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ABSTRACT

Reliable code retrieval is crucial for developer productivity and effective code reuse,
significantly impacting software engineering teams and organizations. However,
the current neural code language models (CLMs) powering search tools are suscep-
tible to adversarial attacks targeting non-functional textual elements. We introduce
a language-agnostic transferable adversarial attack method that exploits this vulner-
ability of CLMs. Our approach perturbs identifiers within a code snippet without
altering its functionality to deceptively align the code with a target query. In partic-
ular, we demonstrate that modifications based on smaller models, such as CodeT5+,
are highly transferable to larger or closed-source models, like Nomic-emb-code or
Voyage-code-3. These modifications can increase the similarity between the query
and an arbitrary irrelevant code snippet, consequently degrading key retrieval met-
rics like Mean Reciprocal Rank (MRR) of the state-of-the-art models by up to 40%.
The experimental results highlight the fragility of current code search methods and
underscore the need for more robust, semantic-aware approaches. Our codebase is
available at https://github.com/AdvAttackOnNCC/Code_Search_
Adversarial_Attack.

1 INTRODUCTION

The rapid expansion of the computer science community coincides with an increased reliance on
automated systems for code analysis. With public codebases growing in scale and complexity, the
ability to efficiently understand, categorize, and retrieve code is critical (Shekhar, 2024). State-
of-the-art models utilize neural networks to map code snippets into latent vector representations
(i.e., embeddings) for various downstream tasks. Among these, code search aims to retrieve the
most relevant code snippets for a given natural language query, promoting code reuse and boosting
developer productivity (Di Grazia and Pradel, 2023; Sun et al., 2024; Li et al., 2025). These retrieval
systems typically embed the query and code snippets into the same vector space in order to rank
candidate snippets based on embedding similarity.

The advent of Large Language Models (LLMs) and specialized Code Language Models (CLMs)
has enabled extensive improvements in code-related tasks such as code completion, summarization,
and vulnerability detection, due to their advanced generation and reasoning capabilities (Jiang et al.,
2024; Rozière et al., 2024; Hui et al., 2024; Chen et al., 2021). However, applying these large
models directly to code search remains challenging (Howell et al., 2023), because the task typically
involves retrieving relevant snippets from vast repositories containing thousands or even millions of
candidates (Potvin and Levenberg, 2016). The large scale requires approaches that can both represent
code compactly and perform efficient similarity-based ranking (Di Grazia and Pradel, 2023; Liu
et al., 2021). Consequently, embedding-based retrieval models, which map code to vector spaces
for efficient storage and similarity computation, are still essential for practical large-scale code
search. Recent work indicates that employing these efficient embedding models through Retrieval-
Augmented Generation (RAG) techniques allows LLMs to achieve more accurate and context-aware
outputs for code generation tasks (Chen et al., 2024a; Wang et al., 2025a; Zhao et al., 2024).

Despite their utility, current neural code embedding models are vulnerable to adversarial examples—
small, functionality-preserving modifications to code snippets that can drastically change their
resulting embeddings (Chen et al., 2024b; Qu et al., 2024; Wan et al., 2022). While most prior
research has focused on adversarial attacks in classification tasks (Yefet et al., 2020; Zhou et al., 2022;
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Yao et al., 2024; Na et al., 2023), our work centers on code search, which leads to unique challenges.
First, adversarial attacks in code search can be crafted to specific queries or retrieval contexts, allowing
targeted manipulation of search results, for example pushing malicious cryptomining code to users
with high computational resources. Second, the typical code search workflow introduces additional
robustness issues. Unlike classification, where malicious code is processed directly during inference
and can be potentially inspected by LLMs with reasoning abilities (Hort et al., 2025; Hossain et al.,
2024; Jelodar et al., 2025), the code search is usually based on offline embedding. When large code
corpora are embedded offline, the modified code snippets would appear harmless. Later, since the
actual search process involves re-ranking based solely on these precomputed embeddings, it is much
harder for LLMs or other systems to detect or mitigate these adversarial inputs.

In this paper, we demonstrate the shared vulnerability across CLMs through transferable adversarial
attacks. The adversarial examples are initially generated by strategically replacing identifier tokens
within a code snippet to maximize the embedding similarity between the modified code and a target
query in small CLMs. We then highlight strong transferability: adversarial code snippets generated
using one model remain consistently effective when embedded by other models across five tested
programming languages. Notably, attacks crafted with a relatively small model (e.g., CodeT5+) can
successfully deceive models that are 10 to 50 times larger (OASIS, Nomic-emb-code) or even
closed-sourced (Voyage-code-3). Furthermore, the similarity changes the adversarial examples
induce on the small source model strongly correlate with their effect on larger target models. In other
words, the effectiveness of adversarial attacks on larger or closed-source models can be estimated
efficiently on a smaller model, making these attacks more accessible.

Although state-of-the-art models report high scores on standard code search benchmarks (Li et al.,
2024; Ott et al., 2022), they are vulnerable to our transferable adversarial attacks, which can cause
dramatic drops in key retrieval metrics. For instance, we observed an absolute drop of 41-43% in
Recall@1 across all tested models. The performance degradation suggests that high benchmark
scores do not reflect code semantic understanding and further highlights the models’ reliance on
brittle lexical features, indicating substantial room for improving their robustness. In summary, our
contributions are as follows:

• We propose one of the first adversarial attack methods for code search, which perturbs the
code snippet to maximize its similarity with the target query while preserving functionality;

• We illustrate transferability of the attack: adversarial code snippets generated using smaller
models can effectively deceive larger models, including closed-source black-box systems;
and

• We reveal that current state-of-the-art code search models rely on lexical features rather than
deeper code understanding, exposing significant robustness gaps despite high benchmark
performance and highlighting the need for future improvement.

2 RELATED WORKS

The field of Code Language Models (CLMs) has evolved rapidly, from early unified representations
like CodeBERT (Feng et al., 2020) to encoder-decoders such as CodeT5 and CodeT5+ (Wang et al.,
2021b; 2023). Subsequently, large generative CLMs, like Codex (Chen et al., 2021) and numerous
open-source efforts, including CodeLlama (Rozière et al., 2024) and StarCoder (Li et al., 2023;
Lozhkov et al., 2024), prominently showcase sophisticated code generation and reasoning abilities.
The CLMs’ generative capabilities have been further enhanced by Retrieval-Augmented Generation
(RAG) (Zhao et al., 2024). In RAG systems, CLMs leverage efficiently retrieved code snippets—
often sourced via embedding models—to improve contextual relevance and accuracy for complex
tasks (Wang et al., 2025b; Chen et al., 2024a; Wang et al., 2025a; Wu et al., 2024). The robustness of
these underlying code embedding models is therefore critical, as the vulnerabilities explored in this
paper directly threaten RAG pipelines and the corresponding CLM applications.

Code search, a crucial task for efficient software development and reuse (Nie et al., 2016), relies
on embedding models for effective retrieval from large codebases. CodeSearchNet (Wu and Yan,
2022) established early benchmarks, with models like CodeBERT (Feng et al., 2020) learning joint
natural language-code representations. To enhance understanding, later work incorporated structural
information: GraphCodeBERT (Guo et al., 2020) used data flow graphs, while UniXcoder (Guo et al.,
2022) and SynCoBERT (Wang et al., 2021a) leveraged Abstract Syntax Trees. Later, contrastive

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

learning, as seen in ContraCode (Jain et al., 2020), became a dominant training technique. Other
strategies include adapting general CLM embeddings (Wang et al., 2023), fine-tuning LLMs (Nomic
Team, 2025), or training on augmented data (Gao et al., 2025). Recently, black-box embedding
services from OpenAI (OpenAI, 2024) and Voyage AI (Voyage AI, 2024) have also achieved state-of-
the-art performance. However, our experimental results demonstrate that high benchmark scores do
not guarantee robustness: top-performing code search models remain susceptible to the proposed
adversarial attacks.

Applying gradient-based attack methods (Goodfellow et al., 2015) directly to natural language is
challenging due to the discrete nature of the tokens, making it difficult to apply small perturbations
while maintaining syntactic and semantic integrity (Zhang et al., 2020b). Programming languages,
however, provide unique opportunities for adversarial attacks through semantic-preserving transfor-
mations (Hort et al., 2025). Attack strategies vary based on the assumed knowledge of the target
model. White-box attacks require access to model gradients. Methods like DAMP (Yefet et al., 2020),
MHM (Zhang et al., 2020a), and GraphCodeAttack (Nguyen et al., 2023) leverage gradient signals to
guide modifications aiming for misclassification. Black-box attacks operate without internal model
knowledge. CARL (Yao et al., 2024) utilizes reinforcement learning to optimize the attack, while
ALERT (Yang et al., 2022) employs genetic algorithms and greedy search to find natural perturbations,
and Wen et al. (2025) evaluates combinations of different search strategies. Other black-box methods
based on heuristics include inserting comments or dead code (Na et al., 2023). Another emerging
approach involves the use of generative models to directly produce adversarial code examples, as
explored by CBA (Zhang et al., 2024) and ITGen (Huang et al., 2025). In this work, we propose a
novel adversarial attack method in which we employ white-box attack techniques on one code search
model to derive examples that also work as transferable black-box attacks against other models.

3 ADVERSARIAL ATTACK FOR CODE SEARCH

Inspired by the gradient-based optimization techniques in Yefet et al. (2020), previous gradient-based
adversarial attack methods mainly focused on deceiving classification models by pushing the code
snippet embedding to the category boundaries. Because code search systems can process both natural
language queries and code snippets, our method is designed to increase the similarity between a code
snippet and a target query. Our attack takes a (query, code) text pair, calculates their similarity score
via the code search model, and uses the back-propagated gradient of this score on each token in the
code snippet as the signal for the adversarial attack.

3.1 GRADIENT BASED METHOD

Formally, consider a query Q and an arbitrary code snippet C. Let Qemb and Cemb represent their initial
embeddings, typically derived from the embedding layer before any attention or subsequent processing
within the code search model. We model the neural code search process with parameters θ as a
function Gθ that maps these initial embeddings to a similarity score, Simθ(Q,C) = Gθ(Qemb, Cemb).
Our objective is to find a modified code snippet C ′ maximizing the similarity change:

∆Simθ = Simθ(Q,C ′)− Simθ(Q,C) = Gθ(Qemb, C
′
emb)−Gθ(Qemb, Cemb).

To search for optimal modifications efficiently, we approximate the similarity change using a first-
order Taylor expansion. Let C ′

emb = Cemb + δ be the initial embedding of the modified code, where δ
represents the perturbation introduced by the token replacements. The similarity between the query
and the modified code can be approximated as:

Simθ(Q,C ′) = Gθ(Qemb, Cemb + δ) ≈ Gθ(Qemb, Cemb) + δ⊤∇CembGθ(Qemb, Cemb)

= Simθ(Q,C) + δ⊤∇CembGθ(Qemb, Cemb)

Therefore, maximizing the similarity change ∆Simθ is approximately equivalent to maximizing
the term δ⊤∇CembGθ(Qemb, Cemb) that quantifies the impact of the embedding perturbation δ on the
similarity score. We refer to this term as influence in the rest part of the paper.

Consider the specific case where a single token Cti at position i in the original code is replaced
by a candidate token Ctx . The perturbation vector δ(i,tx) will be zero everywhere except at the
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dimensions corresponding to position i, where it equals the difference between the new and original
token embeddings:

δ(i,tx) = (⃗0, . . . , 0⃗, Cembtx − Cembti , 0⃗, . . . , 0⃗).

To identify the best replacement for the token at position i, we calculate the expected change
in similarity δ⊤(i,tx)∇CembGθ(Qemb, Cemb) for every valid token Ctx in the vocabulary. Since to-
ken replacements are happening at different positions, the search can be done concurrently: as
δ(i,·) · δ(j,·) = 0 for i ̸= j,

max
δ

δ⊤∇CembGθ(Qemb, Cemb) =
∑
i

max
tx

δ⊤(i,tx)∇CembGθ(Qemb, Cemb).

To generate the adversarial code, tokens in the identifiers of C are replaced by iterating through the
valid alternatives and selecting the tokens that maximize the influence. The resulting adversarial C ′

based on the query Q and code search model with parameter θ is denoted as C ′ = ADVATTACK(Q, θ).
The examples of our adversarial attack method can be found in Appendix G.2.

At a high level, we preserve the code snippet’s functionality post-attack by enforcing two identifier
renaming constraints:

• Consistency: All occurrences of the same identifier are replaced with the same new identifier.
• Uniqueness: Distinct identifiers are replaced with distinct new identifiers.

In practice, enforcing these constraints is more complex, because an identifier can consist of multiple
tokens. The details of this approach are provided in Appendix E.

3.2 ATTACK TRANSFER

The gradient-based attack method requires access to the model parameters and sufficient compu-
tational resources for the gradient back-propagation to the initial embedding of the code snippet.
However, these prerequisites may not always be met, especially considering the increasing size of
modern code search models and the rise of black-box code search systems.

For a code search model with parameter θ∗, which may be challenging to attack directly, our
experimental results, presented in Section 4.2, demonstrate a practical alternative. We can generate
an adversarial code snippet C ′ = ADVATTACK(Q, θ) using a smaller, more accessible model with
parameter θ, and Simθ∗(Q,C ′) > Simθ∗(Q,C) also holds with a very high probability. We refer to
this phenomenon, where an attack crafted using one model is also effective on another, often more
complex or inaccessible model, as “Attack Transfer.”

4 EXPERIMENTS AND RESULTS

This section presents the evaluation of our adversarial attack. First, we demonstrate the attack’s
effectiveness on the sampled (query, code) pairs by quantifying the changes in the similarity scores and
the number of pairs exhibiting similarity improvement (Section 4.1). Second, to assess transferability,
we also report Precision, Pearson Correlation Coefficient (r), and Spearman’s Rank Correlation
Coefficient (ρ), which measure the consistency of similarity changes across different model pairs
(Section 4.2). Meanwhile, the effectiveness and the efficiency of the transferred attack are compared
to the White-box and Black-box baselines (Section 4.3). Finally, we illustrate the attack’s practical
impact on code search benchmarks and RAG systems by comparing standard metric scores before
and after the attack (Section 4.4 and Section 4.5). The details of the metrics can be found in
Appendix F.4. The collective results from our experiments show that the adversarial attack is effective
and transferable across all datasets based on different programming languages and can substantially
affect the retrieval performance of various models.

Our adversarial attack method can iteratively improve the code snippets’ similarity to the target query
by reapplying the attack to their modified versions. In the experiments, the adversarial attack is
performed for 5 iterations. The final adversarial code is then selected as that with maximum similarity
across all candidates and the unperturbed original code. These design choices are discussed in the
ablation studies in Appendix F.6.
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Table 1: Models Used in the Experiments

Model # Parameters Vocabulary
Size

# Tokens valid
for identifiers

CodeT5+ 110M 32103 29881
OASIS 1.54B 151665 74194
Nomic-embed-code 7.07B 151665 74194
Voyage-code-3 - 151665 74194

Table 2: Datasets Used in the Experiments

Dataset # Queries # Code Snippets Programming
Languages

CosQA 500 500 Python
CLARC 526 526 C++

HumanEval-X 164 164 Python, C++, Java,
Javascript, Go

Figure 1: Distribution of Code Similarity Changes on CosQA. The Attack Model is CodeT5+, and
the Eval Models are labeled at the top of each subplot. The magnitude of negative similarity changes
resulting from the attack is considerably smaller than that of positive similarity changes.

Models We applied a gradient-based adversarial attack to two models: CodeT5+ (Wang et al., 2023)
and OASIS (Gao et al., 2025). To assess the transferability of this attack, we evaluated the resulting
adversarial code examples on two additional models: Nomic-embed-code (Nomic Team, 2025)
and Voyage-code-3 (Voyage AI, 2024). Details regarding the models are provided in Table 1.

Datasets We assessed the efficacy of our proposed adversarial attack using three datasets: CosQA
(Huang et al., 2021), CLARC (ClarcTeam, 2025), and HumanEval-X (Zheng et al., 2023), whose
statistics are detailed in Table 2. The code search benchmarks, CosQA and CLARC, were employed
to evaluate the effectiveness of the attack method and to quantify the impact of adversarial code on
retrieval metrics. Although HumanEval-X is not designed as a code search dataset, its shared queries
and code snippets with the same functionalities in five distinct programming languages allowed us to
conduct a controlled analysis of the attack across these different programming languages.

4.1 EFFECTIVENESS OF THE ADVERSARIAL ATTACK

To evaluate the effectiveness of our gradient-based adversarial attack, we constructed 20,000 (query,
code) pairs by sampling 100 queries and 100 code snippets from each of the CosQA (Huang et al.,
2021) and CLARC (ClarcTeam, 2025) datasets. Our attack method was applied to each pair to
generate the adversarial code.

The highlighted rows in Table 3 present the effectiveness of our adversarial method on the 10,000
evaluation pairs from datasets. Our attack successfully increased the query-code similarity score in
over 97% of cases against the Attack Model. In the few remaining instances where no improvement
was observed, it was either because no token substitutions could be found that positively influenced the
similarity score or all possible substitutions led to decreased similarity. Since our method selects the
code version maximizing the similarity, in such cases, the original code is retained as the “adversarial”
code, resulting in zero change in similarity.

It is also noteworthy that the scale of similarity change was larger on CodeT5+ compared to
OASIS. We hypothesize this is due to the denser embedding space of OASIS (as illustrated in
Appendix F.2), possibly stemming from its training on augmented data for robustness (Gao et al.,
2025). Furthermore, both the mean and standard error of the similarity changes were slightly higher
for the CosQA (Python) dataset compared to CLARC (C++), suggesting that programming languages
may influence the effectiveness of our gradient-based adversarial attack.
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Table 3: Similarity Changes Resulting from Adversarial Attacks. Zero-change cases are classified as
negative. Highlighted rows indicate settings where the Attack and Eval Models are the same. The
similarity changes and the number of pairs with improved similarity demonstrate that the adversarial
attack can effectively increase the similarity between a query and an arbitrary code snippet in most
cases, even when the attack is not specifically targeting the Eval Model.

Dataset Attack Model Eval Model Similarity
Change (%)

Pos.
Count

Positive Sim.
Change (%)

Neg.
Count

Negative Sim.
Change (%)

CosQA

CodeT5+
CodeT5+ 28.41± 11.07 9908 28.67± 10.78 92 0.00
OASIS 10.59± 5.81 9762 10.86± 5.60 238 −0.65± 1.36
Nomic-emb-code 19.57± 11.40 9539 20.63± 10.55 461 −2.29± 3.35
Voyage-code-3 15.90± 8.86 9808 16.23± 8.40 192 −1.22± 1.80

OASIS
CodeT5+ 10.74± 11.85 8110 14.47± 9.72 1890 −5.24± 4.67
OASIS 10.63± 5.71 9814 10.84± 5.58 186 0.00
Nomic-emb-code 16.14± 11.14 9321 17.48± 10.29 679 −2.30± 2.98
Voyage-code-3 12.54± 8.36 9580 13.13± 8.04 420 −0.90± 1.34

CLARC

CodeT5+
CodeT5+ 24.84± 8.62 9896 25.10± 8.28 104 0.00
OASIS 8.30± 4.98 9540 8.77± 4.57 460 −1.53± 2.19
Nomic-emb-code 14.01± 8.38 9435 15.01± 7.48 565 −2.65± 3.72
Voyage-code-3 9.01± 5.73 9556 9.50± 5.36 444 −1.59± 2.24

OASIS
CodeT5+ 11.20± 8.66 9080 12.73± 7.47 920 −3.90± 3.78
OASIS 13.54± 5.46 9789 13.83± 5.14 211 0.00
Nomic-emb-code 17.78± 8.36 9675 18.42± 7.73 325 −1.08± 2.44
Voyage-code-3 11.81± 6.42 9732 12.15± 6.17 268 −0.42± 1.03

Table 4: Correlation in CosQA. r stands for Pear-
son Correlation Coefficient; ρ stands for Spear-
man’s Rank Correlation Coefficient. The high
precision and correlation coefficients indicate
that if an adversarial attack results in improved
similarity on the Attack Model, a similarity im-
provement with a corresponding magnitude is
also likely to be observed on the Eval Model.

Attack Model Eval Model Precision (%) r (%) ρ (%)

CodeT5+
OASIS 98.27 62.37 60.04
Nomic-emb-code 96.14 62.47 60.14
Voyage-code-3 98.48 64.13 62.17

OASIS
CodeT5+ 81.56 63.35 63.75
Nomic-emb-code 94.85 78.53 79.83
Voyage-code-3 97.13 83.92 83.94

Table 5: Correlation in CLARC. The precision
is comparable to CosQA, but the correlation co-
efficients are slightly lower. Although the scale
of similarity change on both datasets are compa-
rable, the lower correlation coefficients suggest
that the attack transfer effects, while present, is
less predictable or consistent on a case-by-case
basis for CLARC than for CosQA.

Attack Model Eval Model Precision (%) r (%) ρ (%)

CodeT5+
OASIS 98.20 50.16 45.65
Nomic-emb-code 95.16 49.68 45.43
Voyage-code-3 96.21 46.39 42.61

OASIS
CodeT5+ 91.35 48.21 46.46
Nomic-emb-code 98.83 74.88 72.28
Voyage-code-3 99.22 78.35 77.36

4.2 ATTACK TRANSFER

To assess the transferability of our adversarial attacks (introduced in Section 3.2), we used the
same 20,000 (query, code) pairs sampled from the CosQA and CLARC datasets. Adversarial codes
generated using CodeT5+ and OASIS (referred as “Attack Models”) were evaluated on different
“Eval Models,” which computed embeddings and similarity scores for both the original and adversarial
code snippets.

As shown in Tables 3, 4, and 5, our adversarial attacks exhibit strong cross-model transferability.
Our results demonstrated consistent transferability of adversarial attacks across a diverse set of
Eval Models, including compact models (CodeT5+), robustness-enhanced models (OASIS), models
fine-tuned from large CLMs (Nomic-emb-code), and closed-source systems (Voyage-code-3).
For most Attack/Eval Model pairs, over 95% of adversarial examples successfully increased query-
code similarity scores on the Eval Model. Precision—the probability that an adversarial example
induces a positive similarity change on the Eval Model when it did so on the Attack Model—typically
exceeded 90-95%. Moreover, we observed moderate to strong positive Pearson (r) and Spearman (ρ)
correlations, indicating that adversarial examples causing larger similarity increases on the Attack
Model tend to yield similarly large gains on the Eval Models. Although a minority of adversarial
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Table 6: Comparison of the Attack Transfer against baselines. In the white-box scenario, the attack
achieves performance comparable to the baseline while using only ∼ 60% of the GPU hours. In the
black-box scenario, our attack transfer is more effective and requires just 0.01% of the API calls used
by CodeAttack. GPU hours are calculated on a Nvidia L40 ADA 48GB GPU.

Method Similarity
Change (%)

Pos.
Count

Positive Sim.
Change (%)

Neg.
Count

Negative Sim.
Change (%) Efficiency

White Box Direct Attack 10.45 ± 5.48 978 10.69 ± 5.31 22 0.00 ± 0.00 71 mins∗

Attack Transfer 10.29 ± 5.76 985 10.46 ± 5.63 15 4.61 ± 1.89 44 mins∗

Black Box CodeAttack 5.18 ± 4.18 907 5.95 ± 3.54 93 -0.02 ± 2.10 10.8m API Calls
Attack Transfer 15.81 ± 8.79 969 16.36 ± 8.35 30 -1.56 ± 1.76 1k API Calls

examples led to a decrease in similarity (see Figure 1 and Appendix F.1), the magnitude of these
decreases was generally much smaller than the gains from successful transfers.

Interestingly, differences in tokenization between the Attack and Eval Models did not hinder trans-
ferability. Our method relies on the Attack Model’s vocabulary for token substitutions. Although
CodeT5+ uses a tokenizer with only one-fifth the vocabulary size of Nomic-emb-code and
Voyage-code-3, its adversarial examples still transferred effectively, achieving performance
comparable to those generated by OASIS, whose tokenizer is nearly identical to the two Eval Models.

We also observed an asymmetry in transferability. Attacks generated by CodeT5+ transferred
well to OASIS, with high precision, whereas OASIS attacks transferred less effectively to
CodeT5+, showing lower precision and weaker correlation. When targeting Nomic-emb-code
and Voyage-code-3, CodeT5+ and OASIS attacks produced comparable similarity changes, but
OASIS attacks consistently achieved higher correlation coefficients, which suggests that OASIS may
exploit features more aligned with those captured by Nomic-emb-code and Voyage-code-3,
potentially due to similarities in architecture, parameter size, or tokenization.

4.3 COMPARISON WITH BASELINES

We also evaluated our Attack Transfer method against corresponding baselines in both white-box
and black-box settings, using 1,000 (query, code) pairs from the CosQA dataset. For the white-box
scenario, we compared a transferred attack from CodeT5+ to OASIS against a baseline direct attack
based on the OASIS model. As our work is among the first to explore adversarial attacks on code
search, we define the white-box baseline as a direct attack where the attack and evaluation models are
identical. For the black-box scenario, our transferred attack from CodeT5+ to Voyage-code-3
was compared against applying adapted CodeAttack (Jha and Reddy, 2023) 1to Voyage-code-3.

The comparison results are presented in Table 6. In the white-box setting, our attack transfer achieves
performance comparable to the direct attack but with better efficiency, requiring ∼40% less GPU
time. The advantages of our method are even more pronounced in the black-box comparison. Attack
transfer is not only substantially more effective than CodeAttack but also orders of magnitude more
efficient, using a tiny fraction of the API calls. Moreover, our method preserves the functionality of
the code, whereas modifications by CodeAttack often produce non-compilable code snippets.

4.4 APPLICATION ON CODE SEARCH BENCHMARKS

In this experiment, CodeT5+ was used as the Attack Model. For each query in the CosQA and
CLARC datasets, we selected 10% of irrelevant code snippets and modified them adversarially to max-
imize their similarity to the query. These modified snippets replaced the original irrelevant ones in the
candidate pools. Eval Models (CodeT5+, OASIS, Nomic-emb-code, and Voyage-code-3)
then embedded the queries and the modified pools and reranked the code snippets by similarity. The
retrieval metrics are measured before and after this replacement.

1CodeAttack was originally developed for the code classification task, and we modified it to fit our code
search objective.
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Table 7: Code Search Metric Change Caused by 10% Adversarial Attack on CosQA. The statistics
reveal a consistent degradation in all metrics for every code search model after the attack, underscoring
the adversarial attack’s substantial influence on their retrieval capability. The metric changes when
other percentages of the corpus are attacked are available in Appendix F.5.

Model Setting MRR NDCG Recall@1 Recall@5 Recall@10 Recall@20

CodeT5+
(Attack Model)

Original 74.08 78.52 64.00 88.20 92.20 95.20
Adversarial 11.81 15.19 7.20 18.20 26.40 36.40
∆ 62.27 63.33 56.80 70.00 65.80 58.80

OASIS
Original 80.27 84.51 70.40 92.80 97.60 99.60
Adversarial 40.63 48.09 28.40 56.60 72.20 85.00
∆ 39.64 36.42 42.00 36.20 25.40 14.60

Nomic-emb-code
Original 82.83 86.40 73.40 94.40 97.20 98.60
Adversarial 42.81 49.74 30.00 59.60 71.80 82.80
∆ 40.01 36.66 43.40 34.80 25.40 15.80

Voyage-code-3
Original 87.03 89.84 79.40 96.80 98.20 99.20
Adversarial 50.94 57.92 38.00 69.80 80.00 90.60
∆ 36.09 31.92 41.40 27.00 18.20 8.60

As shown in Table 7, replacing only 10% of irrelevant candidates with adversarial versions led to
sharp performance drops in all models. Before attack, models like OASIS, Nomic-emb-code, and
Voyage-code-3 achieved strong R@1 (70-80%) and R@5 (>90%) scores, suggesting the task
was nearly “solved.” However, after attack, R@1 fell by over 40%, and R@5 dropped below 70%,
revealing that high benchmark scores do not guarantee robustness against adversarial manipulation.

Unsurprisingly, CodeT5+, the Attack Model, had the greatest performance drop. Yet the attack also
transferred effectively to other models. OASIS remained vulnerable, despite being trained against
hard negatives with similar keywords on an augmented dataset. Nomic-emb-code’s substantial
performance decrease (R@1 decreased by >43%) indicates even large CLMs can overly depend on
lexical features like identifiers, suggesting that scale-up does not naturally yield greater robustness.
Although Voyage-code-3 was the most resilient, it still suffered a notable performance drop,
confirming the attack’s potent transferability even against closed-source systems.

4.5 APPLICATION ON RAG SYSTEMS

Table 8: Performance of Code RAG
System based on GPT-4o on Hu-
manEval. The lower Pass@1 in
the bold row demonstrated the in-
fluence of the adversarial attack
on the code RAG system. Re-
sults marked with an asterisk (*)
are from CodeRAG-Bench (Wang
et al., 2025b).

Method Pass@1
Standard RAG 90.9%
Gold Retrieval 92.6%∗

Attacked RAG 87.2%

To demonstrate how adversarial attacks on a code corpus can
impact downstream RAG systems, we also evaluated the perfor-
mance of a system based on gpt-4o on the HumanEval bench-
mark, following the pipeline from CodeRAG-Bench (Wang
et al., 2025b). We measured the Pass@1 under three scenar-
ios: Standard RAG, which uses retrieval from the original
corpus; Gold Retrieval, which uses ground-truth code snippets
to establish an upper-bound performance; and Attacked RAG,
which uses retrieval from a corpus where 10% of the code is
adversarially modified.

The experimental results, presented in Table 8, show a notable
drop in performance for the Attacked RAG scenario. The
degradation highlights that for a RAG system that employs a
highly capable generator model, its overall performance can be
undermined if the underlying retrieval component is compro-
mised by an attack.

4.6 PROGRAMMING LANGUAGES

To assess the effectiveness of attack transfer across languages, we used the HumanEval-X
dataset (Zheng et al., 2023), which includes 164 queries with solutions in Python, C++, Java,
JavaScript, and Go. We created 26,732 (query, code) pairs by pairing each query with all non-
corresponding solutions. CodeT5+ served as the Attack Model, while OASIS, Nomic-emb-code,
and Voyage-code-3 were used as Eval Models.
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Table 9: Effectiveness and Correlation of Adversarial Attack transferred from CodeT5+ in Various
Programming Languages in HumanEval-X. “Positive” indicates the percentage of 26,732 pairs with
increased similarity after the attack; “Negative” indicates the percentage with decreased or unchanged
similarity. The similarity changes and the ratio of positive similarity changes confirm the effectiveness
of the adversarial attack across all 5 programming languages.

Eval Model Similarity
Change (%)

Positive
(%)

Pos. Sim.
Change (%)

Negative
(%)

Neg. Sim.
Change (%) Precision (%) r (%) ρ (%)

Python
CodeT5+ 22.49 97.9 23.05 2.1 0 - - -
OASIS 6.72 96.1 7.06 3.9 -0.91 97.12 53.39 50.49
Nomic-code-emb 11.52 91.7 12.88 8.3 -2.60 93.37 49.54 46.88
Voyage-code-3 5.92 96.2 6.20 3.8 -0.69 97.36 46.09 42.80

C++
CodeT5+ 18.72 99.2 18.86 0.8 0 - - -
OASIS 5.96 90.1 6.85 9.9 -2.09 90.55 50.40 49.46
Nomic-code-emb 7.56 81.3 10.28 18.7 -4.33 81.91 46.32 45.37
Voyage-code-3 6.20 92.9 6.81 7.1 -1.74 93.16 39.59 38.12

Java
CodeT5+ 17.26 99.2 17.40 0.8 0 - - -
OASIS 6.25 90.8 7.08 9.2 -1.99 91.28 48.46 47.48
Nomic-code-emb 8.26 82.5 10.91 17.5 -4.23 83.10 44.25 42.97
Voyage-code-3 7.57 95.8 7.97 4.2 -1.57 96.30 43.52 42.12

JavaScript
CodeT5+ 20.61 99.4 20.73 0.6 0 - - -
OASIS 7.02 91.0 7.96 9.0 -2.42 91.28 52.01 50.40
Nomic-code-emb 11.05 87.3 13.34 12.7 -4.66 87.72 48.46 46.30
Voyage-code-3 8.04 92.0 8.94 8.0 -2.30 92.31 45.05 43.41

Go
CodeT5+ 22.95 99.8 23.00 0.2 0 - - -
OASIS 8.27 94.4 8.90 5.6 -2.35 94.56 51.68 49.69
Nomic-code-emb 11.07 88.6 13.07 11.4 -4.42 88.76 48.20 45.94
Voyage-code-3 8.13 94.8 8.69 5.2 -2.04 94.90 42.56 40.19

As shown in Table 9, the adversarial attack was effective and transferable across all five languages,
with varied impact. Python and Go experienced the largest similarity changes, while C++, Java, and
JavaScript were less affected. Transferability was stronger for languages with flexible structures. Go
achieved the highest similarity change, and Python had the highest transfer precision. Conversely,
the statically typed C++ and Java showed slightly weaker transferability, especially when targeting
Nomic-emb-code.

Despite these variations, correlation coefficients were consistent across languages, suggesting that the
linear or monotonic correlation between the attack’s impact on the Attack Model and its transferred
impact on Eval Models is stable regardless of language. In general, adversarial code snippets that
cause greater similarity changes on the Attack Model are expected to be similarly effective on Eval
Models, irrespective of the specific programming language.

5 CONCLUSION & FUTURE WORKS

We propose a transferable adversarial attack that modifies code identifiers to mislead code search
models. The attack transfer is highly effective across a range of models, demonstrating current
models’ reliance on superficial features. The revealed vulnerability underscores the urgent need for
more robust and semantics-aware code embedding techniques.

Future research could explore several directions. First, the strong correlation in attack transferability
across models warrants further investigation into shared pre-training data or common architectural
biases. Second, future work could focus on developing more robust code embedding models through
new defense mechanisms or training strategies, such as contrastive learning tailored to functionality-
preserving perturbations. Lastly, because the attack exploits the difference between natural and
programming languages, simply adapting NLP procedures for CLMs may be inadequate, especially
when fine-tuning data might be insufficient to address the unique scenario. Instead, integrating
programming language-specific structures, such as Abstract Syntax Trees, could be a more efficient
approach toward building more robust and semantically grounded CLMs.
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REPRODUCIBILITY STATEMENT

The authors confirm that the code and data required to reproduce the experimental re-
sults presented in Section 4 are publicly available. The codebase is hosted on GitHub at
https://github.com/AdvAttackOnNCC/Code_Search_Adversarial_Attack,
and the dataset is available on Hugging Face at https://huggingface.co/datasets/
CoIR-Retrieval/cosqa, https://huggingface.co/datasets/ClarcTeam/
CLARC, and https://github.com/zai-org/CodeGeeX?tab=readme-ov-file#
humaneval-x-a-new-benchmark-for-multilingual-program-synthesis. All
results were verified to be reproducible with our implementation as of the submission date (September
22, 2025). We note the specific date as certain experimental results rely on API calls (gpt-4o,
Voyage-code-3).
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A USE OF LLMS

We detail our use of Large Language Models (LLMs) below:

• Experimental Application: The gpt-4o model was utilized as a component of the
Retrieval-Augmented Generation (RAG) pipeline, as presented in Section 4.5. This was the
only application of LLMs in this paper.

• Writing Assistance: We also employed LLMs to aid in improving the grammar, clarity, and
phrasing of the draft during the writing process.

B LIMITATION

This study has several limitations. Firstly, our presented attacks exclusively target (query, code)
pairs. While our gradient-based methodology could potentially modify a code snippet to increase its
similarity with multiple queries concurrently (i.e., a (query_list, code) input format), such experiments
were not conducted due to time constraints.

Also, although we demonstrated the transferability of adversarial attacks across various code embed-
ding models, we have not identified the underlying reasons for this phenomenon. We hypothesize that
shared pretraining data among these models contributes to transferability; however, the number of
models tested in this work with publicly available pretraining data was insufficient to draw definitive
conclusions.

C COMPUTE RESOURCE

The experiments described in this paper were conducted on a server equipped with an AMD EPYC
Milan 7643 48-Core CPU (@2.30GHz), 1TB of RAM, and an NVIDIA L40 ADA 48GB GPU. We
used a batch size of 10 (query, code) pairs for attacks on CodeT5+ and 4 pairs for attacks on OASIS.
We observed that larger batch sizes did not further reduce the runtime. The time and GPU memory
spent on the experiments are reported in Table 10.

Table 10: Compute resource used in the experiments for generating 10,000 adversarial examples.

Attack Model Total Time GPU Time
(Gradient Calc.)

CPU Time
(Parsing & Token Search) GPU Memory Token

Search Space

CodeT5+ (110M) 8 hours ∼6.8 hours (85%) ∼1.2 hours (15%) 7GB 15.1k
OASIS (1.5B) 12 hours ∼10.6 hours (88%) ∼1.4 hours (12%) 26GB 36.7k

D MODEL & DATASET LICENSE

• CodeT5+: BSD 3-Clause License 2

• OASIS: MIT License3

• Nomic-emb-code: Apache-2.0 4

• Voyage-code-3: Unclear, but we do not include any embeddings from voyage-code-3 in our
codebase.

• CosQA: Apache-2.05 (we use CosQA from COIR)
• CLARC: CC-BY-SA 4.0: 6

• HumanEval-X: Apache-2.07

2https://github.com/salesforce/CodeT5?tab=BSD-3-Clause-1-ov-file
3https://huggingface.co/Kwaipilot/OASIS-code-embedding-1.5B
4https://huggingface.co/nomic-ai/nomic-embed-code
5https://github.com/CoIR-team/coir/blob/main/LICENSE
6https://huggingface.co/datasets/ClarcTeam/CLARC
7https://huggingface.co/datasets/THUDM/humaneval-x
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E IMPLEMENTATION DETAILS

E.1 DETAILED CONSTRAINTS

In the adversarial attack, we focus on replacements of the identifier tokens. More specifically, we
replace the tokens that include part of function, variable, macro, and module names in the code text.
Formally, let the original code text be tokenized as {Cti}ni=1, and the code text after replacement be
tokenized as {C ′

ti}
n
i=1. For any two strings A and B, let LCS(A,B) denote their longest common

substring, and let Remove(A,B) denote the remaining string after removing string B from string A.
We introduce two additional constraints during the replacement:

Identifier Consistency If Cti and Ctj are tokens from different occurrences of the same identifier in
the code, then:

Remove(C ′
ti ,LCS(C ′

ti , C
′
tj )) = Remove(Cti ,LCS(Cti , Ctj )),

Remove(C ′
tj ,LCS(C ′

ti , C
′
tj )) = Remove(Ctj ,LCS(Cti , Ctj )).

No Duplicate Replacement If Cti , Ctj are tokens from occurrences of one identifier, and Ctp , Ctq
are tokens from occurrences of a different identifier, then:

LCS(C ′
ti , C

′
tj ) ̸= LCS(C ′

tp , C
′
tq ).

These constraints ensure the code’s AST structure remains identical, thereby preserving semantic
consistency between the original and attacked versions of the code. To satisfy the constraints, we
employ the Hungarian Algorithm (Kuhn, 1955) to match original identifier tokens with their optimal
replacements.

Let V denote the tokenizer’s vocabulary and S ⊆ V be the set of distinct tokens in the identifiers
in the code snippet. For each original token si ∈ S, we define an influence function fsi : V → R
derived from gradient information. This function, fsi(v), quantifies the influence when si is replaced
by v.

The goal is to find a set of matching {si, vi} that maximizes the total influence, subject to the
constraint that each substitute token vi must be unique. This can be formulated as the following
optimization problem:

maximize
{vi}

∑
i

fsi(vi)

subject to vi ∈ V, and vi ̸= vj ∀i ̸= j.

The solution to this optimization problem is provided by Algorithm 1
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Algorithm 1 Optimal Token Substitution

Require: Set of original tokens S = {s1, . . . , sm}, a vocabulary of candidate tokens V , and an
influence function fsi(v).

Ensure: An optimal assignment map M : S → V and the maximum total influence Itotal.

1: procedure FINDBESTMATCHING(S, V, f )
2: Let C ⊆ V be the set of candidate tokens where |C| = n.
3: % Convert the problem to a minimum cost formulation.
4: Imax ← maxsi,vj fsi(vj).
5: Create an m× n cost matrix W where Wij ← Imax − fsi(vj).
6: % Solve the assignment problem with the Hungarian Algorithm
7: Pairs← HungarianAlgorithm(W)
8: % Construct the final mapping from the resulting pairs.
9: Initialize M ← ∅ and Itotal ← 0.

10: for each pair (r, k) in Pairs do
11: sassigned ← S[r], vassigned ← C[k]
12: M [sassigned]← vassigned
13: Itotal ← Itotal + fsassigned(vassigned)
14: end for
15: return M , Itotal
16: end procedure

17: procedure HUNGARIANALGORITHM(W)
18: % Construct a flow network and apply Ford-Fulkerson for the max flow.
19: Create a source S and a sink T . Let m,n be the dimensions of W.
20: for i← 1 to m do % Nodes for original tokens
21: Create node ui and add edge S → ui with capacity 1, cost 0.
22: end for
23: for j ← 1 to n do % Nodes for candidate tokens
24: Create node wj and add edge wj → T with capacity 1, cost 0.
25: end for
26: for i← 1 to m do % Edges representing potential assignments
27: for j ← 1 to n do
28: Add edge ui → wj with capacity 1 and cost Wij .
29: end for
30: end for
31: Initialize flow F ← 0. Let Gf be the residual graph.
32: while F < m do
33: Find the shortest path from S to T in Gf using edge costs as weights.
34: if no path exists then
35: break
36: end if
37: Let P be the shortest path found.
38: Augment 1 unit of flow along path P .
39: Update the residual graph Gf for the path P .
40: F ← F + 1.
41: end while
42: % Convert the max flow to assignment.
43: Initialize an empty set of pairs Pairs.
44: for each edge ui → wj that has a flow of 1 do
45: Add the index pair (i, j) to Pairs.
46: end for
47: return Pairs
48: end procedure
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E.2 SEARCH SPACE

For each token position, we need to go over at most V optional tokens to find the optimal token that
maximizes δ(i,tx), where V is the vocabulary size of the neural code search model. In practice, due
to the constraint on the identifier of programming languages, only about 30-40% of the vocabularies
are valid tokens to replace the original identifiers.

E.3 SPECIFICATION

The initial step of our adversarial attack involves parsing the input code snippet to locate identifiers
suitable for modification. We employ language-specific AST parsers: Python’s built-in ast library,
clang for C++, and tree-sitter for Java, JavaScript, and Go. These same parsers are applied
again after the adversarial modifications to ensure the modified code snippet remains syntactically
identical.

When targeting CodeT5+, we restricted this search space to tokens composed solely of alphanumeric
characters and spaces. For OASIS, however, the significantly larger vocabulary leads to a more
complex situation: tokens representing an identifier may sometimes include a preceding operator. For
example, within a code snippet, one occurrence of a variable x might correspond to the token x,
while another corresponds to +x. In such scenarios, when searching for a replacement variable y, we
specifically look for candidate tokens that maintain this structure—namely, y and +y respectively—
and select the one that maximizes the influence. Consequently, the search space for OASIS also
includes tokens structured as an operator followed by alphanumeric characters and spaces.

F SUPPLEMENTARY EXPERIMENTAL RESULTS

F.1 DISTRIBUTION OF CODE SIMILARITY CHANGES

Please refer to Figure 2 for the distribution of the similarity change on CosQA and CLARC.

F.2 “DENSITY” OF THE EMBEDDING VECTORS FROM DIFFERENT MODELS.

Table 11 shows the average similarity scores for queries against both their ground truth code and
irrelevant code. Notably, the gap between these ground truth and irrelevant similarities is significantly
larger on the CLARC dataset than on CosQA for OASIS and Nomic-emb-code.

Table 11: Average Similarity Scores and Gaps for Different Models on CosQA and CLARC Datasets

Dataset Model Avg. Sim between Query
and GroundTruth Code

Avg. Sim between Query
and Irrelevant Code Gap

CosQA

CodeT5+ 54.15 20.60 33.55
OASIS 68.53 47.13 21.40
Nomic-emb-code 41.77 1.95 39.82
voyage-code-3 71.43 37.83 33.60

CLARC

CodeT5+ 52.91 25.80 27.11
OASIS 85.80 54.61 31.19
Nomic-emb-code 55.71 7.44 48.27
voyage-code-3 73.93 40.08 33.85

F.3 APPLICATION OF THE ADVERSARIAL ATTACK ON CLARC

Here, we evaluated retrieval metrics on the CLARC dataset before and after the application of
adversarial attacks generated using CodeT5+. The performance degradation on CLARC was less
significant than that observed on the CosQA dataset. This disparity stemmed mainly from a wider
inherent gap within CLARC: the difference between a query’s similarity to its correct ground truth

18
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(a) Distribution of the Similarity Change on CosQA

(b) Distribution of the Similarity Change on CLARC

Figure 2: Distribution of Code Similarity Changes. The Attack Model is CodeT5+, and the Eval
Models are labeled at the top of each subplot.

code and its similarity to other arbitrary code snippets was larger as illustrated in Table 11. Although
the adversarial attack yielded comparable query-code similarity improvements in both datasets,
CLARC’s substantial initial gap presents a greater challenge for elevating an adversarial example’s
similarity score above that of the ground truth. Consequently, as the evaluation metrics are determined
by the rank of the ground truth code, the adversarial attack is less impactful on the retrieval metrics in
CLARC.

Table 12: Code Search Metric Change Caused by Adversarial Attack (Data from Screenshot)

Model Name Setting NDCG R@1 R@5 R@10 R@20 MRR

CodeT5
Original 64.54 47.34 74.14 82.51 89.54 58.84
Adversarial 13.93 5.89 15.59 25.67 36.50 10.42
∆ 50.61 41.45 58.55 56.84 53.04 48.42

OASIS
Original 89.08 79.85 94.11 96.77 98.48 86.54
Adversarial 87.44 80.42 91.06 93.54 96.77 85.43
∆ 1.64 -0.57 3.05 3.23 1.71 1.11

Nomic-emb-code
Original 88.61 80.04 94.11 95.82 96.96 86.23
Adversarial 85.65 77.95 90.30 92.21 94.11 83.49
∆ 2.96 2.09 3.81 3.61 2.85 2.74

voyage-code-3
Original 88.96 80.99 94.30 95.06 97.53 86.90
Adversarial 85.30 76.62 91.06 92.21 95.25 82.98
∆ 3.66 4.37 3.24 2.85 2.28 3.92
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F.4 DETAILS ABOUT METRICS

Correlation Metrics

• Precision: The expected conditional probability that an adversarial example induces a
positive similarity change on the Eval Model, given that it induced a positive change on the
Attack Model.

• Pearson Correlation Coefficient (r): Measures the linear correlation between the numerical
values of the similarity changes observed on the Attack and Eval Models.

• Spearman’s Rank Correlation Coefficient (ρ): Measures the monotonic correlation,
assessing how well the rank order of similarity changes is preserved between the Attack and
Eval Models.

Retrieval Metrics

• Recall@k (R@k): The proportion of queries for which the correct code snippet is found
within the top-k ranked results returned by the model. Since each query in the CosQA and
CLARC datasets has exactly one ground-truth matching code snippet, R@k specifically
measures the percentage of queries where this single correct snippet appears among the top
k candidates.

• Normalized Discounted Cumulative Gain (NDCG): A metric for evaluating the quality of
a ranked list. It assigns higher scores when relevant items are placed higher in the ranking,
applying a logarithmic discount based on position. The score is normalized against the ideal
ranking, resulting in a value between 0 and 1.

• Mean Reciprocal Rank (MRR): The average of the reciprocal ranks across all queries in
the test set. For a single query, the reciprocal rank is the inverse of the rank position (1/rank)
of the ground truth code snippet.

F.5 APPLICATION ON BENCHMARK

Table 13: Model Performance Under Different Attack Percentages

Model Name % of Corpus
Attacked

MRR
Difference

NDCG
Difference

R@1
Difference

R@5
Difference

R@10
Difference

R@20
Difference

CodeT5+

1% 36.88 29.18 45.40 27.80 3.40 1.00
2% 48.15 42.87 50.40 50.40 23.60 1.80
5% 58.60 58.48 55.60 61.60 57.40 37.40
10% 62.27 63.33 56.80 70.00 65.80 58.80

OASIS

1% 13.08 17.32 18.60 5.00 1.60 0.20
2% 20.07 16.51 25.20 10.00 5.20 0.40
5% 32.39 28.44 37.00 24.60 15.40 6.00
10% 39.64 36.42 42.00 36.20 25.40 14.60

NOMIC

1% 14.31 11.28 19.00 5.60 1.60 0.40
2% 21.52 17.40 27.40 12.00 4.00 1.00
5% 32.32 28.64 36.80 25.00 16.40 5.40
10% 40.01 36.66 43.40 34.80 25.40 15.80

voyage-code-3

1% 11.11 8.53 15.80 3.20 0.40 0.00
2% 16.90 13.18 24.00 5.20 1.40 0.20
5% 27.43 23.02 33.00 19.00 8.40 2.60
10% 36.09 31.92 41.40 27.00 18.20 8.60

We evaluated the impact of poisoning 1%, 2%, and 5% of the corpus, in addition to the original 10%
setting in Table 13. For context, with a total corpus size of 500 snippets, a 1% attack corresponds to
manipulating just 5 code snippets.

We find the attack is highly effective even at minimal levels. A mere 1% poisoning of the corpus
causes substantial performance degradation. For example, Recall@1 drops by 45.4% in the white-box
setting (CodeT5+) and 15.8% in the black-box setting (Voyage-code-3).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

As the attack percentage increases, the negative impact becomes more severe, with the degradation
at a 5% attack rate already approaching the levels of the 10% scenario from our draft. These
results confirm that our attack does not rely on an unrealistic number of poisoned examples and can
effectively compromise code retrieval systems even when a small fraction of the corpus is malicious.

F.6 ABLATION STUDIES

We conduct ablation studies to evaluate the contribution of specific components within our attack
method.

Attack Code Selection Our default strategy selects the adversarial code that achieves the highest
similarity to the query across all iterations of the attack process. In this ablation, we compare this
approach with an alternative that selects the adversarial code directly from a fixed iteration k in order
to justify the necessity of our adversarial code selection strategy.

We evaluated both strategies using the 10,000 sampled (query, code) pairs from CosQA for 10
iterations. Figure 3 plots the average query-code similarity at each iteration k for both approaches.
The alternative approach, which selects the code at iteration k (blue solid line), shows diminishing
returns, as the average similarity plateaus and fluctuates after three iterations. In contrast, selecting
the code with the maximum similarity observed up to iteration k (orange dashed line) allows the
average similarity to increase monotonically throughout the process, achieving much higher final
similarities. The comparison confirms the benefit of retaining the highest-scoring code variant across
all iterations rather than only considering the final iteration’s output.

Figure 3: Avg. Similarity Change between Pairs Sampled from CosQA based on CodeT5+ Attack.
Picking the code with the max similarity up to iteration k leads to higher similarity changes.

Iteration Limit Our standard adversarial attack protocol employs 5 iterations. However, Figure 3
(orange dashed lines) reveals that the average query-code similarity, using our optimal strategy of
selecting the best code up to iteration k, continues to increase beyond 5 iterations on the CosQA
dataset across different evaluation models. Our decision to limit the process to 5 iterations is a result
of the practical trade-off between computational cost and the magnitude of similarity improvement.
Extending the attack from 5 to 10 iterations, for instance, would approximately double the runtime
while yielding only marginal further gains in average similarity (observed to be less than 0.03 across
all models between iterations 5 and 10, based on Figure 3). Considering the substantial effectiveness
already demonstrated in our main experiments, we think 5 iterations are enough for most cases.
Nevertheless, these results suggest that performing additional iterations could be beneficial, yielding
further improvements when computational resources are not a primary constraint.

G EXAMPLES

For more examples, please refer to our GitHub Repository at https://github.com/
AdvAttackOnNCC/Code_Search_Adversarial_Attack.

G.1 EXAMPLES FROM DATASETS

G.1.1 COSQA

Query Example s3 sync between bucket python Query ID: q20532
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Code Snippet Example Code ID: d20118

def assert_or_raise(stmt: bool, exception: Exception,
*exception_args, **exception_kwargs) -> None:

if not stmt:
raise exception(*exception_args, **exception_kwargs)

G.1.2 CLARC

Query Example The function takes an unsigned 8-bit integer
representing a character as input and returns a string
representing that character. If the input is a displayable
character, it is directly converted to its string equivalent;
otherwise, the function produces a string in which the integer
value of the non-printable character is enclosed in angle
brackets. The resulting string is returned as the output. Query
ID: q_group_1_id_128

Code Example Query ID: c_group_1_id_522

CGLM_INLINE
float
glm_ease_back_inout(float t);
CGLM_INLINE
float
glm_ease_back_inout(float t) {

float o, z, n, m, s, x;

o = 1.70158f;
s = o * 1.525f;
x = 0.5f;
n = t / 0.5f;

if (n < 1.0f) {
z = (s + 1) * n - s;
m = n * n * z;
return x * m;

}

n -= 2.0f;
z = (s + 1.0f) * n + s;
m = (n * n * z) + 2;

return x * m;
}

G.2 ADVERSARIAL ATTACK EXAMPLES

G.2.1 COSQA

Attacked by CodeT5+ The following example is the adversarial code based on the query and code
snippet examples provided in Section G.1.1. The similarity increases by 66.06% from the original
code to this adversarial code.

def bucketSynchronLosssyncQS( sa: bool, sync: Exception,
*lintCachingTM, **ScalingdingsClears) -> None:

if not sa:
raise sync(*lintCachingTM, **ScalingdingsClears)

Attacked by OASIS The following example is the adversarial code based on the query and code
snippet examples provided in Section G.1.1. The similarity increases by 12.97% from the original
code to this adversarial code.
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def testsvisorFileType( SOUR: bool, UIStoryboardSegue: Exception,
*OptionsResolveracos, **_documentobucket) -> None:

if not SOUR:
raise UIStoryboardSegue(*OptionsResolveracos, **_documentobucket)

G.2.2 CLARC

Attacked by CodeT5+ The following example is the adversarial code based on the query and code
snippet examples provided in Section G.1.2. The similarity increases by 54.24% from the original
code to this adversarial code.

asStringCharCodeDisplaysrepresentationFarvancetextarea
float
TemporaryBGCWigClassAttributeharitutdowntreat(float character);
asStringCharCodeDisplaysrepresentationFarvancetextarea

float
TemporaryBGCWigClassAttributeharitutdowntreat(float character) {
float Room, combo, HT, pil, ign, bw;

Room = 1.70158f;
ign = Room * 1.525f;
bw = 0.5f;
HT = character / 0.5f;

if ( HT < 1.0f) {
combo = ( ign + 1) * HT - ign;
pil = HT * HT * combo;
return bw * pil;

}

HT -= 2.0f;
combo = ( ign + 1.0f) * HT + ign;
pil = ( HT * HT * combo) + 2;

return bw * pil;
}

Attacked by OASIS The following example is the adversarial code based on the query and code
snippet examples provided in Section G.1.2. The similarity increases by 28.94% from the original
code to this adversarial code.

VerbFRFRINGcrediblexr
float
ASCIIilityMOSTpyxuctDISPLAYegtereburgInInspectorDisplay(float char);
VerbFRFRINGcrediblexr

float
ASCIIilityMOSTpyxuctDISPLAYegtereburgInInspectorDisplay(float char) {
float UNC, c, ostr, HSV, UTF, SENT;

UNC = 1.70158f;
UTF = UNC * 1.525f;
SENT = 0.5f;
ostr = char / 0.5f;

if ( ostr < 1.0f) {
c = ( UTF + 1) * ostr - UTF;
HSV = ostr * ostr * c;
return SENT * HSV;

}

ostr -= 2.0f;
c = ( UTF + 1.0f) * ostr + UTF;
HSV = ( ostr * ostr * c) + 2;
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return SENT * HSV;
}
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