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Abstract

Recent unlearning methods for LLMs are vulnerable to relearning attacks: knowl-
edge believed-to-be-unlearned re-emerges by fine-tuning on a small set of (even
seemingly-unrelated) examples. We study this phenomenon in a controlled set-
ting for example-level unlearning in vision classifiers. We make the surprising
discovery that forget-set accuracy can recover from around 50% post-unlearning
to nearly 100% with fine-tuning on just the retain set—i.e., zero examples of the
forget set. We observe this effect across a wide variety of unlearning methods,
whereas for a model retrained from scratch excluding the forget set (gold standard),
the accuracy remains at 50%. We observe that resistance to relearning attacks
can be predicted by weight-space properties, specifically, L2-distance and linear
mode connectivity between the original and the unlearned model. Leveraging this
insight, we propose a new class of methods that achieve state-of-the-art resistance
to relearning attacks2.

1 Introduction
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Figure 1: Fine-tuning an unlearned model on
just the retain set recovers performance on the
forget set! Results on CIFAR-10 using a forget set
of atypical examples from class ‘airplane’.

Machine unlearning is the problem of removing
the influence of specific training datapoints, the
forget set, from a pretrained model. This was ini-
tially motivated from the perspective of privacy,
the right-to-be-forgotten [3, 33] and data pro-
tection policies [32], and recently applied to a
range of problems, including removing harmful
knowledge [28, 47, 8].

Exact unlearning refers to completely eliminat-
ing the influence of the forget set. This objective
can be achieved by retraining the model without
those datapoints (i.e., retrain from scratch) [2].
However, such a method is computationally pro-
hibitive as it requires retraining the model for
every unlearning request [2]. This issue moti-
vated the development of approximate unlearn-
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ing methods, where the aim instead is to only approximately remove the influence of the given
datapoints [5, 11, 26, 28, 47], in exchange for greater efficiency. While such methods may seemingly
succeed at matching the retrained-from-scratch model on some simple metrics, like the accuracy on
the forget set, it is unclear if they permanently remove the influence of these datapoints [16]. In fact,
evaluating whether they do is a research problem in its own right [16, 42].

In this work, we take a different perspective, focusing on relearning attacks on unlearned models. We
consider tampering attacks [4, 40], where the attacker is able to fine-tune the model weights. This
direction is inspired by a growing set of observations in the context of unlearning “knowledge” in
LLMs: fine-tuning an unlearned model even on seemingly benign data may cause the believed-to-
be-unlearned knowledge to re-emerge [20, 31, 6, 4]. However, these studies are carried out under
conditions that make it difficult to draw clear conclusions. First, these works study unlearning
knowledge, capabilities, or topics, where the problem is inherently under specified. For example,
given a dataset containing knowledge necessary for making bioweapons, the goal may be to fully
remove the capability of constructing bioweapons, while preserving general knowledge of biology.
In this setting, it is hard to draw a clear line between forbidden and permissible knowledge and
pinpoint all training examples responsible for acquiring different types of knowledge. Furthermore,
knowledge is hard to measure, especially due to nuances of natural language, requiring question-
answer evaluation which may be sensitive to the particular phrasing. Finally, because LLMs can
make complex inferences beyond the training set, not all knowledge that is extractable should be
attributed to a failure of unlearning [38]. In many cases, the acquisition of knowledge is natural and
unavoidable, hence, making it difficult to distinguish between the two in these problem settings.

To address these issues, we study relearning attacks in a setting that allows for controlled ex-
perimentation: unlearning specific training examples from (small) vision classification models,
a problem for which a plethora of approximate unlearning methods have been developed and
tested [14, 15, 13, 26, 11, 41, 45, 36]. In example-level unlearning, the gold standard is clear,
namely, to retrain the model without the forget set. As our models are small enough, we can compute
the gold-standard solution and use it as the reference point for comparison. Because we consider clas-
sification, we can also use accuracy as a simple and well-understood measure of performance. These
properties combined allow us to compare the tamper resistance of different unlearning algorithms
with the correct reference point, and therefore draw conclusions about their quality.

We evaluate a range of increasingly-complex unlearning algorithms in this setting and discover a
surprising finding: for numerous unlearning algorithms, the accuracy of the forget set jumps from
around 50% post-unlearning to nearly 100% after fine-tuning the unlearned models on only the
retain set, which is disjoint from the forget set. Fig. 1 shows this phenomenon on CIFAR-10 using
ResNet-18, after having attempted to unlearn a subset of atypical instances of class ‘airplane’. We
note that a model retrained from scratch without the forget set does not exhibit this behaviour, with the
accuracy remaining at 50%. Therefore, the recovery of forget set accuracy can be safely interpreted
as a failure of these algorithms to fully remove the influence of the data points in the forget set.

Our extensive analyses leads to multiple insights. First, unlearning and relearning of typical examples
is trivial, and unlearning methods behave similarly to the gold standard. However, we see a stark
contrast in their respective patterns of behaviour on a forget set of atypical examples. Furthermore,
taking a weight-space view [12], we discover a key characteristic of unlearning algorithms that are
better at resisting these attacks: they yield an unlearned model that is distant from the pretrained
model in the weight-space. Based on this insight, we propose a new class of unlearning algorithms
that are superior in terms of resisting relearning attacks by incorporating terms in their objective that
encourage the unlearned model to move far away from the pretrained model in the weight-space.

To summarize, we make the following contributions in this work:

• We show that unlearning algorithms fail to delete the influence of the forget set, which stays
dormant and can resurface by fine-tuning even on just the retain set.

• We identify a key characteristic of methods that are more robust against relearning attacks,
namely: the unlearned model is distant from the pretrained model in weight space.

• Leveraging this insight, we propose a new class of unlearning methods that attempt to push
the unlearned model far away from the pretrained model. These methods are significantly
more robust against relearning attacks in comparison to unlearning methods that operate
only at the output-level [26] or the representation-level [28, 47].
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2 Background and Related Work

Unlearning. The problem of machine unlearning was introduced by [3]. The goal is to remove
the influence of a “forget set” from a model that was trained on a dataset including that set. This
was motivated by privacy and right-to-be-forgotten policies [32]. The perfect unlearning method,
from the perspective of fully erasing the influence of the forget set, is to simply retrain the model
excluding that set. However, the computationally prohibitive training costs make such an approach
infeasible in most practical cases. [2] propose to shard the dataset, and train an ensemble model over
it, allowing to selectively retrain only the affected parameters. However, the computational cost is
still prohibitive in the worst case, while also leading to poorer performance in some cases due to the
use of specialized architectures. These issues motivated the development of approximate methods
that accept imperfect unlearning in exchange for greater efficiency. This is the family of methods we
focus on in this work. The goal in approximate unlearning is to post-process the trained model as
efficiently as possible in order to closely match the model which is retrained from scratch using only
a small amount of model fine-tuning [21, 5, 11, 26, 28, 47, 46, 42]. This is a challenging problem as
imperfect attempts to erase the influence of the forget set post-hoc may have a number of unwanted
side-effects, such as harming the overall utility of the model [42].

Unlearning quality metrics. Since most approximate unlearning methods that are applicable to
deep models do not come with theoretical guarantees about the quality of their approximation, we are
required to estimate how well they approximate retraining from scratch empirically. This is a research
problem in and of itself, and current rigorous metrics are very computationally expensive [42, 16].
Furthermore, unlearning entails fundamental trade-offs, such as between forgetting and maintaining
the model’s utility. This requires a multifaceted evaluation metric that captures relevant factors aside
from forgetting quality. Commonly, in vision classification, the accuracy on the retain set and the
accuracy on the test set are used to measure model utility. In similar spirit to our work, time to
relearn [14] quantifies the strength of unlearning by the number of optimization steps required to
reacquire forgotten information by directly fine-tuning on it. We instead show that we can restore
forget set accuracy even if fine-tuning only on a subset of it, or even only the retain set.

Re-emergence of attempted-to-be-unlearned knowledge via fine-tuning. Recent work in language
models showed that believed-to-be-unlearned knowledge can re-emerge by fine-tuning on a small
subset of the forget set or even on seemingly-unrelated data [20, 31, 6, 4]. Relatedly, it has also
been shown that fine-tuning a language model on benign inputs can reverse the safety tuning
of the model [34, 27]. A key distinction sets our work apart from all prior efforts. They study
unlearning knowledge, or capabilities, rather than specific training examples. Their goal is to remove
unwanted knowledge beyond the specific instances in the forget set, e.g., fully remove a dangerous
capability (such as bioweapon construction) after having unlearned on a specific dataset containing
related knowledge [28]. This problem is inherently less well-specified compared to unlearning
specific examples where we have a clear definition of the ideal solution, namely, retraining from
scratch without the specific examples. In LLMs, measuring knowledge is also nuanced, requiring
question-answering tools, for instance, where the success of extracting knowledge may depend on
the phrasing [48]. We study relearning attacks for example-level unlearning in vision classifiers, a
setting where the forget set is well-specified and the goal is well-defined and simple to measure.

3 Problem Formulation

Let Dtr denote a training set and A a learning algorithm. Let MP = A(MI ,Dtr) denote the
“pretrained model”, obtained by training on Dtr, starting from a random initialization MI . Now, let
DF ⊂ Dtr denote a forget set that we want to unlearn, and let DR = Dtr \ DF denote the retain set.

The goal of an unlearning algorithm U , is to post-process the pretrained model MP to remove
the influence of DF . Specifically, we denote an unlearning algorithm by U : M × DR × DF 7→
M that takes in a model, retain set DR, forget set DF , and returns an unlearned model MU =
U(MP ,DR,DF ). Ideally, the unlearned model MU should match the gold-standard “retrained-
from-scratch” model MRS = A(MI ,DR) which starts from a random initialization and trains on
only the retain set, fully eliminating the influence of DF . We desire unlearning algorithms that can
approximate that solution but are much more efficient than retraining from scratch.
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In this work, we study relearning attacks that apply a further fine-tuning phase attempting to reintro-
duce the forget set. Such attacks that are able to modify the model’s weights are referred to in the
literature as tampering attacks [4, 40]. We carry out these attacks by fine-tuning the model on the
union of DR and a subset of “relearning examples” DFre

⊂ DF . We denote the relearned model as
MRL = A′(M,DR ∪ DFre

), where A′ denotes a fine-tuning algorithm used for relearning (which
might be similar to A with slightly different hyperparameters) and M can be either MU or MRS .

We measure performance on the held-out portion of the forget set (held-out from the perspective
that it was not used during relearning), denoted DFho

= DF \ DFre . We vary the size of DFre and
measure the effect on relearning. We also measure performance on a test set Dte, to measure utility.

An ideal unlearning algorithm is one that is tamper resistant: upon relearning, its accuracy on the
forget set does not increase more than it would by learning the relearning set anew. In other words, the
forget set accuracy of A′(MU ,DR ∪DFre) should not be higher than that of A′(MRS ,DR ∪DFre).
At the same time, an ideal unlearning algorithm would not sacrifice the test accuracy.

Threat model. Similar to tampering attacks considered for LLMs [40, 31, 20, 6, 4], we assume
that the defender has access to a pretrained model, and performs unlearning using any algorithm of
their choice. Furthermore, we assume that the attacker has white-box access to the unlearned model
provided by the defender, the retain set DR, and limited access to the forget set (i.e., the relearning set
DFre

). The goal of the attacker is to recover performance on the full forget set DF , while minimizing
the number of unlearned examples needed DFre (as relearning becomes trivial if DFre = DF ). We
also consider an extreme—and perhaps more realistic—case of access to only DR.

4 Experimental Setup

Models and Datasets. We use two different models for our evaluation from the ResNet model
family [17], namely ResNet-18 and ResNet-34 [17]. In terms of datasets, we use CIFAR-10 and
CIFAR-100 datasets [25] with 10 and 100 classes respectively, and a total of 50k training instances
in each case (5k instances per class for CIFAR-10, and 500 instances per class for CIFAR-100).

Evaluation. All models are evaluated in terms of accuracy on the held-out part of the forget set
DFho

(same subset between all models), as well as the test set Dte. While we can report accuracy on
the full forget set DF for the unlearned model, we instead report accuracy on the remaining subset
in order to enable a direct comparison of the impact of the relearning attack. The line plots show
accuracy every 10 optimization steps. When reporting results using a scatter plot, we average the test
set accuracy as well as the accuracy on the forget set for the last 50 steps reported in the line plots.

Pretraining We pretrain the model for 300 epochs using Adam optimizer [24] with a learning rate of
1e-4, cosine learning rate decay with a decay factor of 0.1, batch size of 128, and a weight decay of
1e-4 in all configurations.

Unlearning. We consider two unlearning settings: sub-class unlearning, where the forget set consists
of 10% of the class instances (here, sub-class means a subset of the complete class), and class-agnostic
unlearning, where we select 1% of the data set regardless of class labels. This ensures that we use the
same number of examples in the forget set for both settings on CIFAR-10 (we only evaluate sub-class
unlearning on CIFAR-100). We use a smaller learning rate of 1e-5 without any weight decay and
optimize the model for a 100 epochs during the unlearning phase.

Relearning attack. During this phase, we fine-tune on a combination of the retain set DR and a
subset of the forget set for relearning (DFre

). We explore the impact of different choices for relearning
examples in Appendix G. We again use a small learning rate of 1e-5 without any weight decay, and
optimize the model for just 10 epochs (except Fig. 1 where we optimized the model for 300 epochs).
Similar to the pretraining stage, we use a cosine learning rate decay with a decay factor of 0.1.

4.1 Baseline Unlearning Methods

We consider a range of different baseline unlearning methods. Each method has its own set of
hyperparameters. We attempted to select the hyperparameters to achieve a good trade-off between
the test accuracy and the forget set accuracy for each unlearning method.
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Figure 2: Scatter-plots with test-set accuracy on the abscissa and accuracy on the held-out portion
of the forget set, DFho

, on the ordinate. The left-most subplot indicates performance immediately
following unlearning. The next three subplots are following a relearning attack with instances of the
retain set, DR and a varying number of instances of the forget set, DFre

(0, 10, and 100, respectively).
Each point is the average performance of the last 50 steps (see Fig. 11 for the whole trajectory for
sub-class unlearning and Fig. 12 for the trajectory for class-agnostic unlearning). The forget set is
comprised of atypical examples (from the ‘airplane’ class i.e., sub-class unlearning for the top row
and all classes i.e., class-agnostic unlearning in the bottom row) in CIFAR-10. The figure indicates
that many methods achieve near-perfect recovery of unlearned knowledge with only a small amount
of model fine-tuning, even with 0 relearning examples (fine-tuning on only the retain set). Weight
Distortion, CBFT, and Weight Dist Reg are introduced in Section 6.

SCRUB [26] uses a two-phase training procedure where it interleaves iterations on the forget set and
the retain set. The loss function minimizes KL-divergence between the pretrained model and the
unlearned model output distributions on the retain set, along with cross-entropy on the true labels.
For unlearning, it maximizes the KL-divergence on the forget set between the distributions of the
pretrained model and the unlearned model.

Circuit Breakers [47, 28] was proposed particularly to unlearn knowledge in language models. The
training procedure attempts to push the representations apart by minimizing cosine similarity with the
pretrained model on the forget set, while minimizing the Euclidean distance of the representations on
the retain set to avoid model collapse. We apply circuit breaker loss on layer 4 and layer 7 of our
models, which is motivated by the fractional depth considered in the original work.

NegGrad+ [26] maximizes the cross-entropy loss on the forget set, while minimizing the loss on the
retain set. We used the alternating variant (similar to SCRUB) instead of joint optimization of the
two losses, as it resulted in better test accuracy as well as lower forget set accuracy.

Catastrophic Forgetting [42] uses repeated fine-tuning on the retain set with a weight decay, which
naturally leads to a decay in the magnitude of the parameters that are unimportant for the forget set.
We use a weight decay of 0.001 for all our models.

L1-Sparse [21] is similar to the Catastrophic forgetting in our case, except that it minimizes L1-norm
instead of the L2-norm employed in weight decay.

Selective Synaptic Dampening (SSD) [11] identifies model weights to dampen based on their
importance for the retain set and forget set, quantified using the Fisher information matrix. In contrast
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Figure 3: Comparison between test set accuracy and accuracy on the held-out part of the forget
set DFho

after relearning, for subclass unlearning of atypical examples in CIFAR-10. We consider
two-phase unlearning methods: first, an initial safeguard (unlearning phase) is applied, with the
unlearning algorithm mentioned as the subplot title. Then, each of TAR, CBFT, and Weight Dist
Reg are applied as a second phase for increasing the tamper-resistance. The ‘+’ symbol represents
the performance of the initial safeguard for reference. We observe that TAR fails to add any tamper-
resistance in addition to that of the initial safeguard despite being designed for this.

to the original paper, we follow this process with fine-tuning on the retain set to be consistent with
our other baselines, giving SSD a better shot at repairing test accuracy.

Random Relabeling [15] relabels every example in the forget set with a random label. Note that we
used an aggressive version of random relabeling where we re-assign a new label at every fine-tuning
step. Hence, this can be considered analogous to minimizing divergence to a uniform distribution.

Weight Attenuation attenuates all model weights with a fixed attention factor of 0.5, followed by
simple fine-tuning on the retain set.

Weight Dropout performs random (unstructured) pruning with a dropout factor of 0.2 (i.e., zeroing
out 20% of the model weights), followed by simple fine-tuning on the retain set.

Tampering Attack Resistance (TAR) [40], originally proposed for LLM unlearning, defines a bi-
level optimization, starting from an already unlearned model, with the aim to make it resistant against
tampering attacks. It uses a first-order approximation of inner adversaries, and attempts to maximize
the entropy of the model predictions after fine-tuning of the unlearned model. TAR also uses a
representation alignment loss which minimizes the Euclidean distance between the representations
of the initially unlearned model and the current model to avoid model collapse. Similar to Circuit
Breakers, we apply the representation alignment loss on layer 4 and layer 7 of our models. Note that
TAR relies on an unlearned model as a starting point, making it a two-phase approach.

5 Recent Unlearning Algorithms are not Tamper-Resistant

We begin by investigating the tamper-resistance of current state-of-the-art unlearning methods. We
use CIFAR-10 and CIFAR-100 with ResNet-18, and attempt to unlearn instances of a single class
(‘airplane’ class for CIFAR-10, and ‘apple’ class for CIFAR-100), or across classes (class agnostic).

The role of typicality for learning and unlearning. Not all examples are equally easy to unlearn, and
not all examples are equally easy to (re)learn. Typical examples can be particularly easy to unlearn as
even a no-op unlearning already yields similar predictions on these examples as the retrained from
scratch model [21]. This is because they are, by definition, easy to predict regardless of whether or
not they are part of the training set [10, 22, 1, 39]. Generally, because typical examples are more
likely to be predicted correctly, they are easier to relearn as well. Based on this, we hypothesize that
the typicality of examples is a key property that will determine relearning patterns and differences
between unlearning algorithms compared to retraining from scratch.

To investigate this, we study three different settings, characterized by different typicality levels, where
the forget set contains instances of the ‘airplane’ class that are: (i) most likely to be typical, (ii)
randomly selected, and (iii) most likely to be atypical. We leverage pre-computed consistency scores
from [22] to separate typical and atypical instances, by treating instances with the highest consistency
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scores as typical instances, while treating instances with the lowest consistency scores as atypical
instances. Other scoring schemes are also equally applicable [10, 39, 1].

When the forget set consists of typical examples, relearning is trivial and uninteresting. The reason
is that accuracy of the retrain-from-scratch model is essentially perfect on the forget set, even
before relearning is applied, and all unlearning methods exhibit similar behavior (for the sake of
completeness, we show the results for this case in Fig. 7 – Appendix A). Similarly, when the forget
set consists of randomly selected examples, performance of retrain-from-scratch is nearly perfect
because randomly selected examples are predominantly typical [10, 9, 1, 39] (again, for completeness,
this case is shown in Fig. 8 – Appendix B). Consequently, we focus on atypical forget set items for
the remainder of the paper; for these items, retrain-from-scratch will not predict correctly prior to
relearning and thus we can measure the effectiveness of a relearning attack.

Relearning attacks succeed against several unlearning baselines. We present the results for
sub-class unlearning for the forget set of atypical examples in Fig. 2. In this and subsequent
figures, existing methods are indicated by pastel colors. New methods, to be introduced shortly, are
represented by saturated colors. For the most part, the existing methods all behave similarly and the
reader need not attend to the individual methods. The accuracy of retrain from scratch is less than
50% on that forget set, and remains almost exactly the same when subjected to the relearning attack
of fine-tuning only on the retain set (i.e., 0 relearning examples). The accuracy of this model shifts
up slightly as we increase the number of relearning examples from the forget set (going from left to
right). In stark contrast, the different unlearning methods we evaluate show a qualitatively different
trend. We make the striking observation that some methods (such as Circuit Breakers, SCRUB, and
Random Relabeling) are very susceptible to relearning attacks. For these methods, forget-set accuracy
drops down after unlearning, near the desired reference point of the retrained model. However, upon
relearning even on just the retain set, the model achieves near-perfect accuracy on the forget set—a
jump from near 50% post-unlearning to nearly 100% after relearning.

Sub-class vs class-agnostic unlearning. We further attempt to understand if such differences exist
in a class-agnostic forget-set setting (with the same number of forget-set examples, i.e., 500), which
is now comprised of atypical examples across classes. Fig. 2 (bottom) shows that class-agnostic
unlearning better differentiates among methods compared to sub-class unlearning. We see a wider
spread among methods, even in the first subplot (post-unlearning, pre-relearning), since class-agnostic
unlearning is harder. We also observe that while for sub-class unlearning, the performance of retrain-
from-scratch (black star) on DFho

shifts upwards as more relearning examples are used, this shift does
not occur with class-agnostic unlearning. This result is expected since relearning on a larger number
of atypical examples does not improve performance on a disjoint set of other atypical examples (by
definition of atypicality [10]). There is again a stark contrast between the performance of retrain-
from-scratch model on DFho

, where post-relearning accuracy remains very low, and many unlearning
algorithms, where post-relearning accuracy again reaches nearly 100%. Importantly, the relative
ranking between methods in the sub-class and the class-agnostic case remains consistent.

Relearning attacks succeed even against methods designed for tamper-resistance. We further
compare two-phase methods that assume an initial unlearning round, followed by a subsequent
training round in order to reduce susceptibility against relearning attacks. This is inspired by the
methodology of TAR [40], which is explicitly designed to increase the resistance of the unlearned
model against fine-tuning-based relearning attacks. Despite TAR’s success in the case of language
models, Fig. 3 shows that it struggles to provide any resistance against relearning attacks in our case.

6 A Weight-Space View on Understanding and Improving Tamper-Resistance

In the previous section, we demonstrated the susceptibility of existing prominent unlearning methods
to tampering (Fig. 2). However, it is unclear what makes a method vulnerable or robust to these
relearning attacks. In this section, we shed light on this question through a weight-space view.
Specifically, we hypothesize that the susceptibility of an unlearned model to relearning may be
associated with failing to move ‘far enough’ from the pretrained model in weight-space. We explore
this hypothesis from two perspectives: (i) by measuring distances in weight-space, and (ii) through
Linear Mode Connectivity analysis [12]. We then use these tools to interpret the tamper-resistance
profiles of previously-proposed unlearning algorithms (Fig. 2) that show better tamper-resistance
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Figure 4: Linear mode connectivity analysis on CIFAR-10, where the forget set is comprised of
atypical examples. We construct a linear path between the pretrained and the unlearned (or retrained-
from-scratch) model by interpolating the model parameters and batch-norm statistics using different
mixing weights (shown on the x-axis). We report accuracy on the y-axis. 0 on the x-axis represents
the pretrained model, while 1 represents the unlearned or retrained model. Retrain-from-scratch
is not linearly connected to the pretrained model, whereas for unlearning algorithms, the resulting
unlearned model is in many cases still linearly connected to the pretrained one.

(such as Catastrophic Forgetting and L1 Sparse) compared to the ones that exhibit worse tamper-
resistance (such as Random Relabeling, Circuit Breakers, and SCRUB).
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Figure 5: L2 norm of the difference between the pa-
rameters of the pretrained and the unlearned mod-
els induced by different methods. We consider
only the difference in the parameters, while ignor-
ing the batch-norm statistics for ResNet-18 trained
on CIFAR-10, where the forget set is comprised of
atypical examples.

Weight-space distance. Fig. 5 plots L2 dis-
tance between the pretrained model and the un-
learned model. We see that existing methods
that we previously showed to be susceptible
to relearning (pastel colors) induce only small
movement in parameter space, indicated by the
small L2 distance.

Generally, we see that methods with higher L2

distance exhibit higher robustness against re-
learning attacks presented in Fig. 2. Notably,
two methods based on these insights which we
describe shortly, Weight Distortion and Weight
Dist Reg, have the highest L2-norm and higher
tamper-resistance. We remark that, out of pre-
vious methods, those with increased tamper-
resistance (such as Catastrophic Forgetting and
L1 Sparse) have comparatively higher distance
norm compared to methods with very poor
tamper resistance (such as Random Relabel-
ing, Circuit Breakers, and SCRUB). We note
that both Catastrophic Forgetting and L1 Sparse
use weight-space regularizers (L2 and L1, re-
spectively). Fine-tuning without any regularizer
failed to unlearn the forget set in our evaluations, which aligns with our weight-space interpretation.
We consider more elaborate analysis regarding layers that are particularly important for robustness
against relearning attacks as an interesting direction for future work.

Linear Mode Connectivity (LMC). We further investigate the relationship in weight-space be-
tween the unlearned and the retrained from scratch model via the lens of LMC [12]. We plot the
accuracy when interpolating between the two models (where we interpolate both model parameters
as well as model batch-norm statistics) along a linear path. We compare the pretrained and retrained
from scratch model (which are trained from the same initialization), as well as the pretrained and
different unlearned models in Fig. 4. Looking at the retrain from scratch plot, we see that there is a
high-loss barrier between the two models, meaning that they are not in linearly connected modes. The
same holds for methods with some tamper resistance (like Catastrophic Forgetting and L1 Sparse)
but not for those vulnerable to tampering attacks like SCRUB, where we observe no such barrier.
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6.1 A New Class of Tamper-Resistant Unlearning Methods

We now leverage these insights to propose a class of unlearning methods that are designed with
tamper-resistance in mind. We achieve this through objectives that either aim to induce a large
distance in the weight-space, or a loss barrier between the pretrained and unlearned models. Hence,
any method that directly or indirectly attempts to separate out the pretrained model and the unlearned
model is an instantiation of this framework.

Weight Distortion. This is a very simple method that adds isotropic zero-mean Gaussian noise to all
model weights with a fixed standard deviation of 0.02, followed by simple fine-tuning on the retain
set. We hypothesize that the addition of noise facilitates moving away from the pretrained model.

Weight Dist Reg. We directly aim to maximize the distance between the pretrained and unlearned
models, by explicitly adding a term that quantifies the Euclidean distance between the two models.
We maximize this loss during training, while minimizing the loss on the retain set.

Connectivity-Based Fine-Tuning (CBFT). We employ the method from [30] (originally proposed to
obtain models focusing on distinct recognition mechanisms). We maximize the loss on the midpoint
between the pretrained model and the current unlearned model on examples from the retain set as
well as the forget set, while only minimizing the loss on the retain set for the unlearned model. This
attempts to add a high-loss barrier in between, while still retaining model utility on the retain set for
the final unlearned model. We use a small weighting factor of 0.001 on the loss maximization term.
Similar to [30], we ignore the loss maximization term if the loss magnitude exceeds a value of 50.

Findings. Fig. 2 shows that Weight Distortion and Weight Dist Reg are significantly more tamper-
resistant in comparison to prior approaches. However, we observe that CBFT is less effective than
Weight Dist Reg and Weight Distortion across the board. We hypothesize that this is due to acting on
model outputs and only indirectly influencing the weight-space. Indeed, while CBFT does create a
larger loss barrier than other methods (Fig. 4), the L2 norm between the pretrained and unlearned
parameters is relatively low (Fig. 5). Overall, out of the two weight-space diagnostic tools, we find
that the L2 norm of the difference in model parameters is more reliable in predicting tamper-resistance.
Fig. 3 shows that both Weight Dist Reg and CBFT, when applied as a second phase on an initial
safeguard, can substantially improve its tamper-resistance, unlike TAR. The only exception is if the
initial safeguard is Weight Distortion, which already has sufficient tamper-resistance.

7 Analysis and Discussion

On the trade-off between tamper-resistance and test accuracy. As discussed previously, there are
inherent trade-offs in unlearning, between forgetting the specified examples while maintaining utility
(measured via test accuracy) [26, 6, 42]. Here, we discover a different trade-off between resisting
relearning attacks, and test accuracy. Indeed, Fig. 2 shows that the methods that are best at defending
against these attacks are the ones with the lowest test accuracy. Having surfaced this fundamental
tension, we hope future work improves on the current Pareto frontier formed by our new methods.

Findings hold across datasets/architectures. The results presented in the paper are consistent across
models i.e., ResNet-34 on CIFAR-10 as presented in Fig. 10 – Appendix E. Furthermore, these results
are also consistent across different datasets, i.e., CIFAR-100, as highlighted in Fig. 9 – Appendix C.
Finally, our findings are also consistent on a higher-resolution Imagenette dataset [19] as highlighted
in Table 1 – Appendix D.

Efficiency of Unlearning Algorithms. We used a fix budget of 100 epochs for unlearning to avoid
confounding from differences in optimization efficiency. In order to justify the use of approximate
unlearning algorithms instead of exact unlearning (i.e., retrain from scratch) with a training budget
comparable to pretraining, we evaluate the efficiency of unlearning algorithms in Table 3 – Appendix I.
The results show that our methods are much more efficient at unlearning (and consequently resisting
re-emergence of knowledge) even after a single epoch of unlearning compared to other approaches.

Difference between Quantization and Relearning Attacks. Language models have been shown
to be susceptible to quantization attacks [44], where quantization after unlearning is sufficient to
recover unlearned knowledge from the model. We evaluate susceptibility to quantization in Fig. 6.
Interestingly, our vision models are not vulnerable to these quantization attacks: forget set accuracy
stays at the same level as the full-precision unlearned model regardless of the number of bits
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Figure 6: Comparison between the number of quantized bits and accuracy of the model for different
unlearning methods on CIFAR-10 and ResNet-18, where the forget set is comprised of atypical
examples. In contrast to language models, where quantization has been shown to be responsible for
the re-emergence of unlearned knowledge [44], we observe that quantization has little to no impact
on forget set accuracy until the point where full performance is recovered. Note that the accuracy of
100% at the start in most cases is an artifact of the model prediction collapsing to just class 0 (whose
instances have been selected as our forget set).

until it gets close to 8 bits, at which point the model collapses. Thus, the spontaneous-recovery
phenomenon we explore via relearning attacks is distinct from the recovery obtained via quantization.
We hypothesize that the primary reason why quantization attacks succeed in language models is due
to their larger number of parameters (on the order of 100 billion parameters [7, 29]), resulting in very
small changes in weights during unlearning. Hence, models can easily revert to their previous values
with quantization. This problem is further exacerbated with models that are trained with quantization
in mind. Such models can immediately latch onto the previous values that were regularized to be
easily quantizable [23]. Similar to our findings, [44] hypothesized that small differences are the cause
of this susceptibility to quantization attacks. They further proposed increasing the learning rate as a
potential mechanism to induce larger differences between the pretrained and unlearned models [44],
while our work introduces more principled approaches for the same purpose.

The role of the retain set for relearning. Given the surprising finding that we can recover forget set
accuracy while fine-tuning on only the retain set, we ask: are the retain set examples necessary for
this to occur, or could we have used any other examples from the same distribution? We investigate
this in Appendix G where we replace the retain set with different sets, and fine-tune the unlearned
model on those different sets (combined with the ‘relearning set’, which is a subset of the forget set,
as before). Notably, replacing the retain set with test examples (that the model was not previously
trained on) causes the relearning effect to be a bit less pronounced, especially when 0, or few,
relearning examples are used, highlighting the importance of using training rather than held-out data
for inducing relearning. This observation relates to other recent findings on anticipatory knowledge
reawakening when exposing the model to a repeated sequence of documents. In this scenario, as the
model processes documents in a fixed order, it unexpectedly begins to recover an increasing amount
of information about a previously seen example even before encountering that example again [43].

8 Conclusion

We showed that unlearning methods are susceptible to relearning attacks where the forget set accuracy
can be recovered simply by fine-tuning on the retain set. For atypical examples in particular, there is
a stark contrast between the relearning patterns of unlearning methods compared to retraining from
scratch. Based on weight-space analysis, we suggest two diagnostic tools for understanding tamper-
resistance, and propose simple methods that yield state-of-the art tamper-resistant results, revealing
new pathways for improving unlearning. The authors of [36] argued that unlearning algorithms
that operate on representations rather than at the level of outputs may be more robust at defending
some types of attacks. Our findings take this discussion further, showing that unlearning methods
that operate at either the level of the model outputs or the representations, without any constraint on
model weights (which include methods such as SCRUB, Circuit Breakers, and Gradient Ascent, etc)
should struggle to induce robustness against relearning attacks. On the other hand, methods that
directly or indirectly push the pretrained and the unlearned models apart via any intervention (which
includes distortion model weights, regularizing the model to decay parameter magnitude, or even
directly pushing the models apart using an explicit loss term) should be significantly more robust to
relearning attacks. Our proposed methods for increasing tamper-resistance exemplify this and we
hope future work builds on these further.
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A Tamper-Resistance with Typical Examples for the Forget Set

As highlighted in Section 5, typical examples can be particularly easy to unlearn as simply ignoring
these examples during training (i.e., a no-op) yields similar predictions as the retrained from scratch
model [21]. This is because they are, by definition, easy to predict regardless of whether they are part
of the training set or not [10, 22, 1, 39]. Generally, because typical examples are more likely to be
predicted correctly, they are easier to relearn as well. For the sake of completeness, we include the
results for typical examples in Fig. 7. As evident from the figure, even the retrained from scratch
model already achieves perfect accuracy on the forget set, highlighting that unlearning, and in turn,
relearning are both trivial for typical examples. Therefore, we primarily focused on atypical examples
in Section 5. We see that methods such as Random Relabeling, while completing forgetting the
forget set, deviates in a very significant way from the retrain from scratch baseline, which is what we
compare against.

B Tamper-Resistance with Random Set of Examples for the Forget Set

We further evaluate performance in the case of random selection of examples, rather than just typical
examples as evaluated in Appendix A. We visualize these results in Fig. 8. Since randomly selected
examples are predominantly typical [10, 9, 1, 39], retrain from scratch already achieves near-perfect
accuracy. Furthermore, we observe only minor differences between methods. Consequently, we
focused on atypical examples for the forget set in the main paper (Section 5) as these examples are
hard to predict without being part of the training set, marking clearly the impact of relearning attacks
which goes beyond model generalization.

C Tamper-Resistance on a More Complex Dataset (CIFAR-100)

We predominantly focus on CIFAR-10 dataset in the main paper (Section 5). We evaluate the
susceptibility on a more complex CIFAR-100 dataset in Fig. 9 in order to understand the impact of the
dataset. We only look at sub-class unlearning in this case, focusing on the ‘apple’ class for unlearning.
Due to the higher complexity of the dataset, we observe lower test accuracies as evident from the
scale of the x-axis. Retrain from scratch baseline achieves a low forget set accuracy. Furthermore, we
see a wider spread of different methods on this more complex dataset, with the trend looking similar
to the class-agnostic results presented in Fig. 2 (as it provided a more complex forget set comprising
of the most atypical examples from the dataset). It is interesting to note that CBFT [30], which was
not tamper-resistant on CIFAR-10, demonstrated significant resistance on CIFAR-100.

D Tamper-Resistance on a Higher-Resolution Dataset (Imagenette)

All our prior evaluations focused on small resolution images, i.e., 32× 32 for both CIFAR-10 and
CIFAR-100. In order to understand the generalizability of our approaches to higher resolution images,
we evaluate on the higher-resolution ImageNette dataset [19], which is a subset of the ImageNet
dataset [35]. The results are presented in Table 1. Similarly to our findings on both CIFAR-10
(Section 5) and CIFAR-100 (Appendix C), we see that the accuracy of retrain from scratch on
the forget set after relearning stays close to 50%, while the accuracy of unlearning algorithms is
significantly higher, except for our proposed weight dist reg algorithm among the tested methods.

E Tamper-Resistance of a Larger Model

All our prior results focused on the smaller model, i.e., ResNet-18 [17]. In order to understand the
impact of model size, we evaluate the susceptibility against relearning attacks on ResNet-34 (with
almost double the number of parameters compared to ResNet-18, going from ∼ 11M to ∼ 21M ).
The results are visualized in Fig. 10. Note that we directly transfer the hyperparameter settings from
our ResNet-18 experiments. Hence, we found that Weight Dist Reg, which was the most competitive
method in terms of robustness, became susceptible to relearning. It is worth noting that the test set
accuracy as well as the forget set accuracy for Weight Dist Reg in this case deviates significantly
from all prior results, where it demonstrated consistently lower accuracies, highlighting a potential
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Model Label Test Acc (%) Forget Set Acc (%)

Unlearned Retrain from Scratch 87.34% 67.53%
Unlearned SCRUB 85.81% 85.71%
Unlearned Weight Distortion 83.16% 74.03%
Unlearned Weight Dist Reg 83.72% 84.42%

0 Relearn Retrain from Scratch 86.40% 63.53%
0 Relearn SCRUB 86.47% 93.40%
0 Relearn Weight Distortion 84.71% 78.86%
0 Relearn Weight Dist Reg 84.31% 73.87%

10 Relearn Retrain from Scratch 86.73% 64.16%
10 Relearn SCRUB 86.65% 94.21%
10 Relearn Weight Distortion 84.62% 81.09%
10 Relearn Weight Dist Reg 84.83% 75.77%

Table 1: Test and forget set accuracy across unlearning and relearning conditions when evaluating on
the higher-resolution Imagenette dataset [19] with atypical examples for the forget set. These results
are primarily consistent with our findings on both CIFAR-10 as well as CIFAR-100 datasets, where
models learned with our proposed unlearning algorithm are much more robust against relearning
attacks.

deficiency of the selected hyperparameters. Catastrophic Forgetting and Weight Dist Reg exhibit high
robustness against relearning, which are instantiations of our framework.

F Evolution of Forget Set Accuracy During Relearning

In order to complement the results in Fig. 2 (top) and Fig. 3, we visualize the forget set accuracy evo-
lution in Fig. 11. We see that methods that are most stable are nearly unaffected by increasing training
time, highlighting that more training time might not be sufficient to increase their susceptibility
further.

Similarly, Fig. 12 complements the results on class-agnostic unlearning in Fig. 2 (bottom), where
we visualize both the line plots as well as the results from two-phase training strategies. We visually
observe best separation between different methods on the line plot in this case of class-agnostic
unlearning.

G Relearning with Examples from the Same Distribution, which are Distinct
from the Retain Set

While we demonstrated that unlearned knowledge can be recovered through repeated fine-tuning
on the retain set, it remains unclear whether we can also recover performance on the forget set by
fine-tuning on new examples from the same data distribution that are unseen by the model. The
question that we ask is: are the same examples that the model was trained on particularly important
for relearning, or other examples from the same data distribution equally effective?

In order to simulate this scenario, we use examples from the test set (which are unseen by the model)
for relearning instead of the retain set. We further evaluate using a corrupted version of the test set
from CIFAR-10-C [18]. In particular, we use the JPEG corrupted examples with the highest severity
level of 5. Note that we still use examples from the relearning set when considering scenarios where
the number of relearning examples is > 0.

The results are presented in Fig. 13. We observe that using the retain set DR achieves higher accuracy
on the forget set compared to other choices. However, these differences diminish as the number of
relearning examples increases, since these examples directly represent the unlearned knowledge and
may become the dominant factor in recovery. When the test set is used for relearning (instead of the
retain set), we unsurprisingly observe perfect accuracy on the test set, as it serves as the training set
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Unlearning Method MIA Acc (%)

Retrain from Scratch 52.2%
L1 Sparse 54.2%
SCRUB 51.6%
Circuit Breakers 55.0%
Gradient Ascent 54.2%
Random Relabeling 94.8%
Catastrophic Forgetting 54.2%
SSD 53.8%
Weight Attenuation 53.6%
Weight Distortion 53.2%
Weight Dropout 54.8%
Weight Dist Reg 48.4%

Table 2: Membership-Inference Attack (MIA) accuracy, where 50% indicates chance-level per-
formance. Note that most of the methods are close to change-level performance, except random
relabeling. This indicates that MIA attacks are not sufficient to understand susceptibility against
relearning attacks.

in this scenario. These results indicate that relearning is more effective when using examples that
were seen during training, rather than a held-out set of examples.

These findings are also related to the other recent findings on anticipatory knowledge recovery when
exposing the model to a repeated sequence of documents. In this scenario, as the model processes
documents in a fixed order, it unexpectedly begins to recover an increasing amount of information
about a previously seen example even before encountering that example again [43].

H Membership-Inference Attacks (MIA) on Unlearned Models

Membership-Inference Attacks (MIA) attempt to evaluate if it is possible to identify instances that
were part of the model’s training distribution from held-out instances [37]. Being able to distinguish
instances leaks private information regarding an instance’s membership. We follow the setup from
[26] for membership-inference attacks with balanced loss-threshold-based classifier. The results
are presented in Table 2. We observe that, as is the case in our initial findings with the forget set
accuracy metric, this particular type of MIA can give a false sense that unlearning successfully
erased all traces of unlearned data, even in cases where we know that the unlearned model is prone
to relearning attacks. Note that we evaluated a particularly simple variant of MIA based on prior
work [26]. Therefore, it is possible to use more complex variants of MIA, which might be better able
to predict this vulnerability against relearning.

I Understanding the Efficiency of Unlearning Algorithms

In order to control for efficiency effects of the unlearning algorithm, all previous results were reported
at a fixed unlearning budget of 100 epochs, which is comparable to the budget allocated for pretraining.
This raises concerns regarding the utility of approximate unlearning algorithms, as one should use
the gold-standard unlearning algorithm, i.e., retrain from scratch in cases where the computational
budget is directly comparable to the pretraining budget.

In order to understand the significance of this selection, we vary the number of unlearning epochs
and report test accuracy and forget set accuracy after relearning, while using the same set of hyperpa-
rameters. The results are presented in Table 3. It is clear from the table that while both catastrophic
forgetting and weight distortion are successful in resisting relearning at the maximum budget of 100
epochs, catastrophic forgetting is still susceptible to relearning with a smaller number of unlearning
epochs. On the other hand, weight distortion is more resistant to relearning even after a single epoch
of unlearning.
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Model Method Unlearning Epochs Test Acc (%) Forget Set Acc (%)

Unlearned Catastrophic Forgetting 1 93.79% 100.00%
Unlearned Catastrophic Forgetting 3 93.42% 100.00%
Unlearned Catastrophic Forgetting 10 92.52% 94.50%
Unlearned Catastrophic Forgetting 30 91.68% 77.75%
Unlearned Catastrophic Forgetting 50 90.25% 60.00%
Unlearned Catastrophic Forgetting 100 88.23% 41.75%
Unlearned Weight Distortion 1 84.49% 43.50%
Unlearned Weight Distortion 3 86.21% 49.00%
Unlearned Weight Distortion 10 86.27% 52.75%
Unlearned Weight Distortion 30 86.29% 53.25%
Unlearned Weight Distortion 50 86.31% 50.50%
Unlearned Weight Distortion 100 85.97% 45.75%

0 Relearn Catastrophic Forgetting 1 93.71% 99.99%
0 Relearn Catastrophic Forgetting 3 93.65% 99.99%
0 Relearn Catastrophic Forgetting 10 93.37% 99.28%
0 Relearn Catastrophic Forgetting 30 93.22% 93.63%
0 Relearn Catastrophic Forgetting 50 93.08% 82.16%
0 Relearn Catastrophic Forgetting 100 92.80% 66.14%
0 Relearn Weight Distortion 1 90.14% 61.07%
0 Relearn Weight Distortion 3 90.14% 61.66%
0 Relearn Weight Distortion 10 89.86% 61.38%
0 Relearn Weight Distortion 30 89.62% 60.69%
0 Relearn Weight Distortion 50 89.44% 59.64%
0 Relearn Weight Distortion 100 89.64% 58.59%

Table 3: Test and forget-set accuracy of the unlearned model after relearning attack on CIFAR-10
with atypical forget set examples. It is evident from the results that even a small number of unlearning
epochs are sufficient to achieve robustness against relearning attack with weight distortion. In contrast,
other methods such as catastrophic forgetting only work at the largest epoch setting. Note that all
previous results were reported with 100 unlearning epochs, masking any impact of the efficiency of
the unlearning algorithm.

J Computational Resources

We used NVIDIA RTX 3090 for each of our experiments, with the GPU equipped with 24GB of
high-bandwidth memory (HBM) – we only use a tiny fraction of it as we train small ResNet models
on CIFAR-10/100.

The pretraining takes about 3 hours. Each unlearning method takes about 2.5 hours, except TAR
which takes about 9 hours. Each setting required training 21 unlearned models (3× 3 combinations
for two-phase training as we evaluate three methods with three different initial safeguards). This
equates to about 18× 2.5 + 9× 3 = 72 hours per setting. We evaluated 6 main settings: ResNet-18
on CIFAR-10 (typical, atypical, and random subset for the forget set), ResNet-34 on CIFAR-10
(atypical), ResNet-18 on CIFAR-10 with class-agnostic unlearning (atypical), and ResNet-18 on
CIFAR-100 (atypical). Hence, this equates to about 450 hours. Grid evaluation of each model further
takes one hour, resulting in an additional 130 hours (21× 6 models).

Finally, taking into account all further evaluations as well as failed experiments, we expect to have
invested about 1000 GPU hours on the project.

K Societal Impact

We highlight limitations of existing unlearning techniques in the context of visual recognition,
showing that such techniques are prone to relearning attacks, where unlearned knowledge can be
easily recovered with access to only retained knowledge. Deployment of such methods therefore
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poses risks in the context of privacy or model safety. We further propose a new class of methods that
are more robust against such attacks.

Developing better tamper-resistance to relearning attacks for unlearned models attempts to reduce the
potential harm from these existing systems.
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Figure 7: Comparison between test set accuracy and accuracy on the held-out part of the forget
set DFho

on CIFAR-10 and ResNet-18, where the forget set is comprised of typical examples from
the ‘airplane’ class. The figure indicates that all methods achieve perfect recovery of unlearned
knowledge, which is consistent with the retrain from scratch baseline, as the model can directly
generalize to these examples without having them as part of the training set by definition.

20



0.80 0.90
0.00

0.50

1.00
unlearned model

0.80 0.90

0 relearning examples

0.80 0.90

10 relearning examples

0.80 0.90

100 relearning examples

Test set accuracyFo
rg

et
 se

t a
cc

ur
ac

y
Retrain from scratch
Random Relabeling
SCRUB
NegGrad+
Circuit Breakers

L1 Sparse
Catastrophic Forgetting
SSD
Weight Attenuation

Weight Dropout
Weight Distortion
CBFT
Weight Dist Reg

100 101 1020

1
0 relearning examples

100 101 102

10 relearning examples

100 101 102

100 relearning examples

Number of training steps (log-scale)Fo
rg

et
 se

t a
cc

ur
ac

y

Retrain from scratch
Random Relabeling
SCRUB
NegGrad+
Circuit Breakers

L1 Sparse
Catastrophic Forgetting
SSD
Weight Attenuation

Weight Dropout
Weight Distortion
CBFT
Weight Dist Reg

0.85 0.90
0.00

0.50

1.00
SCRUB

0.85 0.90

Circuit Breakers

0.85 0.90

Weight Distortion

Test set accuracyFo
rg

et
 se

t a
cc

ur
ac

y

Retrain from scratch TAR CBFT Weight Dist Reg

Figure 8: Comparison between test set accuracy and accuracy on the held-out part of the forget set
DFho

on CIFAR-10 and ResNet-18, where the forget set is comprised of a random subset of the
examples from the ‘airplane’ class. The figure indicates that retrain from scratch baseline can already
achieve near-perfect accuracy, as the examples in a class are predominantly comprised of typical
examples.
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Figure 9: Comparison between test set accuracy and accuracy on the held-out part of the forget set
DFho

on CIFAR-100 and ResNet-18, where the forget set is comprised of atypical examples from the
‘apple’ class. We see significant variation among different methods on the more complex CIFAR-100
dataset, which is comparable to the results we observed with class-agnostic unlearning on CIFAR-10
in Fig. 2 (bottom).
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Figure 10: Comparison between test set accuracy and accuracy on the held-out part of the forget
set DFho

on CIFAR-10 and ResNet-34, where the forget set is comprised of atypical examples from
the ‘airplane‘ class. We still see the distinction between robust and non-robust methods. However,
the relative ranking between different methods changes as we use the same set of hyperparameters,
which should be tuned considering a larger number of parameters in the model. We find that using a
large model, i.e., ResNet-34 instead of ResNet-18 induces a slight shift in relative method ranking,
particularly for methods that require careful tuning of hyperparameters.

23



100 101 1020

1
0 relearning examples

100 101 102

10 relearning examples

100 101 102

100 relearning examples

Number of training steps (log-scale)Fo
rg

et
 se

t a
cc

ur
ac

y

Retrain from scratch
Random Relabeling
SCRUB
NegGrad+
Circuit Breakers

L1 Sparse
Catastrophic Forgetting
SSD
Weight Attenuation

Weight Dropout
Weight Distortion
CBFT
Weight Dist Reg

Figure 11: Comparison between relearning time and accuracy on the held-out part of the forget set
DFho

on CIFAR-10 and ResNet-18, where the forget set is comprised of atypical examples from the
‘airplane’ class. The figure indicates that many methods achieve near-perfect recovery of unlearned
knowledge with only a small amount of model fine-tuning, without even assuming access to the
unlearned examples. This figure is an extension of the results presented in Fig. 2 (top).
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Figure 12: Comparison between test set accuracy and accuracy on the held-out part of the forget set
DFho

on CIFAR-10 and ResNet-18, where the forget set is comprised of atypical examples from all
classes. This figure is an extension of the results presented in Fig. 2 (bottom). We find that atypical
examples, when selected from all the classes, are significantly harder in comparison to examples
selected from a particular class, and hence, achieve a better separation between different methods in
comparison to sub-class unlearning in Fig. 2 (top).
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Figure 13: Comparison between training time and accuracy on the held-out part of the forget set
DFho

on CIFAR-10 and ResNet-18, where the forget set is comprised of atypical examples, and
using SCRUB as the unlearning method. We evaluate the use of different sets to remind the model,
including the retain set DR, test set Dte, corrupted test set Dcte taken from CIFAR-10-C [18] (using
JPEG compression with a severity level of 5), along with the selected number of relearning examples.
The figure indicates that there can be significant differences in relearned model accuracy based on the
selected examples used for reminding the model.
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