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Abstract
Neural Collapse is a phenomenon where the last-
layer representations of a well-trained neural net-
work converge to a highly structured geometry.
In this paper, we focus on its first (and most ba-
sic) property, known as NC1: the within-class
variability vanishes. While prior theoretical stud-
ies establish the occurrence of NC1 via the data-
agnostic unconstrained features model, our work
adopts a data-specific perspective, analyzing NC1
in a three-layer neural network, with the first two
layers operating in the mean-field regime and fol-
lowed by a linear layer. In particular, we establish
a fundamental connection between NC1 and the
loss landscape: we prove that points with small
empirical loss and gradient norm (thus, close to
being stationary) approximately satisfy NC1, and
the closeness to NC1 is controlled by the residual
loss and gradient norm. We then show that (i) gra-
dient flow on the mean squared error converges to
NC1 solutions with small empirical loss, and (ii)
for well-separated data distributions, both NC1
and vanishing test loss are achieved simultane-
ously. This aligns with the empirical observation
that NC1 emerges during training while models
attain near-zero test error. Overall, our results
demonstrate that NC1 arises from gradient train-
ing due to the properties of the loss landscape, and
they show the co-occurrence of NC1 and small
test error for certain data distributions.

1. Introduction
Neural Collapse (NC), first identified by Papyan et al.
(2020), describes a phenomenon observed during the final
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stages of training where: (i) the penultimate-layer features
converge to their respective class means (NC1), (ii) these
class means form an equiangular tight frame (ETF) or an
orthogonal frame (NC2), and (iii) the columns of the final
layer’s classifier matrix similarly form an ETF or orthogonal
frame, implementing a nearest class-mean decision rule on
the penultimate-layer features (NC3). A popular line of the-
oretical research has investigated the occurrence of NC via
the unconstrained features model (UFM), see (Fang et al.,
2021a; Han et al., 2022; Mixon et al., 2022) and the discus-
sion in Section 2. In this framework, the penultimate-layer
features are treated as free optimization variables, leading to
a benign loss landscape for the resulting optimization prob-
lem. The primary justification for adopting the UFM is that
the complex feature-learning layers encountered in practice
are approximated by a universal learner. While the UFM
provides an intriguing theoretical perspective on NC, it has
notable limitations. In particular, it neglects the dependence
on the data distribution, rendering it unsuitable for theoreti-
cally analyzing the relationship between NC during training
and the test error (Hui et al., 2022). Furthermore, the train-
ing dynamics under the UFM framework is not equivalent
to the actual training dynamics of neural networks, which
makes it challenging to investigate the occurrence of NC
from a dynamical perspective.

To address the limitations of UFM, we consider training
a three-layer network via gradient flow on the standard
mean squared error (MSE) loss. Specifically, we employ
a two-layer neural network in the mean-field regime (Mei
et al., 2018) as the feature-learning component, and then
concatenate it with a linear layer as the final predictor. Our
main results both (i) establish sufficient conditions on the
loss landscape for the first – and most basic – property of
neural collapse, i.e., NC1, to hold, and (ii) show that such
conditions are in fact satisfied by training the architecture
above. This differentiates our paper from recent studies
aiming to theoretically explain the NC phenomenon beyond
unconstrained features, as existing work either provides
only sufficient conditions for NC to occur (Seleznova et al.,
2024), focuses on the NTK regime (Jacot et al., 2024), relies
on specific training algorithms (Beaglehole et al., 2024)
or on a specific regularization (Hong & Ling, 2024a), see
Section 2 for a discussion of related work. Specifically, our
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contributions are summarized below:

• First, we connect the emergence of NC1, i.e., the fact
that the within-class variability vanishes, with properties
of the loss landscape: we show that all approximately
stationary points with small empirical loss are roughly
NC1 solutions, and the degree to which the within-class
variability vanishes is controlled by gradient norm and
loss. This implies the prevalence of NC1 during training,
as practical training procedures typically converge to
such points with small gradient and loss.

• Next, we prove that gradient flow on a three-layer net-
work operating in the mean-field regime satisfies the two
conditions above (small gradient norm and small loss)
and, therefore, it converges to an NC1 solution. While
achieving approximately stationary points is expected,
the primary challenge lies in controlling the empirical
loss due to the model’s non-convex nature.

• Finally, we show that, for certain well-separated data
distributions, it is possible to achieve NC1 during train-
ing as well as vanishing test error, which corroborates
the empirical finding that NC1 and strong generalization
occur simultaneously.

2. Related Work
Neural collapse: UFM and beyond. The introduction
of the UFM in (Mixon et al., 2022; Fang et al., 2021a)
has prompted a line of work studying the emergence of
neural collapse for that model. Specifically, Zhou et al.
(2022) focus on the two-layer UFM model, showing that
all its stationary points satisfy neural collapse. Han et al.
(2022) prove convergence of gradient flow on UFM to NC
solutions. Tirer & Bruna (2022) demonstrate that the global
minimizers also satisfy neural collapse when the UFM has
multiple linear layers or it incorporates the ReLU activation.
Súkenı́k et al. (2023) extend the results to a deep UFM
model for binary classification. Súkenı́k et al. (2024) then
show that, for the deep UFM and multi-class classification,
all the global optima still satisfy NC1, but not NC2 and
NC3, due to the low-rank bias of the model. We also refer
to (Kothapalli, 2023) for a rather recent and detailed review.

Going beyond the UFM, Seleznova et al. (2024) study
the connection between NC and the neural tangent kernel
(NTK), showing NC under certain block structure assump-
tions on the NTK matrix. However, the occurrence of such
a block structure during training is unclear. Beaglehole et al.
(2024) establish NC both empirically and theoretically for
Deep Recursive Feature Machine training – a method that
constructs a neural network by iteratively mapping the data
through the average gradient outer product and then apply-
ing an untrained random feature map. Pan & Cao (2023)
consider classification with cross-entropy loss, providing a
quantitative bound for NC. Kothapalli & Tirer (2024) focus

on two-layer neural networks in both the NNGP and the
NTK limit, proving neural collapse for 1-dimensional Gaus-
sian data. Hong & Ling (2024a) study NC for shallow and
deep neural networks, also characterizing the generalization
error. However, they regularize the loss by the L2-norm
of the features rather than the weights, which is different
from the weight decay used in practice. Jacot et al. (2024)
establish the occurrence of NC for deep neural networks
with multiple linear layers, given a balancedness assump-
tion on all the linear layers; in addition, they also prove that
balancedness is achieved via gradient descent training using
NTK tools. Compared to (Jacot et al., 2024), our proof does
not rely on any balancedness condition, and it only requires
the gradient norm to be small, which is naturally achievable
via gradient flow. In fact, the stationary points to which our
results apply may not be balanced, see the discussions at the
end of Section 4.1 and 4.2.

Mean-field analysis for networks with more than two lay-
ers. While the properties of the loss landscape and training
dynamics of two-layer neural networks in the mean-field
regime have been extensively studied (Mei et al., 2018; Chen
et al., 2020; Javanmard et al., 2020; Shevchenko et al., 2022;
Hu et al., 2021; Suzuki et al., 2024a; Takakura & Suzuki,
2024), networks with more than two layers still prove to
be challenging to analyze. Prior works (Lu et al., 2020;
Araújo et al., 2019; Shevchenko & Mondelli, 2020; Fang
et al., 2021b; Pham & Nguyen, 2021; Nguyen & Pham,
2023) have investigated the mean-field regime for deep neu-
ral networks, where the widths of all layers tend to infinity.
In contrast, we let only the width of the first layer tend to
infinity, while the width of the second layer remains of con-
stant order. A closely related paper is by Kim & Suzuki
(2024), which studies the in-context loss landscape of a two-
layer linear transformer with a formulation similar to ours.
However, the global convergence results in (Kim & Suzuki,
2024) rely on assumptions such as absence of weight decay,
taking a two time-scale limit, and using a birth-death pro-
cess (rather than the widely-used gradient flow), which are
not applicable to our setting.

3. Problem Setting
Notation. Given an integer n, we use the shorthand
[n] := {1, . . . , n}. Given a vector v ∈ Rd, let v[i] be
its i-th entry and Diag(v) ∈ Rd×d the diagonal matrix with
v on the diagonal. Let 1d ∈ Rd be the all-one vector of
dimension d. Given a matrix A, let [A]i,j be its (i, j)-th
element. We denote by ∥ · ∥F , ∥ · ∥op the Frobenius and op-
erator norms of a matrix, and by ⟨A,B⟩F = Tr

{
A⊤B

}
the

Frobenius inner product. Let ⊗ be the Kronecker product
and vec(·) the vectorization of the matrix obtained by stack-
ing columns. Given a vector valued function f : Rd → Rd,
we denote by ∇ · f : Rd → R its divergence. Given a real
valued function g, we denote by ∥g∥∞ = sup |g| its infinity
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norm. Let P2(Rd) be the space of probability measures
on Rd with finite second moment, and W1(·, ·),W2(·, ·) the
Wasserstein-1 and -2 metrics, respectively.

Three-layer fully connected neural networks. We start
by defining the following infinite-width neural network as a
feature-learning layer:

hρ(x) = Eρ[aσ(u
⊤x)], (1)

where a ∈ Rp, u, x ∈ Rd, and ρ = Law(a, u) is the joint
measure of a, u. The network is parameterized by a prob-
ability distribution ρ ∈ P2(Rp+d), and it represents the
mean-field limit of the finite-width two-layer network below
(Mei et al., 2018):

hN (x) =
1

N

N∑
j=1

ajσ(u
⊤
j x), θj = (aj , uj)

i.i.d.∼ ρ. (2)

For technical convenience, throughout this paper we directly
consider the infinite-width network (1). In fact, its differ-
ence with the finite-width counterpart (2) can be readily
bounded using results from (Mei et al., 2018; 2019).

Next, we cascade a linear layer, obtaining a three-layer
neural network as follows:

f(x; ρ,W ) = γW⊤hρ(x), (3)

where W ∈ Rp×q and γ ∈ R is a (constant) multiplicative
factor. Throughout the paper, we will refer to f in (3) as
the predictor. Neural networks with two linear layers in the
end are also studied by Jacot et al. (2024), and adding a
multiplicative factor γ is proposed by Chen et al. (2020) to
guarantee the global convergence of the dynamics.

The motivation for considering this model is to explore how
training data affects the emergence of neural collapse. While
previous studies on UFM offer insights into neural collapse,
their key limitation lies in the disregard for the influence of
training data. The primary justification for using the UFM
is that it functions as a universal learner, thus emulating
the complex feature learning layers encountered in practice.
The three-layer network in the mean-field regime defined
in (3) not only performs feature learning by taking into
account the training data, but the feature layer in (1) is also
recognized as a universal learner (Ma et al., 2022).

q-class balanced classification. We consider a q-class
balanced classification problem, with each class having m
data points. We denote by n = qm the total number of
training samples and assume that p ≥ q. The empirical loss
function is given by

Ln(ρ,W ) =
1

2n
∥γW⊤Hρ − Y ∥2F ,

where

Hρ = [hρ(x1), . . . , hρ(xn)] ∈ Rp×n,

Y = [e1, . . . e1︸ ︷︷ ︸
m columns

, . . . , eq, . . . eq] ∈ Rq×n.

We also denote X = [x1, . . . , xn] ∈ Rd×n. We consider
a regularized problem with L2 and entropy regularization,
denoting the regularized loss and the free energy as

Lλ,n(ρ,W ) = Ln(ρ,W )+
λW

2
∥W∥2F+

λρ

2
Eρ[∥θ∥22], (4)

En(ρ,W ) = Ln(ρ,W ) +
λW

2
∥W∥2F

+
λρ

2
Eρ[∥θ∥22] + β−1Eρ[log ρ],

(5)

where the entropic regularization is explicitly added to per-
form noisy gradient flow, see (20). While we focus on
balanced classification for technical clarity and brevity, our
results extend to unbalanced classification (as considered
e.g. in (Thrampoulidis et al., 2022; Hong & Ling, 2024b))
and regression (as considered e.g. in (Andriopoulos et al.,
2024)) with minimal modifications.

Neural collapse metric. We focus on the first property of
neural collapse and, given a feature matrix H ∈ Rp×n, we
consider the following metric of NC1 as the ratio between
in-class variance and total variance:

NC1(H) =
Tr
{
(H̃ −Mc)

⊤(H̃ −Mc)
}

Tr
{
H̃⊤H̃

} ,

where H̃ ∈ Rp×n is the matrix of centered features and
Mc ∈ Rp×n the matrix of in-class means, defined as

Mg =
1

n
H1n1

⊤
n , H̃ = H −Mg, Mc =

1

m
H̃Y ⊤Y.

In words, if NC1(H) is small, the within-class variability is
negligible compared to the overall variability across classes,
capturing the closeness of features to respective class means.

4. Within-class Variability Collapse during
Training

4.1. Sufficient Conditions for NC1

Throughout the paper, we make the following assumptions
that are mild and standard in the related literature, see e.g.
(Mei et al., 2018; Chen et al., 2020; Suzuki et al., 2024a).

Assumption 1. (A1) Regularity of the initialization: We
initialize the training algorithm with W0 such that
W⊤

0 W0 = Iq and ρ0 = N (0, Ip+d).

(A2) Boundedness of the data: for all i, ∥xi∥2 ≤ 1.

(A3) Regularity of the activation function: ∥σ(z)∥∞ ,
∥σ′(z)∥∞, ∥σ′′(z)∥∞, ∥σ′′′(z)∥∞, ∥(zσ′(z))′∥∞ ≤ C1

for some universal constant C1.
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We remark that the ReLU activation does not satisfy the
regularity conditions above, but we still expect our results
to hold by taking the limit of a sequence of approximations
of ReLU.

We now define an ϵS-stationary point of the free energy.

Definition 4.1. We say that (ρ,W ) is an ϵS-stationary point
of En(ρ,W ) w.r.t. ρ if the following holds:

Eρ

[∥∥∥∥∇θ
δ

δρ
En(ρ,W )

∥∥∥∥2
2

]
≤ ϵ2S .

Here, we recall that, given a functional G : P2(RD) → R,
its first variation at ρ is the function δ

δρG(ρ)(·) : RD → R
such that, for all ρ′ ∈ P2(RD),∫

δ

δρ
G(ρ)(θ) (ρ′ − ρ)dθ=lim

ϵ→0

G((1− ϵ)ρ+ ϵρ′)−G(ρ)

ϵ
.

The result below (proved in Appendix B.1) characterizes
the feature Hρ at any ϵS-stationary point.

Theorem 4.2. Under Assumption 1, for any ϵS-stationary
point (ρ,W ), we have the following characterization of the
learned feature:

vec(Hρ) =

(
γ
Kρ(X,X)

n
⊗W

)
·
(
γ2Kρ(X,X)

n
⊗ (W⊤W ) + λρInq

)−1

vec(Y )

+E1(ϵS , λρ; γ,W ),

(6)

where

∥E1(ϵS , λρ; γ,W )∥22≤2
(
λ−4
ρ γ4C2

1σmax(W )4+λ−2
ρ

)
C2

1nϵ
2
S ,

(7)
and the kernel Kρ(X,X) ∈ Rn×n induced by ρ is

Kρ(X,X) = Eρ[σ(X
⊤u)σ(u⊤X)]. (8)

As a consequence, if W is non-singular, we have

Hρ = γ−1W (W⊤W )−1Y +E2(ϵS , λρ; γ, ρ,W ), (9)

where

∥E2(ϵS , λρ; γ, ρ,W )∥2F ≤ 2
(
λ−4
ρ γ4C2

1σmax(W )4 + λ−2
ρ

)
· C2

1nϵ
2
S +

2nγ−2Ln(ρ,W ) + 2λ−2
ρ σmax(W )2C2

1nϵ
2
S

σmin(W )2
.

(10)

Proof sketch. As (ρ,W ) is ϵS-stationary, the following ex-
pression for a holds almost surely w.r.t. the measure ρ:

a+
γλ−1

ρ

n
W (γW⊤Hρ − Y )σ(X⊤u)

+ λ−1
ρ β−1∇a log ρ(θ) = O(ϵS),

(11)

where, with an abuse of notation, the term O(ϵS) indicates
that the norm of the vector on the LHS is at most of order
ϵS . By plugging (11) into Hρ = Eρ[aσ(u

⊤X)], we obtain

Hρ = −λ−1
ρ γW (γW⊤Hρ−Y )

Kρ(X,X)

n
+O(ϵS). (12)

Note that (12) is a linear equation in Hρ. Thus, by solving it
explicitly and tracking the error in ϵS , we obtain (6). Finally,
the crux of the argument for (9) is to use again stationarity
to show that (up to an error of order ϵS)

(K ′ ⊗W ′)
(
K ′ ⊗ (W ′⊤W ′) + λρInq

)−1
vec(Y )

= vec(W ′(W ′⊤W )−1Y ) +O(Ln(ρ,W )),
(13)

where K ′ := Kρ(X,X)/n and W ′ := γW .

Note that γ−1W (W⊤W )−1Y , i.e., the first term in the
decomposition of Hρ in (9), satisfies NC1. Indeed, Y is
the one-hot vector of labels and, thus, for two data point
xi, xj in the same class k, we have yi = yj , which implies
that W (W⊤W )−1yi = W (W⊤W )−1yj . The second term
E2 in the decomposition (9) is small, as long as ϵS and
Ln(ρ,W ) are small. Hence, the key question is whether
we can achieve a nearly stationary point having a small
loss Ln(ρ,W ) via a certain training dynamics, which is
addressed in the next sections.

As the result in (9) requires W not to be too ill-conditioned,
we now prove that this is the case, as long as the regulariza-
tion terms λW , λρ, β

−1 and the regularized loss Lλ,n are
sufficiently small.

Lemma 4.3. Let λρ = λ0
ρβ

−1, λW = λ0
Wβ−1 where

λ0
ρ, λ

0
W are universal constants. Fix any α ≥ 0, 0 < ϵ0 ≤

1/2, and assume that

β ≥ max

{
e

4α
ϵ0

log 2α
ϵ0 ,e4α log(2α), (2C2

1nB(λ0
ρ)

−1)
2
ϵ0 ,(

4q

n

) 1
ϵ0

, 64(qB)2
}
,

(14)

for some constant B that doesn’t depend on β. Suppose
further that (ρ,W ) is any point such that

Lλ,n(ρ,W ) ≤ Bβ−1(log β)α. (15)

Then, we have that

σmin(W ) ≥ β−ϵ0 ,

σmax(W )2 ≤ ∥W∥2F ≤ 2B(λ0
W )−1(log β)α.

The proof is by contradiction. Suppose that W has a small
singular value, then the projection of Hρ in the correspond-
ing left singular space of W needs to be large, since the
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regularized loss is small and Y is isotropic. However, large
component of Hρ in a subspace will in turn lead to large
regularized loss due to the second-moment regularization
term. The complete argument is deferred to Appendix B.2.

Next, we compute the NC1 metric induced by Theorem 4.2.

Corollary 4.4. Consider the setting of Theorem 4.2 and
assume that

∥E2∥2F ≤ 1

8σ2
max(W )

(q − 1)n

q
, (16)

where E2 := E2(ϵS , β; γ, ρ,W ) is bounded as in (10).
Then, for any ϵS-stationary point (ρ,W ) with non-singular
W , we have

NC1(Hρ) ≤
16∥E2∥2F

1
2σ2

max(W )
(q−1)n

q − 4∥E2∥2F
. (17)

The proof of Corollary 4.4 is a direct calculation, and it
is provided in Appendix B.3. Note that, in the setting of
Lemma 4.3, we have that

1

8σ2
max(W )

(q − 1)n

q
= Ω((log β)−α),

∥E2∥2F = O(β−1+2ϵ0(log β)α + β4+2ϵ0(log β)4αϵ2S).

(18)

Now, let us pick a sufficiently small β−1 (corresponding
to small regularization) and then a sufficiently small ϵS
(corresponding to reaching a stationary point). Then, (18)
implies that (16) holds and the upper bound on the NC1
metric in (17) vanishes.

Imbalancedness of stationary point. The recent work
by Jacot et al. (2024) shows that, for any network with at
least two consecutive linear layers in the end, sufficiently
small loss and approximate balancedness of the linear layers
suffice to guarantee NC1. Our network defined in (3) has
two final linear layers, but due to the entropic regularization,
all stationary points of the free energy are not balanced,
which means that the techniques in (Jacot et al., 2024) can-
not be applied to our setup. To demonstrate this, we prove
in Appendix B.4 the following result.

Lemma 4.5. Let (ρ,W ) be a stationary point of the free
energy, i.e.,

∇θ
δ

δρ
En(ρ,W ) = 0, ∇WEn(ρ,W ) = 0,

with Eρ[a] < ∞. Then, any stationary point satisfies

λρEρ[aa
⊤]− λWWW⊤ = β−1Ip. (19)

The result in (19) implies that the network cannot be bal-
anced, i.e., Eρ[aa

⊤] cannot be proportional to WW⊤. In
fact, assume that λρ and λW are of same order as β−1, i.e.,

λρ = λ0
ρβ

−1 and λW = λ0
Wβ−1 for universal constants

λ0
ρ, λ

0
W . Then, as WW⊤ is of rank q < p, (19) gives that,

for any constant c, ∥Eρ[aa
⊤]− cWW⊤∥op ≥ (λ0

ρ)
−1.

We complement the theoretical result in Lemma 4.5 with
numerical simulations, discussed at the end of Section 4.2,
showing that for there are settings such that gradient-based
training over standard datasets (MNIST, CIFAR-100) the
neural network achieves NC1 without converging to a bal-
anced solution.

4.2. Achieving NC1 via Gradient-based Training

From Theorem 4.2 and Corollary 4.4, we know that NC1
is achieved at any ϵS-stationary point w.r.t. ρ having small
empirical loss. We now consider training ρ and W with
gradient flow, i.e.,

dWt = −∇WLλ,n(ρt,Wt)dt;

dθt = −∇θ
δ

δρ
Lλ,n(ρt,Wt)(θt)dt+

√
2β−1dBt,

(20)

and we show that, having trained long enough, one ensures
that both ϵS and the empirical loss are sufficiently small.

The convergence to an ϵS-stationary point with arbitrary
small ϵS is a direct consequence of the fact that, under
gradient flow, the gradient norm vanishes.

Lemma 4.6. Under Assumption 1, fix β, γ > 0 and consider
an initialization (ρ0,W0) with finite free energy. For t ≥ 0,
let

ϵtS = Eρt

[∥∥∥∥∇θ
δ

δρ
En(ρt,Wt)(θt)

∥∥∥∥2
2

]
,

which is equivalent to (ρt,Wt) being an ϵtS-stationary point.
Then, for any ϵS > 0, there exists T (ϵS) > 0 s.t. for all
t > T (ϵS) except a finite Lebesgue measure set,

ϵtS ≤ ϵS .

The proof of Lemma 4.6 is provided in Appendix C.1. This
result directly implies that lim inft→+∞ ϵtS = 0.

Next, Theorem 4.8 shows that, by picking large enough γ
and training long enough, we achieve O(β−1) empirical
loss. This requires the following mild assumptions that
imply the positive definiteness of the kernel Kρ in (8) at
initialization, as showed in Lemma 4.7.

Assumption 2. Assume σ(2k) ̸= 0 for all k > 0 and that
there exist s ∈ [d] s.t. (i) xi[s] ̸= xj [s] for all i ̸= j ∈ [n],
and (ii) xi[s] ̸= 0 for all i ∈ [n].
In words, the activation function is required to be smooth
and have non-zero even derivatives, which is satisfied by
e.g. tanh or the sigmoid (also fulfilling Assumption 1). As
for the training data, we assume that it is non-degenerate
and not parallel, which holds for most practical data sets.
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The next technical lemma, which comes from (Nguyen &
Mondelli, 2020, Lemma 3.4)1, shows the required positive
definiteness of the kernel.

Lemma 4.7. Under Assumption 2, let K(X,X) =
Eu∼γd

[σ(X⊤u)σ(u⊤X)], where γd = N (0, Id). Then,

λ∗ := λmin(K(X,X)) > 0.

We are now ready to state our result showing the conver-
gence of the empirical loss to a low loss manifold by running
gradient flow for long enough time.

Theorem 4.8. Let Assumptions 1, 2 hold, set λρ = λW =
β−1 and

γ > C3, t0 = βC5. (21)

Then, for any β and any t ≥ t0, we have

Lλ,n(ρt,Wt) ≤ β−1C4, (22)

where C3, C4, C5 are constants that depends on
n, d, p, C1, λ∗ but not on β.

The expression of C3, C4, C5 is provided in Theorem C.1,
whose statement and proof are in Appendix C.2. We note
that the choice λρ = λW = β−1 is only for technical
convenience, what matters here is that λρ, λW = Θ(β−1).

Proof sketch. We start by defining a first-hitting time

t∗ = min{ inf{t : ∥W⊤
t Wt −W⊤

0 W0∥op > RW },
inf{t : DKL(ρt||ρ0) > Rρ}},

(23)

where DKL(·||·) denotes the KL divergence. Intuitively,
(23) means that, for t < t∗, the gradient flow stays in a
ball around the initialization. The crux of the argument is
to show that, with a suitable choice of RW , Rρ, the loss
becomes small before the dynamics has exited the ball.

To do so, we first prove in Lemma C.2 that, for t < t∗,

Ln(ρt,Wt) ≤ exp
(
−γ2A1t

)
+ γ−2β−2A2, (24)

for some A1, A2 that do not depend on γ, β (but only on
λ∗, p, d, n). This implies that the empirical loss converges
exponentially fast (in t) to an error of order β−2, as long as
the gradient flow is inside the ball. We then show that, by
picking a proper γ, t∗ is large enough so that the first term
in (24) is of order β−2 for some t0 < t∗.

Finally, by combining the upper bound on the empirical loss
with the fact that DKL(ρt0 , ρ0), ∥Wt0∥2F are bounded by a
constant independent of β, we obtain that En(ρt0 ,Wt0) =
O(β−1). Thus, since the free energy decreases along the
gradient flow, the upper bound in (22) follows from the
relationship between empirical loss and free energy proved
in Lemma A.3.

1Note that the lemma is contained in the v1 of the paper, avail-
able on arXiv.

We remark that we also provide a convergence rate for the
loss in (24). The problem is challenging due to its non-
convex nature, and to our best knowledge, no explicit rate
of convergence is known in the mean-field regime beyond
the two-layer case (which has a convex free energy).

Comparison with related work. While the strategy de-
scribed above is motivated by and similar to that used in
(Chen et al., 2020, Theorem 4.4), its technical implemen-
tation differs, due to differences in the problem setting. In
fact, Chen et al. (2020) consider two-layer neural networks
whose free-energy landscape is strongly convex in ρ. In
contrast, the presence of the last linear layer W implies that
the free-energy landscape is non-convex in (ρ,W ), which
makes it less obvious that gradient flow converges to a low
free-energy manifold. As a consequence, Chen et al. (2020)
show that the gradient flow dynamics stays in a ball around
initialization with a certain radius for infinitely long time.
In contrast, in our case, the gradient flow dynamics stays in
the ball only for finite time, but this finite time suffices to
ensure a small enough free energy.

Finally, the combination of Theorem 4.8, Lemma 4.6 and
Corollary 4.4 gives that NC1 provably holds under gradient
flow training.

Corollary 4.9. Consider the setting of Theorem 4.8 and, for
any 0 < δ0 < 1, let

β > max

{
(2C2

1nC4)
6,

(
4q

n

)3

,

64(qC4)
2,

(
640C−2

3 C3
4

1

δ0

)3
}
,

where γ, t0 as chosen as in (21). Then, there exists T (β) >
0 s.t. for all t > max{T (β), t0} except a finite Lebesgue
measure set,

NC1(Hρt) ≤ δ0.

The proof of Corollary 4.9 is deferred to Appendix C.3,
and the result implies that lim inft→+∞ NC1(Hρt) ≤ δ0.
Corollary 4.9 implies that, the three-layer model (almost)
always achieve NC1 solution, for long enough training,
which explains the prevalence of neural collapse in practice.

Imbalancedness after gradient-based training. The nu-
merical results of Figure 1 show that, even if the solution
obtained via gradient descent is not balanced, its training
loss and gradient norm are still small and, therefore, as pre-
dicted by our analysis, it satisfies NC1. As a normalized
balancedness measure, we use

NB(ρ,W ) =
∥Eρ[aa

⊤]− c∗WW⊤∥op
∥Eρ[aa⊤]∥op

, (25)
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(a) MNIST (b) CIFAR-100

Figure 1: Average training loss (blue), NC1 (orange) and gradient norm (green) during SGD training. We report the average
for 4 independent experiments, as well as the confidence interval at 1 standard deviation.

with

c∗ = argmin
c

∥Eρ[aa
⊤]− cWW⊤∥2F . (26)

This captures the extent to which Eρ[aa
⊤] and WW⊤ are

proportional. We then train the three-layer neural network
fN (x) = W⊤hN (x), where the output hN (x) of the first
two layers is given by (2). Specifically, we consider the
following two settings.

Setting (a): MNIST. We relabel the dataset into q = 3 classes
taking the original label modulo 3, and we randomly pick
10000 samples in each new class for training. The input
dimension is d = 784, the number of neurons in the first
layer is N = 6272, and the number of neurons in the second
one is p = 16. We train the model with SGD of batch size
64 and learning rate η ∈ {0.001, 0.01}, using the smaller
(larger) learning rate for the first (second) half of the epochs.
We pick weight decay λW = λρ = 10−4, but add no noise
(β−1 = 0) and fix the last linear layer at initialization, which
produces an imbalanced network. In fact, at convergence,
NB(ρ,W ) = {0.8093, 0.7149, 0.5895, 0.8531} in our 4
independent experiments. We also plot the evolution of
the normalized balancedness metric in (25) as a function of
the number of training epochs in Figure 2a of Appendix E,
which shows that the network does not achieve balancedness
throughout training. However, even if the network is not bal-
anced, Figure 1a still shows that the NC1 metric decreases
and flattens to a rather low value, following the same pattern
as the training loss and the gradient norm.

Setting (b): CIFAR-100. We perform classification on super-
classes using pretrained ResNet50 features. Specifically, we
consider the 3 super-classes ["aquatic mammals",
"large carnivores", "people"], with each
super-class containing 5 original classes and 500 samples in
total. We then take a ResNet50 pretrained on ImageNet-1K,
extract the penultimate-layer features of the training set,
and use such features as training data. The input dimension

is d = 2048, the number of neurons in the first layer is
N = 16384, and the number of neurons in the second
one is p = 64. We train the model with noisy SGD of
batch size 64, pick weight decay λW = λρ = β = 10−4

and learning rate η ∈ {0.001, 0.0001}, using the smaller
(larger) learning rate for the first (second) half of the
epochs. As in the previous case, the network does not
achieve balancedness throughout training: at convergence,
NB(ρ,W ) = {0.5386, 0.2779, 0.4141, 0.5257} in the 4
independent experiments; see also Figure 2b in Appendix E
for a plot of the metric in (25) as a function of the number
of training epochs. Nevertheless, the NC1 metric decreases
with the loss and the gradient norm, reaching a small value
at the end of training, see Figure 1b.

Similar results are reported for the training of ResNet-18 and
VGG-11 in Appendix E. The implementation of the experi-
ments is publicly available at the GitHub repository https:
//github.com/DiyuanWu/icml25_expr.

5. Within-class Variability Collapse and
Generalization

While neural collapse is widely known as a phenomenon
occurring at training time, it does not necessarily imply that
the test error is small (Hui et al., 2022, Section 4). We now
show that, for well-separated datasets, training via gradient
flow implies both approximate NC1 and small test error.

Problem setting. We make the following additional as-
sumptions (consistent with Assumption 1).

Assumption 3. We set γ = 1, and assume the activation
function σ to be the sigmoid function, i.e., σ(z) = 1

1+e−z .
We further assume there are q classes and n data points
(xj , yj) sampled i.i.d. from D, with m points for each class
and xj ∼ D(xj |yj). Each class is balanced, in the sense
that

∫
D(·, ek) = 1/q for all k.

7
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Algorithm 1 Two-stage gradient flow

Initialization: Let W0 = [e1, . . . , eq]
⊤.

Stage 1: Fix W0 and obtain ρ1 = argminρ ER
n (ρ,W0).

Stage 2: Initialize at (W0, ρ1) and run the following
Wasserstein gradient flow:

dWt = −∇WLλ,n(ρt,Wt)dt;

dθt = −∇θ
δ

δρ
Lλ,n(ρt,Wt)(θt)dt+

√
2β−1dBt.

For technical reasons, we consider the approximated model
obtained by truncating the second layer, i.e., hR

ρ (x) =

Eρ[τR(a)σ(u
⊤x)], where τR : R → R is a smooth function

applied component-wise such that

τR(z) =


z, for |z| ≤ R,
R+ C0, for |z| ≥ 2R,
smooth interpolation, for R < |z| < 2R.

Notably, for large enough R, the derivative of τ satisfies

τ ′R(z) =


1, for |z| ≤ R,
0, for |z| ≥ 2R,
≤ C0, for R < |z| < 2R.

We also denote HR
ρ = [hR

ρ (x1), . . . , h
R
ρ (xn)] ∈ Rp×n, and

define the loss and free energy w.r.t. the approximated sec-
ond layer as

LR
n (ρ,W ) =

1

2n
∥W⊤HR

ρ − Y ∥2F ,

ER
n (ρ,W ;β) = LR

n (ρ,W ) +
β−1

2
∥W∥2F

+
β−1

2
Eρ[∥θ∥22] + β−1Eρ[log ρ].

We remark that the technical reason for having an approxi-
mated second layer is to ensure the uniqueness of the global
optimum for the Gibbs minimizer as discussed in Propo-
sition 5.1. Nevertheless, our results in Section 5 hold uni-
formly for large enough R, which means that we also expect
the same conclusion for the original model which corre-
sponds to R = +∞.

Two stage training algorithm. Our result holds for the
two-stage training described in Algorithm 1. Specifically, in
Stage 1, we aim to find the global optimum of ER

n (W0, ρ)
having fixed W0, and in Proposition 5.1 below we show
that, for all fixed non-zero W0, ER

n (W0, ρ) has a unique
global minimizer in P2(Rp+d). Furthermore, such global
minimizer is achieved by noisy gradient flow as studied by
(Suzuki et al., 2024a). In Stage 2, we run a gradient flow on
the free energy, as we did in Section 4.2.

Proposition 5.1. Under Assumption 1, for any fixed non-
zero W , ER

n (ρ,W ) is strongly convex in ρ, and there exist a
unique global minimizer ρ with the following Gibbs form:

ρ(θ)∝exp
(
−β

n
τR(a)

⊤W (W⊤HR
ρ −Y )σ(X⊤u)−β

2
∥θ∥22

)
.

(27)

Proof. The result follows from the strong convexity of
ER
n (ρ,W ). In fact, 1

2n∥W
⊤HR

ρ − Y ∥2F is convex in HR
ρ ,

HR
ρ is linear in ρ, the L2-regularization is convex and the

entropic regularization is strongly convex. Then, the claim
is a consequence of (Hu et al., 2021, Proposition 2.5).

Test error analysis. We start by introducing (τ,M)-
linearly separable data, which intuitively corresponds to
each class being linearly separable w.r.t. the others.
Definition 5.2. We say that the data distribution D of a q-
class classification problem is bounded and (τ,M)-linearly
separable if, for each k, there exist ûk s.t. ∥ûk∥22 ≤ M2 and

û⊤
k x

{
≥ τ, if x ∈ supp(D(·|ek)),
< −τ if x ∈ supp(D(·|ek′)), for all k′ ̸= k.

Given a predictor f : Rd −→ Rq, we aim to bound the
mismatch error:

errtest(f ;D) =
1

q

q∑
k=1

Pr
x∼D(·|ek)

[One-Hot(f(x)) ̸= ek],

where we define the function One-Hot : Rq −→ Rq as

[One-Hot(f)]i =

{
1, if i = argmaxi[f ]i,

0, else.

While the (τ,M)-linear separability of the data seem to
be restrictive, we remark that in general it is not true that
NC1 and vanishing test error co-occur under MSE loss
without any assumptions on the data distribution. In fact,
the occurrence of NC1 implies that the model overfits the
data, and overfitting is not always benign without additional
assumptions (Bartlett et al., 2021). In this sense, showing
the co-occurrence of NC1 and vanishing test error may be
regarded as a harder problem than benign overfitting.

We now show that training on a (τ,M)-linearly separable
dataset leads to both neural collapse and test error vanishing
in the number of training samples n.
Theorem 5.3. Under Assumptions 1 and 3, let the data
distribution be bounded and (τ,M)-linear separable as
per Definition 5.2. Pick R > 1 large enough, n large

enough, and β =
(
640C2

1nC
2
9

1
δ0

)6
. Then, for any (ρt,Wt)

obtained by Stage 2 of Algorithm 1, we have

errtest(f(·; ρt,Wt);D) ≤ C10 log(C11n/δ0)

√
1

2n

+ 6q

√
log(2/δ)

n
,

8
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with probability at least 1 − δ. Furthermore, there exists
T (β) s.t. for all t > T (β) except a finite Lebesgue measure
set,

NC1(Hρt
) ≤ δ0.

The constants C9, C10, C11 depend on d, p, C0, C1,M, τ,
but not on n. Their expression is provided in Theorem D.6,
whose statement and proof are in Appendix D.1. The ar-
gument uses Rademacher complexity bounds for neural
networks in the mean-field regime as in (Chen et al., 2020;
Suzuki et al., 2024b; Takakura & Suzuki, 2024), and the key
component is to control the dependence of the constant C10

on n. This is achieved by noting that, for a (τ,M)-separated
data distribution, a two-layer network with constant number
of neurons approximately interpolates the data.

In a nutshell, Theorem 5.3 provides a sufficient condition
on the data distribution to achieve both NC1 and vanishing
test error. Although for simplicity in the statement we pick
a specific value for β, we note that a similar result would

hold for
(
640C2

1nC
2
9

1
δ0

)6
≤ β ≤ O(poly(n)).

6. Conclusions and Future Directions
In this work, we consider a three-layer neural network in the
mean-field regime and give rather general sufficient condi-
tions for within-class variability collapse (namely, NC1) to
occur. We then show that (i) training the three-layer neural
network with gradient flow satisfies these conditions, and (ii)
a vanishing test error is compatible with neural collapse at
training time. Taken together, our results connect represen-
tation geometry to loss landscape, gradient flow dynamics
and generalization, offering new insights into gradient-based
optimization in deep learning.

Three interesting future directions include: (i) establishing
more general conditions (either necessary or sufficient) that
guarantee both neural collapse during training and vanishing
test error; (ii) tackling the challenging case in which there
is a non-linearity between the last two layers – a setting
where the properties of neural collapse have been proved
in the UFM framework for binary classification (Súkenı́k
et al., 2023); and (iii) extending the results to cross-entropy
loss, which is more commonly used for classification. The
main technical difficulty for the latter is to rule out the
possibility that different data points in the same class could
have different logits, which appears challenging even when
the loss is small.
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A. Technical Lemmas
Lemma A.1 (Properties of Kronecker product and vectorization). The following properties hold:

1. vec(ABC) = (C⊤ ⊗A)vec(B).

2. (A⊗B)(C ⊗D) = (AC)⊗ (BD) if one can form matrix product AC and BD.

3. Singular space of Kronecker product: given two matrices A ∈ Rm×n and B ∈ Rp×q , let their SVD be

A = UASAV
⊤
A , B = UBSBV

⊤
B ,

where UA ∈ Rm×m, SA ∈ Rm×n, VA ∈ Rn×n and UB ∈ Rp×p, SB ∈ Rp×q, VB ∈ Rq×q. Then, the SVD of A⊗B
reads

A⊗B = (UA ⊗ UB)(SA ⊗ SB)(VA ⊗ VB)
⊤.

Proof. The first two claims can be easily verified. For the third, we have:

(UA ⊗ UB)(SA ⊗ SB)(VA ⊗ VB)
⊤ = (UA ⊗ UB)(SA ⊗ SB)(V

⊤
A ⊗ V ⊤

B )

= (UA ⊗ UB)((SAV
⊤
A )⊗ (SBV

⊤
B ))

= ((UASAV
⊤
A )⊗ (UBSBV

⊤
B ))

= A⊗B,

and
(UA ⊗ UB)

⊤(UA ⊗ UB) = (U⊤
AUA)⊗ (U⊤

BUB) = Im ⊗ Ip = Imp,

which gives the desired result.

Lemma A.2. Given two matrix A,B ∈ Rn×n, assume that A is invertible and A+B is invertible , then we have:

(A+B)−1 = A−1 − (A+B)−1BA−1.

Proof. Let (A + B)−1 = A−1 + C where we aim to compute C. Then, we have (A + B)A−1 + (A + B)C = I . This
implies that BA−1 + (A+B)C = 0, and we have C = −(A+B)−1BA−1, which gives the desired result.

Lemma A.3. Let ρ(θ) ∈ P2(RD) be an absolutely continuous measure, L(ρ) : P2 −→ R be a non-negative functional,
and

E(ρ) = L(ρ) + λ

2
Eρ[∥θ∥22] + β−1Eρ[log ρ].

Then, for any ρ ∈ P2(RD), we have that

L(ρ) ≤ E(ρ) + β−1D

2
log

2π

λβ
,

DKL(ρ||ρ0) ≤ β

(
E(ρ) + β−1D

2
log

2π

λβ

)
,

Eρ[∥θ∥22] ≤ 4λ−1E(ρ) + 4λ−1β−1

(
1 +D log

8π

λβ

)
,

L(ρ) + λ

2
Eρ[∥θ∥22] ≤ 3E(ρ) + β−1D

2
log

2π

λβ
+ 2β−1

(
1 +D log

8π

λβ

)
,

where ρ0 ∝ exp
(
−βλ∥θ∥22/2

)
.
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Proof. Note that

β−1 βλ

2
Eρ[∥θ∥22] + β−1Eρ[log ρ] =β−1Eρ

[
log

ρ

(2π/(βλ))−D/2 exp(−βλ∥θ∥22/2)

]
− β−1D

2
log

2π

βλ

≥− β−1D

2
log

2π

λβ
,

where the last passage follows from the non-negativity of the KL divergence. This implies that

E(ρ) = L(ρ) + β−1DKL(ρ||ρ0)− β−1D

2
log

2π

λβ
≥ L(ρ)− β−1D

2
log

2π

λβ
,

which gives the first two inequalities. The third inequality on the second moment follows from (Mei et al., 2018, Equation
10.12), and the final equality comes from combining the first and third inequality.

B. Proofs for Section 4.1
B.1. Proof of Theorem 4.2

First, given ρ,W , we define

∆a(θ; ρ,W ) := ∇a
δ

δρ
En(ρ,W )(θ) =

γ

n
W (γW⊤Hρ − Y )σ(X⊤u) + λρa+ β−1∇a log ρ(θ), ρ a.s. (28)

and we will use the shorthand ∆a in the rest of the proof. By the definition of ϵS-stationary point, we have

Eρ[∥∆a∥22] ≤ ϵ2S .

By rearranging terms in (28), we have

a = −
γλ−1

ρ

n
W (γW⊤Hρ − Y )σ(X⊤u)− λ−1

ρ β−1∇a log ρ(θ) + λ−1
ρ ∆a, ρ a.s.

which implies that

Hρ = Eρ[aσ(u
⊤X)]

= −λ−1
ρ γW (γW⊤Hρ − Y )

Kρ(X,X)

n
− λ−1

ρ β−1Eρ[∇a log ρ(θ)σ(u
⊤X)] + λ−1

ρ Eρ[∆aσ(u
⊤X)].

We first show that the term Eρ[∇a log ρ(θ)σ(u
⊤x)] = 0, for any x. To see this, it is sufficient to show that∫
∂a1

log ρ(θ)σ(u⊤x) ρ(dθ) = 0.

Indeed, we have ∫
∂a1

log ρ(θ)σ(u⊤x) ρ(dθ) =

∫
∂a1

ρ(θ)σ(u⊤x) dθ = −
∫

∂a1
σ(u⊤x) ρ(dθ) = 0,

which implies that

Hρ = −λ−1
ρ γW (γW⊤Hρ − Y )

Kρ(X,X)

n
+ λ−1

ρ Eρ[∆aσ(u
⊤X)]. (29)

By multiplying both sides of (29) with γW⊤ and subtracting Y , we get

γW⊤Hρ − Y = −λ−1
ρ γ2W⊤W (γW⊤Hρ − Y )

Kρ(X,X)

n
+ λ−1

ρ γW⊤Eρ[∆aσ(u
⊤X)]− Y.

13



Neural Collapse beyond the Unconstrainted Features Model

An application of the first property stated in Lemma A.1 gives that

vec(γW⊤Hρ − Y ) = −λρ

(
γ2Kρ(X,X)

n
⊗ (W⊤W ) + λρInq

)−1 (
vec(Y )− λ−1

ρ vec(γW⊤Eρ[∆aσ(u
⊤X)])

)
. (30)

Plugging the expression for vec(γW⊤Hρ − Y ) back to (29), we have

vec(Hρ) = −λ−1
ρ

(
γ
Kρ(X,X)

n
⊗W

)
vec(γW⊤Hρ − Y ) + λ−1

ρ vec(Eρ[∆aσ(u
⊤X)])

=

(
γ
Kρ(X,X)

n
⊗W

)(
γ2Kρ(X,X)

n
⊗ (W⊤W ) + λρInq

)−1 (
vec(Y )− λ−1

ρ vec(W⊤Eρ[∆aσ(u
⊤X)])

)
+ λ−1

ρ vec(Eρ[∆aσ(u
⊤X)])

=

(
γ
Kρ(X,X)

n
⊗W

)(
γ2Kρ(X,X)

n
⊗ (W⊤W ) + λρInq

)−1

vec(Y ) +E1(ϵS , λρ; γ,W ),

where we define the error vector as

E1(ϵS , λρ; γ,W ) = −λ−1
ρ

(
γ
Kρ(X,X)

n
⊗W

)(
γ2Kρ(X,X)

n
⊗ (W⊤W ) + λρInq

)−1

vec(γW⊤Eρ[∆aσ(u
⊤X)])

+ λ−1
ρ vec(Eρ[∆aσ(u

⊤X)]).

Now we aim to upper bound the error. To do so, we write

∥E1(ϵS , λρ; γ,W )∥22

≤ 2λ−2
ρ

∥∥∥∥∥
(
γ
Kρ(X,X)

n
⊗W

)(
γ2Kρ(X,X)

n
⊗ (W⊤W ) + λρInq

)−1

vec(γW⊤Eρ[∆aσ(u
⊤X)])

∥∥∥∥∥
2

2

+ 2λ−2
ρ ∥vec(Eρ[∆aσ(u

⊤X)])∥22

≤ 2λ−2
ρ σmax

(
γ
Kρ(X,X)

n
⊗W

)2

σmax

((
γ2Kρ(X,X)

n
⊗ (W⊤W ) + λρInq

)−1
)2

∥γW⊤Eρ[∆aσ(u
⊤X)]∥2F

+ 2λ−2
ρ ∥Eρ[∆aσ(u

⊤X)]∥2F
≤
(
2λ−4

ρ γ4C2
1σmax(W )4 + 2λ−2

ρ

)
∥Eρ[∆aσ(u

⊤X)]∥2F .
(31)

Then, we upper bound ∥Eρ[∆aσ(u
⊤X)]∥2F as follows:

∥Eρ[∆aσ(u
⊤X)]∥2F ≤ Eρ[∥∆aσ(u

⊤X)∥2F ]
= Eρ[∥∆a∥22∥σ(u⊤X)∥22]
≤ C2

1nEρ[∥∆a∥22]
≤ C2

1nϵ
2
S .

(32)

Combining (31) and (32), (6)-(7) readily follow.

To obtain (9), we first show that, when W⊤W is full rank, the following equality holds(
γ
Kρ(X,X)

n
⊗W

)(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

= γ−1(In ⊗ (W (W⊤W )−1))− λργ
−1(In ⊗ (W (W⊤W )−1))

(
Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

.

(33)

14



Neural Collapse beyond the Unconstrainted Features Model

To do so, define the eigen-decomposition of Kρ(X,X)
n and SVD of W as follows:

Kρ(X,X)

n
= UKΣKU⊤

K , γW = UWSWV ⊤
W ,

where UK ∈ Rn×n,ΣK ∈ Rn×n, UW ∈ Rp×p, SW ∈ Rp×q, VW ∈ Rq×q . By Lemma A.1, we have that

γ
Kρ(X,X)

n
⊗W = (UK⊗UW )(ΣK⊗SW )(UK⊗VW )⊤, γ2Kρ(X,X)

n
⊗W⊤W = (UK⊗VW )(ΣK⊗(S⊤

WSW ))(UK⊗VW )⊤.

Thus, we have the following equalities:(
γ
Kρ(X,X)

n
⊗W

)(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

= (UK ⊗ UW )(ΣK ⊗ SW )(UK ⊗ VW )⊤(UK ⊗ VW )(ΣK ⊗ (S⊤
WSW ) + λρInq)

−1(UK ⊗ VW )⊤

= (UK ⊗ UW )(ΣK ⊗ SW )(ΣK ⊗ (S⊤
WSW ) + λρInq)

−1(UK ⊗ VW )⊤.

For simplicity, we write the matrix SW =

[
diag(σ1, . . . , σq)

0p−q,q

]
and define S−1

W =

[
diag(σ−1

1 , . . . , σ−1
q )

0p−q,q

]
. Here, given

integers n,m, we define 0n,m as the n×m matrix containing zeros. Clearly, we have that

S−1
W S⊤

W =

[
Iq 0q,p−q

0p−q,q 0p−q,p−q

]
.

Next, we observe that

(In ⊗ S−1
W S⊤

W )(ΣK ⊗ SW ) = ΣK ⊗ (S−1
W S⊤

WSW ) = ΣK ⊗ SW .

Thus, we can write

(ΣK ⊗ SW )(ΣK ⊗ (S⊤
WSW ) + λρInq)

−1 = (In ⊗ S−1
W S⊤

W )(ΣK ⊗ SW )(ΣK ⊗ (S⊤
WSW ) + λρInq)

−1

= (In ⊗ S−1
W )(In ⊗ S⊤

W )(ΣK ⊗ SW )(ΣK ⊗ (S⊤
WSW ) + λρInq)

−1

= (In ⊗ S−1
W )(ΣK ⊗ (S⊤

WSW ))(ΣK ⊗ (S⊤
WSW ) + λρInq)

−1

= (In ⊗ S−1
W )

(
I − λρ(ΣK ⊗ (S⊤

WSW ) + λρInq)
−1
)
,

which implies that(
γ
Kρ(X,X)

n
⊗W

)(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

= (UK ⊗ UW )(In ⊗ S−1
W )(UK ⊗ VW )⊤ − λρ(UK ⊗ UW )(In ⊗ S−1

W )(ΣK ⊗ (S⊤
WSW ) + λρInq)

−1(UK ⊗ VW )⊤.

Finally, we can verify that:

γ−1In ⊗ (W (W⊤W )−1) = (UKU⊤
K)⊗ (UWS−1

W V ⊤
W )

= (UK ⊗ UW )(In ⊗ S−1
W )(UK ⊗ VW )⊤,

and

γ−1(In ⊗ (W (W⊤W )−1))

(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

=(UK ⊗ UW )(In ⊗ S−1
W )(UK ⊗ VW )⊤(UK ⊗ VW )(ΣK ⊗ (S⊤

WSW ) + λρInq)
−1(UK ⊗ VW )⊤

=(UK ⊗ UW )(In ⊗ S−1
W )(ΣK ⊗ (S⊤

WSW ) + λρInq)
−1(UK ⊗ VW )⊤,

which gives (33).
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From the above decomposition, we know that(
γ
Kρ(X,X)

n
⊗W

)(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

vec(Y )

=γ−1(In ⊗ (W (W⊤W )−1))vec(Y )− λργ
−1(In ⊗ (W (W⊤W )−1))

(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

vec(Y )

=γ−1vec(W (W⊤W )−1Y )− λργ
−1(In ⊗ (W (W⊤W )−1))

(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

vec(Y ),

where we use the first item of Lemma A.1 in the last passage. Let us now define

Ẽ2(ϵS , λρ; γ, ρ,W ) := −λργ
−1(In ⊗ (W (W⊤W )−1))

(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

vec(Y )

=γ−1(In ⊗ (W (W⊤W )−1))

(
vec(γW⊤Hρ − Y )−

(
γ2Kρ(X,X)

n
⊗W⊤W + λρInq

)−1

vec
(
γW⊤Eρ[∆aσ(u

⊤X)]
))

,

where the second passage follows from (30). Using (6) (that we proved above), we have

vec(Hρ) = vec(γ−1W (W⊤W )−1Y ) + Ẽ2(ϵS , λρ; γ, ρ,W ) +E1(ϵS , λρ; γ,W ).

It remains to upper bound ∥Ẽ2(ϵS , λρ; γ, ρ,W )∥22. To this aim, we write

∥Ẽ2(ϵS , λρ; γ, ρ,W )∥22 ≤ 2γ−2σmax(In ⊗ (W (W⊤W )−1))2(∥γW⊤Hρ − Y ∥2F + λ−2
ρ γ2∥W⊤Eρ[∆aσ(u

⊤X)]∥2F )

≤
2nγ−2Ln(ρ,W ) + 2λ−2

ρ ∥W⊤Eρ[∆aσ(u
⊤X)]∥2F

σmin(W )2

≤
2nγ−2Ln(ρ,W ) + 2λ−2

ρ σmax(W )2∥Eρ[∆aσ(u
⊤X)]∥2F

σmin(W )2
.

Plugging in the bound in (32) gives

∥Ẽ2(ϵS , λρ; γ, ρ,W )∥22 ≤
2nγ−2Ln(ρ,W ) + 2λ−2

ρ σmax(W )2C2
1nϵ

2
S

σmin(W )2
. (34)

By combining (7) and (34) with an application of the triangle inequality, the proof is complete.

B.2. Proof of Lemma 4.3

Proof of Lemma 4.3. To upper bound σmax(W ), we directly use the definition in (4):

σmax(W )2 ≤ ∥W∥2F ≤ 2λ−1
W Lλ,n(ρ,W ) ≤ 2B(λ0

W )−1(log β)α.

To lower bound σmin(W ), we start by showing that

∥Hρ∥2F ≤ βϵ0 . (35)

To see this, assume by contradiction that ∥Hρ∥2F > βϵ0 . Then, there exists i such that ∥hρ(xi)∥22 > βϵ0

n and the following
bounds hold:

∥hρ(xi)∥22 = ∥Eρ[aσ(u
⊤xi)]∥22

= Eθ,θ′ [a⊤a′σ(u⊤xi)σ((u
′)⊤xi)] (θ′ is an independent copy of θ)

≤ Eθ,θ′ [|a|⊤|a′||σ(u⊤xi)||σ((u′)⊤xi)|]
≤ C2

1Eθ,θ′ [|a|⊤|a|]
≤ C2

1Ea[∥a∥2]Ea′ [∥a∥2]
= C2

1Ea[∥a∥2]2

≤ C2
1Ea[∥a∥22],

16
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which implies that Eρ[∥a∥22] >
βϵ0

C2
1n

. By combining (15) with (4), we have

Eρ[∥a∥22] ≤ Eρ[∥θ∥22] ≤ 2B(λ0
ρ)

−1(log β)α, (36)

where we recall that λρ = λ0
ρβ

−1. Note that, for all ϵ0 ∈ (0, 1) and for all β ≥ e
4α
ϵ0

log 2α
ϵ0 ,

βϵ0

(log β)α
≥ βϵ0/2. (37)

Thus, by taking

β ≥ max{e
4α
ϵ0

log 2α
ϵ0 , (2C2

1nB(λ0
ρ)

−1)
2
ϵ0 }

as in (14), we have that βϵ0

C2
1n

is strictly larger than the RHS of (36), which is a contradiction.

Now, we are ready to argue that, for large enough β, σmin(W ) ≥ β−ϵ0 . Assume by contradiction that σmin(W ) < β−ϵ0 ,
and w.l.o.g assume [ΣW ]q,q < β−ϵ0 . Then, the following lower bound holds

Lλ,n(ρ,W ) ≥ Ln(ρ,W )

=
1

2n
∥W⊤Hρ − Y ∥2F

=
1

2n
∥VWΣ⊤

WU⊤
WHρ − Y ∥2F

=
1

2n
∥Σ⊤

WU⊤
WHρ − V ⊤

WY ∥2F

≥ 1

2n
∥[ΣW ]q,q[U

⊤
WHρ]q: − [V ⊤

WY ]q:∥22

≥ 1

4n
∥[V ⊤

WY ]q:∥22 −
1

2n
∥[ΣW ]q,q[U

⊤
WHρ]q:∥22

=
1

4q
− 1

2n
∥[ΣW ]q,q[U

⊤
WHρ]q:∥22

>
1

4q
− 1

2n
β−ϵ0 .

(38)

Note that by taking β ≥
(
4q
n

) 1
ϵ0 , we have 1

4q − 1
2nβ

−ϵ0 ≥ 1
8q . Furthermore, for all β ≥ e4α log(2α), we have

β1/α

log β
> β1/(2α).

Thus, by taking

β ≥ max

{
e4α log(2α),

(
4q

n

) 1
ϵ0

, 64(qB)2

}
,

as in (14), we have that the RHS of (38) is strictly larger than Bβ−1(log β)α, which is a contradiction and concludes the
proof.

B.3. Proof of Corollary 4.4

Proof of Corollary 4.4. From Theorem 4.2, we have

Hρ = γ−1W (W⊤W )−1Y +E2.

17
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Note that the NC1 metric is scale invariant, thus it is equivalent to compute NC1(γHρ). Later on, we will write Hρ := γHρ

with slight abuse of notation. Some manipulations give

H̃ρ = W (W⊤W )−1

(
Y − 1

q
1q1

⊤
n

)
+ γE2

(
In − 1

n
1n1

⊤
n

)
,

Mc =
1

m
W (W⊤W )−1

(
Y − 1

q
1q1

⊤
n

)
Y ⊤Y +

γ

m
E2

(
In − 1

n
1n1

⊤
n

)
Y ⊤Y,

H̃ρ −Mc = γE2

(
In − 1

n
1n1

⊤
n

)(
In − 1

m
Y ⊤Y

)
.

Thus, we have

Tr
{
(H̃ρ −Mc)

⊤(H̃ρ −Mc)
}
= ∥H̃ρ −Mc∥2F

=

∥∥∥∥γE2

(
In − 1

n
1n1

⊤
n

)(
In − 1

m
Y ⊤Y

)∥∥∥∥2
F

≤ 16γ2∥E2∥2F ,

Tr
{
H̃ρ

⊤
H̃ρ

}
= ∥H̃ρ∥2F

≥ 1

2

∥∥∥∥W (W⊤W )−1

(
Y − 1

q
1q1

⊤
n

)∥∥∥∥2
F

− ∥γE2

(
In − 1

n
1n1

⊤
n

)
∥2F

≥ 1

2σ2
max(W )

(q − 1)n

q
− 4γ2∥E2∥2F ,

which concludes the proof.

B.4. Proof of Lemma 4.5

Proof of Lemma 4.5. From the stationary condition, we obtain

∇a
δ

δρ
En(ρ,W ) =

γ

n
W (γW⊤Hρ − Y )σ(X⊤u) + λρa+ β−1∇a log ρ(θ) = 0, ρ a.s.

∇WEn(ρ,W ) =
γ

n
Hρ(γW

⊤Hρ − Y )⊤ + λWW = 0.

Rearranging the terms gives

a = −
λ−1
ρ γ

n
W (γW⊤Hρ − Y )σ(X⊤u)− β−1λ−1

ρ ∇a log ρ(θ), ρ a.s.

W = −
λ−1
W γ

n
Hρ(γW

⊤Hρ − Y )⊤.

Then, we compute:

Eρ[aa
⊤] = Eρ

[
−
λ−1
ρ γ

n
W (γW⊤Hρ − Y )σ(X⊤u)a⊤ − β−1λ−1

ρ (∇a log ρ(θ))a
⊤

]
,

= −
λ−1
ρ γ

n
W (γW⊤Hρ − Y )H⊤

ρ − β−1λ−1
ρ Eρ

[
(∇a log ρ(θ))a

⊤]
WW⊤ = −

λ−1
W γ

n
W (γW⊤Hρ − Y )H⊤

ρ .

18
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Thus, λWWW⊤ − λρEρ[aa
⊤] = β−1Eρ

[
(∇a log ρ(θ))a

⊤], and next we compute Eρ

[
(∇a log ρ(θ))a

⊤] . To do this, we
note that:

[
Eρ

[
(∇a log ρ(θ))a

⊤]]
i,j

= Eρ [∂ai log ρ(θ)aj ]

=

∫
ρ(θ)∂ai

log ρ(θ)aj dθ

=

∫
aj∂aiρ(θ) dθ

= −
∫

ρ(θ)∂ai
aj dθ

=

{
−1, i = j

0, i ̸= j

Thus, Eρ

[
(∇a log ρ(θ))a

⊤] = −Ip, which gives the desired result.

C. Proofs in Section 4.2
C.1. Proof of Lemma 4.6

Proof of Lemma 4.6 . We note that En(ρ,W ) is lower bounded and we have:

En(ρT ,WT ) = En(ρ0,W0) +

∫ T

0

∂tEn(ρt,Wt) dt.

A standard computation gives

∂tEn(ρt,Wt) = −Eρt

[∥∥∥∥∇θ
δ

δρ
En(ρt,Wt)(θt)

∥∥∥∥2
2

]
− ∥∇WLλ,n(ρt,Wt)∥22,

which implies that En(ρT ,WT ) is a lower-bounded monotone decreasing sequence. Thus, limT→∞ En(ρT ,WT ) = C < ∞.
The existence and boundedness of limT→∞ En(ρT ,WT ) implies that, for any ϵS > 0, there exists T (ϵS) > 0 s.t. for all
t > T (ϵS) except a finite Lebesgue measure set,

Eρt

[∥∥∥∥∇θ
δ

δρ
En(ρt,Wt)(θt)

∥∥∥∥2
2

]
+ ∥∇WEn(ρt,Wt)∥22 ≤ ϵS ,

which finishes the proof.

C.2. Proof of Theorem 4.8.

Theorem C.1 (Full statement of Theorem 4.8). Let Assumptions 1, 2 hold, set λρ = λW = β−1 and

γ > C3, t0 = βC5.

Then, for any β and any t ≥ t0, we have

Lλ,n(ρt,Wt) ≤ β−1C4,
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where

C3 = max

{
4B1

RW
,
2
√
2B3√
Rρ

}
,

C4 = 6γ−2A2
1 max

{
B2

2

B2
1

,
B2

4

B2
3

}
+ 6γ−2A2

2 + 3
q(RW + 1)

2
+ 3Rρ +

p+ d

2
log 2π + 2 (1 + (p+ d) log 8π) ,

C5 = γ−1 min

{
B1

B2
,
B3

B4

}
,

RW =
1

2
, Rρ = min

{
p+ d,

λ2
∗

64n2C2
1

}
,

A1 =
λ∗

2n
, A2 = 32

√
2n(RW + 1)Rρ(2C1d

√
p+ d+ 1)

λ∗
,

B1 =
2

n

√
RW + 1

√
pn(4C1

√
d(p+ d) + 2C1)2

√
RρA

−1
1 ,

B2 = 2(RW + 1) +
2

n

√
RW + 1

√
pn(4C1

√
d(p+ d) + 2C1)2

√
RρA2,

B3 = 2p
√
n
√
RW + 1(4C1

√
d(p+ d) + 2C1)2

√
Rρ(4C1d

3/2
√
p+ d+ 2C1d)A

−1
1 ,

B4 = 2p
√
n
√
RW + 1(4C1

√
d(p+ d) + 2C1)2

√
Rρ(4C1d

3/2
√
p+ d+ 2C1d)A2.

To prove the above Theorem C.1, we first define the following first hitting time for any fixed RW < 1, Rρ < p+ d:

t∗ = min{inf{t : ∥W⊤
t Wt −W⊤

0 W0∥op > RW }, inf{t : DKL(ρt||ρ0) > Rρ}}.

From the above definition of t∗, we have that, for t ≤ t∗,

∥W⊤
t Wt −W⊤

0 W0∥op ≤ RW , DKL(ρt||ρ0) ≤ Rρ.

The next two lemmas (proved in Appendices C.2.1 and C.2.2) control the behavior of the dynamics before t∗.

Lemma C.2. Let Rρ ≤ min{p+ d,
λ2
∗

64n2C4
1
}, RW ≤ 1

2 . For t ≤ t∗, we have√
Ln(ρt,Wt) ≤ exp

(
−γ2A1t

)
+ γ−1β−1A2,

where

A1 =
λ∗

4n
, A2 =

16
√

2pn2(RW + 1)Rρ(2C1

√
p+ d+ 1)

λ∗
.

Lemma C.3. Let Rρ ≤ min{p+ d,
λ2
∗

64n2C4
1
}, RW ≤ 1

2 . For t ≤ t∗, we have

∥W⊤
t Wt −W⊤

0 W0∥op ≤ γ−1B1 + β−1B2t,√
DKL(ρt, ρ0) ≤ γ−1B3 + β−1B4t,

where

B1 =
4

n

√
RW + 1

√
pn(4C1

√
(p+ d) + 2C1)

√
RρA

−1
1 ,

B2 = 2(RW + 1) +
4

n

√
RW + 1

√
pn(4C1

√
(p+ d) + 2C1)

√
RρA2,

B3 =
√
2p
√

RW + 1(8C1

√
p+ d+ 4C1)A

−1
1 ,

B4 =
√
2p
√

RW + 1(8C1

√
p+ d+ 4C1)A2.

Now we are ready to prove the main theorem.
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Proof of Theorem C.1. We pick t0 = γ−1βmin{B1

B2
, B3

B4
}, and we consider two cases. If t∗ < t0, then for any t ≤ t∗ < t0,

an application of Lemma C.3 gives

∥W⊤
t Wt −W⊤

0 W0∥op ≤ γ−1B1 + β−1B2t ≤ γ−1B1 + β−1B2t0 ≤ 2γ−1B1,

DKL(ρt∗ ||ρ0) ≤ (γ−1B3 + β−1B4t)
2 ≤ (γ−1B3 + β−1B4t0)

2 ≤ 4γ−2B2
3 .

By picking

γ ≥ max

{
4B1

RW
,
2
√
2B3√
Rρ

}
,

we get that:

∥W⊤
t Wt −W⊤

0 W0∥op ≤ RW

2
, DKL(ρt∗ ||ρ0) ≤

Rρ

2
,

for all t ≤ t0 with t0 > t∗, which contradicts the definition of t∗.

This implies that t∗ ≥ t0 and, by Lemma C.2, we have

Ln(ρt0 ,Wt0) ≤ 2 exp

(
−2γA1 min

{
B1

B2
,
B3

B4

}
β

)
+ 2γ−2β−2A2

2

≤ 2

(
γA1 min

{
B1

B2
,
B3

B4

}
β

)−2

+ 2γ−2β−2A2
2

≤ 2γ−2β−2A2
1 max

{
B2

2

B2
1

,
B2

4

B2
3

}
+ 2γ−2β−2A2

2.

We also have the following upper bound on ∥Wt0∥2F :

∥Wt0∥2F ≤ q∥W⊤
t0Wt0∥op

≤ q(∥W⊤
t0Wt0 −W⊤

0 W0∥op + ∥W⊤
0 W0∥op)

≤ q(RW + 1).

Thus, we can upper bound the free energy for all t ≥ t0 as

En(ρt,Wt) ≤ En(ρt0 ,Wt0) ≤ Ln(ρt0 ,Wt0) +
β−1

2
∥Wt0∥2F + β−1DKL(ρt0 ||ρ0)

≤ 2γ−2β−2A2
1 max

{
B2

2

B2
1

,
B2

4

B2
3

}
+ 2γ−2β−2A2

2 +
β−1

2
q(RW + 1) + β−1Rρ.

Applying Lemma A.3 gives that for t ≥ t0:

Lλ,n(ρt,Wt) ≤ 3En(ρt,Wt) + β−1 p+ d

2
log 2π + 2β−1 (1 + (p+ d) log 8π) ≤ β−1C4,

with

C4 = 6γ−2A2
1 max

{
B2

2

B2
1

,
B2

4

B2
3

}
+ 6γ−2A2

2 + 3
q(RW + 1)

2
+ 3Rρ +

p+ d

2
log 2π + 2 (1 + (p+ d) log 8π) ,

where we use β > 1. This completes the proof.

C.2.1. PROOF OF LEMMA C.2

We first compute the evolution of Ln(ρt,Wt) =
1
2n∥γW

⊤
t Hρt

− Y ∥2F under gradient flow:

d

dt
Ln(ρt,Wt) =

〈
1

n
rt, γ

d

dt
W⊤

t Hρt

〉
F

= γ

〈
1

n
rt,

(
d

dt
Wt

)⊤

Hρt

〉
F

+ γ

〈
1

n
rt,W

⊤
t

(
d

dt
Hρt

)〉
F

,
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where we define rt = γW⊤
t Hρt

− Y ∈ Rq×n.

The evolution of Wt is computed as:
d

dt
Wt = −γ

n
Hρt

r⊤t − β−1Wt,

and the evolution of Hρt can be computed as:

d

dt
Hρt

=

∫
aσ(u⊤X)

d

dt
ρt(θ) dθ

=

∫
aσ(u⊤X)∇θ · (ρt(θ)∇θVt(θ)) dθ

= −
∫

∇aVt(θ)σ(u
⊤X) + a(∇uVt(θ))

⊤XDiag(σ′(u⊤X)) ρt(dθ),

where we define the potential Vt(·) : Rp+d → R to be the first variation of the free energy

Vt(θ) =
δ

δρ
En(ρt,Wt)(θ) =

〈
1

n
rt, γW

⊤
t aσ(u⊤X)

〉
F

+ β−1∥θ∥22 + β−1 log ρt(θ),

and Diag(σ′(u⊤X)) ∈ Rn×n to be the diagonal matrix with σ′(u⊤xi) on the i-th diagonal entry. The gradient of the
potential is given by

∇aVt(θ) =
γ

n
Wtrtσ(X

⊤u) + β−1a+ β−1∇a log ρt(θ),

∇uVt(θ) =
γ

n
XDiag(σ′(u⊤X))r⊤t W

⊤
t a+ β−1u+ β−1∇u log ρt(θ).

(39)

Thus, we can express the evolution of Hρt
as follows:

d

dt
Hρt

=− γ

n

∫
Wtrtσ(X

⊤u)σ(u⊤X) ρt(dθ)

− β−1

∫
(a+∇a log ρt(θ))σ(u

⊤X) ρt(dθ)

− γ

n

∫
aa⊤WtrtDiag(σ′(u⊤X))X⊤XDiag(σ′(u⊤X))ρt(dθ)

− β−1

∫
a(u+∇u log ρt(θ))

⊤XDiag(σ′(u⊤X)) ρt(dθ).

Now, we can write the evolution of the empirical loss function as

d

dt
Ln(ρt,Wt) =− γ2

n2
⟨rt, rtH⊤

ρt
Hρt

⟩F − γβ−1

n
⟨rt,W⊤

t Hρt
⟩F

− γ2

n2

〈
rt,W

⊤
t Wtrt

∫
σ(X⊤u)σ(u⊤X) ρt(dθ)

〉
F

− γβ−1

n

〈
rt,W

⊤
t

∫
(a+∇a log ρt(θ))σ(u

⊤X) ρt(dθ)

〉
F

− γ2

n2

〈
rt,

∫
W⊤

t aa⊤WtrtDiag(σ′(u⊤X))X⊤XDiag(σ′(u⊤X))ρt(dθ)

〉
F

− γβ−1

n

〈
rt,W

⊤
t

∫
a(u+∇u log ρt(θ))

⊤XDiag(σ′(u⊤X)) ρt(dθ)

〉
F

.

We first control the potential positive terms via following lemma.
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Lemma C.4. Let Rρ ≤ d+ p. Then, for t ≤ t∗, we have∣∣∣∣⟨rt,W⊤
t Hρt

⟩F +

〈
rt,W

⊤
t

∫
(a+∇a log ρt(θ))σ(u

⊤X) ρt(dθ)

〉
F

+

〈
rt,W

⊤
t

∫
a(u+∇u log ρt(θ))

⊤XDiag(σ′(u⊤X)) ρt(dθ)

〉
F

∣∣∣∣
≤ 8
√
2pn2(RW + 1)Rρ(2C1

√
p+ d+ 1)

√
Ln(ρt,Wt).

Proof. We first note that ∫
∇a log ρt(θ)σ(u

⊤xj) ρt(dθ) = −
∫

∇a(σ(u
⊤xj)) ρt(dθ) = 0,[∫

a(∇u log ρt(θ))
⊤XDiag(σ′(u⊤X)) ρt(dθ)

]
i,j

=

∫
ai(∇u log ρt(θ))

⊤xjσ
′(u⊤xj) ρt(dθ)

= −
∫

ρt(θ)∇u · (aiσ′(u⊤xj)xj) dθ

= −
∫

aiσ
′′(u⊤xj)∥xj∥22ρt(dθ).

(40)

For simplicity, we define the function

gi,j(θ) = 2aiσ(u
⊤xj) + aiu

⊤xjσ
′(u⊤xj)− aiσ

′′(u⊤xj)∥xj∥22,
[G(θ)]i,j = gi,j(θ) ∈ Rp×n.

Then, we have ∣∣∣∣⟨rt,W⊤
t Hρt

⟩F+
〈
rt,W

⊤
t

∫
(a+∇a log ρt(θ))σ(u

⊤X) ρt(dθ)

〉
F

+

〈
rt,W

⊤
t

∫
a(u+∇u log ρt(θ))

⊤XDiag(σ′(u⊤X)) ρt(dθ)

〉
F

∣∣∣∣
=

∣∣∣∣〈rt,W⊤
t

∫
G(θ) ρt(dθ)

〉
F

∣∣∣∣
≤∥rt∥F ∥Wt∥op

∥∥∥∥∫ G(θ) ρt(dθ)

∥∥∥∥
F

≤
√

2nLn(ρt,Wt)∥Wt∥op

√√√√∑
i,j

(∫
gi,j(θ) ρt(dθ)

)2

≤
√
2nLn(ρt,Wt)∥Wt∥op

√√√√∑
i,j

(∫
gi,j(θ) (ρt − ρ0)(dθ)

)2

,

where in the last step we use that

Eρ0
[2aiσ(u

⊤xj) + aiu
⊤xjσ

′(u⊤xj)− aiσ
′′(u⊤xj)∥xj∥22]

= Eρ0
[ai]Eρ0

[2σ(u⊤xj) + u⊤xjσ
′(u⊤xj)− σ′′(u⊤xj)∥xj∥22] = 0,

since ρ0 = N (0, Ip+d).

Following the computations in (Chen et al., 2020, Lemma A.1, Equation C.4 and C.5) and using Assumption 1, we have

∥∇θgi,j(θ)∥2 ≤ 4C1(∥θ∥2 + 1).
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Thus, by (Chen et al., 2020, Lemma B.2), we obtain∣∣∣∣∫ gi,j(θ) (ρt − ρ0)(dθ)

∣∣∣∣ ≤ (8C1

√
p+ d+ 4)W2(ρt, ρ0).

Hence, we conclude that∣∣∣∣〈rt,W⊤
t

∫
G(θ) ρt(dθ)

〉∣∣∣∣ ≤ 8
√

2pn2(RW + 1)Rρ(2C1

√
p+ d+ 1)

√
Ln(ρt,Wt),

where we use that, for t < t∗,

W2(ρt, ρ0) ≤ 2
√
DKL(ρt||ρ0) ≤ 2

√
Rρ, (by Talagrand’s inequality, see (Chen et al., 2020, Lemma 5.4) )

∥Wt∥2op = ∥W⊤
t Wt∥op ≤ ∥W⊤

0 W0∥op + ∥W⊤
t Wt −W⊤

0 W0∥op ≤ RW + 1.

This concludes the argument.

Next, we lower bound the negative terms. We first recall the definition the kernel:

Kρ(X,X) =

∫
σ(X⊤u)σ(u⊤X) ρ(dθ).

Furthermore, by Lemma 4.7, λmin(Kρ0(X,X)) ≥ λ∗ > 0. As λmin(W
⊤
0 W0) = 1, this implies that λmin(Kρ0(X,X)⊗

W⊤
0 W0) ≥ λ∗. We then have the following lower bound at time t < t∗.

Lemma C.5. Let Rρ ≤ min{p+ d,
λ2
∗

64n2C4
1
} and RW ≤ 1

2 . Then, for t ≤ t∗, we have

λmin(Kρt
(X,X)⊗ (W⊤

t Wt)) ≥
λ∗

4
.

Proof. First, by Weyl’s inequality we have

λmin(W
⊤
t Wt) ≥ λmin(W

⊤
0 W0)− ∥W⊤

0 W0 −W⊤
t Wt∥op ≥ 1−RW .

It remains to lower bound λmin(Kρt(X,X)). To do so, note that

|Kρt
(xi, xj)−Kρ0

(xi, xj)| = |Eρt
[σ(u⊤xi)σ(u

⊤xj)]− Eρ0
[σ(u⊤xi)σ(u

⊤xj)]|
≤ 2C2

1W1(ρt, ρ0)

≤ 4C2
1

√
DKL(ρt||ρ0) ≤ 4C2

1

√
Rρ,

where in the first inequality we use Kantorovich-Rubinstein duality. Thus, we have

∥Kρt
(X,X)−Kρ0

(X,X)∥op ≤ ∥Kρt
(X,X)−Kρ0

(X,X)∥F ≤ 4nC2
1

√
Rρ,

which implies that

λmin(Kρt(X,X)) ≥ λmin(Kρ0(X,X))− ∥(Kρ0(X,X)−Kρt(X,X)∥op ≥ λ∗ − 4nC2
1

√
Rρ.

By picking Rρ ≤ min{p+ d,
λ2
∗

64n2C4
1
} and RW ≤ 1

2 , the claim follows:

λmin(Kρt
(X,X)⊗ (W⊤

t Wt)) = λmin(Kρt
(X,X))λmin(W

⊤
t Wt) ≥

λ∗

4
.
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By combining the results of Lemmas C.4 and C.5, we have that, for Rρ ≤ min{p+ d,
λ2
∗

64n2C4
1
}, RW ≤ 1

2 and t ≤ t∗,

d

dt
Ln(ρt,Wt) ≤ −γ2

n2
λmin(Kρt

(X,X)⊗ (W⊤
t Wt))∥rt∥2F +

γβ−1

n

∣∣∣∣⟨rt,W⊤
t Hρt

⟩F

+

〈
rt,W

⊤
t

∫
(a+∇a log ρt(θ))σ(u

⊤X) ρt(dθ)

〉
F

+

〈
rt,W

⊤
t

∫
a(u+∇u log ρt(θ))

⊤XDiag(σ′(u⊤X)) ρt(dθ)

〉
F

∣∣∣∣
≤ −γ2

n2

λ∗

4
2nL(ρt,Wt) +

γβ−1

n
8
√

2pn2(RW + 1)Rρ(2C1

√
p+ d+ 1)

√
Ln(ρt,Wt).

By dividing both sides by 2
√
Ln(ρt,Wt) and defining

Z1 =
λ∗

4n
, Z2 =

4
√

2pn2(RW + 1)Rρ(2C1

√
p+ d+ 1)

n
,

we get
1

2
√
Ln(ρt,Wt)

d

dt
Ln(ρt,Wt) ≤ −γ2Z1

√
Ln(ρt,Wt) + γβ−1Z2.

Note that 1

2
√

Ln(ρt,Wt)

d
dtLn(ρt,Wt) =

d
dt

√
Ln(ρt,Wt). Hence, an application of Gronwall’s Lemma gives

√
Ln(ρt,Wt) ≤ exp

(
−γ2Z1t

)(√
Ln(ρ0,W0)− γ−1β−1Z2

Z1

)
+ γ−1β−1Z2

Z1

≤ exp
(
−γ2Z1t

)
+ γ−1β−1Z2

Z1
,

which gives the desired result.

C.2.2. PROOF OF LEMMA C.3

We first control the term ∥W⊤
t Wt −W⊤

0 W0∥op. Note that, as W⊤
t Wt −W⊤

0 W0 is symmetric, we have

∥W⊤
t Wt −W⊤

0 W0∥op = max{λmax(W
⊤
t Wt −W⊤

0 W0), λmax(W
⊤
0 W0 −W⊤

t Wt)}.

Then, for any fixed v ∈ Sq−1, we have

d

dt
v⊤(W⊤

t Wt −W⊤
0 W0)v =

d

dt
v⊤W⊤

t Wtv

= v⊤

((
d

dt
Wt

)⊤

Wt +W⊤
t

(
d

dt
Wt

))
v

= −2β−1v⊤W⊤
t Wtv −

γ

n
v⊤(rtH

⊤
ρt
Wt +W⊤

t Hρtr
⊤
t )v

≤ γ

n
|v⊤(rtH⊤

ρt
Wt +W⊤

t Hρt
r⊤t )v|

≤ 2γ

n
∥r⊤t v∥2∥H⊤

ρt
Wtv∥2

≤ 2γ

n
∥r⊤t ∥F ∥H⊤

ρt
Wt∥F

=
2γ

n

√
2nLn(ρt,Wt)∥H⊤

ρt
Wt∥F .

To upper bound ∥H⊤
ρt
Wt∥F , by using the same techniques in Lemma C.2, we have:

∥H⊤
ρt
Wt∥F ≤ ∥Wt∥op∥Hρt −Hρ0∥F ,
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which, as ∥Wt∥op ≤
√
RW + 1 and ∥∇θaiσ(u

⊤xj)∥2 ≤ 2C1(∥θ∥2 + 1),∀i ∈ [p], j ∈ [n], gives

∥H⊤
ρt
Wt∥F ≤

√
RW + 1

√
pn(4C1

√
p+ d+ 2C1)W2(ρt, ρ0)

≤
√

RW + 1
√
pn(4C1

√
p+ d+ 2C1)2

√
Rρ.

(41)

Similarly, we have

d

dt
v⊤(W⊤

0 W0 −W⊤
t Wt)v =

d

dt
− v⊤W⊤

t Wtv

= −v⊤

((
d

dt
Wt

)⊤

Wt +W⊤
t

(
d

dt
Wt

))
v

= 2β−1v⊤W⊤
t Wtv +

γ

n
v⊤(rtH

⊤
ρt
Wt +W⊤

t Hρt
r⊤t )v

≤ 2β−1∥W⊤
t Wt∥op +

2γ

n

√
2nLn(ρt,Wt)∥H⊤

ρt
Wt∥F

≤ 2β−1(RW + 1) +
2γ

n

√
2nLn(ρt,Wt)∥H⊤

ρt
Wt∥F .

Thus, for any t < t∗ and any v ∈ Sq−1, we have

|v⊤(W⊤
t Wt −W⊤

0 W0)v| ≤ 2β−1(RW + 1)t+
4γ

n

√
RW + 1

√
pn(4C1

√
(p+ d) + 2C1)

√
Rρ

∫ t

0

√
Ln(ρs,Ws) ds,

which implies

∥W⊤
t Wt −W⊤

0 W0∥op ≤ 2β−1(RW + 1)t+
4γ

n

√
RW + 1

√
pn(4C1

√
(p+ d) + 2C1)

√
Rρ

∫ t

0

√
Ln(ρs,Ws) ds.

For simplicity, let us define

Z3 = 2(RW + 1), Z4 =
4

n

√
RW + 1

√
pn(4C1

√
(p+ d) + 2C1)

√
Rρ.

By plugging in the result of Lemma C.2, we have:

∥W⊤
t Wt −W⊤

0 W0∥op ≤ β−1Z3t+ γZ4

∫ t

0

(
exp
(
−γ2A1s

)
+ γ−1β−1A2

)
ds

= β−1(Z3 + Z4A2)t− γZ4γ
−2A−1

1 exp
(
−γ2A1s

)
|ts=0

≤ β−1(Z3 + Z4A2)t+ γ−1Z4A
−1
1 .

Next, we control the term DKL(ρt||ρ0). First, the time derivative of DKL(ρt||ρ0) is computed as follows:

d

dt
DKL(ρt||ρ0) =

d

dt

(
1

2
Eρt [∥θ∥22] + Eρt [log ρt]

)
=

∫ (
1

2
∥θ∥22 + log ρt(θ)

)
d

dt
ρt(θ) dθ

=

∫ (
1

2
∥θ∥22 + log ρt(θ)

)
∇θ · (ρt(θ)∇θVt(θ)) dθ

= −
∫
⟨θ +∇θ log ρt(θ),∇θVt(θ)⟩ρt(dθ).
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By recalling (39), we have

d

dt
DKL(ρt||ρ0) = −β−1

∫
∥θ +∇θ log ρt(θ)∥22 ρt(dθ)

− γ

n

∫
(a+∇a log ρt(θ))

⊤Wtrtσ(X
⊤u) ρt(dθ)

− γ

n

∫
(u+∇u log ρt(θ))

⊤XDiag(σ′(u⊤X))r⊤t W
⊤
t a ρt(dθ)

≤ −γ

n

〈
rt,W

⊤
t

∫
(a+∇a log ρt(θ))σ(u

⊤X) ρt(dθ)

〉
F

− γ

n

〈
rt,W

⊤
t

∫
a(u+∇u log ρt(θ))

⊤XDiag(σ′(u⊤X)) ρt(dθ)

〉
F

≤
∣∣∣∣〈rt,W⊤

t

∫
G(θ) ρt(dθ)

〉
F

∣∣∣∣ .
where by recalling (40) and defining

gi,j(θ) = aiσ(u
⊤xj) + aiu

⊤xjσ
′(u⊤xj) + aiσ

′′(u⊤xj)∥xj∥22,
[G(θ)]i,j = gi,j(θ) ∈ Rp×n,

we have

d

dt
DKL(ρt||ρ0) ≤

γ

n

∫ 〈
rt,W

⊤
t G(θ)

〉
ρt( dθ)

≤ γ

n
∥Wt∥op

√
2nLn(ρt,Wt)

√√√√∑
i,j

(∫
gi,j(θ)(ρt − ρ0)(dθ)

)2

.

Following the computations in (Chen et al., 2020, Lemma A.1, Equation C.4 and C.5) and using Assumption 1, we have

∥∇θgi,j(θ)∥2 ≤ 4C1(∥θ∥2 + 1).

Thus, by (Chen et al., 2020, Lemma B.2), we obtain∣∣∣∣∫ gi,j(θ) (ρt − ρ0)(dθ)

∣∣∣∣ ≤ (8C1

√
p+ d+ 4C1)W2(ρt, ρ0) ≤ (8C1

√
p+ d+ 4C1)2

√
DKL(ρt||ρ0).

Hence, we conclude that
d

dt
DKL(ρt||ρ0) ≤ 2γZ5

√
DKL(ρt||ρ0)

√
Ln(ρt,Wt),

with
Z5 =

√
2p
√

RW + 1(8C1

√
p+ d+ 4C1).

Thus, we have
d

dt

√
DKL(ρt||ρ0) ≤ γZ5

√
Ln(ρt,Wt),

which implies

√
DKL(ρt||ρ0) ≤ γZ5

∫ t

0

√
Ln(ρs,Ws) ds

≤ β−1(Z5A2)t+ γ−1Z5A
−1
1 ,

thus concluding the proof.
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C.3. Proof of Corollary 4.9

Proof of Corollary 4.9. By Theorem 4.8, we have that, for t > t0,

Ln,λ(ρt,Wt) ≤ β−1C4.

Then, by Lemma 4.3, we have that, for any 0 < ϵ0 < 1/2, by picking

β ≥ max

{
(2C2

1nC4)
2
ϵ0 ,

(
4q

n

) 1
ϵ0

, 64(qC4)
2

}
,

we have
σmin(W ) ≥ β−ϵ0 , σmax(W )2 ≤ 2C4.

Plugging this in (10) gives

∥E2(ϵS , β; γ, ρt,Wt)∥2F ≤ 2nC−2
3 C4β

−1+2ϵ0 + (8β4γ4C2
1C

2
4 + 2β2 + 4β2+2ϵ0C4)C

2
1n(ϵ

t
S)

2.

By Lemma 4.6, we know that, if we pick ϵS small enough, there exists T (ϵS) s.t. for all t > T (ϵS) except a finite Lebesgue
measure set,

∥E2(ϵS , β; γ, ρt,Wt)∥2F ≤ 4nC−2
3 C4β

−1+2ϵ0 .

Consequently, taking

β ≥
(
640C−2

3 C2
4

1

δ0

) 1
1−2ϵ0

ensures that (16) is satisfied and, hence, we can apply (17) which gives that, for all t > T (ϵS) except a finite Lebesgue
measure set,

NC1(Hρt) ≤
64nC−2

3 C4β
−1+2ϵ0

(q−1)n
4qC4

− 16nC−2
3 C4β−1+2ϵ0

≤ δ0.

Finally, by taking ϵ0 = 1
3 , we finish the proof.

D. Proofs in Section 5
Throughout this appendix, given v, u ∈ Rp, we define the partial order v ⪯ u if vi ≤ ui for all i ∈ [p]. Additionally, if
u = R1, we write v ⪯ R as a shorthand. Similarly, we write v ⪯̸ u (resp. v ⪯̸ R) if there exists some i such that vi > ui

(resp. vi > R). The symbols ≺ and ⊀ are defined analogously. Furthermore, for a given vector v, we define the Jacobian as
JR(v) = diag(τ ′R(v1), . . . , τ

′
R(vp)) ∈ Rp×p.

D.1. Proof of Theorem 5.3

We start with a result (proved in Appendix D.2) controlling the generalization error for data distributions that satisfy
Assumptions 1 and 3. We recall that given a function class F , the Rademacher complexity is defined as

Rn(F) = Eϵi

[
sup
f∈F̃

1

n

n∑
i=1

ϵiw
⊤Eρ[aσ(u

⊤xi)]

]
,

where ϵi are i.i.d. Rademacher random variables.
Lemma D.1. For i ∈ {1, . . . , q}, let Fi be a class of functions from Rd → R. Let D be a data distribution satisfies

Assumptions 1 and 3, and let x1, . . . , xn
i.i.d∼ D. Then, for any f : Rd → Rq s.t. [f ]i ∈ Fi, we have

errtest(f ;D) ≤ 2
√
2

√
q

√
Ln(f) + 4

q∑
i=1

Rn(Fi) + 6q

√
log(2/δ)

n
,

with probability > 1− δ. Here, we define Ln(f) =
1
2n

∑n
i=1 ∥f(xi)− yi∥22.
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We then define the following functional class corresponding to the output function of our model:

F̃(Mw,Mρ) = {f : Rd −→ R
∣∣ f(x) = w⊤hρ(x), ∥w∥22 ≤ Mw, Eρ[∥θ∥22] ≤ Mρ}. (42)

The next lemma (proved in Appendix D.3) upper bounds the Rademacher complexity of the functional class in (42).

Lemma D.2. Given Mw,Mρ > 0, we have:

Rn(F̃(Mw,Mρ)) ≤
√

MwMρC2
1π

2n
.

The next theorem (proved in Appendix D.4) shows that, if the stationary point we achieve has small regularized loss, then
the test error is small.

Theorem D.3. Let (ρ,W ) satisfy
Lλ,n(ρ,W ) ≤ Bβ−1(log β)α.

Then, for any 0 < ϵ0 < 1/2 and

β ≥ max

{
e

4α
ϵ0

log 2α
ϵ0 , (2C2

1nB)
2
ϵ0 ,

(
4q

n

) 1
ϵ0

, 64(qB)2

}
,

the following upper bound on the test error holds

errtest(f(x; ρ,W );D) ≤ 2
√

2q−1Bβ−1/2(log β)α/2 + 8qB(log β)α
√

C2
1π

2n
+ 6q

√
log(2/δ)

n
,

with probability ≥ 1− δ.

Theorem D.3 implies that it is necessary to control how B scales with n in order to control the generalization error. We now
show that one can do so for (τ,M)-linearly separable data.

Lemma D.4. Let D be a bounded and (τ,M)-linearly separable data distribution as per Definition 5.2. Pick R > q and let
σ(z) = 1

1+e−z . Then, for any ϵ > 0, there exists ρ̃1 with

Eρ̃1
[∥θ∥22] ≤ q2 +

M2(log
(√

q/ϵ
)
)2

τ2
+ ϵ2, Eρ̃1

[log ρ̃1] ≤
p+ d

2
log

(
ϵ−2

2πe

)
,

such that fR(x; ρ̃1,W0) = W⊤
0 hR

ρ̃1
(x) approximates well the true data distribution:

E(x,y)∼D[|fR(x; ρ̃1,W0)− y|2] ≤ 2ϵ2 + 4(qd+ C2
0p)C

2
1ϵ

2.

Lemma D.5. Consider a bounded and (τ,M)-linearly separable data distribution as per Definition 5.2. Let (ρt,Wt) be
obtained by Stage 2 of Algorithm 1. Then, for any β > 0, we can pick R large enough such that

En(ρt,Wt) ≤ C8β
−1 log β,

with

C8 = 3

(
1 + 2(q2d+ C2

0p)C1 +
M2

2τ2
+

p+ d

4

)
+

p+ d

2
log(2π).

The proofs of Lemma D.4 and Lemma D.5 are provided in Appendix D.5 and D.6 respectively. Lemma D.5 shows that the
constant B in the upper bound of the free energy does not blow up with n.

We are now ready to state and prove the full version of Theorem 5.3.
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Theorem D.6 (Full statement of Theorem 5.3). Under Assumptions 1 and 3, let the data distribution be bounded and

(τ,M)-linearly separable as per Definition 5.2. Pick R > 1 large enough, n large enough, and β =
(
640C2

1nC
2
9

1
δ0

)6
.

Then, for any (ρt,Wt) obtained by Stage 2 of Algorithm 1, we have

errtest(f(·; ρt,Wt);D) ≤ C10 log(C11n/δ0)

√
1

2n
+ 6q

√
log(2/δ)

n
, (43)

with probability at least 1− δ. Furthermore, there exist T (β) s.t. for all t > T (β) except a finite Lebesgue measure set,

NC1(Hρt
) ≤ δ0. (44)

The constants C9, C10, C11 are given by

C9 = 9

(
2 + 4(d+ C2

0p)C1 +
M2

2τ2
+

p+ d

4

)
+

p+ d

2
+

3(p+ d) log(2π)

2
+ 2(1 + (p+ d) log 8π),

C10 = 50qC9

√
C2

1π,

C11 = 640C2
1C

2
9 .

Proof of Theorem 5.3. By Lemma A.3 and Lemma D.5, we have

Lλ,n(ρt,Wt) ≤ 3En(ρt,Wt) + β−1 p+ d

2
log β + 2β−1(1 + (p+ d) log 8π) ≤ C9β

−1 log β,

with
C9 = 3C8 +

p+ d

2
+ 2(1 + (p+ d) log 8π).

Thus by Theorem D.3,

errtest(f(x; ρt,Wt);D) ≤ 16(C9β
−1 log β)

1
2 + 8qC9 log β

√
C2

1π

2n
+ 6q

√
log(2/δ)

n
, (45)

with probability ≥ 1− δ. By using that β =
(
640C2

1nC
2
9

1
δ0

)6
and that n is large enough, the desired bound (43) readily

follows. Finally, by proceeding as in the argument of Corollary 4.9, we also obtain (44) and the proof is complete.

D.2. Proof of Lemma D.1

Proof of Lemma D.1. It is easy to see that errtest(f ;D) = 1
q

∑q
k=1 ED(·|ek)[1One-Hot(f(x))̸=ek ]. We have the following

upper bound:

1One-Hot(f(x)) ̸=ek = 1One-Hot(2f(x)−1)̸=One-Hot(2ek−1)

≤ 1(2f(x)−1)⊙(2ek−1)⪰̸0 (Note that 2ek[i]− 1 ∈ {±1})

≤
q∑

i=1

1(2[f(x)]i−1)(2ek[i]−1)<0,

where by 1E here denote the indicator function of an event E.

We now follow the approach of (Chen et al., 2020, Lemma 5.6) and define the surrogate loss

ℓramp(y
′, y) =


1, yy′ < 0;

−2yy′ + 1, 0 ≤ yy′ < 1/2;

0, yy′ ≥ 1/2.

Then, ℓramp is 2-Lipschitz in y′ and, for y ∈ {±1},

1yy′<0 ≤ ℓramp(y
′, y) ≤ |y − y′|.
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Thus, we have that, for any x,

q∑
i=1

1(2[f(x)]i−1)(2ek[i]−1)<0 ≤
q∑

i=1

ℓramp(2[f(x)]i − 1, 2ek[i]− 1) ≤ 2

q∑
i=1

|[f(x)]i − ek[i]| ≤ 2
√

q∥f(x)− ek∥22,

which leads to the following generalization bound

errtest(f ;D) =
1

q

q∑
k=1

ED(·|ek)[1One-Hot(f(x)) ̸=ek ]

≤ 1

q

q∑
k=1

ED(·|ek)

[
q∑

i=1

1(2[f(x)]i−1)(2ek[i]−1)<0

]

≤ 2

q

q∑
k=1

ED(·|ek)

[
q∑

i=1

ℓramp(2[f(x)]i − 1, 2ek[i]− 1)/2

]

≤ 2

qn

n∑
j=1

[
q∑

i=1

ℓramp(2[f(xj)]i − 1, 2yj [i]− 1)/2

]
+ 4

q∑
i=1

Rn(Fi) + 6q

√
log(2/δ)

n
with probability > 1− δ

≤
n∑

j=1

2

n
√
q
∥f(xj)− yj∥2 + 4

q∑
i=1

Rn(Fi) + 6q

√
log(2/δ)

n
with probability > 1− δ

≤ 2
√
2

√
q

√√√√ 1

2n

n∑
j=1

∥f(xj)− yj∥22 + 4

q∑
i=1

Rn(Fi) + 6q

√
log(2/δ)

n
with probability > 1− δ

≤ 2
√
2

√
q

√
Ln(f) + 4

q∑
i=1

Rn(Fi) + 6q

√
log(2/δ)

n
with probability > 1− δ.

D.3. Proof of Lemma D.2

Proof of Lemma D.2. The proof is a modification from (Takakura & Suzuki, 2024, Lemma 4.3). We first use the fact that
the Rademacher complexity can be upper bounded by Gaussian complexity, which is defined as

Gn(F̃(Mw,Mρ)) = Eϵi

[
sup

f∈F̃(Mw,Mρ)

1

n

n∑
i=1

ϵiw
⊤Eρ[aσ(u

⊤xi)]

]
,

with ϵi
i.i.d∼ N (0, 1). For any function class F and any n, we have (Wainwright, 2019, section 5.2):

Rn(F) ≤
√

π

2
Gn(F).
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Thus it is sufficient to upper bound the Gaussian complexity of the function class:

Gn(F̃(Mw,Mρ)) = Eϵi

[
sup

f∈F̃(Mw,Mρ)

1

n

n∑
i=1

ϵiw
⊤Eρ[aσ(u

⊤xi)]

]

= Eϵi

[
sup

(ρ,w):∥w∥2
2≤Mw,Eρ[∥θ∥2

2]≤Mρ

1

n

n∑
i=1

ϵiw
⊤Eρ[aσ(u

⊤xi)]

]

≤ Eϵi

[
sup

(ρ,w):∥w∥2
2≤Mw,Eρ[∥θ∥2

2]≤Mρ

∥w∥2

∥∥∥∥∥ 1n
n∑

i=1

ϵiEρ[aσ(u
⊤xi)]

∥∥∥∥∥
2

]

≤
√
MwEϵi

[
sup

ρ:Eρ[∥θ∥2
2]≤Mρ

∥∥∥∥∥ 1n
n∑

i=1

ϵiEρ[aσ(u
⊤xi)]

∥∥∥∥∥
2

]

=

√
Mw

n
Eϵi

[
sup

ρ:Eρ[∥θ∥2
2]≤Mρ

∥ Eρ[aZ(u)]∥2

]
, where we define Z(u) =

1√
n

n∑
i=1

ϵiσ(u
⊤xi)

≤
√

Mw

n
Eϵi

[
sup

ρ:Eρ[∥θ∥2
2]≤Mρ

√
Eρ[a⊤a′Z(u)Z(u′)]

]

≤
√

Mw

n
Eϵi

[
sup

ρ:Eρ[∥θ∥2
2]≤Mρ

(
Eρ[(a

⊤a′)2]Eρ[Z(u)2Z(u′)2]
)1/4]

≤
√

Mw

n
Eϵi

[
sup

ρ:Eρ[∥θ∥2
2]≤Mρ

(
Eρ[∥a∥22]Eρ[∥a′∥22]Eρ[Z(u)2]Eρ[Z(u′)2]

)1/4]

=

√
Mw

n
Eϵi

[
sup

ρ:Eρ[∥θ∥2
2]≤Mρ

(
Eρ[∥a∥22]Eρ[Z(u)2]

)1/2]

≤
√

MwMρ

n
Eϵi

[
sup

ρ:Eρ[∥θ∥2
2]≤Mρ

√
Eρ[Z(u)2]

]
.

Note that Z(u) ∼ N (0, ϕ(u)2) with ϕ(u) = 1
n

∑n
i=1 σ(u

⊤xi)
2 ≤ C2

1 . Thus,

Gn(F̃(Mw,Mρ)) ≤
√

MwMρC2
1

n
,

and the desired claim readily follows.

D.4. Proof of Theorem D.3

Proof of Theorem D.3. By Lemma 4.3, we have that

σmin(W ) ≥ β−ϵ0 , ∥W∥2F ≤ 2B(log β)α.

Recall that Lλ,n(ρ,W ) ≤ Bβ−1(log β)α. Thus,

Eρ[∥θ∥22] ≤ 2βLλ,n(ρ,W ) ≤ 2B(log β)α.

Consequently, for each i, [f(x; ρ,W )]i ∈ F̃ (MwMρ) with

Mw = 2B(log β)α, Mρ = 2B(log β)α.

Hence, combining Lemma D.1 and Lemma D.2, we get

errtest(f(x, ρ,W );D) ≤ 2
√

2q−1Bβ−1/2(log β)α/2 + 8qB(log β)α
√

C2
1π

2n
+ 6q

√
log(2/δ)

n
.

with probability > 1− δ, which completes the proof.
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D.5. Proof of Lemma D.4

Proof of Lemma D.4. Using the definition of linearly separable data, we first show that, for each k, we could use one neuron

to approximate the perfect classifier. In particular, having fixed k, let ak = qek, uk =
log(

√
q/ϵ)

τ ûk. Then, we have

σ(u⊤
k x) ≥

1

1 + exp
(
− log

(√
q/ϵ
)) =

1

1 + ϵ/
√
q
, for x ∈ supp(D(·|ek)),

σ(u⊤
k x) <

1

1 + exp
(
log
(√

q/ϵ
)) =

ϵ/
√
q

1 + ϵ/
√
q
, for x ∈ supp(D(·|ek′)) with k′ ̸= k.

Define ρ◦ =
(

1
q

∑q
k=1 δ(ak,uk)

)
and ρ̂◦ = ρ◦ ∗ γζ , where γζ ∼ exp

(
−∥ · ∥22/(2ζ2)

)
. By picking R > q, we know that,

under the distribution ρ◦, τR(a) = a and thus:

hR
ρ◦
(x) = hρ◦(x) = pk,kek +

∑
k′ ̸=k

pk′,kek′ ,

for any x ∈ supp(D(·|ek)) with pk,k ≥ 1
1+ϵ/

√
q , pk′,k ≤ ϵ/

√
q

1+ϵ/
√
q . This implies that:

ED[∥fR(x; ρ◦,W0)− y∥22] = ∥pk,kek +
∑
k′ ̸=k

pk′,kek′ − ek∥22 ≤ ϵ2.

We then have the following upper bounds:

∥hR
ρ̂◦(x)

− hρ◦(x)∥22
=
∥∥Eρ◦EG[τR(a+ ζGa)σ((u+ ζGu)

⊤x)]− Eρ◦ [aσ(u
⊤x)]

∥∥2
2

where (Ga, Gu) ∼ N (0, Ip+d+1)

=
∥∥Eρ◦EG[(τR(a) + ζJR(ã)Ga)σ((u+ ζGu)

⊤x)]− Eρ◦ [aσ(u
⊤x)]

∥∥2
2

≤2
∥∥Eρ◦EG[τR(a)σ((u+ ζGu)

⊤x)]− Eρ◦ [aσ(u
⊤x)]

∥∥2
2
+ 2

∥∥Eρ◦EG[ζJR(ã)Gaσ((u+ ζGu)
⊤x)]

∥∥2
2
.

For the first term, we have∥∥Eρ◦EG[τR(a)σ((u+ ζGu)
⊤x)]− Eρ◦ [aσ(u

⊤x)]
∥∥2
2
=
∥∥Eρ◦EG[aσ((u+ ζGu)

⊤x)]− Eρ◦ [aσ(u
⊤x)]

∥∥2
2

=

q∑
k=1

|EGσ((uk + ζGu)
⊤x)− σ(u⊤

k x)|2

≤ qC2
1

(
EG|ζG⊤

u x|
)2 ≤ qC2

1dζ
2.

For the second term, we have ∥∥Eρ◦EG[ζJR(ã)Gaσ((u+ ζGu)
⊤x)]

∥∥2
2
≤ ζ2C2

0C
2
1p.

Thus, we have the following bounds on the test error:

ED
[
|fR(x; ρ̂◦,W0)− y|2

]
≤ 2ED

[
|fR(x; ρ◦,W0)− y|2

]
+ 2ED

[
|fR(x; ρ◦,W0)− fR(x; ρ̂◦,W0)|2

]
≤ 2ϵ2 + 4(qd+ C2

0p)C
2
1ζ

2.

Finally, we need to upper bound the second moment and the negative entropy of (ρ̂◦,W0). For the second moment term, a
direct computation gives:

Eρ̂◦ [∥θ∥22] ≤ q2 +
M2(log

(√
q/ϵ
)
)2

τ2
+ ζ2.

For the entropy term, we have:

Eρ̂◦ log(ρ̂◦) ≤ Eγζ
log(γζ) =

p+ d

2
log

(
ζ−2

2πe

)
.

Taking ζ = ϵ and ρ̃1 = ρ̂◦ concludes the proof.
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D.6. Proof of Lemma D.5

We first upper bound the approximated free energy at (ρ1,W0) obtained by Stage 1 of Algorithm 1 using the optimality of
ρ1,W0.

ER
n (ρ1,W0) ≤ LR

n (ρ̃1,W0) +
β−1

2
∥W0∥2F +

β−1

2
Eρ̃1

[∥a∥22 + ∥u∥22] + β−1Eρ̃1
log ρ̃1.

Next, by the construction in Lemma D.4 with ϵ2 = β−1 and by letting D be the empirical distribution of training samples,
we have

LR
n (ρ̃1,W0) ≤ (1 + 2(q2d+ C2

0p)C1)β
−1

Eρ̃1
[∥θ∥22] ≤ q2 +

M2 log(qβ)
2

4τ2
+ β−1

Eρ̃1
[log ρ̃1] =

p+ d

2
log(β/2πe),

which implies that

ER
n (ρ1,W0) ≤ C6β

−1 log β,

LR
n (ρ1,W0) +

β−1

2
∥W0∥2F ≤ C7β

−1 log β,
(46)

with C6 =
(
1 + 2(q2d+ C2

0p)C1 +
M2

2τ2 + p+d
4

)
and C7 = C6 +

p+d
2 + log 2π.

To conclude, we need an upper bound on En(ρ1,W0), which is obtained using the following intermediate result (proved in
Appendix D.7) that controls the approximation error caused by the approximated second-layer.
Lemma D.7. Let (ρ1,W0) be the unique global minimizer achieved by Phase 1 of Algorithm 1. Then, it holds that

∥Hρ1
−HR

ρ1
∥2F ≤ (4C6 log β + 4 (1 + (p+ d) log 8π))

C2
1p

2
√
2√

πR

· exp
(
2
√
2pC7β log βC1(R+ C0)σmax(W0)−

R2

2

)
.

In particular, for any fixed β, we have
lim

R→+∞
∥Hρ1 −HR

ρ1
∥F = 0.

Finally, to bound En(ρ1,W0), we write

En(ρ1,W0) = ER
n (ρ1,W0) + Ln(ρ1,W0)− LR

n (ρ1,W0)
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n (ρ1,W0) +

1
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− Y ∥2F
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1
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1

2n
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2

n
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≤ 2ER
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2
log(2π) +

1

n
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−HR
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where the last line follows from Lemma A.3. By Lemma D.7 we have that limR→∞ ∥Hρ −HR
ρ ∥2F = 0, which means that

one can pick R large enough such that 1
n∥Hρ −HR

ρ ∥2F ≤ ER
n (ρ1,W0). Noting that the free energy is non-increasing when

running Stage 2 of Algorithm 1 concludes the proof.

D.7. Proof of Lemma D.7

Proof of Lemma D.7. In the proof, we will write (ρ,W ) instead of (ρ1,W0) given that there is no confusion. We start by
showing that ∫

|a|⪯̸R

ρ1(a, u) dadu ≤ p
√
2√

πR
exp

(
2
√
2pC7β log βC1(R+ C0)−

R2

2

)
. (47)
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Recall from Proposition 5.1 that ρ has the Gibbs form in (27), i.e.,

ρ(a, u) = ZR(ρ)
−1 exp

(
−β

n
τR(a)

⊤W (W⊤HR
ρ − Y )σ(X⊤u)− 1

2
(∥a∥22 + ∥u∥22)

)
,

where ZR(ρ) denotes the normalization constant. Thus, we have∫
|a|⪯̸R

ρ(a, u) dadu

= ZR(ρ)
−1

∫
|a|⪯̸R
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We upper bound the various terms separately. First, we have
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where in the last passage we use (46).

Next, we lower bound the normalization constant as
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∫
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Finally, we bound ∫
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Combining all the bounds , the desired result (47) follows.
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The following chain of inequalities holds

∥Hρ −HR
ρ ∥2F ≤ ∥Eρ[|aσ(u⊤X)|1|a|⪯̸R]∥2F
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≤
√
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where the last passage follows from (47). Finally, we upper bound Eρ[∥a∥221|a|⪯̸R] as

Eρ[∥a∥221|a|⪯̸R] ≤ Eρ[∥a∥22]

≤ Eρ[∥a∥22 + ∥u∥22]
≤ 4βER

n (ρ,W ) + 4 (1 + (p+ d) log 8π)

≤ 4β
(
C6β

−1 log β
)
+ 4 (1 + (p+ d) log 8π) ,

where the third line follows from Lemma A.3 and the fourth line from (46). Combining these two bounds gives the desired
result.

E. Additional Numerical Results
E.1. Extra Experiments on Three-layer Networks

Figure 2 plots the normalized balancedness metric NB(ρ,W ) defined in (25) during training. The results clearly show that
the network does not become balanced at convergence.

(a) MNIST (b) CIFAR-100

Figure 2: Normalized balancedness (see (25)) as a function of the number of training epochs, with each color representing
an independent experiment.

Figure 3 plots the approximately linear relation between the log of the NC1 metric and either the log of the gradient norm
(Figure 3a) or of the training loss (Figure 3b). This clearly shows the polynomial relation between the gradient norm/training
loss and NC1 as in Corollary 4.4.
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(a) Grad norm v.s. NC1 (b) Training loss v.s. NC1

Figure 3: Scatterplot of average gradient norm/training loss and average NC1 for training a three-layer network on MNIST.
The color bar indicates the training time step.

E.2. Experiments on ResNet-18 and VGG-11

Figure 4 plots the evolution of training loss, gradient norm and NC1 metric during training for ResNet-18 (Figure 4a) and
VGG-11 (Figure 4b). The curve indicates that the decrease of the NC1 metric with training loss and gradient norm (as
predicted by Corollary 4.4) also holds for real networks.

(a) ResNet-18 (b) VGG-18

Figure 4: Average training loss (blue), NC1 (orange) and gradient norm (green) during SGD training for ResNet-18 and
VGG-11 on CIFAR-10. We report the average for 4 independent experiments, as well as the confidence interval at 1 standard
deviation.

Figures 5 and 6 plot the relation between the log of gradient norm (Figures 5a and 6a), training loss (Figures 5b and 6b) and
log of NC1. In the terminal phase, the log of gradient norm and training loss have an approximately linear relation with
the log of NC1, which implies a polynomial relation between the gradient norm/training loss and NC1 as in three-layer
networks. However, the early phase of training exhibits a different non-linear relation compared to three-layer networks.
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(a) Grad norm v.s. NC1 (b) Training loss v.s. NC

Figure 5: Scatterplot of gradient norm/training loss and NC1 for training ResNet-18 on CIFAR-10. The plot starts from
epoch 51, right after the learning rate is reduced by a factor 10. The color bar indicates the training time step.

(a) Grad norm v.s. NC1 (b) Training loss v.s. NC

Figure 6: Scatterplot of average gradient norm/training loss and average NC1 for training VGG-11 on CIFAR-10. The plot
starts from epoch 51, right after the learning rate is reduced by a factor 10. The color bar indicates the training time step.
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