models. – Gebru et al. 14

For all of these scenarios, even internal proprietary uses, it is beneficial to have a computationally
verifiable form of documentation.

Model Cards The Model Cards form seeks to document training data with several sections,
including the one duplicated below:

1https://twitter.com/mmitchell_ai/status/1548358023382347777
2https://c4-search.apps.allenai.org/
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Training Data. May not be possible to provide in practice. When possible, this
section should mirror Evaluation Data. If such detail is not possible, minimal
allowable information should be provided here, such as details of the distribution
over various factors in the training datasets. – Mitchell et al. 27

We strongly prefer that datasets be open and transparent. However in cases where this is impossible,
certain implementations of Data Portraits can still allow for (approximate) membership testing on the
dataset used to build a specific model. In Section 3.1, we describe how some implementations can be
used without leaking or redistributing data.

2.2 Large Models and Web Data

Other related work analyzes properties of models trained on web-scale corpora. Carlini et al. [9]
showed that GPT-2 memorizes and can leak sensitive or private information from its training corpus.
Further work [10] examined memorization and showed that it increased with scale. The initial GPT-3
[8] construction suffered from a bug that meant certain testsets were not filtered from their very large
training corpus (though they later carefully analyzed the effects of this bug). Conventions and legal
precedents around large language models that may memorize and output portions of the training data
are still being developed. Kocetkov et al. [22] gather a set of permissively licensed open source code
repositories. Luccioni and Viviano [26] analyze a typical source of web data, the Common Crawl,
studying “content that can be generally seen as inappropriate for a language model to generate”.

It is not always clear what was used for training existing models. Even though open source models
such as OPT [37] provide documentation artifacts, their Datasheet simply notes that the training
corpus is a filtered “union of the following datasets...” and they do not host a final accessible artifact.3

2.3 Data Structures

Data sketching, storing compressed or approximate views of large datasets, has long been used to
enable efficient analysis of large data [6]. GPT-3 and other LLMs ([25, 23] among others) use the
MinHash sketch of Broder [6] to deduplicate their training sets. However, they do not release this
sketch for downstream use as a documentation tool. Other data sketches, such as Bloom filters [4] and
related structures, have a long history of use as efficient storage for NLP tasks. Talbot and Osborne
[34] use Bloom filters to construct language models while others used similar structures to count
features [16, 36]. More recent work analyzes the use of a Bloom filter to prevent verbatim copying of
common n-grams from training sets [19].

Recent work on large datasets has investigated deduplication and memorization analysis. Lee et al.
[24] develop an optimized suffix array implementation that can scale to very large datasets. Other
work has released traditional full text indexes for datasets they study [30, 12]. These structures can
be used as a membership testing tool but are primarily meant for additional use cases and thus may
have higher computational demands (see Table 2 and Section 3).

3 Data Portraits

We outline desirable properties of a dataset documentation tool built around membership inference,
recognizing that some may induce tradeoffs.

1. Fast: An artifact should support low latency programmatic access.
2. Lightweight: An artifact should not be much more expensive than storing the original data.
3. Avoids Redistribution: Some data cannot be redistributed for legal or proprietary reasons.

A tool should avoid propagating harmful or illegal content when possible.
4. Local: A local artifact requires no costly external services. A local tool also provides privacy

when querying for PII (personally identifiable information), rather than transmitting PII to a
third party.

5. Indexing: A tool should indicate the context in which a match is found.

3https://github.com/facebookresearch/metaseq/issues/20
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6. Match Flexibility: Fuzzy matching can be useful for similarity searches. Exact matches
might be more useful for cases involving PII or memorization.

Other Implementations Examining these, it is clear that there may be many solutions to creating
membership inference tools on large datasets. Table 1 has an overview of properties related to data
modeling (discussed below) while Table 2 compares space usage between other published tools.

The easiest version of a Data Portrait is to simply store the data on disk. grep or similar tools can
be used to query the dataset. This is a typical approach for membership inference; Carlini et al. [9]
mention they ask the GPT authors for grep results. Other implementations might include a full-text
search using commercial software or a conventional database [30, 12]. Recent work on memorization
and data duplication has explored efficient data-structures for deduplicating large text datasets [24].

While these techniques enable tools that we would consider viable Data Portraits, each has certain
tradeoffs. Simply storing the corpus on disk and grep-ing is slow and only allows exact or regex
matches. This also does not address the governance issue - some data cannot be redistributed. For
example, there are restrictions on distributing tweets [35]. However, since grep iterates over the
corpus, indexing comes naturally.

A full-text search engine typically relies on an efficient indexing and lookup method and can be very
fast. However, this takes additional space or might depend on non-local services. It also does not
address the redistribution issue. A full-text search (e.g. BM-25 in Lucene) can support fuzzy or exact
match searches, though these may add additional overhead and efficiency concerns.

Structures such as a suffix array are suitable for fast, local use on a single machine but have very
high space requirements. Lee et al. [24] use a suffix array to deduplicate C4 [33] but note that “this
algorithm still requires that the dataset itself fits in memory” and suggest using a machine with
>600GB of RAM. These structures allow for indexing into the dataset but do not support fuzzy
matching. A local suffix array redistributes data; if exposed as a service, enumerating and extending
queries could extract full documents.

Table 2: Ratio of structure to dataset size for
related tools that could be used for membership
testing. Tool & Data Sizes in TB (1012 bytes).

Structure Dataset Tool Data Ratio
grep (any) - - 1.0
RST (BM25) ROOTS 2.78 1.54 1.80
Suffix Array C4 1.65 0.86 1.92
Ours Pile 0.03 0.89 0.03

Given these tradeoffs, we use a probabilistic ap-
proach for membership inference: a data sketch.
A sketch provides a compressed and approxi-
mate view of data [4, 6, 7]. We use hash-based
matching, addressing the redistribution issue,
but giving up the ability to index or perform
fuzzy matching. Our solution is minimal in that
it supports membership inference and nothing
more – yielding a small and fast structure. Other
tools might support additional features or index
the original documents. See Table 2 for a size
comparison with other tools, such as the ROOTS
Search Tool BM25 index of Piktus et al. [30]
on the ROOTS corpus [23]; and the Suffix Array of Lee et al. [24] on C4 [33]. Most tools are
built for indexing, which causes the structure size to be at least as large as the data. Our minimal
implementation uses only ∼ 3% the space of the original corpus with millisecond query latency.

3.1 Bloom Filter Sketching

We base our sketch implementation of a portrait on Bloom filters [4]. These are a well-known solution
for space efficient approximate membership testing, using only a fixed number of bits to record
elements of a set. For example, our sketch of the Pile uses only ∼ 14 bits per data element. Bloom
filters are similar to hash tables, but they store only the hash of a data element rather than storing the
element itself. This is accomplished by setting bits in an array indexed by hash functions. See Broder
and Mitzenmacher [7] for further details and derivations of hash collision rates. Bloom filters can
output false positives but never false negatives. The false positive rate can be tuned to optimize the
final size of the structure.
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The key is: a b c d e f g h i j k l m n1. Corpus:
2. Hash n-grams:
(stride=4)

The key is: a fghi jklmbcde

a b c d e f g h i j k l m n

abcd bcde cdef defg efgh fghi ghij hijk ijkl jklm klmn

3. Query: 

5. Matches: b c d e f g h i j k l m

4. Query n-grams: 
(stride=1)

Figure 2: The matching process for a Bloom filter sketch with n-gram width 4. The blue tokens
abcdefghijklmn are a string of interest. Checking subsequences indicates several matches (green).

3.2 Bloom Filter Construction

Since our use case is membership testing over subsequences of longer documents, we can modify
the input to our Bloom filter. Instead of storing all n-grams we store only tiled (or strided) n-grams
from a source corpus. When building our Bloom filter data sketch, we hash n-grams with stride n (i.e.
non overlapping, see Figure 2 rows 1 and 2). This implicitly defines an offset or alignment where an
n-gram starts (row 2). Each resulting strided n-gram is hashed and stored in the Bloom filter (row 2).
At query-time, we extract n-grams of size n but stride 1 from the input query (Figure 2 rows 3 & 4).
Each of these is checked against the Bloom filter and matches are recorded (row 4, green).

This reduces space requirements but carries the risk of missing some string of interest if it is split by
a tile boundary in the corpus. This boundary problem can be alleviated by querying for sufficiently
long strings and setting an appropriate size of n. Observe that if a string of interest is at least of length
2n− 1 it will necessarily contain at least one tile of size n, producing a match. However, there may
be hanging tokens at the start and end of a string. See Supplementary Appendix B for an example.

Chaining We can further chain a set of matching query n-grams into longer sequences. If matches
occur n indices apart, they can be joined as a single inferred string (final row, Figure 2). This does not
guarantee that the n-grams occurred in that particular order, but this is unlikely with long chains of
long n-grams. Permutation attacks could produce bags of features that would harm other retrieval or
indexing tools. See Appendix C for further discussion of adversarial permutations. Examining chains
of matches at a document level alleviates the risk of false positives: a single n-gram match might be
due to a false positive, but the probability of a chain of such matches decreases exponentially with
the chain length.

Redistribution Previously we noted that other tools for inspecting data redistribute the content,
leading to legal and privacy concerns. Since Bloom filters distribute only hashes, they provide some
obfuscation. Bianchi et al. [3] term this “Better Than Nothing” privacy and discuss information
hiding bounds on Bloom filters with various parameters. They note that the protection offered by
one-way hashing is vulnerable when “the universe set is easily enumerable”. In our case, this is
either unicode sequences of length n or sequences V n for tokens in a vocabulary set |V |. Storing
strided n-grams provides additional information hiding without changing the size of the universe.
Rather, it becomes harder to guess another member element given an existing match. If we stored
every n-gram, an attacker could reconstruct documents by simply guessing single token extensions to
an existing member. Since we store strided n-grams, an attacker would need to guess a sequence of
length n to find the next element in a document. Note that in principle, proprietary LLM providers
(e.g ChatGPT [29]) could release a Bloom filter based Data Portrait without revealing their exact
training data – only the hashes of some substrings.

4 Case Studies

We construct several Data Portraits based on Bloom filters and demonstrate case studies. With the
chosen parameters, these sketches are most suitable for checking document level queries. A live
interactive interface is available at dataportraits.org.
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4.1 Constructing Portraits

We use an optimized ingestion pipeline that requires only a single modest machine. Our pipeline
supports both token and character-based sketches. We apply simple whitespace normalization that
enables exact string matching on code snippets at different indentation levels. We use Redis4 to store
the resulting hashes.

Further examples in this paper use a sketch built on character n-grams of length 50. This n-gram
width was chosen for two reasons. First, it is in-line with related work on dataset filtering and
de-contamination. GPT-2 uses 8-grams to analyze test set leakage and GPT-3 uses between 8 and
13-grams for similar analysis based on properties of the test set [32, 8]. We find that an 8-gram
corresponds to approximately 52 characters of text in the Pile. Secondly, to further validate this
choice of parameter, we analyze a large subset of the Pile and find that out of all extracted 50-grams,
only ∼ 1.6% of extracted n-grams are duplicated elsewhere in the subset. This value is 7.5% for
25-grams and 79% for 10-grams. In effect, a 50 character span is already a good document fingerprint.
We also found that this width tends to match meaningful spans of text rather than spurious matches
of common short spans. See Section 5.1 for further examples.

The Pile We construct a strided Bloom filter on The Pile [13] which is built on 825 GiB of
documents. Certain subdatasets are re-weighted and the final dataset is distributed as 1254 GiB
of text, after decompression. Our text pipeline takes around 12 hours on a machine with 40 cores
and 140 GB of RAM. The token level version takes approximately 24 hours on the same machine,
including the time to decompress and tokenize the Pile. The structure takes only 27 GB on disk and
has a false positive rate of 1× 10−3 (see Section 5.1 for further analysis of false positives). We note
that these compute resources are fairly modest and our pipeline is stream based - the only requirement
is sufficient RAM to hold the final structure. See Table 2 for an outline of the space usage of other
structures that could be used for membership inference. With hash-based matching, we use ∼ 14 bits
per data element (50 UTF-8 characters).

The Stack The Stack is a collection of permissively licensed code data obtained by downloading
GitHub repositories [22]. We use the subset of The Stack used to train StarCoder, a 15.5B parameter
large language model for code [25]. Specifically we process the data after test-set decontamination
and preprocessing (∼800 GB of code). The Stack Portrait uses approximately the same amount of
compute as the Pile Portrait, producing a 26GB documentation artifact.

4.2 WMT Overlap

Recent work on large language models (LLMs) has found that they learn language translation
implicitly through supervision present in web-scale training sets [8, 37]. A reasonable reaction is
to be suspicious that models have memorized target text from the training corpus. We scan WMT
(Workshop on Machine Translation) test sets available through SacreBLEU [31], reconstructing
documents by concatenating lines. Since line concatenation does not restore paragraph boundaries
present, this is only a lower bound on overlap. We analyze non-English references since source
documents are typically published English news articles.5

Given this collection of documents, we search for overlap using our Pile Bloom filter-based Data
Portrait. We chain individual matching n-grams as described in Section 3.2. Recording the max
length of a found chain gives us a measure of approximate longest overlapping subsequence. Results
are shown in Figure 3 for the 10 longest matches with a more detailed table in Appendix D. Most
of the test documents with high overlap are older test sets, where test data may have been publicly
available for some time (e.g. on GitHub or rehosted by other projects). One exception is the WMT
2020 English Inuktitut [1] test set (bold). A full document from this test set appears in the Pile.6 The
exact training data is not known for many LLMs: we cannot conclude whether translation targets are
memorized by a specific model, but our Pile-based sketch shows that some test data has leaked.

4https://redis.io/
5Some WMT sets include reverse-created text [17]. Only recent LLM work [18] has analyzed this effect.
6Original Article
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Figure 3: Approximate longest overlapping subsequences between individual documents in WMT
test sets and the Pile. Y-axis is year and language.

4.3 Overlap Detection

Following Dodge et al. [12, Table 2] we quantify the degree of overlap for selected test sets and the
Pile. We do not seek to exactly replicate their table as there are several fundamental differences —
they use full text exact match against C4 [33] and we use a measure of expected 50-gram overlap
against the Pile.

Table 3: Overlap statistics. E.O. is the
Expected Overlap metric. Time is in seconds,
measuring the total query time for that
dataset.

Dataset %E.O. Instances Time

XSum 40.12% 11.3K 3.61
TIFU-short 4.12% 79.7K 1.28
TIFU-long 3.86% 42.1K 10.73
AMR2.0 (LDC) 8.12% 1.4K 0.45
AMR2.0 (Plain) 8.06% 1.4K 0.43

Sum - 136.0K 16.5

Additionally we only select datasets with minimal
normalization and preprocessing since these are likely
to appear in web-scrapes. Specifically we use target
text from XSum [28], TIFU [20], and AMR2.0 [21,
LDC2017T10]. XSum and TIFU are summarization
datasets created from news articles and reddit respec-
tively. Labels consist of brief summaries of a larger
document. AMR2.0 (Abstract Meaning Represen-
tation) is a treebank resource that can be used for
graph-to-text generation. Inputs consist of semantic
graphs and labels are a target sentence with the same
semantics. Some target text is translated to English
specifically for this resource and should not appear
naturally in a web-scrape absent leakage.

We use an Expected Overlap metric that compares the
expected number of n-gram matches in a document
(had the complete document appeared in the Pile) to the observed longest match. Given a strided
Bloom filter sketch with width w, Expected Overlap for a corpus T is:

∑
d∈T max(chainsd)∑

d∈T E(length(d),w) where d

are documents in a test set T . max(chainsd) is the max chain length i.e. the approximate longest
overlapping subsequence between a document and the sketched dataset. E() is the expected number
of matches had d appeared entirely in the corpus, accounting for boundary issues (see Appendix E).
Many other metrics are possible using our sketch (e.g. total match count).

Results are in Table 3. Target summaries from XSum have the highest incidence of overlap with
the Pile. This is unsurprising since the dataset is constructed from easily scraped BBC articles [28].
TIFU (short and long) are constructed from summaries of reddit posts. Many of these summaries
are too short to guarantee a match in the strided filter we use here for illustration, so these overlap
statistics are a lower bound. For AMR2.0, we search for both raw target text as it appears in LDC
(Linguistic Data Consortium) distributed files and detokenized plaintext. We find slightly higher
overlap for the raw text. This suggests that some LDC files are publicly exposed and scraped into
LLM corpora (LDC data licenses typically forbid redistribution).7 Creating this table is extremely
fast using our sketch, taking on the order of 0.1ms per instance (136K total). While the methods are
not directly comparable, available full text search tools take on the order of seconds per query when
accessed on the web.

7We manually found instances of LDC data on GitHub.
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Figure 4: Text for the Fast Inverse Square Root algorithm from the Quake III source code. The blue
highlighted span is the longest match, component spans are in green below. Some of the grey spans
are preprocessor directives that also appear in the Pile.

4.4 Code Generation

Code generation or text-to-code models are another application of LLMs. GitHub Copilot8 is a
tool built on the OpenAI Codex model [11]. Some users have found that Copilot will copy famous
snippets of code and add a new license.9 GitHub has studied plagiarism and has taken steps to avoid
copying from existing repos [38]. However, conventions and precedents around language models
trained on open source code are rapidly developing. Content creators (i.e. programmers who have
published code on GitHub) may wish to check if their code has been included as part of an LLM
training corpus. Similarly, a downstream user might want to check if the outputs of a tool like Copilot
substantially overlap a collection of data (e.g. for licensing compliance purposes). Figure 4 shows an
example of our full front-end on a famous snippet of code. See the demo at pile.dataportraits.org

8https://github.com/features/copilot
9https://twitter.com/mitsuhiko/status/1410886329924194309
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to interact with this example. The highlighted text suggests that the passage appears in the Pile.
Specifically, hashes for the contiguous 50-grams are present in the pile (green, below). The Longest
Chains section lists the longest sub-strings composed of these n-grams. Since hashing is very fast,
users can interact with this interface and see updates at typing speed.

We build a Portrait documenting The Stack in addition to our Pile Portrait. This documentation
artifact is available through our web interface (stack.dataportraits.org) and additionally powers a
plagiarism checking service exposed to live users. This artifact exactly documents the training data
used in StarCoder, a 15.5B parameter code generation model [25]. The StarCoder model has been
used in a variety of open source applications and tools including a Copilot-like autocomplete plugin
for VSCode.10 This plugin implements a plagiarism check by calling our Portrait service. Spans that
overlap the model’s training set are highlighted in the user’s editor. Our Portrait service acts as a
lightweight first-pass check for model plagiarism and additional tools from Li et al. [25] can be used
to further assess attribution. Our sketch-based Data Portrait is efficient – this service has active users
and runs on a single cloud VM with 32GB of RAM. Most queries take only ∼ 10s of milliseconds.

5 Analysis

Table 4: F1 and latency on our
classification task. Both methods
can correctly classify Pile text, but
ours (BF) is very fast.

Method F1↑ Sec/Doc↓
BF 1.0 0.015
FTS200 1.0 11.28
FTS50 0.57 1.81

To further validate our approach, we return to the fundamental
stakeholder question: “is this text in a corpus?” This is a binary
classification task: is query document d in dataset Cpile? We
design a simple experiment to test how well our method method
works as a classifier and compare it to a full text search engine
corresponding to the Roots Search Tool of [30].

Data We construct a small test set of text sampled from the
Pile and text that is certainly not in the Pile. Without prior
access to a membership testing tool, collecting text not included
in an LLM corpus can be difficult. We harvest paragraphs from
New York Times articles published between August 7-18 2023.
Since the Pile was created in 2020, this text is certainly not in
the Pile and any overlap should be spurious (e.g. long proper
nouns or repeated quotations). This set consists of 5.5k wc -w words and is balanced with respect to
document length and class label.

Classifiers The strided Bloom filter approach produces a list of n-grams and a boolean membership
value. As described in Section 3.2, we can obtain an approximate longest common substring (lcs)
between the query and corpus. Our classification rule is simply: length(lcs)

length(query) > 0.9 where 0.9 is a
boundary threshold. We construct a similar classifier using a full text Lucene index on the Pile, where
we take the common substring between the query and top result.11 We find both classifiers can achieve
perfect precision and recall on this synthetic task. However, the full text search classifier (FTS in
Table 4) is much slower than the Bloom filter based classifier (BF).12 The retrieval engine’s response
time is heavily dependent on query length, thus we experiment with only the first N characters of
the document: FTSN . At 200 characters of context, the FTS classifier achieves perfect recall and
precision though it takes ∼ 700x more time than the Bloom filter. Queries are much faster with 50
characters of context, but precision and recall suffer. We again emphasize that full indexes provide
far more information than a Bloom filter; however, a minimal Bloom filter is sufficient for this
classification task.

5.1 False Positives

Our method is probabilistic but the previous sections show that it is still useful for understanding
datasets. Here we further analyze false positives. Using the dataset of novel text constructed for the
previous section, we record all n-grams for which the Bloom filter returns True. To obtain ground

10https://github.com/huggingface/huggingface-vscode
11This search instance did not directly support exact match phrase queries.
12Latency measurements are averaged over 5 runs to account for network timing.
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truth labels for ngram ∈ Cpile, we query the Pile Lucene index and record whether any of the top
25 documents contain that n-gram.

We first find that there are no chained matches when querying our system with novel New York
Times text. That is, only isolated 50-grams match, rather than a sequence of multiple matching
n-grams. Using the ground truth labels from the Pile search, we next find a false positive rate of
7×10−4 (slightly less than the intended rate of 1×10−3). The NYTimes text also contains some true
positive matches. For example, “National Counterintelligence and Security Center, ”
is a 50-character string that coincidentally appears in both our novel corpus and the Pile. We found
that a resolution of 50 characters is sufficient for document fingerprinting, but this parameter could
also be increased to reduce matches of long common strings. We further note that the false positive
rate (FPR) is simply a parameter that can be directly set (at construction time) at the cost of space.
Decreasing the FPR by an order of magnitude (to 1× 10−4) would increase storage size to about 36
GB and increasing the FPR to 1× 10−2 would result in an 18 GB structure.

6 Impact and Limitations

We hope that this work will encourage members of the field to adopt membership testing tools as part
of a complementary suite of dataset and model documentation artifacts. Many in the field have taken
issue with massive opaque datasets. Our web interface and tools are meant to facilitate simple, easy,
transparency. We hope that one broader impact of our demo will be enabling both NLP specialists
and lay-people in assessing large language models. For example, a non-technical content creator
could search for their material in a documented dataset.

Our work is limited in that we focus on studying only a few datasets. We hope our tooling will enable
the study of other datasets in the future. We stress a lightweight and efficient hash-based approach to
membership testing, but this comes with certain trade-offs such as false positives and the inability
to retrieve the context surrounding a match. We also note that while we intend to better document
existing datsets, these tools could be used to modify generated outputs. That is, an open plagiarism
detection tool could be used to avoid plagiarism detection.

7 Conclusions and Future Work

Foundation models come with concerns such as plagiarism, test-set and personal data leakage, data
contamination, and data provenance. We have argued that existing documentation practices are not
sufficient on their own to address these concerns, and proposed the adoption of Data Portraits: records
supporting membership inference on the data used to train a model. After discussing examples of
existing solutions, we described our own time and space efficient version based on Bloom filters
and host several demos. In future work, we hope to investigate applications of similar efficient data
structures for indexing and counting. Our current implementation is minimal in that it aims to satisfy
a form of membership testing and nothing more, such as full text indexing. We demonstrate its
usefulness in case studies, and call for dataset and model creators to release some form of Data
Portrait as part of their essential documentation.
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A Supplemental Documentation

This paper recommends best practices does not construct a new dataset or benchmark; thus not all
parts of the recommended supplemental material (e.g. a model card or datasheet) are applicable.
However, since we host an implementation and plan to distribute artifacts and code, we address
similar relevant concerns:

• URL, landing page, and demo: dataportraits.org

• Code: to be released through the site above. Open source code will be hosted on GitHub.

• Hosting and Preservation: We will maintain the existing interactive web interfaces for at
least one year from publication. Code will be available for long-term distribution through
GitHub.

B Sketch Misses

In Figure 2, consider the query string: defg. This string lies on the boundary of the n-grams split
during corpus processing. No stride 1 width 4 ngrams extracted from that query will match the
database. However, if the query string were expanded to length 2 · width − 1, note that it would
necessarily intersect at least one of the hashed n-grams. For example, defghij will match at fghi.
In this way, given a long enough query string, our query protocol guarantees that at least one match
will be found if the query string of interest does occur in the corpus.

C Adversarial Matches

We describe a protocol for chaining matches together. In Figure 2, the three matches of bcde,
fghi, jklm occur separated by width indexes. Therefore we infer the whole string (formed by
concatenating the three n-grams) was present in the corpus. However, this might not be true. If
an adversary knew the details of the sketch width (and initial offset into the sequence), they could
construct a document that embeds n-grams in different locations, such that a query string would
appear to be present according to our protocol. For example, the sketch in Figure 2 would falsely
infer that the string fghibcde is present in the corpus, since it is composed of two chosen matches.
This is very unlikely in practice, given appropriately chosen widths and sketch resolutions. This is
essentially a permutation attack, and a similar approach could be used to fool a BM-25 index.

D WMT Documents

Table 5 lists the full test set, doc id, and approximate longest match results from Figure 3.

E Counting Expected Matches

Consider a string of interest S, with length N that is embedded in a larger document D. Matching S
with a strided Bloom filter with width w will yield a chain of something around N

w tiles (substrings
of length w). For example, take a sketch with width w = 50 and a string with N = 150. If the tiles
in D are perfectly aligned on the boundaries of S, the Bloom filter will find 150/50 = 3 matches.
Perfectly aligned means that string S begins at an offset in D that is a multiple of w — so when
breaking D into non-overlapping chunks (tiles) of size w, the start of some tile is also the start of S.

This perfect alignment might happen by chance, but most likely there will be some parts of S that
hang over the tile boundaries, meaning only some inner part of S will match the hashed tiles. In
Figure 2 the query string S = abcdefghijklmn is not perfectly aligned. a and n hang over and thus the
only complete tiles are the inner bcde, fghi, jklm tiles match.

Given the width and length of a string, we can calculate the expected number of matches for any
possible alignment of the string. Note that there are w possible alignments and each is equally likely.

A string of length N modulo the tile width w can be written as N = aw + b where a is the number
of full tiles and b is the remainder. Consider alignments other than the perfect one boundary. We have
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Table 5: Full WMT overlap information.
Test Set doc_id Longest
wmt13.en-fr.ref lemondefr/2012/12/01/275696 700
wmt16.en-fi.ref kaleva.fi.29723 400
wmt16.en-de.ref tagesspiegel.de.65447 350
wmt20.en-iu.ref nunatsiaq-20190930 300
wmt12.en-de.ref noroeste/2011/11/15/78596.html 250
wmt16.en-de.ref borkenerzeitung.de.56604 250
wmt14.en-fr.ref 4bb85eb6281e0b19986de1d4f867e3ff 250
wmt15.en-ru.ref 893-kommersant 200
wmt18.en-fi.ref karjalainen.fi.65284 200
wmt18.en-ru.ref kommersant.324314 200
wmt14.en-fr.ref cd085bbb218a7afc1255b2b60a06692a 200
wmt15.en-de.ref 14428-abendzeitung-muenchen.de 200
wmt15.en-ru.ref 115-aif 200
wmt16.en-ru.ref lgng.30237 150
wmt16.en-ro.ref ziare.ro.17378 150
wmt15.en-ru.ref 1375-rg.ru 150
wmt14.en-fr.ref 90c566f54bf1076e6f539875d45d673c 150
wmt17.en-ru.ref izvestiya.51251 150
wmt16.en-ro.ref hotnews.ro.8884 150
wmt14.en-fr.ref 96e21a07ed57d79665a35a548ef7d841 150
wmt16.en-de.ref abendzeitung-nuernberg.de.12297 150
wmt17.en-de.ref dw.47065 150
wmt18.en-de.ref handelsblatt.com.180784 150
wmt17.en-de.ref frankfurter-rundschau.70094 150
wmt13.en-fr.ref cyberpresse/2012/12/01/1564248 100

b+ 1 alignments that produce a matching tiles. We will also have w− b− 1 alignments that produce
a−1 tiles. Summing and cancelling terms, we have (b+1)a+(w− b−1)(a−1) = aw−w+ b+1
possible matching tiles. Substituting the length of the string simplifies to N −w+1 possible matches,
and since each w alignment is equally likely, the expected number of matches is E(N,w) = N−w+1

w .
The 4 possible alignments with 11 possible matching strings in the Figure 2 example are:

[ abcd , efgh , i j k l ] ( m i s s i n g mn)
[ bcde , f g h i , jk lm ] ( m i s s i n g a , n )
[ cdef , g h i j , klmn ] ( m i s s i n g ab )
[ defg , h i j k ] ( m i s s i n g abc , lmn )
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