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Abstract

In this paper, we address the speech denoising problem, where Gaus-
sian and coloured additive noises are to be removed from a given speech
signal. Our approach is based on a redundant, analysis-sparse repre-
sentation of the original speech signal. We pick an eigenvector of the
Zauner unitary matrix and – under certain assumptions on the ambient
dimension – we use it as window vector to generate a spark deficient
Gabor frame. The analysis operator associated with such a frame, is a
(highly) redundant Gabor transform, which we use as a sparsifying trans-
form in the denoising procedure. We conduct computational experiments
on real-world speech data, using as baseline three Gabor transforms
generated by state-of-the-art window vectors in time-frequency analysis
and compare their performance to the proposed Gabor transform. The
results show that the proposed redundant Gabor transform outperforms
previous ones consistently for all types of examined signals of noise.

Keywords: Denoising, speech signal, Gabor transform, window vector, spark
deficient Gabor frame
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1 Introduction

Noise is one of the main factors that affect the accuracy of the results in audio
processing. Thus audio denoising is one of the most extensively studied inverse
problems in signal processing. The task consists in recovering an audio signal
x ∈ RL from corrupted linear observations:

y = x+ e ∈ RL. (1)

Noise removal from audio signals is an important first step in applications such
as sound classification [1], sound event localization [2], speech recognition [3],
dereverberation [4], speech enhancement [5, 6] and source separation [7].

1.1 Related Work

In order to address the denoising problem, numerous approaches have emerged,
including statistical models [8, 9], empirical mode decomposition [10], spectral
subtraction [11, 12], thresholding methods [13, 14], neural networks [15, 16],
low-rank models [17, 18], sparse and redundant representations [19–21] and
combinations of the aforementioned approaches [22, 23]. Sparse and redundant
representations have shown very promising results [24–26], especially when
turning to analysis sparsity (also known as co-sparsity) [27–29], which provides
flexibility in modelling sparse signals, since it leverages the redundancy of the
involved analysis operators. Albeit the authors of [28] are mainly focused on
analysis Compressed Sensing [30], they state that using the analysis-prior for-
mulation – with a redundant analysis operator – in denoising is fundamentally
different from classical denoising via soft thresholding; we shall call this frame-
work analysis denoising. Similarly, [29] explores the superior reconstruction
produced by analysis denoising of 1D signals over its synthesis counterpart [31].

1.2 Motivation

Our work is inspired by the articles [13, 14, 28, 29, 32, 33]. These publica-
tions propose either analysis operators associated with redundant frames (i.e.
matrices whose atoms/rows form a frame of the ambient space) with atoms
in general position1, or a finite difference operator (associated with the popu-
lar method of total variation [34]), in which many linear dependencies appear
for large dimensions. Moreover, in [13, 14, 32], Gabor transforms are com-
bined with thresholding methods for audio denoising. In a similar spirit, we
also deploy frames, but we differentiate our approach from related literature
in two aspects. First, we choose spark deficient Gabor frames, i.e. frames with
elements not in general position, so as to leverage the linear dependencies
appearing in such frames. Second, our proposed frames are combined with the
analysis denoising formulation; as mentioned in Section 1.1, analysis denoising
can be differentiated from classical thresholding denoising.

1equivalently, we call such frames full spark frames
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The intuition behind employing analysis operators associated with spark
deficient frames is based on remarks made in [35]. Therein, the authors demon-
strate the advantages of analysis sparsity/cosparsity compared to synthesis
sparsity, employing the union-of-subspaces model [36]. According to the latter,
sparse signals belong to the union of a combinatorial number of subspaces of
specific dimension. Now, it is argued in [35] that the number and dimension of
the subspaces (which play a key role in the algorithmic recovery of a signal)
associated with the synthesis and analysis sparsity models, can be controlled
in terms of the “sparsifying ability”2 of the involved synthesis and analy-
sis operators, respectively. From a computational perspective – based on the
afore-described subspaces’ argumentations – analysis sparsity could be more
advantageous than its synthesis counterpart, if analysis operators with many
linear dependencies among their rows are employed. This is a condition satis-
fied by spark deficient frames, making them nice candidates for our analysis
denoising framework.

Particularly, our choice of spark deficient Gabor frames over other classes
of frames that may be spark deficient (e.g. equiangular tight frames [37]) is
attributed to the inherent ability of the human auditory system to perform
time-frequency analysis [38]. In fact, according to [39], human speech produc-
tion and speech perception take place in the same area of the human brain, so
it is reasonable to assume that speech perception matches speech production
to some degree. Hence, since the human auditory system performs Gabor anal-
ysis using its own “internal” windows [40], the Gabor transform can be used in
practice to resemble the way that the human auditory system works and thus,
it is well suited for the application of speech denoising for human listeners. In
addition, other proposed transforms for the human auditory system, such as
Audlets [41], are also based on the (non-stationary) Gabor transform. To that
end, we take advantage of an analysis operator [42], namely star digital Gabor
transform (star-DGT), associated with a spark deficient Gabor frame (SDGF).
The latter can be generated3 by time-frequency shifts of any eigenvector of the
Zauner unitary matrix [43], under certain assumptions on the signal’s dimen-
sion. To the best of our knowledge, the efficiency of star-DGT when applied to
denoising has not yet been demonstrated. Therefore, it is intriguing to com-
pare the robustness of our proposed Gabor analysis operator to three other
Gabor transforms, emerging from state-of-the-art window vectors, by apply-
ing all four of them to analysis denoising. Finally, we illustrate the practical
importance of our method for real-world speech signals.

2that is, the sparsity and cosparsity of a signal with respect to a sparsifying operator
3Such a frame can also be generated by the eigenvectors of certain unitaries belonging to the

Clifford group, under certain assumptions. However, since the algebraic nature of these assump-
tions goes beyond the scope of the present paper, we preferred to employ only the Zauner unitary
matrix
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1.3 Key Contributions

The novelty of the proposed method is twofold: (a) we generate a SDGF based
on a window vector, associate this SDGF to a highly redundant Gabor analy-
sis operator and use the latter as a sparsifying transform in analysis denoising,
(b) we numerically compare the proposed method against three other Gabor
analysis operators, based on common windows of time-frequency analysis, on
real-world speech data, arguing also about the selection of the lattice parame-
ters. Our experiments show that our method consistently outperforms previous
ones, for all speech signals and all types of noise – Gaussian and coloured [44].

1.4 Paper organization

The rest of the paper is outlined as follows. In Section 2, we give notation and
briefly present the setup for analysis denoising. Section 3 introduces Gabor
frames and extends to spark deficient ones, building the desirable SDGF and
its associated analysis operator. In Section 4, we describe the experimental
settings, while in Section 5, we present two sets of experiments, with corre-
sponding results and evaluation. Lastly, in Section 6 we make some concluding
remarks and give potential future directions.

2 Gabor denoising setup

2.1 Notation

• For a set of indices N = {0, 1, . . . , N − 1}, we write [N ].
• (Bra-kets) The set of (column) vectors |0〉, |1〉, . . . , |L − 1〉 is the standard

basis of CL.
• We write ZL for the ring of residues modL, that is ZL =
{0modL, 1modL, . . . , (L− 1)modL}.

• For a, b ∈ Z, we write a ≡ b(modL) for the congruence modulo L. Moreover,
we write a | b if a divides b; otherwise, we write a - b.

• The power spectral density (PSD) S(f) of a discrete-time, real-valued signal
z, is defined as the Fourier transform of the signal’s autocorrelation4 Rzz(l),
i.e., S(f) =

∑
l∈ZRzz(l)e

−ifl.
• The support of a signal x ∈ RL is denoted by supp(x) = {i ∈ [L] : xi 6= 0}.

For its cardinality, we write |supp(x)| and if |supp(x)| ≤ s << L, we call x
s-sparse.

• For Φ ∈ CP×L (P > L), the quantity σs(Φx) = inf{‖Φx − u‖1 :
u is s-sparse} describes the l1-best approximation error to Φx by s-sparse
vectors.

4the autocorrelation of a signal is defined as the inner product between the signal and its
time-translated version
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2.2 Analysis denoising formulation

As we mentioned in Section 1, the main idea of speech denoising is to
reconstruct a speech signal x ∈ RL from:

y = x+ e ∈ RL, (2)

where e ∈ RL, ‖e‖2 ≤ η, corresponds to noise. To do so, we first assume that
there exists a redundant sparsifying transform Φ ∈ CP×L (P > L) called the
analysis operator, such that Φx is (approximately – in the sense of σs(Φx))
sparse. This is an analysis sparsity model for x.

Using analysis sparsity in denoising, we wish to recover x from y. A common
approach5 is the analysis basis pursuit denoising problem:

min
x∈RL

‖Φx‖1 subject to ‖x− y‖2 ≤ η, (3)

or a regularized version6 [46] of it:

min
x∈RL

‖Φx‖1 +
µ

2
‖x− x0‖22 subject to ‖x− y‖2 ≤ η, (4)

where x0 denotes an initial guess on x (with standard choices for x0 being
x0 = AT y or x0 = 0, according to numerical examples of [46]), µ > 0 is a
smoothing parameter and η > 0 an estimate on the noise level.

We will devote the next Section to the construction of a suitable analysis
operator Φ.

3 Gabor frames

3.1 Gabor systems

A discrete Gabor system (g, a, b) [47] is defined as a collection of time-frequency
shifts of the so-called window vector g ∈ CL, expressed as:

gn,m(l) = e2πimbl/Lg(l − na), l ∈ [L], (5)

where a, b denote time and frequency parameters (also known as lattice param-
eters) respectively, while n ∈ [N ] chosen such that N = L/a ∈ N and m ∈ [M ]
chosen such that M = L/b ∈ N denote time and frequency shift indices respec-
tively. If (5) spans CL, it is called Gabor frame and an equivalent definition of
a frame [48] is given below.

5since we target at speech denoising, a tractable alternative could be some perceptual variant
of the matching pursuit (MP) method, e.g. [45]; however – to our knowledge – perceptual variants
of MP account for synthesis sparsity, while we are interested in analysis-sparsity-based denoising

6in terms of optimization, it is preferred to solve (4) instead of (3)
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Definition 1 Let L ∈ N and (φp)p∈P be a finite subset of CL. If the inequalities:

c1‖x‖22 ≤
∑
p∈P
|〈x, φp〉|2 ≤ c2‖x‖22 (6)

hold true for all x ∈ CL, for some 0 < c1 ≤ c2 (frame bounds), then (φp)p∈P is

called a frame for CL.

Remark 1 The number of elements in (g, a, b) according to (5) is P = MN = L2/ab
and if (g, a, b) is a frame, we have ab < L (the so-called oversampling case). A crucial
ingredient in order to have a good time-frequency resolution for a signal with respect
to a Gabor frame, is the appropriate choice of the time-frequency parameters a and
b; according to [49], this choice is a challenging task. In the following subsection, we
associate two operators with a Gabor frame.

3.2 The analysis and synthesis operators associated with
a Gabor frame

Definition 2 Let Φg : CL 7→ CM×N denote the Gabor analysis operator – also
known as DGT7 – whose action on a signal x ∈ CL is defined as:

c(m,n) =

L−1∑
l=0

x(l)g(l − na)e−2πimbl/L, for m ∈ [M ], n ∈ [N ]. (7)

Definition 3 The adjoint of the analysis operator defined in (7), is the Gabor syn-
thesis operator Φ∗g : CM×N 7→ CL, whose action on the coefficients c = c(m,n)
gives:

(Φ∗gc)l =

N−1∑
n=0

M−1∑
m=0

c(m,n)g(l − na)e2πimbl/L, for l ∈ [L]. (8)

Since we deal with analysis denoising, we will only focus on Φg.

3.3 Spark deficient Gabor frames

Let us first introduce some basic notions needed in this subsection.

Definition 4 The symplectic group SL(2,ZL) consists of all matrices:

G =

(
α β
γ δ

)
(9)

such that α, β, γ, δ ∈ ZL and

αδ − βγ ≡ 1(modL). (10)

To each such matrix G corresponds (via a projective representation [50]) a unitary
matrix UG, given by the explicit formula [51]:

UG =
eiθ√
L

L−1∑
u,v=0

τβ
−1(αv2−2uv+δu2)|u〉〈v|, (11)

7we will interchangeably use both terms in the sequel
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where θ is an arbitrary phase, β−1 is the inverse8 of βmodL and

τ = −e
iπ
L . (12)

Definition 5 The spark of a set F –denoted by sp(F )– of P vectors in CL is the size
of the smallest linearly dependent subset of F . A frame F is full spark if and only if
every set of L elements of F is a basis, or equivalently sp(F ) = L+ 1, otherwise it is
spark deficient.

Based on the previous definition, a Gabor frame with
P = L2/ab elements of the form (5) is full spark, if and only if every set
of L of its elements is a basis. Now, as proven in [48], almost all window
vectors generate full spark Gabor frames, so the spark deficient Gabor frames
(SDGFs) are generated by exceptional window vectors. Indeed, the following
theorem was proven in [51] and informally stated in [50], for the Zauner
matrix Z ∈ SL(2,ZL) given by:

Z =

(
0 −1
1 −1

)
≡
(

0 L− 1
1 L− 1

)
. (13)

Theorem 1 ([51]) Let L ∈ Z such that 2 - L, 3 |L and L is square-free. Then, any
eigenvector of the Zauner unitary matrix UZ ∈ CL×L – produced by combining (11)
and (13) – generates a spark deficient Gabor frame for CL.

According to the previous theorem, the complex-valued eigenvectors of
UZ ∈ CL×L can be used as window vectors to generate – through time-
frequency shifts – SDGFs for CL. Therefore, we can employ Theorem 1 to
produce a SDGF and apply its associated analysis operator in (4). To that
end, we must first choose an ambient dimension L that fits the assumptions
of Theorem 1. Then, we calculate UZ using (11) and (13) and in the end,
perform its spectral decomposition in order to acquire its eigenvectors. Since
all the eigenvectors of UZ generate SDGFs, we may choose an arbitrary one,
which we call star window from now on and denote it as g∗ (see Section 4.2
for a description on how to acquire the desired window vector). We call the
analysis operator associated with such a SDGF star-DGT and denote it Φg∗ ,
in order to indicate the dependance on g∗. We coin the term ”star”, due to
the slight resemblance of this DGT to a star when plotted in MATLAB, as it
is demonstrated in the example of Fig. 1.

Remark 2 A simple way to choose L, is by considering its prime factorization: take k
prime numbers pα1

1 , . . . , pαkk , with α1, . . . , αk not all a multiple of 2 and p1 = 3, pi 6=
2, i = 2, . . . , k, such that L = 3α1pα2

2 · · · · · p
αk
k . Since a, b |L, we may also choose

a, b to be one, or a multiplication of more than one, prime numbers from the prime

8ββ−1 ≡ 1modL
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factorization of L. We have seen empirically that this method for fixing (L, a, b)
produces satisfying results, as is illustrated in the sequel.

4 Experimental Setup

4.1 Signals’ description and preprocessing

We run experiments (code available at www.github.com/vicky-k-19/
Star-DGT) on 30 real-world, real-valued speech signals, all sampled at 16kHz,
taken from LibriSpeech corpus [53]. The labels of the signals along with short
descriptions can be found in Table 1. The true ambient dimension of each real-
world signal does not usually match the conditions of Theorem 1. Hence, we
load each signal and use Remark 2 to cut it down to a specific ambient dimen-
sion (which will be referred to in the sequel as artificial dimension) L, being as
close as possible to its true dimension, in order to both denoise a meaningful
part of the signal and meet the conditions of Theorem 1.

4.2 Experimental settings

1. We examine different pairs of time-frequency parameters (a, b), deploying
Remark 2.

2. We use the power iteration method [55], which yields the largest in mag-
nitude eigenvalue, with corresponding eigenvector, of UZ . We keep the
real part of this complex-valued eigenvector and set it as our desired star
window vector g∗.

Fig. 1: Star-DGT coefficients c(m,n) in matrix form (plotted real vs imaginary
part – different colors correspond to different entries of the matrix), for the
audio signal Glockenspiel [52] (262144 samples, (L, a, b) = (200583, 19, 23))

www.github.com/vicky-k-19/Star-DGT
www.github.com/vicky-k-19/Star-DGT
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Table 1: Details of example speech signals chosen from Librispeech corpus
# Label True ambient dimension Artificial dimension L Types of noise added

1 251-136532-0014 36240 33915 Gaussian and pink
2 8842-304647-0007 27680 27531 Gaussian and blue
3 2035-147960-0013 42800 41769 Gaussian and pink
4 1462-170145-0020 34400 33915 Gaussian and blue
5 6241-61943-0002 43760 43605 Gaussian and blue
6 5338-284437-0025 31040 29835 Gaussian and blue
7 3752-4944-0042 51360 51051 Gaussian and blue
8 5694-64038-0013 52880 51051 Gaussian and pink
9 5895-34615-0001 52880 51051 Gaussian and pink
10 2428-83699-0035 43600 41769 Gaussian and pink
11 2803-154320-0006 34880 33915 Gaussian and blue
12 3752-4944-0008 31040 29835 Gaussian and pink
13 1272-135031-0014 27840 24225 Gaussian and pink
14 1272-141231-0016 29600 29325 Gaussian and blue
15 7850-281318-0020 34799 31395 Gaussian and pink
16 2035-147960-0015 24960 24225 Gaussian and blue
17 2035-147961-0017 32160 31395 Gaussian and blue
18 2035-147961-0027 46000 43263 Gaussian and pink
19 6295-244435-0024 67120 65379 Gaussian and blue
20 3576-138058-0003 40160 38709 Gaussian and blue
21 5338-284437-0019 49840 49725 Gaussian and blue
22 2412-153948-0015 55440 51129 Gaussian and pink
23 2803-154320-0009 44240 43263 Gaussian and blue
24 5694-64038-0007 37920 34017 Gaussian and pink
25 5694-64038-0016 41360 38019 Gaussian and blue
26 5895-34622-0018 79680 78039 Gaussian and blue
27 5338-284437-0014 29520 26013 Gaussian and blue
28 6241-61943-0023 69680 66033 Gaussian and pink
29 6319-57405-0011 59360 57753 Gaussian and pink
30 6295-244435-0003 51920 50025 Gaussian and blue

3. We construct – using the MATLAB package LTFAT [52] – four different
Gabor frames with their associated analysis operators/DGTs: Φg1 , Φg2 ,
Φg3 and Φg∗ , corresponding to a Gaussian, a Hann, a Hamming and the
star window vector, respectively. Since we process real-valued signals, we
alter the four analysis operators to compute only the DGT coefficients of
positive frequencies instead of the full DGT coefficients.

4. We consider Gaussian and coloured additive noises; the Gaussian noise
has zero mean and the coloured noises are chosen to be pink and blue.
Pink noise [56] is a signal with a power spectral density (see Section 2.1
for a formal definition) S(f) inversely proportional to the frequency f of
the signal. Blue noise [57] is a signal with a power spectral density S(f)
proportional to the frequency f of the signal. Formally speaking, it holds
k1/f

γ ≤ S(f) ≤ k2/f
γ , where γ = 1 for pink noise and γ = −1 for blue

noise.
5. For the Gaussian noise, we employ the MATLAB built-in function

linspace to generate a vector σG of 100 evenly spaced points in the
interval [0.001, 0.01]. This vector is used as a scaling factor controlling
the standard deviation of the Gaussian noise. In a similar manner for the
coloured noises9, we employ linspace to generate a vector σcol of 100
evenly spaced points in the interval [0.001, 0.01]. Each value of σcol serves

9in the rest of the paper, when we speak of coloured noises, we mean the examined cases of
pink and blue noise
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Table 2: Mean scores of MSE and output SNR (as defined in [54]) achieved by
all four DGTs, averaged over all 30 examined speech signals, for fixed values
of σG and σcol. Bold letters indicate the best mean scores among all DGTs.

MSE Output SNR

Windows
Noises

Gaussian Blue Pink Gaussian Blue Pink

star 6.4956 · 10−4 8.3 · 10−4 6.5035 · 10−4 8.6582 7.59345 8.65298
Gaussian 9.1771 · 10−4 1.2264 · 10−3 8.127 · 10−4 7.1573 5.8980 7.6851

Hann 9.1768 · 10−4 1.2264 · 10−3 8.1267 · 10−4 7.1575 5.8983 7.6853
Hamming 9.1769 · 10−4 1.2265 · 10−3 8.1279 · 10−4 7.1574 5.8978 7.6846

(a) Fixed σG = σcol = 0.01 for the scaling factor controlling the std of the
Gaussian noise and the amplitude of the coloured noises

MSE Output SNR

Windows
Noises

Gaussian Blue Pink Gaussian Blue Pink

star 3.1934 · 10−4 4.737 · 10−4 4.4463 · 10−4 11.7418 10.0294 10.3044
Gaussian 5.8417 · 10−4 8.3276 · 10−4 6.2148 · 10−4 9.119 7.5792 8.8501

Hann 5.8418 · 10−4 8.3276 · 10−4 6.2150 · 10−4 9.1189 7.5792 8.85
Hamming 5.8423 · 10−4 8.3276 · 10−4 6.2152 · 10−4 9.1185 7.5792 8.8499

(b) Fixed σG = σcol = 0.001 for the scaling factor controlling the std of the
Gaussian noise and the amplitude of the coloured noises

Table 3: Example speech signal (251-136532-0014), contaminated by
additive Gaussian and pink noises

MSEs

Windows
(a, b)

(15, 15) (5, 17) (7, 19) (17, 19) (21, 21)

Gaussian 8.4929 · 10−4 8.4846 · 10−4 8.4233 · 10−4 8.4488 · 10−4 8.4188 · 10−4

Hann 8.4917 · 10−4 8.4858 · 10−4 8.4222 · 10−4 8.4502 · 10−4 8.4196 · 10−4

Hamming 8.4936 · 10−4 8.4830 · 10−4 8.4234 · 10−4 8.4490 · 10−4 8.4199 · 10−4

star 7.4783 · 10−4 8.1694 · 10−4 7.5914 · 10−4 6 .7464 · 10−4 7.0497 · 10−4

(a) Additive Gaussian noise, with standard deviation σG = 0.001

MSEs

Windows
(a, b)

(15, 15) (5, 17) (7, 19) (17, 19) (21, 21)

Gaussian 5.3213 · 10−4 5.3660 · 10−4 5.3533 · 10−4 5.3625 · 10−4 5.4130 · 10−4

Hann 5.3217 · 10−4 5.3655 · 10−4 5.3521 · 10−4 5.3620 · 10−4 5.4122 · 10−4

Hamming 5.3213 · 10−4 5.3655 · 10−4 5.3528 · 10−4 5.3632 · 10−4 5.4111 · 10−4

star 4.5283 · 10−4 4.7100 · 10−4 4.6333 · 10−4 3 .5476 · 10−4 4.2386 · 10−4

(b) Additive pink noise, with amplitude’s scaling factor σcol = 0.001

as a scaling factor controlling the amplitude of the coloured noises. Note
that when σcol reaches its top value 0.01, the amplitude of the coloured
noises is almost equal to the amplitude of the examined signals. For each
value of σk ∈ [0.001, 0.01], k = G, col, we follow the procedure described
below:

• we take noisy measurements y = x+e, where e denotes either Gaussian
or coloured noise. For the estimate on the noise level η, we set η = ‖y−
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Table 4: Example speech signal (2035-147960-0013), contaminated by
additive Gaussian and pink noises

MSEs

Windows
(a, b)

(9, 9) (7, 13) (9, 17) (13, 17) (17, 17)

Gaussian 9.1225 · 10−4 9.1113 · 10−4 9.1134 · 10−4 9.0846 · 10−4 9.1484 · 10−4

Hann 9.1230 · 10−4 9.1111 · 10−4 9.1126 · 10−4 9.0833 · 10−4 9.1492 · 10−4

Hamming 9.1221 · 10−4 9.1108 · 10−4 9.1130 · 10−4 9.0838 · 10−4 9.1492 · 10−4

star 8.5635 · 10−4 8.0955 · 10−4 8.2828 · 10−4 7 .7499 · 10−4 8.1464 · 10−4

(a) Additive Gaussian noise, with standard deviation σG = 0.001

MSEs

Windows
(a, b)

(9, 9) (7, 13) (9, 17) (13, 17) (17, 17)

Gaussian 5.8699 · 10−4 5.8925 · 10−4 5.8942 · 10−4 5.9071 · 10−4 5.8948 · 10−4

Hann 5.8710 · 10−4 5.8921 · 10−4 5.8945 · 10−4 5.9080 · 10−4 5.8949 · 10−4

Hamming 5.8703 · 10−4 5.8928 · 10−4 5.8961 · 10−4 5.9060 · 10−4 5.8943 · 10−4

star 5.3307 · 10−4 5.3072 · 10−4 4.9653 · 10−4 4 .8565 · 10−4 4.8874 · 10−4

(b) Additive pink noise, with amplitude’s scaling factor σcol = 0.001

Table 5: Example speech signal (5694-64038-0013), contaminated by
additive Gaussian and pink noises

MSEs

Windows
(a, b)

(11, 11) (13, 13) (13, 21) (11, 17) (13, 17)

Gaussian 8.7630 · 10−4 8.7634 · 10−4 8.7914 · 10−4 8.7299 · 10−4 8.7429 · 10−4

Hann 8.7643 · 10−4 8.7641 · 10−4 8.7918 · 10−4 8.7300 · 10−4 8.7419 · 10−4

Hamming 8.7629 · 10−4 8.7639 · 10−4 8.7909 · 10−4 8.7301 · 10−4 8.7431 · 10−4

star 8.2926 · 10−4 8.0809 · 10−4 7.6079 · 10−4 7.5266 · 10−4 7 .5009 · 10−4

(a) Additive Gaussian noise, with standard deviation σG = 0.001

MSEs

Windows
(a, b)

(11, 11) (13, 13) (13, 21) (11, 17) (13, 17)

Gaussian 5.5950 · 10−4 5.5945 · 10−4 5.6133 · 10−4 5.5808 · 10−4 5.5888 · 10−4

Hann 5.5949 · 10−4 5.5943 · 10−4 5.6131 · 10−4 5.5812 · 10−4 5.5890 · 10−4

Hamming 5.5949 · 10−4 5.5958 · 10−4 5.6128 · 10−4 5.5800 · 10−4 5.5897 · 10−4

star 5.1971 · 10−4 4.9725 · 10−4 4.4889 · 10−4 4.7244 · 10−4 4 .3773 · 10−4

(b) Additive pink noise, with amplitude’s scaling factor σcol = 0.001

x‖2. This is considered a standard scenario in the numerical examples
of [46].

• we solve – using the MATLAB package TFOCS [46] – four different
instances of (4), one for each of the four DGTs. For TFOCS, we set
x0 = 0, z0 = [ ]; for each of the instances i = 1, 2, 3, ∗, we set the
smoothing parameter µi = 10−1‖Φgix‖∞, since we noticed an improved
performance of the solving algorithm when µ is a function of Φgi (we
chose the scaling factor 10−1 and the l∞-norm after some empirical
tests) and employ the solver BPDN W solver.

• from the solving procedure, we obtain four different estimators for x,
namely x̂1, x̂2, x̂3, x̂∗ and their corresponding mean-squared errors
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Table 6: Example speech signal (5338-284437-0025), contaminated by
additive Gaussian and blue noises

MSEs

Windows
(a, b)

(9, 9) (15, 15) (5, 13) (5, 17) (13, 17)

Gaussian 12 · 10−4 12 · 10−4 12 · 10−4 12 · 10−4 12 · 10−4

Hann 12 · 10−4 12 · 10−4 12 · 10−4 12 · 10−4 12 · 10−4

Hamming 12 · 10−4 12 · 10−4 12 · 10−4 12 · 10−4 12 · 10−4

star 11 · 10−4 9.8065 · 10−4 11 · 10−4 11 · 10−4 9 .7897 · 10−4

(a) Additive Gaussian noise, with standard deviation σG = 0.001

MSEs

Windows
(a, b)

(9, 9) (15, 15) (5, 13) (5, 17) (13, 17)

Gaussian 7.8626 · 10−4 7.8715 · 10−4 7.8627 · 10−4 7.8690 · 10−4 7.8674 · 10−4

Hann 7.8629 · 10−4 7.8689 · 10−4 7.8650 · 10−4 7.8689 · 10−4 7.8696 · 10−4

Hamming 7.8627 · 10−4 7.8745 · 10−4 7.8623 · 10−4 7.8676 · 10−4 7.8677 · 10−4

star 6.8879 · 10−4 6.6695 · 10−4 7.0199 · 10−4 6.6884 · 10−4 6 .3867 · 10−4

(b) Additive blue noise, with amplitude’s scaling factor σcol = 0.001

Table 7: Example speech signal (6241-61943-0002), contaminated by
additive Gaussian and blue noises

MSEs

Windows
(a, b)

(9, 9) (5, 17) (9, 17) (17, 19) (19, 19)

Gaussian 5.0929 · 10−4 5.1122 · 10−4 5.1164 · 10−4 5.0961 · 10−4 5.1202 · 10−4

Hann 5.0929 · 10−4 5.1119 · 10−4 5.1166 · 10−4 5.0961 · 10−4 5.1202 · 10−4

Hamming 5.0928 · 10−4 5.1121 · 10−4 5.1160 · 10−4 5.0957 · 10−4 5.1201 · 10−4

star 4.9231 · 10−4 4.6263 · 10−4 4.7426 · 10−4 4 .5764 · 10−4 4.6173 · 10−4

(a) Additive Gaussian noise, with standard deviation σG = 0.001

MSEs

Windows
(a, b)

(9, 9) (5, 17) (9, 17) (17, 19) (19, 19)

Gaussian 2.6371 · 10−4 2.6358 · 10−4 2.6336 · 10−4 2.6356 · 10−4 2.6356 · 10−4

Hann 2.6373 · 10−4 2.6360 · 10−4 2.6338 · 10−4 2.6359 · 10−4 2.6359 · 10−4

Hamming 2.6371 · 10−4 2.6359 · 10−4 2.6340 · 10−4 2.6359 · 10−4 2.6359 · 10−4

star 2.3890 · 10−4 2.3582 · 10−4 2.2962 · 10−4 1 .9016 · 10−4 2.2279 · 10−4

(b) Additive blue noise, with amplitude’s scaling factor σcol = 0.001

(MSEs):

MSE(x, x̂i) =
1

L

L∑
l=1

(x(l)− x̂i(l))2, i = 1, 2, 3, ∗. (14)

We choose MSE as a reconstruction quality measure, since it represents
the standard choice for denoising problems [20], [24], [25], [29], [58].
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(a) 251-136532-0014, (L, a, b) =
(33915, 51, 19), Gaussian noise

(b) 251-136532-0014, (L, a, b) =
(33915, 51, 19), pink noise

(c) 8842-304647-0007, (L, a, b) =
(27531, 19, 23), Gaussian noise

(d) 8842-304647-0007, (L, a, b) =
(27531, 19, 23), blue noise

(e) 2035-147960-0013, (L, a, b) =
(41769, 21, 17), Gaussian noise

(f) 2035-147960-0013, (L, a, b) =
(41769, 21, 17), pink noise

(g) 1462-170145-0020, (L, a, b) =
(33915, 51, 19), Gaussian noise

(h) 1462-170145-0020, (L, a, b) =
(33915, 51, 19), blue noise

Fig. 2: Rate of denoising success for 4 speech signals with different
parameters (L, a, b), contaminated by Gaussian (left) and coloured (right)

noise. Note that 3 of the 4 methods roughly coincide.
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(a) 6241-61943-0002, (L, a, b) =
(43605, 51, 19), Gaussian noise

(b) 6241-61943-0002, (L, a, b) =
(43605, 51, 19), pink noise

(c) 5338-284437-0025, (L, a, b) =
(29835, 17, 13), Gaussian noise

(d) 5338-284437-0025, (L, a, b) =
(29835, 17, 13), blue noise

(e) 3752-4944-0042, (L, a, b) =
(51051, 33, 17), Gaussian noise

(f) 3752-4944-0042, (L, a, b) =
(51051, 33, 17), blue noise

(g) 5694-64038-0013, (L, a, b) =
(51051, 33, 17), Gaussian noise

(h) 5694-64038-0013, (L, a, b) =
(51051, 33, 17), pink noise

Fig. 3: Rate of denoising success for 4 speech signals with different
parameters (L, a, b), contaminated by Gaussian (left) and coloured (right)

noise. Note that 3 of the 4 methods roughly coincide.
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(a) 5895-34615-0001, (L, a, b) =
(51051, 33, 17), Gaussian noise

(b) 5895-34615-0001, (L, a, b) =
(51051, 33, 17), pink noise

(c) 2428-83699-0035, (L, a, b) =
(41769, 21, 17), Gaussian noise

(d) 2428-83699-0035, (L, a, b) =
(41769, 21, 17), pink noise

(e) 2803-154320-0006, (L, a, b) =
(33915, 51, 19), Gaussian noise

(f) 2803-154320-0006, (L, a, b) =
(33915, 51, 19), blue noise

(g) 3752-4944-0008, (L, a, b) =
(29835, 17, 13), Gaussian noise

(h) 3752-4944-0008, (L, a, b) =
(29835, 17, 13), pink noise

Fig. 4: Rate of denoising success for 4 speech signals with different
parameters (L, a, b), contaminated by Gaussian (left) and coloured (right)

noise. Note that 3 of the 4 methods roughly coincide.
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Table 8: Example speech signal (8842-304647-0007), contaminated by
additive Gaussian and blue noises

MSEs

Windows
(a, b)

(9, 9) (9, 23) (7, 19) (19, 19) (19, 23)

Gaussian 7.2315 · 10−4 7.2621 · 10−4 7.1806 · 10−4 7.2532 · 10−4 7.1924 · 10−4

Hann 7.2314 · 10−4 7.2605 · 10−4 7.1806 · 10−4 7.2535 · 10−4 7.1915 · 10−4

Hamming 7.2321 · 10−4 7.2609 · 10−4 7.1803 · 10−4 7.2519 · 10−4 7.1919 · 10−4

star 6.7449 · 10−4 6.1704 · 10−4 6.0620 · 10−4 6.2294 · 10−4 5 .4646 · 10−4

(a) Additive Gaussian noise, with standard deviation σG = 0.001

MSEs

Windows
(a, b)

(9, 9) (9, 23) (7, 19) (19, 19) (19, 23)

Gaussian 4.1860 · 10−4 4.1906 · 10−4 4.1881 · 10−4 4.1925 · 10−4 4.1887 · 10−4

Hann 4.1863 · 10−4 4.1903 · 10−4 4.1879 · 10−4 4.1935 · 10−4 4.1887 · 10−4

Hamming 4.1864 · 10−4 4.1899 · 10−4 4.1885 · 10−4 4.1932 · 10−4 4.1884 · 10−4

star 3.6969 · 10−4 2.8825 · 10−4 3.3767 · 10−4 3.2135 · 10−4 2 .8677 · 10−4

(b) Additive blue noise, with amplitude’s scaling factor σcol = 0.001

5 Experiments and Results

We randomly choose 12 of the 30 signals to run the experiments of Sections
5.1 and 5.2. For all 30 signals, we gather the mean scores of the experiments of
Sections 5.1 and 5.2 in Table 2. At this point, we would like to note that there
is sufficiently strong interest in the research area of sparsity-based denoising,
making comparisons with other model-based methods unnecessary (cf. Section
1.1). Data-driven approaches could offer a performance advantage, but they
assume the existence of a large training dataset with ground truths, which is
not available in all cases; thus, model-based methods retain their value.

5.1 Fixed (L, a, b) with varying σG and σcol

We fix for each of the 12 signals the lattice parameters a, b, with respect to
each artificial dimension L. We add to all signals zero-mean Gaussian noise
with varying standard deviation σG and perform analysis denoising for each
value of σG, as explained in Section 4.2. For the coloured noise cases, we
randomly split the set of 12 signals into two subsets, of 6 signals each. We add
to the signals of the first and second subset blue and pink noise, respectively,
with varying amplitude controlled by σcol, and perform analysis denoising for
each value of σcol, as described in Section 4.2. The left column in Figs. 2-
4 demonstrates for different signals, how the 4 resulting MSEs scale in the
case of the Gaussian noise, as its standard deviation increases. Clearly, our
proposed DGT outperforms the rest of DGTs, consistently for all signals and
for different choices of artificial dimension with time-frequency parameters.
Similarly, the right column in Figs. 2-4 demonstrates for different signals, how
the 4 resulting MSEs scale in the case of blue and pink noise, as the scaling
factor of each coloured noise’s amplitude increases. We observe that star-DGT
is more robust than the rest of the DGTs, even when the amplitude of each
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coloured noise is almost equal to the amplitude of the speech signal to which
it is added.

5.2 Fixed L, σG, σcol, with varying (a, b)

We randomly pick 6 out of the 12 speech signals (preferring to examine
signals with different artificial dimensions). For each signal, we alter the time-
frequency parameters a, b with respect to its artificial dimension. We consider
fixed values of σG and σcol, i.e. σG = σcol = 0.001, serving as the standard
deviation of the Gaussian noise and the scaling factor controlling the coloured
noises’ amplitude, respectively. For different pairs of (a, b), we add zero-mean
Gaussian noise to all six signals, blue noise to three of the six signals and pink
noise to the rest of them. Finally, we denoise all signals for all types of noise and
present the resulting MSEs in Tables 3-8. For all choices of (a, b), star-DGT
(indicated in bold in each subtable) outperforms the baseline DGTs, consis-
tently for all signals, for both Gaussian and coloured noises. Additionally, we
see that among all examined pairs of lattice parameters, star-DGT achieves
the smallest MSE (indicated in magenta italics in each subtable) when a, b
are chosen as the two largest factors in the prime factorization of L; the rest
of the DGTs do not seem to benefit much from this selection. On the other
hand, among all examined choices of (a, b), star-DGT performs slightly worse
when a = b. For example, as indicated in Tables 5 and 8, star-DGT reaches
a slightly bigger MSE when a = b = 11 and a = b = 32, respectively. The
afore-described experimental result triggers us to formulate it as the following
(informal) mathematical hypothesis:

Claim 1 Let x ∈ RL and suppose there exists k ∈ N such that, for some
α1, . . . , αk ∈ N which are not all a multiple of 2, it holds L = 3α1pα2

2 . . . pαkk , with

p2 < . . . < pk being prime numbers. Let also GLa,b denote the set of all spark deficient
Gabor transforms generated according to Theorem 1, with respect to some lattice
parameters a, b. Then, among all possible choices for a, b, the solution returned by
(4) with Φ ∈ GLpk−1,pk is a global minimizer.

6 Conclusion and Future Directions

In the present paper, we took advantage of a window vector to generate a
spark deficient Gabor frame and introduced a redundant analysis Gabor oper-
ator/DGT, namely star-DGT, associated with this SDGF. We then applied
the star-DGT to analysis denoising, along with three other DGTs generated
by state-of-the-art window vectors in the field of Gabor Analysis. First, we
fixed the ambient dimension and the time-frequency parameters, and altered
the standard deviation of the Gaussian noise and the amplitude of the coloured
noises. Second, we examined how different pairs of lattice parameters, with
fixed standard deviation and amplitude of the Gaussian and coloured noises
respectively, affect the performance of analysis denoising. All experiments
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confirm improved robustness: the increased amount of linear dependencies
provided by this SDGF, yields for all speech signals a lower MSE for the pro-
posed method. Future directions will include the combination of the present
framework with deep learning methods [59], as well as the development of
a mathematical framework, explaining why star-DGT benefits more when
the lattice parameters are chosen as the two largest primes in the prime
factorization of a signal’s dimension (cf. Claim 1). Finally, it would be inter-
esting to calculate – following research directions similar to [60] – non-trivial
upper/lower bounds for the spark of our proposed SDGF.
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