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Fig. 1: We study the task of “Occluded Grasping” with
extrinsic dexterity. The goal of this task is to reach an
occluded grasp configuration (indicated by a transparent
gripper attached to the object in the top row). The figure
shows the emergent behavior of the trained policy which
uses the wall of the bin to rotate the object to reach a grasp.

Abstract— A robot can solve more complex manipulation
tasks beyond the limitations of its body if it can utilize the
external environment such as pushing the object against the
table or a vertical wall. These behaviors are known as “Extrinsic
Dexterity.” Previous work in extrinsic dexterity usually relies on
hand-crafted primitives or careful assumptions about contacts.
In this work, we explore the use of reinforcement learning
(RL) on the extrinsic dexterity with the task of “Occluded
Grasping”. The goal of the task is to grasp the object in
configurations that are initially occluded; the robot must
interact with the object and the extrinsic environment to move
the object into a configuration from which these grasps can
be achieved. To accomplish this task, we train a policy to
co-optimize pre-grasp and grasping motions; this results in
emergent behavior of pushing the object against the wall
in order to rotate and then grasp it. We demonstrate the
generality of the learned policy across environment variations
in simulation and evaluate it on a real robot with zero-shot
sim2real transfer. Videos can be found at https://sites.
google.com/view/grasp-ungraspable.

I. INTRODUCTION

Humans have dexterous multi-fingered hands; however,
similarly dexterous robot hands are expensive and fragile.
Instead, robots can achieve dexterous manipulation with
a simple hand by leveraging the environment, known as
“Extrinsic Dexterity” [1]. For example, a simple gripper can
rotate an object in-hand by pushing it against the table [2], or
lifting an object by sliding it along a vertical surface [3]. With
the exploitation of external resources such as contact surfaces
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or gravity, even simple grippers can perform skillful maneu-
vers that are typically studied with a multi-fingered dexterous
hand. Different from a common practice of considering the
robot and an object of interest in isolation, extrinsic dexterity
focuses on a holistic view of considering the interactions
among the robot, the object, and the external environment.

Previous work in extrinsic dexterity has demonstrated a
variety of tasks such as in-hand reorientation with a simple
gripper, prehensile pushing or shared grasping [1], [2],
[3]. However, the underlying approaches come with several
limitations such as relying on hand-designed primitives,
making assumptions about contact locations and contact
modes, or requiring specific gripper design. Instead, we use
reinforcement learning (RL) to remove these limitations.
With reinforcement learning, the agent can learn a closed-
loop policy of how the robot should interact with the object
and the environment to solve the task. In addition, when
trained with domain randomization, the policy can learn to
be robust to different variations of physics. These properties
of RL can enable extrinsic dexterity in a more general setting.

We study “Occluded Grasping” as an example of a task
that requires extrinsic dexterity. Occluded Grasping is de-
fined with the goal of grasping an object in poses that are
initially occluded. Consider, for example, a robot that needs
to grasp a cereal box lying on its side on a table; the desired
grasp is not reachable because it is partially occluded by
the table (Figure 1). To achieve this grasp with a parallel
gripper, the robot might rotate the object by pushing it against
a vertical wall to expose the desired grasp. This task is in
contrast with existing grasping tasks which mostly focus on
reaching an unoccluded grasp in free space with a static or
near-static scene [4], [5], [6]. Prior work has attempted to
design pre-grasp motions of exposing occluded grasp poses
with primitives or special gripper design [7]. In our work, the
pre-grasp motion is an emergent behavior through a novel
reward function that co-optimizes exposing the grasp pose
and achieving the grasp pose. In addition, we frame the
task as a goal-conditioned RL problem, in which the policy
is conditioned on the selected grasp. During training, the
policy learns to reach as many grasp poses as possible with
an automatic curriculum [8]. During testing, given a set of
grasps, the policy can select one of them as a goal to execute.

In summary, we present a system for “Occluded Grasp-
ing” as an example of the combination of reinforcement
learning and extrinsic dexterity. We provide a comprehensive
evaluation of the system both in simulation and on a real
Franka Emika Panda robot. We showcase the importance of
each components and the generalization of the learned policy
across environment variations in simulation and real.

https://sites.google.com/view/grasp-ungraspable
https://sites.google.com/view/grasp-ungraspable


II. RELATED WORK

A. Extrinsic dexterity

“Extrinsic dexterity” is a type of manipulation skills that
enhance the intrinsic capability of a hand using external
resources including external contacts, gravity, or dynamic
motions of the arm [1]. Previous work in extrinsic dexterity
has demonstrated complex manipulation tasks with a simple
gripper including in-hand reorientation [1], [9], prehensile
pushing [2], [10], shared grasping [3], etc. In this work,
we study a different task that can further demonstrate the
benefit of extrinsic dexterity. Extrinsic dexterity usually
involves contact-rich behaviors which poses difficulties in
planning and control. Previous work has used hand-crafted
trajectories [1], task-specific motion primitives [9], [3] or
motion planning over contact mode switches [2], [10], [11],
[12]. They come with the restrictions on the contact modes
between the finger and the object which will limit the motion
and the design of the gripper. In this work, we take an
alternative approach of using reinforcement learning to learn
a closed-loop policy that considers both planning and control.

B. Reinforcement Learning for Manipulation

Previous work that uses reinforcement learning for ma-
nipulation tasks treat the object and the robot in isolation
without considering extrinsic dexterity [13], [14], [8]. In
our work, we demonstrate that the agent can benefit from
extrinsic dexterity when solving the occluded grasping task.

C. Grasping

Grasping has been an important task in robot manipulation
and has been studied from various aspects.

Grasp generation: One area of study in grasping is to
generate stable grasp configurations [15], [16], [17], [4], [18],
[5], [19]. We assume that we will use the grasps generated
by any grasp generation method as input to our system.

Grasp execution: To execute a grasp following grasp
generation, a motion planner is usually used to generate a
collision-free path towards the desired grasp configuration.
If there is a set of desired grasps, integrated grasp and
motion planning could be considered [20], [21], [6]. [22]
uses imitation learning and reinforcement learning to finetune
the trajectories from the planner. All of these works aim at
achieving the unoccluded grasp configurations in static or
near-static scenes. Instead, our work focuses on a comple-
mentary direction of achieving occluded grasp locations by
interacting with the object of interest.

Pre-Grasp manipulation: To deal with occluded grasp
configurations, prior work has studied pre-grasps as a
preparatory stage [23], [24], [25], [7]. [7] is the most related
to our work, but they use a specially designed end-effector to
perform the pre-grasp motion and then use a second gripper
to grasp the object. We demonstrate that the full grasping
task can be solved with a single gripper without special
requirements on the end-effector. These previous work typ-
ically separates pre-grasp motion and grasp execution into
two stages and impose restrictions on the transitions of the
stages. In our work, we co-optimize pre-grasp and grasp

execution within an episode without explicit separation of the
stages. The pre-grasping behavior emerges through learning
without restrictions on object or gripper motions.

End-to-end grasping: Another line of work use an end-
to-end pipeline for grasping with reinforcement learning [26]
or imitation learning [27]. The policy performs an arbitrary
grasp of the object without the possibility of specifying a
certain set of grasps. Also, there has not been any emergent
behavior of exposing occluded grasp pose in existing work.

III. TASK DEFINITION: OCCLUDED GRASPING

Our work is designed to be used in a pipeline that follows
a grasp pose generation method such as [4], [5], [19]. Given
a rigid object, we assume a desired grasp g as input to the
system. A grasp configuration g ∈ SE(3) is defined to be
the desired 6D pose of the end-effector in the object frame
O. The grasp is fixed with respect to the object, and it will
move when the object moves. On the top row of Figure 1, an
example of a desired grasp is shown as a transparent gripper
attached to the object. The goal of our work is to learn grasp
execution which is to move the end-effector E close to a
given g with a pose difference metric ∆(g,E). In this paper,
the task is defined to be successful if the position difference
∆T (g,E) and the orientation difference ∆θ(g,E) are less than
the pre-defined thresholds εT and εP respectively at the end
of an episode. After successfully reaching the desired grasp
pose, the gripper will be closed to complete the grasp. We
define an “Occluded Grasping” task to be the case where the
grasp g is initially occluded (not in free space). When a set
of grasps G = {gi} are available, we may select a grasp gi
from the set G to execute (Appendix VII).

IV. LEARNING OCCLUDED GRASPING WITH
REINFORCEMENT LEARNING

We study the use of reinforcement learning (RL) to train
a closed-loop policy for the occluded grasping task defined
above. In this section, we will first discuss important design
choices of the system considering a single target grasp
including the extrinsic environment and the design of the
RL problem. Then, we will also discuss how to improve
the generalization of the policy using Automatic Domain
Randomization [8]. Training and evaluation procedures that
process a set of grasps can be found in Appendix VII.

A. Extrinsic Environment

To showcase the benefits of extrinsic dexterity from object-
scene interaction in this task, we construct the scene of the
task as having an object in a bin, instead of leaving the object
on the table (Figure 2). In Section V, we will show that the
emergent policy will utilize the wall of the bin to rotate the
object. Without the wall, it is not able to find a strategy that
can successfully perform the task.

B. RL Problem Design

We discuss the design of the RL problem in this section.
More details can be found in Appendix I. We train a goal-
conditioned policy π(at |st ,g) for this task where the goal is a



Fig. 2: E denotes the 6D pose of the end-effector. g denotes
the target grasp defined in the object frame. Marker locations
mi in green on the target grasp are used to calculate the
occlusion penalty.

target grasp configuration g. st includes the pose of the end-
effector and the object pose. The action space of the policy is
the delta pose of the end-effector ∆E which will be sent to a
low-level Operational Space Controller (OSC). The choice of
OSC allows compliant movement for such a contact-rich task
(See Appendix I for more discussion). The reward function
is designed to co-optimize the pre-grasp motion as well as
grasp execution:

r = αD(g,E)+β ∑
i

P(mi) (1)

where
D(g,E) = α1∆T (g,E)+α2∆θ(g,E) (2)

α1, α2 and β are the weights for the reward terms. The first
term of Equation 1, D(g,E), is the pose difference between
the target grasp and the current end-effector pose. This term
is expanded in Equation 2 to include the translational and
rotational distance, as described in Section III. The second
term of Equation 1 is the target grasp occlusion penalty
which is to penalize the gripper if it is occluded by the
table. We set several marker points on the target gripper
(Figure 2) denoted as mi and compare the height of the
markers with the table top. If a marker is below the table
top, the height difference will be used as the penalty. Having
the occlusion penalty can effectively reduce the local optima
where the gripper will reach close to the target grasp (which
is occluded) without trying to move the object.

To summarize, the first term of Equation 1 is to optimize
for successful grasp execution and the second term is to
encourage pre-grasp motions to move the object such that
the grasp g becomes unoccluded. An important difference
from previous work is that pre-grasp and grasp execution
components are optimized together instead of being sepa-
rated into two stages. We did not have any reward terms that
are explicitly related to extrinsic dexterity. In our system, the
use of extrinsic dexterity is an emergent behavior of policy
optimization given our objective and environmental setup.

C. Policy Generalization

One benefit of using RL is that it generates a closed-
loop policy instead of an open-loop trajectory. A closed-
loop policy can ideally generalize to a wider range of
state distributions which implies better performance over the

(a) Ablations (b) Policy Generalization

Fig. 3: Left: Ablations on the reward function and the walls.
Right: Evaluation on the generalization of the policies by
sampling 100 environments.

variations of the environment properties such as object size,
density, and friction coefficient, etc. The generalization can
be improved further by training with domain randomization
on the environment variations. This can also benefit sim-
to-real transfer. We use Automatic Domain Randomization
(ADR) [8] to improve the generalization of the policy. More
implementation details can be found in Appendix II.

V. EXPERIMENTS

A. Training Curves and Ablations

Details of the experiment setup can be found in Ap-
pendix III. In this section, we train the policies with a
single desired grasp in the default environment without
randomization of the physical parameters. From the training
curve shown in Figure 3a, the policy trained with the
complete system can reach a success rate of 1 before 4000
episodes which corresponds to 160000 environment steps.
We performed an ablations analysis on the design choices
to determine which components were the most important
to the success of the system. First, we experiment with
removing the wall of the bin to evaluate the importance of
using the wall for extrinsic dexterity. As shown in Figure 3a,
the resulting policy has 0% success rate and pushes the
object outside of the table. Second, we performed an ablation
on the reward function. When we remove the grasp pose
occlusion penalty (the second term of Equation 1), the policy
is more likely to get stuck at a local optima of only trying
to match the position and orientation of the gripper and thus
the average success rate across random seeds becomes lower.
An alternative is to use a {−1,0} sparse reward according
to the success criteria defined in Section III instead of the
reward that we define in Equation 1. With a sparse reward,
the policy learns much slower. Training this task with sparse
reward makes the exploration task of the policy much more
difficult.In addition, ablations on the choice of controller can
be found in Appendix V. We also include results for multi-
grasp training and multi-grasp selection in Appendix VII.

B. Emergent Behaviors

Figure 1 shows a typical strategy of the successful policies.
The strategy involves multiple stages of contact switches.
The gripper first moves close to the object and makes contact



on the side of the object with the left finger. It then pushes
the object against the wall to rotate it. During this stage, the
gripper maintains a fixed or rolling contact with the object.
The object is usually under sliding contact with the wall
and the ground of the bin at some of the corners. After the
gripper has rotated a bit further and the right fingertip is
below the object, the left finger will slide on the object or
simply leave the object to let the object drop on the right
finger. After the object lies on the right finger, the gripper
will try to match the desired pose more precisely. At this
point, the policy has executed the grasp successfully and it is
ready to close the gripper. We include more visualizations of
emergent behaviors in Appendix IV, including another type
of successful strategy, local optima behavior and multi-grasp
behaviors. Videos can be found on the website 1.

C. Policy Generalization

In this section, we analyze the performance of the policy
across environment variations. The robustness over environ-
ment variations might come from the policy being closed-
loop and the randomization of the physical parameters during
training. Thus, we evaluate over open loop trajectories (Open
Loop), policies trained over a fixed environment (Fixed
Env) and policies trained with ADR (With ADR). The open
loop trajectories are obtained by rolling out the Fixed Env
policies in the default environment. We also turn off the
randomization of the initial gripper pose for Open Loop;
otherwise, the success rate is too low to compare with even in
the default environment. We sample 100 environments from
the training range of the ADR policies (Appendix II) and
plot the percentage of environments that are above a certain
performance metric (Figure 3b). The closed-loop policies are
much better than open-loop trajectories across environment
variations. The policy trained over a fixed environment is
able to generalize to a wide range of variations. With ADR,
the generalization can be improved even further. We also
modify the important physical parameters one at a time to un-
derstand the sensitivity of these parameters in Appendix VI.

D. Real-robot experiment

To further evaluate the generalization of the policies
and demonstrate the feasibility of the proposed system,
we execute the policies on the real robot with zero-shot
sim2real transfer over 6 test cases shown in Figure 4. There
are four box-shape objects with different sizes, density and
surface friction. Box-1 has the same size and density as the
default object trained in simulation. Box-2 is larger than
the training range in the y-direction. Box-3 is larger than
the training range in the z-direction. The surface friction
are very different for different boxes. For example, Box-
3 has tape on its surface which has much higher friction
than the others (which can be shown in the videos on the
website1). However, we do not have access to the true friction
coefficients of the objects to compare with the values in
simulation. In addition, we evaluate Box-1 with additional
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Fig. 4: Test cases for real robot experiments.

TABLE I: Real robot evaluations.

Object-ID Size
(cm)

Weight
(g)

Success
w/ ADR

Success
w/o ADR

Box-1 (15.0, 20.0, 5.0) 128 10/10 10/10
Box-1 + 4 erasers (15.0, 20.0, 5.0) 237 8/10 7/10
Box-1 + 8 erasers (15.0, 20.0, 5.0) 345 6/10 4/10
Box-2 (15.4, 29.2, 5.8) 130 8/10 8/10
Box-3 (15.3, 22.2, 7.4) 113 10/10 4/10
Box-4 (15.3, 22.2, 7.4) 50 7/10 0/10
Average 0.82 0.55

weights by putting four or eight erasers inside of the box.
Note that the erasers will move in the box during execution,
which is not modeled in simulation. We evaluate two types
of single grasp policies trained in simulation: one policy is
trained with Automatic Domain Randomization as described
in Section IV-C; another policy is trained on a fixed default
environment without domain randomization.

We evaluate 10 episodes for each test case and summarize
the results in Table I. Videos of the real robot experiments
can be found on the website1. Overall, the policy with ADR
achieves a success rate of 82% while the policy without ADR
achieves 55%. ADR effectively improves the performance
over a wider range of object variations. Note that both
policies are evaluated on out-of-distribution objects: Box-
1 with 8 erasers, Box-3 and Box-4 are out of the training
distribution of ADR (See Appendix II); All of the test cases
except the first one (Box-1) are out-of-distribution for the
policy without ADR. This demonstrates the robustness of
the closed-loop policies of the proposed pipeline on such a
dynamic manipulation task.

VI. CONCLUSION

We study the “Occluded Grasping” task of reaching a
desired grasp configuration that is initially occluded. With
a parallel gripper, the robot has to use extrinsic dexterity to
solve this task. We present a system that learns a closed-
loop policy for this task with reinforcement learning. In
the experiments, we demonstrate that the wall, the choice
of controller, and the design of the reward function are all
essential components. The policy can generalize across a
wide range of environment variations and can be executed
on the real robot. One potential extension of our work is to
train the policy with a wide variety of object shapes which
may require image-based policies. Also, the pipeline can
potentially be applied to other extrinsic dexterity tasks.

https://sites.google.com/view/grasp-ungraspable
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APPENDIX I
MORE DETAILS OF RL PROBLEM DESIGN

Observations: We train a goal-conditioned policy
π(at |st ,η) for this task where the goal η is a target grasp
configuration g. Note that the policy only takes one grasp as
input but we will discuss how to deal with a set of grasps
in Appendix VII. st includes the pose of the end-effector
in the world frame W E and the object pose in the world
frame W O. We also include the pose of the end-effector in
the object frame OE = (W O)−1(W E) because we found that
it sometimes speeds up learning. Each pose is represented as
a 3D translation vector and a 4D quarternion representation
of the rotation. In summary, the input to the policy includes
(g,W E,W O,OE) which has a dimension of 28 in total.

Actions: An outline of the policy execution pipeline is
shown in Figure 5. The action space of the policy is the delta
pose of the end-effector ∆E in its local frame represented by
a vector of translation p∈R3 and a 3D vector of rotation q∈
SO(3) with axis-angle representation. Thus, the dimension of
the action space is 6. ∆E and the current gripper pose E form
a desired pose Ed at timestep t which will be sent to a low-
level Operational Space Controller which will be discussed
in the next section.

If the corresponding joint configuration of the desired pose
is going to reach joint limits, we will overwrite the policy
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Fig. 5: Outline of policy execution: Given the goal and the observation, the policy outputs a delta movement of the end-
effector. If the desired pose is within the joint limit of the robot, it will be sent to the lower level controller.

action to output the desired pose of the previous timestep to
the low-level controller. In detail, we use the Jacobian J to
estimate the joint configuration of the desired pose:

θ
t+1
joints = θ

t
joints + J−1 ·∆E (3)

where θ joints are the joint angles. If any joint in θ
t+1
joints is close

to the limit, the low-level controller will use the previous
desired pose instead.

Low-level controller: We use Operation Space Control
(OSC) as the lower-level controller to achieve the desired
pose [28]. Given a desired pose of the end-effector, OSC
first calculates the corresponding force and torque at the
end-effector to minimize the pose error according to a PD
controller with gain Kp and Kd . Then, the desired force and
torque of the end-effector will be converted into desired joint
torques according to the model of the robot. OSC will operate
at a higher frequency (100Hz) than the policy π (2Hz).

This choice of controller is very important for this task
due to the fact that we expect the agent to use extrinsic
dexterity to solve the task which involves contacts among the
gripper, the object and the bin. There are two benefits of OSC
in contact-rich manipulation. First, being compliant in end-
effector space allows safe execution of the motions without
smashing the gripper on the objects or the bin. Limiting the
delta pose and selecting proper gains Kp, Kd will limit the
final force and torque output of the end-effector. If we use a
controller that is compliant in the joint configuration space
instead, we will not have direct control over the maximum
force the end-effector might have on the object and the
bin. Second, as shown in [29], using OSC as the low-level
controller might speed up RL training and improve sim2real
transfer for contact-rich manipulation.

APPENDIX II
DETAILS OF AUTOMATIC DOMAIN RANDOMIZATION

As discussed in Section IV-C, we use Automatic Domain
Randomization [8] to improve policy generalization across
environment variations. In ADR, the policy is first trained
with an environment with very little randomization, and then
we gradually expand the variations based on the evaluation
performance. For a set of environment parameters λi, each λi
is sampled from a uniform distribution λi ∼U(φ L

i ,φ
H
i ) at the

beginning of each episode. During training, the policy will
be evaluated at these boundary values λi = φ L

i or λi = φ H
i .

If the performance is higher than a threshold, the boundary
value will be expanded by an increment ∆. For example,

if the performance at λi = φ H
i is higher than the threshold,

the training distribution becomes λi ∼U(φ L
i ,φ

H
i +∆) in the

next iteration. Compared to directly training the policy with
the entire variations, Automatic Domain Randomization can
reduce the need of manually tuning a suitable range of
variations for each environment parameter.

Table II summarized the simulation parameters in the
experiment. They start from a single initial value and grad-
ually expand to a wider range according to the pre-specific
increment step +∆ on the upper bound and the decrement
step −∆ at the lower bound. We include the final range
from ADR expansion in the last column. These ranges are
used when we sample 100 environments for evaluation in
Section V-C. All the parameters are uniformly sampled from
these ranges at the beginning of each episode.

Initial Value +∆ −∆ Final Range
Object size x (m) 0.15 0.01 -0.01 [0.14, 0.16]
Object size z (m) 0.05 0.01 -0.01 [0.04, 0.06]
Table friction 0.3 0.1 -0.1 [0.1, 0.5]
Gripper friction 3 / -1 [2, 3]
Object Density (g/m3) 86 86 43 [43, 172]
Action translation scale (m) 0.03 / -0.005 [0.02, 0.03]
Action rotation scale (rad) 0.2 / -0.05 [0.1, 0.2]
Initial distance to wall (m) 0 0.01 / [0, 0.02]
Table offset x (m) 0.5 0.01 -0.01 [0.48, 0.52]
Table offset z (m) 0.07 0.01 0.01 [0.055, 0.075]

TABLE II: Simulation parameters in Automatic Domain
Randomization

APPENDIX III
EXPERIMENT SETUP

Simulation: We build the simulation environment with
Robosuite [30] in the MuJoCo simulator [31]. We use a box-
shaped object in this task with a default grasp location shown
in Figure 1. The object is placed in a bin in front of the robot.
We use single grasp training by default; the results related to
multi-grasp can be found in Appendix VII. Each episode has
a length of 40 timesteps which corresponds to 20 seconds
of real time execution. The initial joint configuration of the
robot is randomized with a Gaussian of 0.02 rad.

Real robot experiment: The policy is trained in the
simulator and zero-shot transferred on a physical Franka
Emika Panda robot. The code for controlling the robot is
built on top of FrankaPy [32]. For real robot experiments,
we use Iterative Closest Point (ICP) for pose estimation of
the object which matches a template point cloud of the object
to the current point cloud [33]. An example of ICP result is
shown in Figure 7.
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Fig. 6: Emergent behavior of the policy for the occluded grasping task involves multiple stages of contact mode transitions
among the gripper, the object and the bin. The figure shows the corresponding stages in simulation versus the real robot
execution of the policy.

Fig. 7: Illustration of object pose estimation with ICP at
three different timesteps of an episode. The blue points are
observed point cloud which includes both the gripper and the
object. The red points are the template model of the object.

Evaluation metrics: We compare the policies across 5
random seeds of each method and plot the average per-
formance with standard deviation across seeds. Our main
evaluation metric is the success rate at the final step of the
episode computed as 1(∆T < 3cm) · 1(∆θ < 10deg) (See
Section III for definitions). We use 10 episodes for each
evaluation setting.

Implementation details: We use Soft Actor Critic [34] to
train the RL policy with the impementation from rlkit. Both
the policy network and the Q-function are parameterized as a
multi-layer perceptron (MLP) with 3 layers of 512 neurons.

APPENDIX IV
ADDITIONAL RESULTS ON EMERGENT BEHAVIORS

In Section V-B, we discuss a typical emergent strategy of
solving this task as a result of the design of the full system.
Figure 6 includes a more detailed view of this strategy across
multiple stages in simulation and on the real robot.

One of the key decisions in this strategy is to use the left
finger to rotate the object instead of the right finger. One
might suppose an alternative approach which is to use the
right finger to scoop the object against the wall and then
directly roll the finger underneath the object to reach the

(a) Local optima: The gripper uses the right finger to lift the object
and get stuck at a local optima.

(b) Standing object: One of the successful strategies is to flip the
object until it stands on the side and then reach the grasp.

Fig. 8: More visualizations on the emergent behavior of the
policies.

grasp. However, this strategy is not physically feasible on
the parallel gripper due to the limited degree of freedom
of the finger. We observe that the policies that follow this
strategy during exploration usually get stuck at a local optima
without successfully reaching the grasp (Figure 8a).

Another type of successful strategy from some of the seeds
is to flip the object to stand on its side and then move to the
grasp (Figure 8b). This strategy overfits to the box object
because it relies on the fact that the object remains stable
after the flip. If the agent is trained on a more diverse set
of objects without such stable poses, it might learn to avoid
this strategy; however, for a box object, this is also a viable
approach.



Fig. 9: Ablations on the choice of controller.

Fig. 10: Evaluation on the generalization of the policies by
changing one physical parameter at a time.

APPENDIX V
ABLATIONS ON LOW-LEVEL CONTROLLER

We compare our method to different types of controllers to
demonstrate that the choice of Operational Space Controller
(OSC) is critical for extrinsic dexterity. From Figure 9, both
joint torque and joint position control lead to worse perfor-
mance which indicates the importance of using end-effector
coordinates for the action space. We also try increasing the
gain of OSC so that it becomes roughly equivalent to position
control. The success rate becomes lower which demonstrates
that being compliant is important for the success of contact-
rich tasks in addition to the importance of compliance for
safety considerations.

APPENDIX VI
MORE RESULTS ON POLICY GENERALIZATION

To further analyze the robustness of the policy across
environment variations, we modify the important physical
parameters one at a time to understand the sensitivity of
the policies to these parameters. Following Section V-C,
we include the comparison of open loop trajectories (Open
Loop), policies trained over a fixed environment (Fixed Env)
and policies trained with ADR (With ADR). The closed-loop
policies with ADR can deal with much wider variations of
physical parameters than open loop trajectories.

(a) MultiGrasp-Front: When the desired grasp is at the corner,
the policy flips the object by pushing it on the side and then move
close to the grasp.

(b) MultiGrasp-Side:The policy can use another side of the wall
to rotate the object and reach the desired grasp.

Fig. 11: Visualizations of the multi-grasp policies.

APPENDIX VII
MULTIGRASP TRAINING AND SELECTION

In previous sections, we only consider the scenario when
a single grasp is given for each episode. In this section, we
consider the scenario in which a set of desired grasp config-
urations G = gi are given. We will first discuss the method
for multi-grasp training and selection and then provide the
experimental results.

MultiGrasp Training with Curriculum: During training,
we aim at covering as many grasp configurations from Gtrain
as possible. The straight-forward approach is to uniformly
sample a goal g∼Gtrain for each episode. However, previous
work has shown that learning directly over such a diverse set
of goals might create a difficulty for policy learning [35],
[36]. Instead, we use an automatic curriculum following [8]
to gradually expand the set of grasps to be trained with.
We start the training with just a single fixed grasp; after the
policy has achieved a success rate larger than a threshold, it
will be trained on a slightly larger set with grasps close to
the initial grasp location.

MultiGrasp Selection: During testing, a set of grasps
Gtest is provided. Our method selects the best grasp within
the set that maximizes the learned Q-function for the current
observation: g∗ = argmaxg∼Gtest Q(st ,at ,gt). Selecting the
best grasp from the set (instead of just using a single grasp)
can improve the performance of the grasping task, following
previous work in integrated grasp and motion planning [20],
[21], [6]. The learned Q-function can select the grasp that is
most easily reached with the trained policy; which grasp is
selected thus depends both on the environmental configura-
tion as well as how well the policy has learned to achieve
different grasp configurations.

MultiGrasp Training Results: In this experiment, we
train the policy to reach a range of grasp locations with
curriculum as described above. Given the box object, we
generate the grasp configurations around the box and pa-
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Fig. 12: Multi-grasp training: Left: Visualization of the
range of grasp configurations and the grasp IDs used in
multi-grasp training. Right: Performance of the multi-grasp
policies across grasp configurations.

rameterized the grasps into a continuous scalar grasp ID in
the range of [0,4] (Figure 12a). Grasp ID 1.5 is the default
grasp we use in the single grasp experiments. The policy
is trained with an automatic curriculum. When the success
rate of policy on a boundary case of the training range is
above 0.8, it will expand the range of grasps by 0.25. For
example, if the policy is currently training with grasps [1,2],
and the success rate evaluated at grasp ID 1 is above 0.8, the
new training range will be [0.75,2]. We train two types of
multi-grasp policies starting from two different grasp poses:
MultiGrasp-Front which starts the training from ID 1.5 and
MultiGrasp-Side which starts the training from ID 2.5. As a
baseline, we also train a policy by uniformly sampling from
the entire set of grasps without using ADR, named All Grasp.

Figure 11a and Figure 11b include qualitative examples
of the behaviors of MultiGrasp-Front and MultiGrasp-Side.
The policy will rotate the object first and then try to match
the pose more precisely. MultiGrasp-Side will use a different
wall of the bin to rotate the object than MultiGrasp-Front.
Figure 12b shows the performance of these policies evaluated
over across grasp configuration IDs. We found that both
MultiGrasp-Front and MultiGrasp-Side are able to expand
from a single grasp to most of the grasps on one side of the
object based on the curriculum. The policies have difficulties
in reaching other sides potentially due to exploration issues
or limited policy capacity. It may require a completely
different strategy to reach different grasp configurations
(Figure 11) which is difficult to learn with a single policy
(related to [35]). In contrast, All Grasp has difficulties in
learning any of the grasp configurations, thus showing the
importance of using a curriculum for multi-grasp training.

MultiGrasp Selection Results: To compare grasp selec-
tion methods, at the beginning of each episode, we sample
50 grasp configurations from the training range of the policy.
The grasp selection methods will use it as the set of desired
grasps. We evaluate the following grasp selection options:

• ArgmaxQ: passes all the possible grasp configurations
into the Q-function and select the one that corresponds
to the highest Q-value.

• PoseDiff : selects the grasp by the closest distance to the
current gripper location according to Equation 2 (with

TABLE III: Comparison of grasp selection methods in two
scenarios: front grasps and side grasps. When grasping from
the side, the policy achieves better performance when using
the Q-function to select the grasp.

MultiGrasp-Front MultiGrasp-Side
ArgmaxQ 1.00±0.00 1.00±0.00
ArgmaxQ-t0 1.00±0.00 1.00±0.00
PoseDiff 1.00±0.00 0.96±0.08
PoseDiff-t0 1.00±0.00 0.50±0.43
Uniform 0.54±0.16 0.90±0.06

the same weights as the reward function).
• ArgmaxQ-t0: selects the grasp according to ArgmaxQ

only during the first timestep of the episode instead of
selecting it at every timestep.

• PoseDiff-t0: selects the grasp according to PoseDiff
only during the first timestep of the episode instead of
selecting it at every timestep.

• Uniform: samples a grasp from the set uniformly.
The result is summarized in Table III. For MultiGrasp-

Front, all of the methods other than Uniform achieve 100%
success rate. In this case, the best grasp according to the Q-
function does correspond to the grasp that is the closest to
the gripper at grasp ID 1.5. For MultiGrasp-Side, ArgmaxQ-
t0 has higher success rate than PoseDiff-t0. The policy has
a more complicated maneuver to reach the side grasp so
the Q-function may capture the difficulty of the goal better
than pose difference. At the beginning of the episode, the
Q-function selects ID = 2.5 while the pose difference selects
ID= 2. If we keep this goal throughout the episode, PoseDiff-
t0 has a much lower success rate than the other baselines. If
the policy can select the goal throughout the episode instead
(PoseDiff ), the performance can be improved compared to
PoseDiff-t0.
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