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ABSTRACT

Score-based diffusion models are a highly effective method for generating sam-
ples from a distribution of images. We consider scenarios where the training data
comes from a noisy version of the target distribution, and present an efficiently
implementable modification of the inference procedure to generate noiseless sam-
ples. Our approach is motivated by the manifold hypothesis, according to which
meaningful data is concentrated around some low-dimensional manifold of a high-
dimensional ambient space. The central idea is that noise manifests as low magni-
tude variation in off-manifold directions in contrast to the relevant variation of the
desired distribution which is mostly confined to on-manifold directions. We intro-
duce the notion of an extended score and show that, in a simplified setting, it can
be used to reduce small variations to zero, while leaving large variations mostly
unchanged. We describe how its approximation can be computed efficiently from
an approximation to the standard score and demonstrate its efficacy on toy prob-
lems, synthetic data, and real data.

1 INTRODUCTION

Score-based diffusion models are a state-of-the-art approach for image synthesis, often outperform-
ing alternatives like generative adversarial networks (GANs) and variational autoencoders (VAEs)
in sample quality and diversity (Ho et al., 2020; Song & Ermon, 2020). These models learn a neural
network by adding noise to data samples during training, according to some forward process. The
network can then be used to reverse this process during inference. Essentially, they denoise an image
with independent Gaussian pixel values into samples from the data distribution.

However, real-world datasets are often corrupted by noise arising from measurement er-
rors, compression artifacts, or data collection processes (Gupta & Gupta, 2019; Brummer &
De Vleeschouwer, 2019). In this case, standard diffusion models trained directly on noisy data
will learn to reproduce this corruption in their generated samples. We aim to address this by de-
veloping a method that can generate samples that approximately come from the clean distribution,
despite being trained on noisy data.

A well-established paradigm for understanding data with a high-dimensional representation is the
manifold hypothesis: meaningful data distributions are concentrated near a low-dimensional man-
ifold embedded in the ambient space (Bengio et al., 2013; Fefferman et al., 2016). For instance,
natural images, despite being represented as a d-dimensional array, where d can be in the millions,
exhibit intrinsic dimensions that are far lower (Pope et al., 2021). This viewpoint will be the basis
of our approach as we interpret noise as low-magnitude variations in directions orthogonal to the
manifold, whereas meaningful variations of the underlying data correspond to movements along the
manifold itself. The central idea is to exploit this geometric structure during the inference process
to suppress the former while preserving the latter.

The manifold hypothesis has previously been considered in the context of diffusion models to study
their convergence behavior, e.g. in Bortoli (2022), Tang & Yang (2024), and Potaptchik et al. (2024).
It has also been argued in Stanczuk et al. (2024) that diffusion models can be leveraged to estimate
the intrinsic dimension of data manifolds. Some existing works tackle the problem of noisy training
(Daras et al., 2023; Lu et al., 2025), but require adapting the training process. Outside the gen-
erative setting, there are also traditional manifold denoising techniques predating diffusion models
(Hein & Maier, 2006; Gong et al., 2010; Wang & Carreira-Perpinán, 2010; Fefferman et al., 2018;
Faigenbaum-Golovin & Levin, 2023).
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This work introduces Manifold Attracted Diffusion (MAD), an efficiently implementable modifi-
cation to the inference procedure of score-based models. We define the concept of an “extended
score”, which coincides with the standard score when that exists, but is also well-defined for Dirac
delta distributions. In fact, it treats them essentially as Gaussians with a certain non-zero variance.
This property can be leveraged in the inference procedure to reduce small off-manifold variations
to almost zero while leaving larger on-manifold variations mostly unchanged, resulting in a soft
thresholding effect. Thereby our method implicitly “attracts” the generated samples towards a low-
dimensional structure, effectively filtering out noise. Importantly, a suitable approximation to the
extended score can be computed easily from an approximation to the standard score, which enables
the use of established training methods as well as pretrained networks under some conditions that
are, e.g., satisfied by the framework of Karras et al. (2022). Our key contributions include:

• The formal definition and analysis of the extended score;
• An inference algorithm that reduces noise in generated samples without needing a special training

procedure, making it compatible with established frameworks and pretrained models;
• Empirical validation on toy problems and real-world image data, such as FFHQ, AFHQ, Ima-

geNet, and EMPIAR-11618 (cryo electron microscopy data).

This paper is structured as follows. In Section 2, we review the necessary background on score-based
diffusion models. In Section 3, we formally introduce the extended score and analyze its proper-
ties. Section 4 details our proposed inference algorithm and, in Section 5, we present numerical
experiments that validate our approach.

2 BACKGROUND

We will be working with the probability flow ODE formulation of diffusion models, largely fol-
lowing the framework of Karras et al. (2022). For more background and the connection to other
diffusion model formulations we refer to Karras et al. (2022) and the references therein. Given a
data distribution p0 on Rd we consider the stochastic process (Xσ)σ∈[0,σmax] with X0 ∼ p0 and

Xσ = X0 +N (0, σ2I), σ > 0.

The corresponding densities are given by

pσ = p0 ∗ gσ2 , (1)

where gσ2(x) = (2πσ2)−d/2 exp(−∥x∥2

2σ2 ) is the density of N (0, σ2I). The central idea behind
score-based diffusion models is to generate a sample x0 ∼ X0 from a sample xσmax ∼ Xσmax , where
xσmax is, in practice, approximated by simply sampling from N (0, σ2

maxI), as for a sufficiently large
σmax this should only introduce a negligible error. One way to achieve this is by evolving the ODE

dxt = −σ̇(t)σ(t)Spσ(t)(xt)dt, (2)

where σ : [0, T ] → [0, σmax] is some noise schedule and the score operator is given by

S : P (Rd) → C(Rd,Rd), p 7→ ∇x log p,

where P (Rd) := {p ∈ C1(Rd,R) :
∫
Rd p(x) dx = 1, p(x) > 0 ∀x ∈ Rd} is the set of densities

that are positive everywhere in Rd. Note that, for σ > 0, p0 ∗ gσ2 is a density even if p0 is not. The
fact that the score may not be well-defined for p0, e.g. because the data distribution is supported on
some lower-dimensional subset in Rd, is avoided in practice by generating a sample xδ with δ close
to 0. It can be shown (Song et al., 2021; Karras et al., 2022) that evolving a sample xt1 ∼ Xt1 from
t1 to t2 according to (2) yields a sample xt2 ∼ Xt2 .

Of course, this is only useful provided that we have access to the score, which depends on the data
distribution, and from which we usually have only a finite number of samples. Remarkably, it turns
out that a useful approximation of the score can be learned by training a neural network on these
samples. A common practice, motivated by numerical stability, is to learn the so-called denoiser
function D, which is simply a shifted and scaled version of the score, i.e. D(x, σ) = σ2Spσ(x)+x.
This denoiser function is then approximated by a neural network Dθ using a loss based on

Ey∼X0Eη∼N (0,σ2I)∥Dθ(y + η)− y∥22

2
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which is minimized by the denoiser function. However, as the expectation over the data distribu-
tion must be replaced by the empirical expectation based on the available data samples, this loss
has, in general, many global minima. Nonetheless, employing neural networks utilizing an adapted
U-Net architecture (Ronneberger et al., 2015; Ho et al., 2020; Dhariwal & Nichol, 2021) appears to
introduce sufficient bias towards a good approximation of the score. This approximation capabil-
ity is primarily founded on the empirical observation that using it to generate images by evolving
equation 2 (or related differential equations) produces realistic samples. An analytical description
of how Dθ approximates D is still an open problem. As the purpose of the work is to introduce a
novel inference procedure, we will simply assume that we can obtain a suitable approximation to
the score by some established training method.

3 CONCEPT: THE EXTENDED SCORE

Let M(Rd) denote the set of probability measures on Rd.
Definition 3.1 (Extended score). For d ∈ Rd, p ∈ M(Rd), γ ∈ (0,∞), let

Hγ : M(Rd) → C(Rd,Rd), p 7→ (1 + γ)S(p ∗ gγ) + γ d
dγS(p ∗ gγ)

and
H0 : M̃(Rd) → {f : Rd → Rd}, p 7→ lim

γ→0
Hγp,

where M̃(Rd) := {p ∈ M(Rd) : limγ→0(Hγp)(x) ∈ Rd ∀x ∈ Rd}.

We first note that H0 coincides with the score for probability distributions with density in P (Rd),
which we can view as a subset of M(Rd) by identifying a density function p ∈ P (Rd) with the
measure given by p(A) =

∫
A
p(x)dx for A ⊆ Rd (see Section A.2 for a proof).

Lemma 3.2. Let p ∈ P (Rd). Then H0p = Sp.

It is, however, also well-defined for, e.g., Dirac delta measures. Specifically, let δ denote the Dirac
delta at 0, then

Hγδ(x) = (1 + γ)S(gγ)(x) + γ d
dγS(gγ)(x) = − (1+γ)x

γ + γ d
dγ (−

x
γ ) = −x.

In particular it holds that H0δ(x) = −x, i.e. we obtain1 a function which, similar to the score for
Gaussians, yields at each point a vector pointing towards the mode of the probability distribution.
This generalizes to mixtures of Dirac delta distributions, where H0p will point towards the location
of the nearest Dirac delta in the mixture (see Section A.2 for a proof).

Lemma 3.3. Let n ∈ N, µ1, . . . , µn ∈ Rd, c1, . . . , cn ∈ R+ such that
∑

i ci = 1 and p =∑
i∈[n] ciδµi . Then

H0p(x) = −
∑
i∈[n]

zi(x)(x− µi),

where Wi = {x ∈ Rd : ∥x− µi∥ ≤ ∥x− µj∥ ∀ j ∈ [n]} is a Voronoi region and

zi(x) =


0 x /∈ Wi,

1 x ∈ intWi,

ci

(∑
j:x∈Wj

cj

)−1

x ∈ ∂Wi.

Note that the first two cases in the expression for zi(x) cover almost every (w.r.t the Lebesgue
measure) x ∈ Rd and the third case is only needed if x is equally distant to multiple µi.

By combining the expressions of the extended score for a Dirac delta and for a non-degenerate
Gaussian distribution, it is possible to derive an explicit expression of the extended score for any

1Note that in this simple case, Hγδ is already the same as H0δ, which is not the case in more complicated
scenarios, e.g. for mixtures of Dirac deltas.

3
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(possibly degenerate) Gaussian distribution. This is achieved by exploiting how the extended score
behaves with respect to products of measures, see Appendix A.1 for the details.

We have the rather peculiar property that H0δ = Sg1, i.e. the extended score of the Dirac delta
matches the score of a variance 1 Gaussian. At this point, it should be noted that it is impossible to
find a nice extension of the score operator that includes Dirac delta distributions, as

Sgγ(x) = −x
γ ,

which diverges for x ̸= 0 as γ → 0. As such any extension is necessarily discontinuous with respect
to any topology in which limγ→0 gγ = δ.

However, the ability of the extended score to treat distributions with positive variance like they were
Dirac delta distributions will, in fact, be the cornerstone of our proposed inference technique. Under
the manifold hypothesis, the clean data distribution has significant variation only along a small
number of directions. Given noise in the ambient pixel space, which has a much higher dimension
than the image manifold, the variance in off-manifold directions due to noise should be much smaller
(e.g. for isotropic Gaussian noise η the variance in each direction is of order ∼ d−

1
2E[∥η∥]). Thus,

noise can be suppressed by using the extended score.

4 IMPLEMENTATION

In view of the property of the extended score just discussed, we would like to design an inference
procedure that is able to generate samples with less noise, if compared to the samples obtained via
the usual score. To this end we first note that, due to (1), we have

S(pσ(t) ∗ gγ) = S(p0 ∗ gσ(t)2 ∗ gγ) = S(p0 ∗ gσ(t)2+γ) = S(p√
σ(t)2+γ

).

So, given a network trained to approximate the score for any σ ∈ [0, σmax], as is the case in the
framework of Karras et al. (2022), we also have an approximation to the extended score with a given
small γ > 0, where the γ-derivative can be obtained, e.g., by a finite difference2 approximation. As
the desirable properties of the extended score hold in the γ → 0 limit, which we cannot compute
directly, we instead need to choose a suitable dependence γ(t) with limt→0 γ(t) = 0.

A basic way to conduct inference with the standard score is evolving (2) simply via Euler method,
i.e. initializing with x0 ∼ N (0, σ(t0)

2I) and iterating

xi+1 = xi − (ti+1 − ti)σ̇(ti)σ(ti)Sθ(σ(ti), xi), (3)

where Sθ(σ, x) ≈ Spσ(x) is the learned approximation of the score. We will instead, based on
Definition 3.1, consider the iteration

xi+1 = xi −m(ti)(ti+1 − ti)σ̇γ(ti)σγ(ti)
(
(1 + γ(ti))Sθ(σγ(ti), xi) + γ(ti)

d
dγ

Sθ(σγ(ti), xi)
)
, (4)

where σγ(t) =
√

aσ(t)2 + bγ(t), a, b > 0 are manually chosen parameters, and m(ti) is a cor-
rection factor determined as explained below. Note that this reduces to (3) for a = 1, b = 0, and
m(t) = (1 + γ(t))−1, so essentially the choices of a, b, and m determine to what extent we would
like the inference to push points onto a manifold at a given time step. We further enforce σγ(t) = t
to match the scheduling of Karras et al. (2022), as it allows us to take advantage of their optimized
choice of time steps and leads to better comparability. Lastly, we introduce a parameter p > 0 to
regulate the relative speed of convergence of σ and γ via γ(t) = σ(t)p.

With these choices, (4) simplifies to

xi+1 = xi −m(ti)(ti+1 − ti)ti
(
(1 + γ(ti))Sθ(ti, xi) +

bγ(ti)
2ti

d
dσSθ(ti, xi)

)
, (5)

where d
dσSθ denotes the derivative of Sθ : [0, σmax]×Rd → Rd w.r.t its first argument, and γ(ti) is

a solution of √
aγ(ti)

2
p + bγ(ti) = ti.

2Note that one could also compute the exact derivative of the score network using automatic differentiation
(AD). However, since PyTorch is not optimized for forward mode AD this is significantly more expensive than
a second evaluation of the network and did not yield any clear improvements in the numerical experiments.

4
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We observe that in the case of Sθ(σ, x) = −x−µ
σ2 , which corresponds to an initial distribution

consisting of a Dirac delta at µ, the standard score inference rule (3) with σ(t) = t evaluates to

xi+1 = xi − ti−ti+1

ti
(xi − µ) = (1− ti−ti+1

ti
)xi +

ti−ti+1

ti
µ. (6)

This means that, if ti−ti+1

ti
≥ ∆ > 0 for every i, we have

∥xi+k − µ∥ ≤ (1−∆)k∥xi − µ∥,

i.e. convergence to µ at a geometric rate. We would like our inference rule to mimic this behavior
for simple Dirac deltas, which is accomplished by choosing the correction factor as

m(ti) =
(
1 + γ(ti)− bγ(ti)

t2i

)−1

, (7)

see Section A.2 in the appendix for a detailed derivation. Note that, as long as γ(ti) ∈ o(t−2
i ) we

have limt→0 m(t) = 1. Putting it all together, we arrive at the following algorithm.

Algorithm 1 Inference with extended score

1: function INFERENCE(Sθ, a, b, p, δ, (ti)i∈{0,...,N})
2: sample x0 ∼ N (0, t20I) ▷ Generate Gaussian sample
3: for i ∈ {0, . . . , N − 1} do
4: γi = solve(aγ2/p

i + bγi − t2i = 0) ▷ Determine γi using a root finding algorithm
5: si = Sθ(ti, xi) ▷ Evaluate the score network
6: s̃i = Sθ((1 + δ)ti, xi)

7: s′i =
s̃i−si
δti

▷ Compute an approximation to the derivative
8: mi = (1 + γi − bγi

t2i
)−1 ▷ Compute correction factor

9: xi+1 = xi −mi(ti+1 − ti)ti((1 + γi)si +
bγi

2ti
s′i) ▷ Update sample

10: return xN

5 NUMERICAL EXPERIMENTS

5.1 ILLUSTRATIVE EXAMPLES IN R2

We visualize the evolution according to the extended score in R2 for relatively simple distributions,
where the (extended) score can be computed explicitly (see Appendix A.1). Figure 1 displays the
inference trajectories for a degenerate Gaussian mixture, which behaves like a Dirac delta at 0 in
the x2-direction and a Gaussian in the x1-direction as the means are chosen such that the different
mixture components affect each other very little. We can see that for the Gaussians with variances
0.2 and 0.5 respectively, using the extended score causes all trajectories to end up at the respective
means, i.e. it behaves as if we had Dirac deltas (in the x1-direction) at these locations. For the higher
variance Gaussians the extended score trajectories still end up closer to the mean than they would
for standard score, but this variance reduction effect decreases significantly as the variance of the
Gaussians increases. All together, we essentially have a soft thresholding effect, where variances
below a certain value are shrunk to 0, while large enough variances are left almost unchanged.

Figure 1: Comparison of inference trajectories (red) and samples (blue) for Gaussian mix-
ture p(x1, x2) = δ(x2)

∑5
i=1

1
5
(2πvi)

− 1
2 exp(− (x1−µi)

2

2vi
) with equal weights, variances v =

(0.2, 0.5, 1, 2, 4), and means µ = (−20,−10, 0, 10, 20). Extended score is applied with parame-
ters a = b = p = 1.

5
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(a) Tilted Gaussians (b) Radial Gaussians

Figure 2: Target distribution is displayed as a histogram colormap. Red crosses indicate samples
generated either via standard score inference (left) or extended score inference (right). Extended
score parameters are p = 1.3, a = 1, b = 1.1 for (a) and p = 2, a = 2, b = 30 for (b).

Figure 3: In both subfigures, all images in each row start from the same latent noise sample, and
the leftmost column uses standard score whereas second to last columns use Algorithm 1 with δ =
0.0001, p = 8, a = 2.5, and, left to right, b ∈ {2, 5, 10, 20, 40, 80}. Further examples in Figure 9.

In Figure 2a we consider a mixture of Gaussians with covariance matrices Σi = Ridiag(1.7, 0.2),
where the Ri, i ∈ {1, . . . , 21}, are randomly chosen rotation matrices, i.e. around each mean of
the mixture we have large variance in one direction and small variance in the direction orthogonal
to the first one. Locally this can be viewed as a 1.5-variance Gaussian along some 1-dimensional
affine linear subspace to which Gaussian noise with covariance matrix 0.2I is added, resulting in
a 1.7 variance in one direction and a 0.2 variance in the other. The denoising effect is clear: the
extended score inference moves the points onto the affine linear subspace corresponding to the first
principal direction of each Gaussian, while leaving the spread along the affine linear subspace almost
unchanged. In Figure 2b we demonstrate that this effect is not limited to affine linear manifolds,
by considering a mixture of radial Gaussians of the form p(x) = C

∑5
i=1 exp(−

(∥x−µi∥−r)2

2v
) with

variance v = 2.5, radius r = 10, randomly chosen means µi, and C a normalizing constant.

5.2 EFFECTS ON FFHQ, AFHQV2, AND IMAGENET

While the last section provides some basic intuition for the effects of our inference method, it is,
of course, not so clear how this translates to much more complicated distributions in much higher
dimensions. We will explore this question using our inference method with the pretrained score

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Each row starts from the same latent noise sample, and the leftmost column uses standard
score whereas second to last columns use Algorithm 1 with δ = 0.001, p = 12, and a = 8,
b ∈ {5, 20, 50, 80, 250} for the top row, a = 4, b ∈ {2, 10, 30, 60, 100} for the bottom row.

Figure 5: Generated with Algorithm 1 from the same latent noise sample with δ = 0.0001, p = 8,
and, from left to right, b ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} as well as, from top to bottom, a ∈ {1, 3, 5, 7}.

networks from Karras et al. (2022) for3 FFHQ (Karras et al. (2019)), AFHQv2 (Choi et al. (2020)),
and ImageNet (Deng et al. (2009)), where we also use the time schedule suggested in Karras et al.
(2022), and only vary the hyperparameters specific to our method, i.e. a, b, p, and δ in Algorithm 1.
Since these datasets are arguably essentially noiseless, the effect of the extended score will be visible
on the different features of the images. The following two sections consider noisy datasets.

In Figure 3, we showcase the impact of our inference methods on the generation of human or animal
faces using the pretrained score networks for FFHQ and AFHQv2, respectively. Note that increasing
the parameter b in Algorithm 1 results in a greater impact of the extended score, i.e. we expect
stronger attraction to the manifold of primary variation. We observe that for all values of b, we
generate samples with qualitatively the same facial features, but for larger values of b, we always get
a plain single-colored background. In case of faces, it seems quite clear that the direction of primary
relevance should correspond to essential facial features that are present in all the data, whereas the
background variation, as well as features like glasses and head wear, are split across a much larger
number of directions and are thresholded out first. We also observe similar effects on ImageNet,
e.g. in the examples in Figure 4, where the extended score inference seems to focus on generating
one primary object, while progressively thresholding out everything else as we increase b. However,
since ImageNet contains a large variety of objects, the primary directions differ between classes,
and thus the effect of extended score inference with a given choice of hyperparameters is much
more varied across different starting noise images (see Figure 10 in the Appendix).

3Note that these networks have been trained on images from these datasets which have been downsampled
to a 64×64 resolution.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Grid of clean samples from the synthetic data set (left); grid of corresponding noisy
samples (right). Each sample is an 8-bit grayscale 64×64 image, displayed via viridis colormap.

Figure 7: Grid of samples generated from consecutive random seeds by Algorithm 1 with parameters
δ = 0.02, p = 8, a = 0.002, and b = 15 (left); grid of samples generated by inference with standard
score (right). Each sample is an 8-bit grayscale 64×64 image, displayed via viridis colormap.

Although Algorithm 1 is deterministic when started with the same random seed, i.e. such that it starts
from the same latent noise image, it relies on a score network trained through a highly stochastic
process. Consequently, even small changes of the iterates xi can build up and lead to the genera-
tion of a significantly different image. As can be seen in Figure 3, in general the algorithm is not
particularly suited for orthogonal projection on the manifold of, in this case, faces, i.e. it does not
simply generate the same face as standard inference would but without background. However, as
showcased in Figure 5, there are often certain ranges of parameters that lead to rather similar images
and may be used for manual adjustment of a generated image.

5.3 DENOISING SYNTHETIC DATA

We created a synthetic dataset of clean samples, added noise, and trained a diffusion model only on
the noisy data. Our clean distribution consists of 8-bit grayscale 64×64 images depicting 4 different
shapes, each appearing with equal probability and rotated by an angle chosen uniformly at random
(see Figure 6, left). As such, this probability distribution is essentially supported on 4 disjoint 1-
dimensional manifolds in pixel space. We then add two types of corruption to obtain noisy samples.
Firstly, we blot out large parts of the shape, by uniformly randomly picking 50 locations on the
boundary of the shape and subtracting Gaussian bump functions centered at those locations from
the clean image. Secondly, we add i.i.d. Gaussian noise to each pixel, resulting in images where the
original shapes can hardly be discerned from a single image (see Figure 6, right). We then trained a
DDPM++ model4 on a set of 100 000 of such noisy samples for a duration of 3 mimg, i.e. 30 repeats
per image. When using the trained network for standard score inference we obtain a reproduction
of the corrupted samples (see Figure 7, right). In contrast, running our extended score inference, we
obtain samples showing the original shapes (see Figure 7, left). Figure 11 in the Appendix illustrates
the dependence on the extended score parameters δ, a, b, and p.

5.4 DENOISING REAL DATA

In this section we test our method on real data from single-particle Cryo-Electron Microscopy (see
Cheng et al. (2015) for an introduction), where many particles of the same type are suspended in liq-
uid, frozen, and put under an electron microscope. This produces extremely noisy 2D-images which
need to be refined before further steps like 3D reconstruction can be attempted. This presents an op-

4Using the method from the accompanying github to Karras et al. (2022) with default settings except for
cond = 0 and augment = 0, which took roughly 14 hours on a single A100 GPU.
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Figure 8: Images from the EMPIAR-11618 dataset (left). Samples generated by Algorithm 1 with
parameters δ = 0.001, p = 8, a = 0.01, and b = 2 (right). Shapes obtained by Bacic et al.
(2021) (bottom), taken from (wwPDB Consortium, 2023, EMD-17944). The colormap is applied
with normalization per image to enhance contrast.

portunity to investigate the performance of our method on practically relevant real world data with
non-Gaussian noise. We use the EMPIAR-11618 (Bacic et al., 2021) dataset of 68 401 grayscale
images with 256×256 resolution. They were extracted from raw data and undergone some prepro-
cessing, but are still very noisy (see Figure 8, top left). We trained a DDPM++ model5 on this data
and used our method to generate samples (see Figure 8, right) whose shapes correspond strongly to
what has been obtained by Bacic et al. (2021), see Figure 8, bottom. We emphasize that the net-
work has only ever seen noisy data and has in no way been specifically adjusted based on a priori
knowledge of these shapes. This can be seen by the fact that standard score inference generates
noisy samples, very similar to those in the training set (see Figure 13 in the Appendix). The pa-
rameters used for Figure 8 of the extended score inference have been determined by hand with such
knowledge, of course, but similar results are generated for a wide range of parameter choices (see
Figure 12 in the Appendix). In particular, this demonstrates a significant capability of the extended
score to guide generation towards samples from the underlying image manifold, also in the case of
real data with extreme noise corruption caused by physical measurement modalities. This example
serves as proof of concept for the validation of our approach: reaching state-of-the-art performance
is outside the scope of this work, and would require incorporating more prior domain knowledge.

6 CONCLUSION

We introduced Manifold Attracted Diffusion (MAD), a novel inference approach for score-based
diffusion models to generate clean samples from a distribution despite training on noisy datasets.
Based on the manifold hypothesis, our method utilizes the underlying geometry to suppress off-
manifold variations while preserving on-manifold variations, which results in attracting samples
toward a low-dimensional structure. It can leverage established training algorithms and pretrained
models. The required computation cost is roughly twice that of standard inference, due to requiring
a second evaluation of the score network. Numerical experiments on both synthetic and real data
demonstrate that MAD successfully suppresses noise.

Future directions include extending MAD to solve inverse problems, as in Cryo-EM for denoising
individual images, or for other denoising or image restoration tasks. This would benefit from inte-
gration with conditional diffusion models, as explored in diffusion posterior sampling frameworks
(Chung et al., 2023; 2022). Developing automatic and adaptive parameter selection for γ(t) would
enhance the methods robustness and applicability. Further theoretical analysis of the extended score
may lead to an improved incorporation into the inference procedure, in particular one could combine
it with inference techniques using noise injection or higher order ODE discretization schemes.

5In order to compensate for the higher resolution we reduced the number of feature channels in the ddpmpp
architecture from 128 to 32, but otherwise used the same settings as for the synthetic data. Training took
roughly 60 hours on a two A100 GPUs.
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A APPENDIX

A.1 THE EXTENDED SCORE FOR PRODUCTS OF MEASURES

In the following lemma, we derive the expression of the extended score of the product of two mea-
sures. In this section, the superscripts denote the dimension of the domain.

Lemma A.1. Let d1 + d2 = d. Take p1 ∈ M̃(Rd1) and p2 ∈ M̃(Rd2). Then the product measure
p = p1 ⊗ p2 belongs to M̃(Rd) and

Hd
0p(x) = (Hd1

0 p1(x1), H
d2
0 p2(x2)),

where x = (x1, x2) ∈ Rd1+d2 .

Proof. We have that gdγ(x) = gd1
γ (x1)g

d2
γ (x2). Thus, by Fubini’s theorem, we have

(p ∗ gdγ)(x) = (p1 ∗ gd1
γ )(x1) · (p2 ∗ gd2

γ )(x2).

Thus
log(p ∗ gdγ)(x) = log(p1 ∗ gd1

γ )(x1) + log(p2 ∗ gd2
γ )(x2).

Taking a gradient with respect to x we obtain

Sd(p ∗ gdγ)(x) = (Sd1(p1 ∗ gd1
γ )(x1), 0d2

) + (0d1
, Sd2(p2 ∗ gd2

γ )(x2)).

Therefore, since the expression of Hd
γ (p) is linear in Sd(p ∗ gdγ), we obtain

Hd
γ (p)(x) = (Hd1

γ (p1)(x1), 0d2
) + (0d1

, Hd2
γ (p2)(x2)) = (Hd1

γ (p1)(x1), H
d2
γ (p2)(x2)).

Taking the limit as γ → 0, the result follows.

This result can be used to calculate the extended score of a degenerate distribution p, namely, a
distribution supported on a lower-dimensional affine subspace of Rd. Since the score, and thus the
extended score, is equivariant with respect to rotations and translations, without loss of generality,
we can assume that p is supported on {(x1, 0d2) ∈ Rd : x1 ∈ Rd1} with density p1 ∈ P (Rd1),
namely,

p = p1 ⊗ δd2
,

where δd2
∈ M̃(Rd2) is the Dirac delta centered at 0 in Rd2 . By Lemmata 3.2 and A.1, we obtain

that the extended score of p is given by

Hd
0p(x) = (Hd1

0 p1(x1), H
d2
0 p2(x2)) = (Sd1p1(x1),−x2),

where we have also used that H0δ(x) = −x.

In the particular case when p1 is a non-degenerate Gaussian distribution on Rd1 with mean µ1 ∈ Rd1

and covariance Σ1 ∈ Rd1×d1 , namely p1 = N (µ1,Σ1), we have

Hd
0p(x) = (−Σ−1

1 (x1 − µ1),−x2).

As expected, this coincides with the standard score of the (non-degenerate) Gaussian distribution
N ((µ1, 0d2

),Σ) on Rd, where Σ is the block matrix given by

Σ =

[
Σ1 0
0 Id2

]
.

A.2 PROOFS AND DERIVATIONS

Proof of Lemma 3.2. By standard properties of approximate identities (Grafakos, 2014, Exam-
ple 1.2.17 and Theorem 1.2.19(2)), for f ∈ C(Rd) bounded we have that

lim
γ→0

(f ∗ gγ)(x) = f(x), x ∈ Rd,

12
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Analogously, with hγ(x) :=
1
γ ∥x∥

2gγ(x) by (Grafakos, 2014, Theorem 1.2.21(b)) we get that

lim
γ→0

(f ∗ hγ)(x) = Cf(x), x ∈ Rd,

where C =
∫
Rd(2π)

− d
2 ∥z∥2e−

∥z∥2
2 dz < ∞ . In addition, we observe that

∂
∂xi

gγ(x) = −xi

γ gγ(x)

and

d
dγ gγ(x) = (−d

2γ + ∥x∥2

2γ2 )gγ(x) =
1
2γ (hγ(x)− dgγ(x)).

Consequently, as p(x) > 0 for all x ∈ Rd, by assumption

lim
γ→0

γ d
dγS(p ∗ gγ) = lim

γ→0
γ d
dγ

∇x(p ∗ gγ)
p ∗ gγ

= lim
γ→0

γ d
dγ

∇xp ∗ gγ
p ∗ gγ

= lim
γ→0

γ
(p ∗ gγ)(∇xp ∗ d

dγ gγ)− (∇xp ∗ gγ)(p ∗ d
dγ gγ)

(p ∗ gγ)2

= lim
γ→0

(p ∗ gγ)
(
(∇xp ∗ hγ)− d(∇xp ∗ gγ)

)
− (∇xp ∗ gγ)

(
(p ∗ hγ)− d(p ∗ gγ)

)
2(p ∗ gγ)2

=
p(C∇xp− d∇xp)−∇xp(Cp− dp)

2p2

= 0.

Moreover, it holds that

lim
γ→0

S(p ∗ gγ) = lim
γ→0

∇x(p ∗ gγ)
p ∗ gγ

=
limγ→0 ∇xp ∗ gγ
limγ→0 p ∗ gγ

=
∇xp

p
= Sp,

which completes the proof.

Proof of Lemma 3.3. We write hi(x) := cie
− ∥x−µi∥

2

2γ , i.e. p ∗ gγ =
∑

i∈[n](2πγ)
− d

2 hi, and observe
that

S(p ∗ gγ)(x) = −
∑
i∈[n]

x−µi

γ wi(x),

where

wi :=
hi∑

j∈[n] hj
.

We observe that

d
dγwi(x) =

(
∑

j∈[n] hj(x))
∥x−µi∥2

2γ2 hi(x)− hi(x)
∑

j∈[n]
∥x−µj∥2

2γ2 hj(x)

(
∑

j∈[n] hj(x))2

and

Hγp(x) = (1 + γ)S(p ∗ gγ)(x) + γ d
dγS(p ∗ gγ)(x) = γS(p ∗ gγ)(x) + d

dγ γS(p ∗ gγ)(x).

We will first show that the second term vanishes for γ → 0. To this end, we note

d
dγ γS(p ∗ gγ)(x) = −

∑
i∈[n]

(x− µi)
(
∑

j∈[n] hj(x))
∥x−µi∥2

2γ2 hi(x)− hi(x)
∑

j∈[n]
∥x−µj∥2

2γ2 hj(x)

(
∑

j∈[n] hj(x))2

= −
∑

i,j∈[n] hi(x)hj(x)(x− µi)(∥x− µi∥2 − ∥x− µj∥2)
2γ2(

∑
j∈[n] hj(x))2

.
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Let x ∈ Wk and i, j ∈ [n] such that x /∈ Wi ∨ x /∈ Wj , then

lim
γ→0

hi(x)hj(x)

γ2(
∑

j∈[n] hj(x))2
≤ lim

γ→0

hi(x)hj(x)

γ2hk(x)2
= lim

γ→0

cicj
γ2c2k

e
2∥x−µk∥2−∥x−µi∥

2−∥x−µj∥
2

2γ = 0

as 2∥x−µk∥2−∥x−µi∥2−∥x−µj∥2 < 0 by definition of Wi. Since ∥x−µi∥2−∥x−µj∥2 = 0
if6 x ∈ Wi ∩Wj , and hi(x) ≥ 0 for every x ∈ Rd, i ∈ [n], we have

lim
γ→0

d
dγ γS(p ∗ gγ)(x) = 0.

We proceed by noting that

lim
γ→0

hj(x)

hi(x)
= lim

γ→0

cj
ci
e−

∥x−µj∥
2−∥x−µi∥

2

2γ =


0, ∥x− µi∥ < ∥x− µj∥
cj
ci

∥x− µi∥ = ∥x− µj∥
∞, ∥x− µi∥ > ∥x− µj∥

and, consequently, using the conventions that 1
0 = ∞ and 1

∞ = 0,

lim
γ→0

wi(x) = lim
γ→0

hi(x)∑
j∈[n] hj(x)

= lim
γ→0

1 +
∑

j∈[n],j ̸=i

hj(x)

hi(x)

−1

=


0, x /∈ Wi

1, (x ∈ Wi) ∧ (x /∈ Wj∀j ∈ [n]\{i})
(
∑

j∈J
cj
ci
)−1, i ∈ J ⊆ [n] : x ∈

⋂
j∈J Wj(x)

.

Thus

H0p(x) = lim
γ→0

Hγp(x) = lim
γ→0

γS(p ∗ gγ)(x) = −
∑
i∈[n]

(x− µi)zi(x).

This concludes the proof.

Derivation of equation (7). For Sθ(σ, x) = −x−µ
σ2 , we have

d
dσSθ(σ, x) =

2(x−µ)
σ3

and thus (5) evaluates to

xi+1 = xi −m(ti)(ti+1 − ti)ti
(
(1 + γ(ti))(−xi−µ

t2i
) + bγ(ti)

2ti

2(xi−µ)
t3i

)

= xi −m(ti)
ti−ti+1

ti
(xi − µ)

(
1 + γ(ti)− bγ(ti)

t2i

)
.

We would like to force this to match the standard score inference step in (6), for this special case of
Sθ(σ, x), which is achieved by choosing

m(ti) = (1 + γ(ti)− bγ(ti)
t2i

)−1.

A.3 ADDITIONAL NUMERICAL EXAMPLES

Additional examples related to the datasets FFHQ and AFHQv2 are shown in Figure 9. Additional
examples related to ImageNet are shown in Figure 10.

Figure 11 and Figure 12 show that the samples generated by extended score inference have a strong
dependence on the chosen hyperparameters, but a significant emergence of structure can be observed

6In particular, if i = j.
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(a) FFHQ (b) AFHQv2

Figure 9: In both subfigures, all images in each row starts from the same latent noise sample and
the leftmost column uses standard score whereas second to last columns use Algorithm 1 with δ =
0.0001, p = 8, a = 2.5, and, from left to right, b ∈ {2, 5, 10, 20, 40, 80}. The rows are generated
from consecutive random seeds.
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Figure 10: All images in each row starts from the same latent noise sample and the leftmost column
uses standard score whereas second to last columns use Algorithm 1 with δ = 0.001, p = 12, a = 4,
and, from left to right, b ∈ {1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70}. The rows are generated
from consecutive random seeds.
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Figure 11: Generated with Algorithm 1 from the same latent noise sample with δ = 0.02, p = 8,
and, from left to right, b ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75} as well as, from top
to bottom, a ∈ {0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005, 0.0055}.

for many different choices. Despite being a simpler problem, the generation seems to be less stable
w.r.t. hyperparameter choices for the synthetic data. One reason for this might be that we have a
1-dimensional manifold of images that is harder to find than the one underlying the EMPIAR-11618
data, which is, of course, not explicitely known but can be assumed to be higher-dimensional. It may
also be due to a shorter training duration (3mimg compared to 10mimg), which would be consistent
with the generation being much more stable w.r.t. the hyperparameters for FFHQ, AFHQv2, and
ImageNet as the networks for those problems have been trained significantly longer.

Additional images from the EMPIAR-11618 dataset, as well as images generated by standard score
inference, are shown in Figure 13.

A.4 LLM USE

LLMs were used to polish the writing for parts of the text, to suggest related work, and as a coding
aid. All those suggestions have only been implemented after thorough manual review. No LLMs
were involved in any way in the mathematical derivations.
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Figure 12: Generated with Algorithm 1 from the same latent noise sample with δ = 0.001, p = 8,
and, from left to right, b ∈ {0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048} as well as,
from top to bottom, a ∈ {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2}.

Figure 13: Images from the EMPIAR-11618 dataset (left). Images generated by standard score
inference (right).
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