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ABSTRACT

Score-based diffusion models are a highly effective method for generating sam-
ples from a distribution of images. We consider scenarios where the training data
comes from a noisy version of the target distribution, and present an efficiently
implementable modification of the inference procedure to generate noiseless sam-
ples. Our approach is motivated by the manifold hypothesis, according to which
meaningful data is concentrated around some low-dimensional manifold of a high-
dimensional ambient space. The central idea is that noise manifests as low magni-
tude variation in off-manifold directions in contrast to the relevant variation of the
desired distribution which is mostly confined to on-manifold directions. We intro-
duce the notion of an extended score and show that, in a simplified setting, it can
be used to reduce small variations to zero, while leaving large variations mostly
unchanged. We describe how its approximation can be computed efficiently from
an approximation to the standard score and demonstrate its efficacy on toy prob-
lems, synthetic data, and real data.

1 INTRODUCTION

Score-based diffusion models are a state-of-the-art approach for image synthesis, often outperform-
ing alternatives like generative adversarial networks (GANs) and variational autoencoders (VAEs)
in sample quality and diversity (Ho et al., 2020; Song & Ermon,|[2020). These models learn a neural
network by adding noise to data samples during training, according to some forward process. The
network can then be used to reverse this process during inference. Essentially, they denoise an image
with independent Gaussian pixel values into samples from the data distribution.

However, real-world datasets are often corrupted by noise arising from measurement er-
rors, compression artifacts, or data collection processes (Gupta & Gupta, 2019; Brummer &
De Vleeschouwer, |2019). In this case, standard diffusion models trained directly on noisy data
will learn to reproduce this corruption in their generated samples. We aim to address this by de-
veloping a method that can generate samples that approximately come from the clean distribution,
despite being trained on noisy data.

A well-established paradigm for understanding data with a high-dimensional representation is the
manifold hypothesis: meaningful data distributions are concentrated near a low-dimensional man-
ifold embedded in the ambient space (Bengio et al.| 2013} [Fefferman et al., |2016)). For instance,
natural images, despite being represented as a d-dimensional array, where d can be in the millions,
exhibit intrinsic dimensions that are far lower (Pope et al., 2021). This viewpoint will be the basis
of our approach as we interpret noise as low-magnitude variations in directions orthogonal to the
manifold, whereas meaningful variations of the underlying data correspond to movements along the
manifold itself. The central idea is to exploit this geometric structure during the inference process
to suppress the former while preserving the latter.

The manifold hypothesis has previously been considered in the context of diffusion models to study
their convergence behavior, e.g. in/Bortoli|(2022)), Tang & Yang|(2024)), and |Potaptchik et al.|(2024).
It has also been argued in|Stanczuk et al.| (2024) that diffusion models can be leveraged to estimate
the intrinsic dimension of data manifolds. Some existing works tackle the problem of noisy training
(Daras et al., 2023 [Lu et al., 2025), but require adapting the training process. Outside the gen-
erative setting, there are also traditional manifold denoising techniques predating diffusion models
(Hein & Maier, 2006} |Gong et al., 2010; [Wang & Carreira-Perpinan, [2010; [Fefferman et al., 2018}
Faigenbaum-Golovin & Levin, 2023)).
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This work introduces Manifold Attracted Diffusion (MAD), an efficiently implementable modifi-
cation to the inference procedure of score-based models. We define the concept of an “extended
score”, which coincides with the standard score when that exists, but is also well-defined for Dirac
delta distributions. In fact, it treats them essentially as Gaussians with a certain non-zero variance.
This property can be leveraged in the inference procedure to reduce small off-manifold variations
to almost zero while leaving larger on-manifold variations mostly unchanged, resulting in a soft
thresholding effect. Thereby our method implicitly “attracts” the generated samples towards a low-
dimensional structure, effectively filtering out noise. Importantly, a suitable approximation to the
extended score can be computed easily from an approximation to the standard score, which enables
the use of established training methods as well as pretrained networks under some conditions that
are, e.g., satisfied by the framework of |Karras et al.[(2022). Our key contributions include:

* The formal definition and analysis of the extended score;

* An inference algorithm that reduces noise in generated samples without needing a special training
procedure, making it compatible with established frameworks and pretrained models;

» Empirical validation on toy problems and real-world image data, such as FFHQ, AFHQ, Ima-
geNet, and EMPIAR-11618 (cryo electron microscopy data).

We also distinguish our work from other diffusion-based approaches. Methods for posterior sam-
pling, such as DPS (Chung et al.l|2023;2022), are designed to solve inverse problems (Daras et al.,
2024), such as denoising a single given image. Our goal is different: we learn from a dataset of
noisy images to produce new, clean samples from the underlying distribution.

This paper is structured as follows. In Section[2] we review the necessary background on score-based
diffusion models. In Section [3] we formally introduce the extended score and analyze its proper-
ties. Section [4] details our proposed inference algorithm and, in Section [5] we present numerical
experiments that validate our approach.

2 BACKGROUND

We will be working with the probability flow ODE formulation of diffusion models, largely fol-
lowing the framework of Karras et al.| (2022)). For more background and the connection to other
diffusion model formulations we refer to [Karras et al.| (2022) and the references therein. Given a
data distribution py on R% we consider the stochastic process (X(,)Ue[(),gmx] with Xy ~ pg and

X, = Xo +N(0,0%T), o >0.
The corresponding densities are given by
Do = Po * go2, (1)

where gg2(z) = (2r0?)~%/? exp(—%) is the density of N'(0,02I). The central idea behind
score-based diffusion models is to generate a sample x¢ ~ X from a sample z,, ., ~ X,,... Where
¥, . is, in practice, approximated by simply sampling from N (0, o2, ), as for a sufficiently large
Omax this should only introduce a negligible error. One way to achieve this is by evolving the ODE

dzy = =6 ()0 (1) Spor) (z¢)dt, 2)
where o: [0,T] — [0, 0max] is some noise schedule and the score operator is given by
S: P(RY) — C(RY,RY), p— V, logp,

where P(R?) := {p € C}(R%,R): f]Rd p(x)dz = 1, p(xr) > 0 Ve € R} is the set of densities
that are positive everywhere in R?. Note that, for o > 0, pg * g, is a density even if pg is not. The
fact that the score may not be well-defined for pg, e.g. because the data distribution is supported on
some lower-dimensional subset in R¢, is avoided in practice by generating a sample 25 with § close
to 0. It can be shown (Song et al.,[2021; Karras et al.,[2022) that evolving a sample z;, ~ X;, from
t1 to to according to @ yields a sample x;, ~ X4,.

Of course, this is only useful provided that we have access to the score, which depends on the data
distribution, and from which we usually have only a finite number of samples. Remarkably, it turns



Under review as a conference paper at ICLR 2026

out that a useful approximation of the score can be learned by training a neural network on these
samples. A common practice, motivated by numerical stability, is to learn the so-called denoiser
function D, which is simply a shifted and scaled version of the score, i.e. D(z,0) = 02Sp, (z) + .
This denoiser function is then approximated by a neural network Dy using a loss based on

EQNX0E71~N(O,U2H) ||D9 (y + 77) - yH%

which is minimized by the denoiser function. However, as the expectation over the data distribu-
tion must be replaced by the empirical expectation based on the available data samples, this loss
has, in general, many global minima. Nonetheless, employing neural networks utilizing an adapted
U-Net architecture (Ronneberger et al.,|2015; Ho et al.,|2020; |Dhariwal & Nichol, |2021) appears to
introduce sufficient bias towards a good approximation of the score. This approximation capabil-
ity is primarily founded on the empirical observation that using it to generate images by evolving
equation [2| (or related differential equations) produces realistic samples. An analytical description
of how Dy approximates D is still an open problem. As the purpose of the work is to introduce a
novel inference procedure, we will simply assume that we can obtain a suitable approximation to
the score by some established training method.

3 CONCEPT: THE EXTENDED SCORE

Let M (R?) denote the set of probability measures on R<.
Definition 3.1 (Extended score). Ford € R%, p € M(R?), v € (0,00), let
Hy: MRT) = CRLRY),  p= (1+7)Sp*gy) + 7550+ 9,)
and N
Ho: M(RY) = {f: R >R},  pe lim H.p,
=
where M(Rd) = {p e M(RY): lim,_,o(H,p)(z) € R Vz € R¢}.

We first note that Hy coincides with the score for probability distributions with density in P(R%),
which we can view as a subset of M (R?) by identifying a density function p € P(R?) with the
measure given by p(A) = [, p(z)da for A C R? (see Sectionfor a proof).

Lemma 3.2. Let p € P(R?). Then Hyp = Sp.

It is, however, also well-defined for, e.g., Dirac delta measures. Specifically, let § denote the Dirac
delta at 0, then

H,6(z) = (14 9)S(g9) (@) + 7 S(gy) (@) = =2 4y d(—2) = g,

In particular it holds that Hyd(z) = —x, i.e. we obtailﬂ a function which, similar to the score for
Gaussians, yields at each point a vector pointing towards the mode of the probability distribution.
This generalizes to mixtures of Dirac delta distributions, where Hgp will point towards the location
of the nearest Dirac delta in the mixture (see Section for a proof).

Lemma 3.3. Letn € N, puy,....un € R ¢1,...,¢, € Ry such that Y. = land p =
> icn) CiOp;- Then

Hop(z) = — Z zi(w) (@ — 1),
i€[n]
where W; = {x € R%: ||z — ;|| < ||z — p;|| V5 € [n]} is a Voronoi region and
0 T ¢ Wi,
1 r € int W,
—1
c; (Zj:wewj cj) x € OW;.

'Note that in this simple case, H,,d is already the same as Hod, which is not the case in more complicated
scenarios, e.g. for mixtures of Dirac deltas.

zi(x) =
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Note that the first two cases in the expression for z;(x) cover almost every (w.r.t the Lebesgue
measure) € R? and the third case is only needed if  is equally distant to multiple /;.

By combining the expressions of the extended score for a Dirac delta and for a non-degenerate
Gaussian distribution, it is possible to derive an explicit expression of the extended score for any
(possibly degenerate) Gaussian distribution. This is achieved by exploiting how the extended score
behaves with respect to products of measures, see Appendix [A.1] for the details.

We have the rather peculiar property that Hyd = Sg, i.e. the extended score of the Dirac delta
matches the score of a variance 1 Gaussian. At this point, it should be noted that it is impossible to
find a nice extension of the score operator that includes Dirac delta distributions, as

Sg’y(x) = _%v

which diverges for x # 0 as v — 0. As such any extension is necessarily discontinuous with respect
to any topology in which lim,_,¢ g, = 9.

However, the ability of the extended score to treat distributions with positive variance like they
were Dirac delta distributions will, in fact, be the cornerstone of our proposed inference technique.
Under the manifold hypothesis, the clean data distribution has significant variation only along a
small number of directions. Given noise in the ambient pixel space, which has a much higher
dimension than the image manifold, the variance in off-manifold directions due to noise should
be much smaller (e.g. for isotropic Gaussian noise 7 the variance in each direction is of order ~
d=2E[||n||]). Thus, noise can be suppressed by using the extended score. This principle is formally
justified in Appendix[AT] where we derive the extended score for a distribution supported on a low-
dimensional subspace and show that it strongly attracts samples in the off-manifold directions while
preserving the standard score in the on-manifold directions.

4 IMPLEMENTATION

In view of the property of the extended score just discussed, we would like to design an inference
procedure that is able to generate samples with less noise, if compared to the samples obtained via
the usual score. To this end we first note that, due to @), we have

SPo@) * 9v) = SPo * go(1)2 * 9v) = S(P0 * Jo(ty241) = S0 /577)-

So, given a network trained to approximate the score for any o € [0, omax], as is the case in the
framework of |Karras et al.|(2022), we also have an approximation to the extended score with a given
small v > 0, where the y-derivative can be obtained, e.g., by a finite differenceﬁ approximation. As
the desirable properties of the extended score hold in the v — 0 limit, which we cannot compute
directly, we instead need to choose a suitable dependence (¢) with lim;_,oy(¢) = 0.

A basic way to conduct inference with the standard score is evolving (Z) simply via Euler method,
i.e. initializing with x¢ ~ N(0, o (¢9)?]) and iterating

Tiy1 = @ — (tiv1 — ;)0 (ti)o(ti)Se(o(ti), 7)), 3)

where Sy(o,2) =~ Sp,(z) is the learned approximation of the score. We will instead, based on
Definition 3.1} consider the iteration

Ti4+1 = Ty — m(ti)(ti+1 — ti)o"-y(ti)(fw(ti)((l + ’Y(ti))SQ(U-y(ti),.fi) + ’Y(ti)%se((f«/(ti), xz)), (4)

where o (t) = y/ao(t)? +by(t), a,b > 0 are manually chosen parameters, and m(t;) is a cor-
rection factor determined as explained below. Note that this reduces to @) fora =1,b = 0, and
m(t) = (1 +~(t)) "}, so essentially the choices of a, b, and m determine to what extent we would
like the inference to push points onto a manifold at a given time step. More precisely, increasing
a or reducing b corresponds to lessening the effect of the extended score and therby limiting the
denoising effect. Conversely, reducing a or increasing b yield a stronger denoising effect. As such,
a and b can be seen as regularization parameters, and their choice is problem dependent. While in

2Note that one could also compute the exact derivative of the score network using automatic differentiation
(AD). However, since PyTorch is not optimized for forward mode AD this is significantly more expensive than
a second evaluation of the network and did not yield any clear improvements in the numerical experiments.
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the idealized case of the v — 0 limit, analyzed in Section EL Diracs and variance 1 Gaussians are
treated in the same way, the choice of a and b adjusts this equivalence in practice, causing variations
below this (soft) threshold to be compressed significantly. Note that we currently do not determine
the explicit dependence of this threshold on the parameters. However, since we cannot expect to
know the optimal threshold for a data distribution in practice, a parameter optimization seems un-
avoidable anyway. We further enforce 0., (t) = ¢ to match the scheduling of [Karras et al.| (2022), as it
allows us to take advantage of their optimized choice of time steps and leads to better comparability.
Lastly, we introduce a parameter p > 0 to regulate the relative speed of convergence of ¢ and  via

A(t) = o ().
With these choices, @) simplifies to
Tip1 = x; — m(t;)(tig1 — ti)ti((l +(t:))So (ts, i) + bé(tt;) %Se(ti,fi)), &)

where %S@ denotes the derivative of Sp: [0, 0iax] X R — R? w.rt its first argument, and (%) is
a solution of

ay(t:)¥ + by(ti) = ti.

We observe that in the case of Sp(o, ) = —**, which corresponds to an initial distribution
consisting of a Dirac delta at , the standard score inference rule (3)) with o(¢) = ¢ evaluates to

Tipr = @i — S (- p) = (1 — B 4 By, 6)

This means that, if “=“+1 > A > 0 for every 4, we have

t;
k
[@ire — pll < (1= D)l — pl,
i.e. convergence to p at a geometric rate. We would like our inference rule to mimic this behavior
for simple Dirac deltas, which is accomplished by choosing the correction factor as

1
mit) = (1+9(8) - 22) )

see Section in the appendix for a detailed derivation. Note that, as long as v(¢;) € o(t;?) we
have lim;_,q m(¢) = 1. Putting it all together, we arrive at the following algorithm.

Algorithm 1 Inference with extended score

1: function INFERENCE(Sp, a, b, p, 0, (t;)icqo,....N})

2: sample zo ~ N (0, t31) > Generate Gaussian sample
33 forie{0,...,N—1}do
4: v = solve(a'y? /Py by, —t2 =0) > Determine -y; using a root finding algorithm
5: s; = Sp(ti, x;) > Evaluate the score network
6: 5; = So((1+ 6)ti, z;)
7: sh= % > Compute an approximation to the derivative
8: m; = (14 — b]; )~ > Compute correction factor
o: Tiv1 = x; —my(tip1 — )6 (14 vi)s; + ZZ,L sh) > Update sample
10: return x

5 NUMERICAL EXPERIMENTS

In section (toy examples in R?) and in section (FFHQ, AFHQvV2, and ImageNet) we present
some illustrative numerical simulations to build intuition of the “manifold attraction” property of the
extended score on clean datasets. Further, in sections@ (synthetic dataset) and@ (CIFAR-10) we
provide controlled experiments showing qualitatively and quantitatively (FID scores) the denoising
effect of the extended score. Finally, in section [5.5| we test MAD with real Cryo-EM data.

We emphasize that MAD addresses a specific blind generative denoising task where only noisy data
is available, and the specific degradation model may be unknown. In this context, there are no estab-
lished benchmarks, and a comparison with other (non-generative) manifold denoising approaches
would not be meaningful, because they tackle a different problem.
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Figure 2: Target distribution is displayed as a histogram colormap. Red crosses indicate samples
generated either via standard score inference (left) or extended score inference (right). Extended
score parameters are p = 1.3,a =1, b= 1.1 for (a) and p = 2, a = 2, b = 30 for (b).

5.1 ILLUSTRATIVE EXAMPLES IN R?

We visualize the evolution according to the extended score in R? for relatively simple distributions,
where the (extended) score can be computed explicitly (see Appendix [A-T). Figure[T]displays the
inference trajectories for a degenerate Gaussian mixture, which behaves like a Dirac delta at O in
the xo-direction and a Gaussian in the x-direction as the means are chosen such that the different
mixture components affect each other very little. We can see that for the Gaussians with variances
0.2 and 0.5 respectively, using the extended score causes all trajectories to end up at the respective
means, i.e. it behaves as if we had Dirac deltas (in the z;-direction) at these locations. For the higher
variance Gaussians the extended score trajectories still end up closer to the mean than they would
for standard score, but this variance reduction effect decreases significantly as the variance of the
Gaussians increases. All together, we essentially have a soft thresholding effect, where variances
below a certain value are shrunk to 0, while large enough variances are left almost unchanged.
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Figure 1: Comparison of inference trajectories (red) and samples (blue) for Gaussian mix-

ture p(z1,z2) = 5(1?2)2?:1%(27[’1)2')_%6)([)(7%) with equal weights, variances v =

(0.2,0.5,1,2,4), and means . = (—20,—10,0, 10, 20) Extended score is applied with parame-
tersa=b=p=1.

In Figure [2a) we consider a mixture of Gaussians with covariance matrices ¥; = R;diag(1.7,0.2),
where the R;, i € {1,...,21}, are randomly chosen rotation matrices, i.e. around each mean of
the mixture we have large variance in one direction and small variance in the direction orthogonal
to the first one. Locally this can be viewed as a 1.5-variance Gaussian along some 1-dimensional
affine linear subspace to which Gaussian noise with covariance matrix 0.21 is added, resulting in
a 1.7 variance in one direction and a 0.2 variance in the other. The denoising effect is clear: the
extended score inference moves the points onto the affine linear subspace corresponding to the first
principal direction of each Gaussian, while leaving the spread along the affine linear subspace almost
unchanged. In Figure 2B we demonstrate that this effect is not limited to affine linear manifolds,

. . . . . s —r)2 .
by considering a mixture of radial Gaussians of the form p(z) = C' 3> | exp(—W) with
variance v = 2.5, radius 7 = 10, randomly chosen means p;, and C' a normalizing constant.



Under review as a conference paper at ICLR 2026

5.2 EFFECTS ON FFHQ, AFHQV2, AND IMAGENET

While the last section provides some basic intuition for the effects of our inference method, it is,
of course, not so clear how this translates to much more complicated distributions in much higher
dimensions. We will explore this question using our inference method with the pretrained score
networks from [Karras et al (2022) forff| FFHQ (Karras et al|(2019)), AFHQv2 (2020)),

and ImageNet (Deng et al.| (2009)), where we also use the time schedule suggested in
(2022), and only vary the hyperparameters specific to our method, i.e. a, b, p, and J in Algorithm

Since these datasets are arguably essentially noiseless, the effect of the extended score will be visible
on the different features of the images. The following two sections consider noisy datasets.

Figure 3: In both subfigures, all images in each row start from the same latent noise sample, and
the leftmost column uses standard score whereas second to last columns use Algorithm [T| with § =
0.0001, p = 8, a = 2.5, and, left to right, b € {2, 5,10, 20, 40, 80}. Further examples in Figure

In Figure[3] we showcase the impact of our inference methods on the generation of human or animal
faces using the pretrained score networks for FFHQ and AFHQV2, respectively. Note that increasing
the parameter b in Algorithm |I| results in a greater impact of the extended score, i.e. we expect
stronger attraction to the manifold of primary variation. We observe that for all values of b, we
generate samples with qualitatively the same facial features, but for larger values of b, we always get
a plain single-colored background. In case of faces, it seems quite clear that the direction of primary
relevance should correspond to essential facial features that are present in all the data, whereas the
background variation, as well as features like glasses and head wear, are split across a much larger
number of directions and are thresholded out first. We also observe similar effects on ImageNet,
e.g. in the examples in Figure 4] where the extended score inference seems to focus on generating
one primary object, while progressively thresholding out everything else as we increase b. However,
since ImageNet contains a large variety of objects, the primary directions differ between classes,
and thus the effect of extended score inference with a given choice of hyperparameters is much
more varied across different starting noise images (see Figure[IT]in the Appendix).

Although Algorithm(T]is deterministic when started with the same random seed, i.e. such that it starts
from the same latent noise image, it relies on a score network trained through a highly stochastic
process. Consequently, even small changes of the iterates x; can build up and lead to the genera-
tion of a significantly different image. As can be seen in Figure 3] in general the algorithm is not
particularly suited for orthogonal projection on the manifold of, in this case, faces, i.e. it does not
simply generate the same face as standard inference would but without background. However, as
showcased in Figure [J]in the Appendix, there are often certain ranges of parameters that lead to
rather similar images and may be used for manual adjustment of a generated image.
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Figure 4: Each row starts from the same latent noise sample, and the leftmost column uses standard
score whereas second to last columns use Algorithm [I| with § = 0.001, p = 12, and @ = 8,
b € {5, 20,50, 80,250} for the top row, a = 4, b € {2, 10, 30,60, 100} for the bottom row.

Figure 5: Grid of clean samples from the synthetic data set (left); grid of corresponding noisy
samples (right). Each sample is an 8-bit grayscale 64 x 64 image, displayed via viridis colormap.

5.3 DENOISING SYNTHETIC DATA

We created a synthetic dataset of clean samples, added noise, and trained a diffusion model only on
the noisy data. Our clean distribution consists of 8-bit grayscale 64 x 64 images depicting 4 different
shapes, each appearing with equal probability and rotated by an angle chosen uniformly at random
(see Figure [5] left). As such, this probability distribution is essentially supported on 4 disjoint 1-
dimensional manifolds in pixel space. We then add two types of corruption to obtain noisy samples.
Firstly, we blot out large parts of the shape, by uniformly randomly picking 50 locations on the
boundary of the shape and subtracting Gaussian bump functions centered at those locations from
the clean image. Secondly, we add i.i.d. Gaussian noise to each pixel, resulting in images where the
original shapes can hardly be discerned from a single image (see Figure 3] right). We then trained a
DDPM++ modeﬂ on a set of 100 000 of such noisy samples for a duration of 3 mimg, i.e. 30 repeats
per image. When using the trained network for standard score inference we obtain a reproduction
of the corrupted samples (see Figure[f] right). In contrast, running our extended score inference, we
obtain samples showing the original shapes (see Figure[6] left). Figure[T2]in the Appendix illustrates
the dependence on the extended score parameters 9, a, b, and p. In order to test whether our method
works on corrupted training data beyond the case of Gaussian noise, we also trained a DDPM++
model, using the same training settings, on a set of 100 000 synthetic samples, where each pixel was
set to 0 with probability 0.5 (see Figure[T4]in Appendix [A3). As can be seen in Table[T] for both
cases extended score inference leads to a significant improvement in FID compared to the standard
score, which generates samples with essentially the same distance to the clean data as the noisy data.

5.4 DENOISING CIFAR-10

Next, we test whether the denoising capabilities of our method extend to real data. Specifically we
train a DDPM++ model on CIFAR-10 with additive Gaussian noise. While standard score inference

3Note that these networks have been trained on images from these datasets which have been downsampled
to a 64 x 64 resolution.

#Using the method from the accompanying github to (2022) with default settings except for
cond = 0 and augment = 0, which took roughly 14 hours on a single A100 GPU.
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Noisy dataset training data | standard generation | extended generation
CIFAR-10, Gaussian noise 136.87 147.47 77.15
synthetic data, Gaussian noise 320.56 319.42 189.51
synthetic data, pixel removal 233.86 234.40 163.14

Table 1: FIDs with respect to the corresponding clean dataset, computed from 10 000 images.
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Figure 6: Grid of samples generated from consecutive random seeds by Al gorithm with parameters
0 =0.02, p =8, a = 0.002, and b = 15 (left); grid of samples generated by inference with standard
score (right). Each sample is an 8-bit grayscale 64 x 64 image, displayed via viridis colormap.

Figure 7: Trained on CIFAR-10 with additive Gaussian noise and generated by standard score infer-
ence (right) or by extended score inference (left).

produces image with roughly the amount of noise of the images it was trained on, extended score
inference produces significantly cleaner images, both visually (Figure[7) as well as in the FID scores
(Table [I). The intermediate images generated during inference (see Figure [I3]in Appendix [A3)
strongly indicate that this effect cannot simply be achieved by truncated sampling.

5.5 DENOISING REAL DATA

In this section we test our method on real data from single-particle Cryo-Electron Microscopy (see
Cheng et al.|(20135) for an introduction), where many particles of the same type are suspended in lig-
uid, frozen, and put under an electron microscope. This produces extremely noisy 2D-images which
need to be refined before further steps like 3D reconstruction can be attempted. This presents an op-
portunity to investigate the performance of our method on practically relevant real world data with
non-Gaussian noise. We use the EMPIAR-11618 (Bacic et all, 2021)) dataset of 68401 grayscale
images with 256 x 256 resolution. They were extracted from raw data and undergone some prepro-
cessing, but are still very noisy (see Figure top left). We trained a DDPM++ modeﬂ on this data
and used our method to generate samples (see Figure[8] right) whose shapes correspond strongly to
what has been obtained by [Bacic et al] (2021)), see Figure [§] bottom. We emphasize that the net-
work has only ever seen noisy data and has in no way been specifically adjusted based on a priori
knowledge of these shapes. This can be seen by the fact that standard score inference generates
noisy samples, very similar to those in the training set (see Figure [T6]in the Appendix). The pa-
rameters used for Figure[§]of the extended score inference have been determined by hand with such
knowledge, of course, but similar results are generated for a wide range of parameter choices (see

3In order to compensate for the higher resolution we reduced the number of feature channels in the ddpmpp
architecture from 128 to 32, but otherwise used the same settings as for the synthetic data. Training took
roughly 60 hours on two A100 GPUs.
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Figure 8: Images from the EMPIAR-11618 dataset (left). Samples generated by Algorithm with
parameters 6 = 0.001, p = 8, a = 0.01, and b = 2 (right). Shapes obtained by Bacic et al
(bottom), taken from (wwPDB Consortium, 2023, EMD-17944). The colormap is applied
with normalization per image to enhance contrast.

Figure [[3]in the Appendix). In particular, this demonstrates a significant capability of the extended
score to guide generation towards samples from the underlying image manifold, also in the case of
real data with extreme noise corruption caused by physical measurement modalities. This example
serves as proof of concept for the validation of our approach: reaching state-of-the-art performance
is outside the scope of this work, and would require incorporating more prior domain knowledge.

6 CONCLUSION

We introduced Manifold Attracted Diffusion (MAD), a novel inference approach for score-based
diffusion models to generate clean samples from a distribution despite training on noisy datasets.
Based on the manifold hypothesis, our method utilizes the underlying geometry to suppress off-
manifold variations while preserving on-manifold variations, which results in attracting samples
toward a low-dimensional structure. It can leverage established training algorithms and pretrained
models. The required computation cost is at most twice that of standard inference, due to requiring
a second evaluation of the score network. However, we observed empirically that it is enough to use
the extended score only in the last half of the inference steps, yielding an additional computational
cost of 50%, but additional investigation on this aspect is required. Numerical experiments on both
synthetic and real data demonstrate that MAD successfully suppresses noise.

Future directions include extending MAD to solve inverse problems, as in Cryo-EM for denois-
ing individual images, or for other denoising or image restoration tasks. This would benefit from
integration with conditional diffusion models, as explored in diffusion posterior sampling frame-
works (Chung et al., 2023} 2022). Developing automatic and adaptive parameter selection for ~(t)
would enhance the methods robustness and applicability. Further theoretical analysis of the ex-
tended score may lead to an improved incorporation into the inference procedure, in particular one
could combine it with inference techniques using noise injection or higher order ODE discretization
schemes. Future work should also involve a rigorous quantitative study comparing the performance
and computational trade-offs of MAD against training-time methods, finetuning on limited clean
data, and other relevant inference-time baselines such as truncated sampling (Daras et all, 2025).
Furthermore, it would be valuable to investigate whether the MAD framework could be adapted to
time-unconditioned generative models 2025)), or if our method fundamentally relies on
a time-dependent score. Finally, a promising future direction, motivated by the conceptual similar-
ities to classifier-free guidance (Ho & Salimans| [2021), is to explore whether our extended score
can serve as a more interpretable, geometrically-grounded method for improving general generation
quality, even for models trained on clean data.

10
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A APPENDIX

A.1 THE EXTENDED SCORE FOR PRODUCTS OF MEASURES
In the following lemma, we derive the expression of the extended score of the product of two mea-
sures. In this section, the superscripts denote the dimension of the domain.
Lemma A.l. Let dy + do = d. Take py € M(Rdl) and ps € M(RdQ). Then the product measure
p = p1 @ py belongs to M (R?) and

Hip(z) = (Hy'p1(z1), H?pa(x2)),

where © = (11, 15) € Rh+dz,

Proof. We have that gfi(a:) = gffl (1) g§2 (22). Thus, by Fubini’s theorem, we have

(p g9 (x) = (p1 % g3 ) (1) - (p2 * g52) (22).
Thus
log(p * g2)(x) = log(py * g9") (x1) + log(pa * g4*) (x2).
Taking a gradient with respect to z we obtain

SUp * g5)(x) = (ST (pr * 95') (1), 04, ) + (Oay, S® (p2 * 952) (22))-

Therefore, since the expression of H?(p) is linear in S%(p * g¢), we obtain

Hi(p)(2) = (H$ (p1)(21),0a,) + (Oa, , HS? (p2) (22)) = (HS (p1) (1), H? (p2) (22)).-
Taking the limit as v — 0, the result follows. O

This result can be used to calculate the extended score of a degenerate distribution p, namely, a
distribution supported on a lower-dimensional affine subspace of R?. Since the score, and thus the
extended score, is equivariant with respect to rotations and translations, without loss of generality,
we can assume that p is supported on {(21,04,) € R? : 21 € R4} with density p; € P(R%),
namely,

P=p1® 5d27

where g4, € M (R%) is the Dirac delta centered at 0 in R?%. By Lemmata and we obtain
that the extended score of p is given by

Hip(x) = (HY p1(21), Hy* pa(w2)) = (ST p1(21), —22),

13
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where we have also used that Hyd(x) = —z.

In the particular case when p; is a non-degenerate Gaussian distribution on R%* with mean p; € R%
and covariance 1 € R%>*% namely p; = N (uy1, X1), we have

Hip(x) = (=57 (21 — 1), —22).

As expected, this coincides with the standard score of the (non-degenerate) Gaussian distribution
N((111,04,), ) on R, where ¥ is the block matrix given by

1 0
x= {0 ]Id2] '
A.2 PROOFS AND DERIVATIONS

Proof of Lemma[3.2] By standard properties of approximate identities (Grafakos, 2014, Exam-
ple 1.2.17 and Theorem 1.2.19(2)), for f € C(R%) bounded we have that

lim (f «.0,)() = f(o), @ ERY,

Analogously, with h.,(z) := %Ha:HQg,Y(as) by (Grafakos, 2014, Theorem 1.2.21(b)) we get that

m(f*h,)(zx)=Cf(z), zeR,

li
~—0

212
where C' = fRd(27r)_% ||z\|2e_%dz < o0 . In addition, we observe that

oLgy(z) = —Eig, ()
and
2

Loy(@) = (32 + L )g, (2) = &£ (hy (@) — dgy (2)).

Consequently, as p(z) > 0 for all x € R?, by assumption

= lim diiva * 9y
D* gy 720 T pxg,
_ lim ~ (P 94)(Vap * $9v) = (Vap * 9,) (0 * 3594)
70 (p*gy)?
— lim (p* g'y)((va ¥ hy) —d(Vep * 9’7)) — (Vap = gq,)((p * hy) —d(p * 97))
v—0 Q(p*g,y)Q
_ p(CVep — dV.p) — Vaup(Cp — dp)
2p?

: : Va(p * gy)
Al/lr%’ydWS(p*gv) _im%)fydv

=0.
Moreover, it holds that

I
lim S(p * g,) = lim Va(P % 91) = 1r%1,y_,0 VD * Gy _ VoD
70 10 Pk gy im0 p * gy P
which completes the proof. O
[EE
Proof of Lemma[3.3] We write h;(z) :=cie™ 27— ie.pxgy = D icin (27y) ™2 h;, and observe
that

S(pxgy)(@) == > (),

1€[n]

where
h;

Wi = =,
’ e
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‘We observe that

d

dy

(Zje[n] hj(x))%hz(x) - hz(ﬁ Z llz—p;ll? hj(l')

j€[n] 242
wi(z) = =
(X e Mi(2))?

and
Hyp(a) = (1+7)S(p * g,) (@) + 745 S0 * 9,)(x) = vS(p * g,)(2) + 1S (0 * g) (@)

We will first show that the second term vanishes for v — 0. To this end, we note

(S b (@) 5 b (@) — i) ey 254 By ()
B8 == 3 (o) e e
D e hi@h; (@) (@ — ) (o — pall? = llw — pylf°)
292 (X e 1y (2))?
Letz € Wi and i,j € [n] suchthatx ¢ W; V « ¢ W, then

hi(x)h; hi(x)h; coes lrmppl®—lz—pil® = lle—p;
lim (z) j(x) < lim (z) j(x) = lim —5%e : 2y =0
V=0 V(e 1 (2))? T 920 YPhy(2)? 40 7

as 2|z — pr||> — |o — || — ||& — w;]|* < 0 by definition of W;. Since ||z — ;|2 — ||z — p;]|> = 0
if’|z € W; N W, and h;(x) > 0 for every z € R%, i € [n], we have

liy S (p ) (@) = 0.

We proceed by noting that

. hi(z) o _lemmglPoleme? 2’- I = pill <l = g
3 Rala) b =0 E el =l -l

00, ||z — pill > ||z — pyl
and, consequently, using the conventions that &+ = oo and = = 0,
hi(x)
lim w;(z) = lim ————+"—
=0 @) 7—0 Zje[n] hj(x)

-1

—lim (14 Y (@)

70 sy (@)
0, r¢g W
- {1, (z € W) A (x ¢ W¥j € [n]\{i}) .

(> jes %)*17 i€JCnl:ae e, W)
Thus

Hop(w) = lim Hp(x) = lim 7S(p + g,)(x) = — Z[](x — pi)zi(@).
i€[n
This concludes the proof.

Derivation of equation (7). For Sp(o,z) = —==, we have

ddo Sp(o,z) = 2(z—p)

o3

8In particular, if i = j.
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Figure 9: Generated with Algorithm from the same latent noise sample with § = 0.0001, p = 8,
and, from left toright, b € {1,2,3,4,5,6,7,8,9,10} as well as, from top to bottom, a € {1,3,5,7}.

and thus (3)) evaluates to

Tip1 = x; — m(t;)(tig1 — ti)ti((l + ’Y(ti))(*xitgu) + béit) z(wi,{”))

= @y —m(t) S (s — p) (14 (1) — ).

We would like to force this to match the standard score inference step in (), for this special case of
So (o, x), which is achieved by choosing

m(ti) = (L+(t:) — ) .

A.3 ADDITIONAL NUMERICAL EXAMPLES

Additional examples related to the datasets FFHQ and AFHQv?2 are shown in Figure[T0] Additional
examples related to ImageNet are shown in Figure[TT]

Figure[12]and Figure [13|show that the samples generated by extended score inference have a strong
dependence on the chosen hyperparameters, but a significant emergence of structure can be observed
for many different choices. Despite being a simpler problem, the generation seems to be less stable
w.r.t. hyperparameter choices for the synthetic data. One reason for this might be that we have a
1-dimensional manifold of images that is harder to find than the one underlying the EMPIAR-11618
data, which is, of course, not explicitely known but can be assumed to be higher-dimensional. It may
also be due to a shorter training duration (3mimg compared to 10mimg), which would be consistent
with the generation being much more stable w.r.t. the hyperparameters for FFHQ, AFHQv2, and
ImageNet as the networks for those problems have been trained significantly longer.

In Figure [T[4] we show the results with the synthetic dataset with 50% pixel removal. We see that
images generated by standard score inference replicate the corruption present in the training set,
while the images generated by extended score inference exhibit all key features of the clean data,
while eliminating the corruption due to pixel removal.

In Figure[T3] we compare the inference paths for standard and extended score generations: applying
truncated sampling to the standard score generation would not be enough to obtain the denoising
effect.

Additional images from the EMPIAR-11618 dataset, as well as images generated by standard score
inference, are shown in Figure[T6]
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IIIII]

I
'
~ .

(a) FFHQ (b) AFHQv2

Figure 10: In both subfigures, all images in each row starts from the same latent noise sample
and the leftmost column uses standard score whereas second to last columns use Algorithm [T] with
d = 0.0001, p = 8, a = 2.5, and, from left to right, b € {2,5,10,20,40,80}. The rows are
generated from consecutive random seeds.
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Figure 11: All images in each row starts from the same latent noise sample and the leftmost column
uses standard score whereas second to last columns use Algorithmwith 6 =0.001,p=12,a =4,
and, from left to right, b € {1,2,5,10, 15, 20, 25, 30, 35, 40, 50, 60, 70}. The rows are generated
from consecutive random seeds.
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Figure 12: Generated with Algorithm from the same latent noise sample with § = 0.02, p = 8§,
and, from left to right, b € {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75} as well as, from top
to bottom, a € {0.0015,0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005, 0.0055}.

Figure 13: Generated with Algorithmfrom the same latent noise sample with § = 0.001, p = 8,
and, from left to right, b € {0.25,0.5,1,2,4, 8,16, 32,64, 128, 256,512,1024, 2048} as well as,
from top to bottom, ¢ € {0.0005,0.001, 0.002, 0.005, 0.01, 0.02,0.05,0.1,0.2}.
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Figure 14: Comparison of generated images using a network trained on our synthetic dataset with
pixel removal noise, specifically in a given image every pixel is set to 0 with probability 0.5. Images
generated by standard score inference (right). Images generated by extended score inference (left).

A.4 LLM USE
LLMs were used to polish the writing for parts of the text, to suggest related work, and as a coding

aid. All those suggestions have only been implemented after thorough manual review. No LLMs
were involved in any way in the mathematical derivations.
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1112  Figure 15: Illustrating the inference path for standard score generation (top) compared to extended
1113 score generation (bottom), displaying every second image generated during the inference procedure
starting at step 20.
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Figure 16: Images from the EMPIAR-11618 dataset (left). Images generated by standard score
inference (right).
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