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Abstract

Forecasting human-object interactions in daily activities is
challenging because of the high variability of human be-
havior. Although training models to solve this task from
plain videos is feasible, directly operating on raw frames is
often limited by visual noise and confounding factors un-
related to the task. Scene graphs offer a promising alter-
native by providing structured representations of actor and
objects actively participating in the action, and their re-
lationships, potentially evolving over time. However, ex-
isting approaches to Scene Graph Anticipation (SGA) of-
ten rely on unrealistic assumptions, such as fixed objects
over time, which limit their applicability to dynamic, real-
world scenarios. In this paper, we propose FORESCENE,
a novel framework for SGA that jointly predicts the tempo-
ral evolution of both objects and their interactions, based
on a graph auto-encoder and a conditional latent diffusion
model. We evaluated FORESCENE on the Action Genome
dataset, showing that providing full graph prediction im-
proves the model capabilities in human activity forecasting
and outperforms prior SGA methods.

1. Introduction

Effective human-robot collaboration in shared environ-
ments, such as homes, hospitals, or industrial settings, re-
quires robots to understand and forecast human activities.
This goes far beyond recognizing static actions; rather, the
model needs to reason about how activities evolve over
time, how humans interact with surrounding objects and en-
vironment, and how actions are composed and interleaved
to form long-horizon activities.

Imagine a human and a robot assembling a chair to-
gether. The human uses a screwdriver to fasten the seat, then
sets it aside to reach for a chair leg. To collaborate effec-
tively, the robot must anticipate this shift, recognizing when
objects like the screwdriver become inactive and new ones
become relevant, and prepare accordingly by handing over
parts. This requires learning representations of human ac-
tivities that capture actors, active objects, and their evolving
relationships over time. Thanks to the growing availability

Figure 1. Scene graphs for human-environment interactions. Dot-
ted lines indicate predictions, while solid lines fixed elements.

of large-scale video datasets capturing diverse human activ-
ities, it is possible to learn this reasoning paradigm directly
from observation [4]. One promising direction is to leverage
directly visual input, which provides rich contextual infor-
mation but requires disentangling relevant information from
irrelevant details [9]. Alternatively, textual descriptions of-
fer compact, high-level representations but often face ambi-
guity and grounding challenges [9].

We argue that Scene Graphs (SGs) offer a more effec-
tive representation, combining the grounded detail of visual
data with the structured semantics and compactness of tex-
tual descriptions. In SGs, humans and active objects are
represented as nodes, while their semantic and spatial rela-
tionships are modeled as edges [7]. This structured repre-
sentation enables models to reason about dynamic human-
environment interactions by focusing on behaviorally rele-
vant elements, without sacrificing physical grounding. To
anticipate human behavior effectively, the robot must pre-
dict how these graph structures evolve over time.

In this paper, we address the underexplored task of
video-based Scene Graph Anticipation (SGA). Prior work
[10] focuses on forecasting only edge attributes (i.e., re-
lationships) while keeping the set of nodes (i.e., objects)
fixed to those in the last observed frame. While this is
sufficient for short-term activities where active objects re-
main unchanged, it fails in longer activities where the ob-
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ject set evolves dynamically (see Fig. 1). We introduce
FORESCENE, a novel model for SGA that predicts both
objects and their relationships over time. Our approach op-
erates in two stages: (i) a Graph Auto-Encoder maps ob-
served video segments into a latent representation; and (ii)
a Latent Diffusion Model forecasts the temporal evolution
of SGs conditioned on the observed portion. We evalu-
ate on the Action Genome dataset [7], measuring perfor-
mance in terms of the ability to predict objects (Object Dis-
covery), and relationships (Triplet Recall) over time. Our
experiments demonstrate the importance of predicting the
evolution of complete SGs, outperforming existing methods
while solving a more complex task.

2. Method
Our goal is to design a model able to predict future instances
of SGs from a partial video observation. We tackle this by
first encoding SGs extracted from observed RGB frames
into fixed-size latent vectors using a tailored Graph Auto-
Encoder (GAE), and then using a Latent Diffusion Model
(LDM) to generate future instances of SGs conditioned on
the observed ones. We train the LDM on temporally or-
dered sequences of graph latents to capture the temporal
evolution of SGs and patterns of human activity in every-
day scenarios. At inference, the LDM produces temporally
coherent latent codes for future SGs, which the GAE de-
codes into complete SGs (see Fig. 2), effectively forecast-
ing the future evolution of human-environment interactions
based on partial observations. Notation and Task Defini-
tion We define a SG as G = {V, E}, where V represents the
set of nodes, each corresponding to an object, and E denotes
the set of edges, capturing the relationships between nodes.
Each node vi ∈ V is associated with an object category
label vci ∈ C and bounding box coordinates vbi ∈ [0, 1]4.
An edge eij ∈ E serves to model the relationship between
nodes vi and vj , with vi acting as the subject and vj as the
object of the relation. The relationship category is repre-
sented by pcij ∈ P . SGA predicts SGs GFs+1 , . . . ,GFlast

for future unseen frames {I}Flast

Fs+1
, based on a partial video

observation {I}Fs
0 .

2.1. Graph Auto-Encoder
The first stage of our method is a GAE that encodes ob-
served frames into fixed-size latent graph representations
and decodes them into SGs. We use a GCN-based encoder
and a transformer decoder [14].

Graph Encoder (G Eξ−→ z) The encoder learns to map a
graph G = {V, E} to a latent code z. Input graphs are
populated with node features {ϕv,i}|V|

i=1 and edge features
{ϕe,ij}|E|e=1. Following [10], node features ϕv,i are initial-
ized using projected object features vfi extracted from a
frozen object detector [12] and bounding box coordinates

vbi . For edge features ϕe,ij , we follow [2], and concatenate
visual and semantic features (i.e., the object category) of
object pairs. The node and edge features are then structured
as triplets tij = ⟨ϕv,i, ϕe,ij , ϕv,j⟩ and fed into the GCN
architecture proposed in [8]. The node and edge features
of the last GCN layer are max-pooled, concatenated, and
linearly projected to obtain the latent graph representation
z ∈ RC . To encourage the encoder to learn semantic fea-
tures for nodes and edges and store them in the latent z, we
add an encoder loss to predict node and edge categories.

Graph Decoder (z
Dγ−→ Ĝ) Inspired by [1], our decoder

Dγ processes the graph latent representation z alongside
N object queries to generate a feature representation of
each node in the SG. The architecture is composed of L
stacked blocks, each of which sequentially performs cross-
attention, self-attention, and feed-forward operations. The
final output is fed to MLPobjects and MLPboxes, which re-
spectively output the predicted object category distribution
over the C object classes, v̂c ∈ RN×C , and bounding boxes
v̂b ∈ RN×4 for each object query. For edge prediction, we
follow [6] to obtain the refined predicted relational features.
These features ϕ̂e are processed by MLPedges and MLPcon,
both followed by a sigmoid function to obtain the predicted
relation matrix and the predicted connectivity matrix. The
decoder loss is based on object detection and categorical re-
lations, and connectivity prediction.
GAE Training Objective The GAE is trained minimizing
the following loss function: LGAE = Lenco + Ldeco + Lreg,
where Lenco ensures that the latent code captures node and
edge semantics, Ldeco enforces accurate SG reconstruction
from latent representations, and Lreg regularizes the latent
space to support subsequent Latent Diffusion modeling [3].

2.2. Latent Diffusion Model
Diffusion models [5, 13] are probabilistic models that learn
a data distribution p(x) by iteratively denoising a variable
initially sampled from a normal distribution. The work-
ing principle can be interpreted as reversing a predefined
Markov chain of length T through a sequence of denoising
autoencoders ϵθ(xt, t), t = 1 . . . T , each trained to predict
a cleaner version of its input xt , with xt being a noisy ver-
sion of the original data x.
Scene Graph Anticipation through LDM We train the
LDM on temporally ordered sequences of ground-truth SG
latent vectors Z = {zf}Flast

f=0 obtained from our Graph En-
coder Eξ. Each zf ∈ RC represents the graph latent for the
f -th frame. Flast is the total number of frames in the video.
For each video, the diffusion process targets an ordered se-
quence of latent codes. The LDM is trained using fixed-size
sliding windows of width S across the entire sequence Z. At
each window, we randomly select half of the tokens (each
representing a SG latent) and add Gaussian noise to these,
using the remaining tokens as conditioning to guide the de-
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Figure 2. Overview of the proposed method at inference time to solve the task of Scene Graph Anticipation (SGA).

noising process. Each token in the window is positionally
encoded to maintain temporal coherence. The denoising
model ϵθ(·, t) is implemented as a DiT [11] transformer.
We augment the denoising model input with the diffusion-
timestep embedding and token-specific embeddings to in-
dicate whether each token ztf at diffusion-timestep t is a
conditioning or noised token. In the forward diffusion, each
latent ztf is obtained by adding t-scheduled Gaussian noise
to zf from the Graph Encoder Eξ. During reverse diffusion,
samples from the prior distribution p(z) can be decoded into
SGs in a single pass through our Graph Decoder Dγ .

2.3. Scene Graph Anticipation
At inference, we use the observed video portion {I}Fs

0

to forecast complete SGs for the future, unseen frames
{I}Flast

Fs+1
. Following [10], the observed portion is repre-

sented as a sequence of graphs based solely on the visual
features and category information of objects (see Sec. 2.1).
The Graph Encoder Eξ maps the observed graphs into la-
tent representations. Let Zseen = zFs

f=0 denote the sequence
of observed graph latents, which serve as conditioning for
forecasting future latents via the LDM. Future unknown la-
tents are initialized with Gaussian noise and refined through
iterative reverse diffusion, leveraging conditioning from the
observed temporal context. Finally, the Graph Decoder Dγ

maps the predicted latents to complete (objs + rels) SGs.

3. Experimental Setup
Dataset. We evaluate our approach on the Action
Genome (AG, [7]) dataset, which provides dense SG anno-
tations for human-object interactions in videos. It includes
35 object and 25 relationship categories. Relationships are
grouped into three types: attention (e.g., looking at), spatial
(e.g., in front of ), and contacting (e.g., sitting on). Multiple
relationships may coexist between two entities.
Evaluation metrics. Evaluating performance for SGA is
non-trivial. We propose a Recall@K metric for Object Dis-
covery, named Object Recall, with K ∈ {5, 10, 20} based
on the average number of objects per scene. This metric
quantifies the fraction of ground-truth objects in the top-K
predictions. Object Recall measures the ability to predict
relevant objects but does not penalize the prediction of ob-
ject categories absent from the ground truth scene graph.

To address this, we adopt the Jaccard index defined as
Jsim = 1

|Flast−Fs|
∑Flast

f=Fs+1

|Ôf∩Of |
|Ôf∪Of |

, which quantifies the

similarity between the predicted set of objects Ôf and the
corresponding ground truth ones Of . To evaluate relation-
ships prediction, we follow [10] and employ the Recall@K
metric to evaluate predicted triplets (Triplets Recall) - with
K ∈ {10, 20, 50}. This metric measures the proportion of
ground truth relationship triplets present in the top-K pre-
dictions, providing a robust assessment of our model’s ac-
curacy in forecasting relationships. We report Triplet Re-
call under two scenarios: (i) With Constraint, allowing only
one relation per node pair; and (ii) No Constraint, allow-
ing multiple relations per pair. Evaluation Settings. We
follow the GAGS and PGAGS protocols from [10], evaluat-
ing performance across different observation fractions F ∈
0.3, 0.5, 0.7, 0.9. The two settings differ in the supervision
available for the observed portion: GAGS uses ground-truth
object categories and bounding boxes, while PGAGS uses
object categories from a pre-trained Faster R-CNN [12].
SGA Comparison. We compare FORESCENE with base-
lines introduced in SceneSayer [10], which adapted STTran
and DSGDetr to the SGA setting to predict the future re-
lationships between a fixed set of objects. In addition, we
compare with SceneSayer itself [10], which is explicitly de-
signed for scene graph anticipation and models the tempo-
ral evolution of relationships between objects fixed to the
ones from the last observed frame by menas of differential
equations (Ordinary or Stochastic Differential Equations).
Thanks to its generative nature, FORESCENE can produce
diverse future activity predictions from the same video ob-
servation by varying the diffusion seed. We report results
for single-sample (r = 1) and multi-sample settings (r = 5,
r = 10), selecting the best predictions using the R@10
Triplets (No Constraint) metric.

4. Results

Scene Graph Anticipation The results for the GAGS set-
ting are presented in Tab. 1. In terms of Object Discovery,
the assumption of object continuity across frames appears
to be a reasonable fit for this setting of the AG dataset. No-
tably, FORESCENE is able to learn when to preserve ob-
ject nodes, maintaining entities when changes are unlikely,
as reflected by its high Object Recall when a large portion
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Table 1. SGA results in GAGS setting. Values in gray assume
object continuity. Top results are bold, second-best are underlined.

Objects Triplets Triplets
Discovery With Constraint No Constraint

F Method Jsim R@5 R@10 R@20 R@10 R@20 R@50 R@10 R@20 R@50

0.3

STTran++ 0.69 - - - 30.7 33.1 33.1 35.9 51.7 64.1
DSGDetr++ 0.69 - - - 25.7 28.2 28.2 36.1 50.7 64.0
SceneSayerODE 0.69 - - - 34.9 37.3 37.3 40.5 54.1 63.9
SceneSayerSDE 0.69 - - - 39.7 42.2 42.3 46.9 59.1 65.2

FORESCENE (r=1) 0.61 73.0 76.3 79.7 36.4 40.1 43.5 42.6 52.5 58.6
FORESCENE (r=5) 0.67 77.6 80.5 83.2 42.7 46.4 49.7 50.6 60.4 66.2
FORESCENE (r=10) 0.68 78.7 81.4 83.8 44.3 47.9 51.2 52.6 62.2 67.8

0.5

STTran++ 0.73 - - - 35.6 38.1 38.1 40.3 58.4 72.2
DSGDetr++ 0.73 - - - 29.3 31.9 32.0 40.3 56.9 72.0
SceneSayerODE 0.73 - - - 40.7 43.4 43.4 47.0 62.2 72.4
SceneSayerSDE 0.73 - - - 45.0 47.7 47.7 52.5 66.4 73.5

FORESCENE (r=1) 0.65 77.6 81.0 83.7 40.3 44.4 47.9 46.8 58.2 65.3
FORESCENE (r=5) 0.70 82.5 85.2 87.3 47.3 51.2 54.6 55.6 66.6 73.3
FORESCENE (r=10) 0.72 83.5 86.1 88.0 49.1 52.9 56.2 58.0 68.5 74.9

0.7

STTran++ 0.81 - - - 41.3 43.6 43.6 48.2 68.8 82.0
DSGDetr++ 0.81 - - - 33.9 36.3 36.3 48.0 66.7 81.9
SceneSayerODE 0.81 - - - 49.1 51.6 51.6 58.0 74.0 82.8
SceneSayerSDE 0.81 - - - 52.0 54.5 54.5 61.8 76.7 83.4

FORESCENE (r=1) 0.72 84.1 86.9 89.0 47.9 52.0 55.5 55.5 68.0 75.2
FORESCENE (r=5) 0.78 88.5 90.5 92.0 55.0 58.7 62.2 65.2 76.3 82.4
FORESCENE (r=10) 0.79 89.4 91.4 92.7 56.7 60.4 63.8 67.7 78.1 84.0

0.9

STTran++ 0.89 - - - 46.0 47.7 47.7 60.2 81.5 92.3
DSGDetr++ 0.89 - - - 38.1 39.8 39.8 58.8 78.8 92.2
SceneSayerODE 0.89 - - - 58.1 59.8 59.8 72.6 86.7 93.2
SceneSayerSDE 0.89 - - - 60.3 61.9 61.9 74.8 88.0 93.5

FORESCENE (r=1) 0.82 91.3 93.2 94.3 55.7 59.6 63.8 67.4 80.1 86.5
FORESCENE (r=5) 0.87 94.7 96.0 96.8 63.4 66.9 70.7 77.5 87.0 92.2
FORESCENE (r=10) 0.87 95.1 96.5 97.1 64.5 68.0 71.7 79.7 88.1 92.9

of the video is observed (F = 0.9). In terms of Triplet
Recall our method is more accurate, outperforming existing
solutions. Tab. 2 presents results for the more challeng-
ing PGAGS setting, which relaxes the dependence on object
annotations for the observed frames. Here, the object conti-
nuity assumption proves less effective, as object categories
are less reliable coming from model predictions rather than
ground truth annotations. Consequently, the ability to fore-
cast objects helps to correct potential recognition errors ac-
cording to the activity context and improves overall perfor-
mance, leading our method to outperform all baselines.

5. Conclusion
We present FORESCENE, an approach to tackle Scene
Graph Anticipation in realistic scenarios by explicitly mod-
eling the joint temporal evolution of objects and rela-
tions over time. Preliminary results highlight the impor-
tance of such jointly modeling. As shown in our ex-
periments, FORESCENE consistently outperforms existing
baselines, demonstrating its effectiveness in predicting real-
istic human-object interactions.
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