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ABSTRACT

Image super resolution models (SR) have shown great capability in improving
the visual quality for low-resolution images. Due to the compute and memory
budgets of diverse platforms, e.g., cloud and edge devices, practitioners and re-
searchers have to either (1) design different architectures and/or (2) compress the
same model to different levels. However, even on the same hardware, the compute
resource dynamics change due to other running applications, meaning that one sin-
gle model that satisfies required frames-per-second (FPS) when executed in iso-
lation may not be suitable when other running applications present. To overcome
the problem of requiring custom model design and real-time resource availability
changes, we propose AdaSR , an Adaptive SR framework via shared architecture
and weights for cross platform deployment and dynamic runtime environment.
Unlike other works in literature, our work focuses on the development of multi-
ple models within a larger meta-graph such that they can fulfill latency require-
ments by compromising as little performance as possible. Particularly, AdaSR can
be used to (1) customize architectures for different hardware and (2) adaptively
change the compute graph in dynamic runtime environment with no extra cost
on memory and/or storage. We extensively test AdaSR on different block-based
GAN models, and demonstrate that AdaSR can maintain Pareto optimal perfor-
mance for latency vs. performance tradeoff in comparison with state-of-the-art
with much smaller memory footprint and support dynamic runtime environments.

1 INTRODUCTION

Image super-resolution models (SR) improve visual quality of low-resolution images and have been
widely used in many applications such as video streaming, compression, image recovery, enhance-
ment |Park et al|(2003). Driven by recent advances in deep neural network models (DNN) |Dong
et al| (2015} 2016)); Bashir et al.| (2021)), the performance of SR has been greatly improved. To use
SR models in real world environment, such as cloud and edge devices, it needs to meet Quality
of Service (QoS) standards |[Zhang et al.| (2020), e.g., maintaining a minimum frames per second
(FPS) to provide a smooth perceived visual experience. Given the high computation and memory
demands of SR models|Chen et al.|(2022a), practitioners and researchers usually need to customize
architectures for different platforms to meet QoS while achieving the high performance. In addi-
tion, the available computing and memory resources may dynamically change due to other running
applications, which requires SR models to be adaptive in real-time.

To provide cross platform deployment support, earlier works handcraft efficient DNN architectures
for different hardware |Lee et al.| (2019); Ma et al.| (2019); Dong et al.| (2018). Later works employ
compression schemes such as quantization|Ayazoglu| (2021); Hong et al.| (2022), pruning Jiang et al.
(2021); Zhang et al.| (2021c)), and Knowledge Distillation (KD) [Gao et al.| (2018)); |Aguinaldo et al.
(2019) to reduce model sizes. However, these methods only produce singular models for certain
devices, or require significant hand-tuning efforts to generate a set of models for different devices.
Recent works explore Neural Architecture Search (NAS) [Fu et al.| (2020); Bashir et al.| (2021) to
automate the model generation process for different hardware. However, NAS usually requires
costly time and resources to come up with good search space and search proper architectures for each
hardware Ren et al.| (2021). More importantly, none of the above works addresses the challenges
in dynamic runtime environment where SR models need to swiftly adapt to dynamically changing
resources without high memory cost.
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To address the aforementioned issues, we propose AdaSR , an Adaptive SR framework via shared
architecture and weights for cross platform deployment and dynamic runtime environment. Our key
insight here is to adaptively change the depth and the channel size of SR models with shared weights
and architecture so that SR models can adapt quickly with little extra memory cost. We achieve
this by employing a progressive knowledge distillation approach to train the size/compute-adaptive
models in a layer-wise manner. Such a function matched training enables improved consistency in
learning representation between the original and adapted models. However, performing progressive
knowledge distillation on SR models is non-trivial because the large variety of blocks makes it
impractical to hand tune each. To stabilize the training of AdaSR such that it is robust to dynamic
changes in operations, we propose a progressive approach to derive loss functions for each block
and function matching operations with max-norm regularization to address dimension mismatches.

Thanks to the above design, AdaSR can distill knowledge with different compression levels for dif-
ferent hardware (e.g., different security cameras), and also support adaptively change the compute
graph in dynamic runtime environments (e.g., mobile phones with concurrently running applica-
tions). Prior works tend to propose a single model for each target hardware Kim et al.| (2016); Tai
et al.| (2017); Nie et al.| (2021));[Wu et al.[(2021) while maximizing performance. Instead of aiming to
beat the state-of-the-art, we focus on generating multiple models that are close to the Pareto frontier
for the performance vs. latency tradeoff. This allows us to have competitive model performance
while still being able to maintain a minimum FPS for a given set of resources. We perform exten-
sive evaluation by comparing AdaSR with popular efficient SR models CARN |Ahn et al.| (2018)),
ESRGAN Wang et al.| (2018b), RCAN Zhang et al.| (2018a) and the state-of-the-art FMEN model
from the 2022 NTIRE challenges NJU_JET team Li et al.|(2022)). These models cover a wide range
of inference latencies and development techniques (i.e. hand-designed, compression and Neural
Architecture Search). We deploy our models on real hardware systems such as mobile, laptop and
GPUs for evaluation. The results show that AdaSR achieves Pareto frontier of the prior arts while
having 80% smaller memory footprint and can adapt to dynamically available resources in dynamic
runtime environments with little overhead.

2 RELATED WORKS

Efficient SR models. There is a rich set of works use novel architectural properties to hand tune
SR models. For example, a line of work attempts reduction by using more efficient computation
blocks such as DRCN and DRRN |Kim et al.[(2016)); Tai et al.|(2017) using cheaper recursive layers,
GhostSR Nie et al| (2021) for lightweight residual blocks and SESR |Cheng et al.| (2018) replac-
ing standard convolutions with collapsible linear blocks. Another line of works Mei et al.| (2021));
Liu et al.| (2022) exploit attention mechanism for efficient representation capacities of SR models.
Other papers use a variety of techniques such as splitting channels more efficiently [Hui et al.| (2018))
and shifting the position of the upsampling operator |Dong et al.| (2016). The winner of the PIRM
challenge [Blau et al.| (2018), MobiSR |Lee et al.[| (2019), and other related works |Li et al.| (2022));
Chan et al.| (2022); |/Angarano et al.| (2022)) also apply similar methods. The state-of-the-art perfor-
mance in SR is Gao & Zhou| (2023), which proposes a combination of frequency grouping fusion
blocks, multi-way attention blocks, lightweight residual concatenation blocks and novel convolu-
tional structures. However, these SR models are usually hand-designed models customized to a
specific hardware. Moreover, there is a strong assumption that these models will have full use of
all resources at all times, which is not the case for real world systems such as mobile devices where
multiple applications may share resources.

SR Compression. Another line of works aim to reduce the operations and parameters of existing
models using compression techniques such as pruning |Liu et al.| (2020), quantization |Gholami et al.
(2021)), and knowledge distillation Wang & Yoon| (2021). Recent SR pruning works include SMSR
Wang et al.[(2021)), ASSLN [Zhang et al.| (2021b), and SRPN |Zhang et al.| (2021c)), which employ
techniques such as learning sparse masks to prune redundant operations during inference, while
works such as|Ayazoglu| (2021}, Hong et al.| (2022)) and Xin et al.|(2020) use advanced quantization
methods. Knowledge Distillation has also been used to compress SR models such as the work in|Gao
et al. (2018));[Zhang et al.|(2021a)); Suresh et al.| (2022)); Chen et al.|(2022b) However, all these works
focus on generating single models. As such, they are not suitable for cross platform deployment or
dynamic resource adaptability. We compare our AdaSR with |Lee et al,| (2019); Du et al.| (2022));
Dong et al.|(2014)); Wang et al.| (2018b)); |/Ahn et al.[(2018)); Zhang et al.| (2018bfa) in our evaluation
as they reside at various points of the state-of-the-art in latency vs. performance tradeoff and can
be used to bound the Pareto frontier. Neural Architecture Search (NAS)|Ren et al.| (2021) has been
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explored to find efficient, lightweight, and accurate SR models. Works such as Tri-level NAS |Wu
et al.| (2021), AutoGAN Distiller |[Fu et al.| (2020) and DARTS |[Liu et al.| (2018) have been used to
derive compact model versions. Specific NAS-based works FALSR |Chu et al|(2021), DeCoNAS
Ahn & Cho| (2021) and MoreMNAS |Chu et al| (2020) have been applied for model compression
for real-time SR on mobile devices. However, these methods are expensive, require customized
searches and do not support dynamic run-time latencies. We compare our AdaSR with the Tri-level,
AutoGAN, and FALSR NAS approaches in our evaluation.

3 PROPOSED METHOD
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Figure 1: AdaSR Model Architecture. This figure shows the steps for progressive knowledge
distilled training. Every m!" block of the original model is distilled to the adaptable model’s block.
The backpropagation starts from the current distilled block to the block at the beginning. L is the
loss function using output values of OT and O® from the original and adapted models, respectively.
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Figure 2: Network diagrams of CARN, RCAN, and ESRGAN models. They use repetitive blocks
stacked on top of each other with residual connections. Cascading and Res-E block architectures
from CARN are shown in detail here as an example of how the blocks of these models use the

convolutional operations. ) . )
To support cross platform deployment and dynamic runtime environment of SR models, our key

insight is to share architecture and weights to enable quick model adaption while reducing mem-
ory consumption. Specifically, the model is adapted by changing the depth and the channel size
to meet the QoS requirements under different resource constraints. However, direct reduction of
depth and width usually results in significant performance degradation Hou & Kung| (2022); Wang
et al.| (2018a). To address this challenge, we employ progressive knowledge distillation and loss
function optimization to improve the performance of the adapted SR models. We use a loss function
at each layer to minimize the output distribution discrepancy between the adapted model and the
original model. This allows the adapted model to be consistent in learning representation of the
original model. To derive the loss functions in an automated way, we introduce a Bayesian tuning
method. We further introduce output matching operations with max-norm regularization to address
the dimension mismatch issue between the original and adapted models.

3.1 OPERATION REDUCTION
First, we demonstrate how to precisely adapt the model size by changing the channel size and the
number of blocks. Here we use the popular CARN model |Ahn et al.| (2018) as an example to
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illustrate our idea, but it is generalizable to all block-based convolutional GANs. We denote the
original model as BT and input size for any block as H! xW} xC? , where H, W and C are
the height, width, and channel dimensions respectively for block 7. Here we leave out the bias and
activation terms for simplicity. For a convolutional layer with kernel size K and channel size Cy,,
the computational cost is: _

K- -K-Cj,- Hout : Wout : Cout; (1)

wm

where H,,; and W,,; are the output height and width dimensions respectively. For each block,
the output dimensions are padded to keep them equal to the the input dimensions H;,, X H,,; since
every block has the same set of operations. For simplicity and without loss of generalizability, we
have H} =W} =H,,;=Wo,,=F. As shown in Fig. [2} multiple N convolutional operations are
stacked to make a single block, and are sometimes followed by more operations such as identity
convolutions, activation functions, and concatenation operations. We can compute their cost as
a function feost(F, Cout), where f is generalizable to a wide variety of operations in the block
architecture. Thus, we can simplify the cost of a full block as:

N
Z(K2'F2'Oin'cout)+f(F>Cout)- (2)

1

Because there are multiple blocks M in an architecture followed by upsampling layers, which is
denoted as f,,,, we can derive a generalizable total cost function for the original model:

M N
Bz;)st = Z (Z (K2 . F2 : Om : Oout) + f(F7 Cout)) + fup(F7 Cout)- (3)
1 1

If we consider the operation costs for f, f,, are directly proportional to the input dimensions
FXxFxCg,yt, we can simplify the cost function as:
B =Cou  M(N-K?-F?-Cip + f(F)) + fup(F). 4)

cost

For the adapted model B®, if we keep the overall architecture the same and only reduce the filter
sizes (¢ across all the blocks with a ratio of ¢ and reduce the number of blocks M to a ratio of m,
we have the cost function of adapted model as follows:

Cout M

c .E(N'K2'F2'Cin+f(F))+fup<F)v (5)

BS

cost

which is ¢-m times less than B”'. A reduction in channel size (width) and number of blocks (depth)
can have a proportional reduction in model size with little architecture re-engineering efforts.

3.2 AdaSR ARCHITECTURE DESIGN

Next, we explain how to utilize operation reduction to adapt SR models with the most profitable
performance. Operation reduction may degrade the model performance |Aguinaldo et al.| (2019);
Zhang et al.| (2020); |Gou et al.| (2021) because training operation reduced models from scratch may
not capture all the feature representations of the larger SR counterpart. To address this challenge,
we propose a Knowledge Distillation (KD) Jin et al.[(2019) based adaption scheme to optimize the
performance of adapted models. The intuition behind using KD is that by using the already learned
feature representations of larger SR models to teach the smaller adapted ones, we can preserve the
performance while speedup the model adaption process. However, existing KD works for SR |Gao
et al.| (2018); He et al.| (2020); /Angarano et al.| (2022) mainly focus on matching the output distribu-
tions after a large number of layers, which falls short in maintaining consistent mapping of learned
representations between the high and low dimensional spaces in the inner layers, even for networks
with the same operation structures.

To better reflect the original models’ feature representation in each layer of the adapted models in
low dimensional space, we propose a new approach that can match output distributions at regular
intervals. Specifically, we use the original SR model to progressively train the adaptable models
layer-by-layer instead of simply training on the loss of the last layer’s output distributions. The
overall training method is shown in Fig. As pointed out in Mirzadeh et al.| (2020); |Beyer et al.
(2022); Jin et al.| (2019), having such anchor points during training or function matched training
can yield better performance for distilled models. This is because such a training procedure allows
greater consistency between the original and distilled model’s learning representations for the inner
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layers. We introduce Bayesian Tuning [Victoria & Maragatham| (2021) to automatically get the
appropriate loss function for each layer. We calculate the gradients based on this loss for each
possible adapted models (i.e. every combination of width and depth possible) and then apply them
together to make the trained weights robust to direct reductions in convolutional channels and blocks.
To ensure the per-layer output dimensions of the smaller adaptable models to match with the original
models, we further introduce function matching operations with max-norm regularization.

3.2.1 PROGRESSIVE KNOWLEDGE DISTILLATION

To simplify the illustration, we also use the CARN model Timofte et al.|(2018)); /Agustsson & Tim-
ofte| (2017) as an example, although the approach can be applied to any block-based convolutional
GANSs. We start building the adaptable student model by first choosing the lowest possible channel
size and number of blocks (e.g., in CARN the smallest channel size is 8 and the smallest number of
blocks is 1). We do this by ignoring the computation from the excluded blocks and throwing away
the undesired channel dimensions when using the first block’s output. This is done on the student’s
model, and the teacher’s model is kept intact. We then take a batch of low-resolution input images,
preprocess them and perform a forward pass to get the output distribution of the chosen block (i.e.
block 1) from both original pre-trained teacher model and the untrained adaptable student model.
These output distributions are then used to derive the gradients for the current student block via
function matching (as explained in detail in the later sections). Once the gradients for this particular
block is derived, we increase the size of the adaptable model in one dimension at a time (as shown
step-by-step in Fig. [T)), and repeat the process until we have derived the gradients for all numbers of
blocks and channels adapted models at every available granularity level (we increase block size by
1 and channel size by 8 for every step). In this way, we progressively increase the adaptable model’s
size during the forward pass and derive gradients for each sub-model size.

3.2.2 FUNCTION MATCHING AND REGULARIZATION

At each block level, we get the output distributions of both the student and the teacher models. The
idea here is to train the student such that the output of the block matches as much as possible with the
teacher’s corresponding block. This is done by calculating the student’s gradients based on the loss
function between the student’s and teacher’s output distributions. However, the reduced number of
channels of adaptable models may cause the output dimensions of each block mismatch with those
of the original models. To make the loss function work, the output distributions need to have the
same dimensions/ We do this by adding another layer on top of the last layer of the adaptable model’s
block such that this mapping layer’s output matches the original model’s. This mapping layer is only
used during the training of that layer and is dropped for layers already progressed from or during
inference. The mapping layer can either be a linear layer which changes the output dimensions via
matrix multiplication to match dimensions, or a convolutional layer with kernel and channel sizes
equal to that of the original model’s. We find convolutional layers work better since its learned
feature representations are closer to the interpretations of the original model’s convolutional layers.

While this method solves the matching problem between the original model and the adaptable model
when calculating loss, it also results in a tandem training of the mapping layer weights and the
adaptable model layer weights. The removal of the mapping layer during inference may yield worse
performance. Here we employ max-norm regularization Srebro & Shraibman|(2005) on the mapping
layer to enforce upper bound of weights. The max-norm constraint ||w||2 < c regulates the impact
of that layer’s weights and helps train the previous layers to closely represent the original model’s
output distributions. We find other regularization techniques such as L2 norm and dropouts are less
effective because max-norm has a more direct bound on weights. We find ¢ = 0.0002 is sufficient
and we use this value for all experiments.

3.2.3 DEPTH CONSOLIDATION

One way to reduce parameters is to remove a block entirely. Since consistency and patient training
helps performance Beyer et al| (2022), we perform knowledge distillation for each block on the
adaptable model using the original model blocks. Ideally, the adaptable model has the same depth
as the original model so that there is a one-to-one distillation mapping between each block. On
removal of a block from the adaptable model, we re-adjust the anchor as m = L%—ﬁj, where an
adapted model with M*° blocks gets distilled every mth layer from the original model’s M7, with
the last block including the last leftover blocks. One issue here is that changing the number of blocks
may cause dimension mismatch. For example, concatenation of the outputs of current and previous
blocks is a common structural operation|/Ahn et al.| (2018);|Wang et al.|(2018b)), which results in that
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dimensions depend on the number of blocks. In such cases, we also perform dimension matching
using the aforementioned mapping layers.

Algorithm 1 AdaSR Training

1: Inputs: Pre-trained original model T', dataset Dataset, adapted model to train .S, training
epochs E'pochs, adapted model’s depth and width options depth, width, loss function L.

2: for each epoch in Epochs do

3 for each batch in Dataset do

4 global_grads =[]

5: tL.N = T(batch)

6 for each D in depth do

7 grads = ||

8: for each W in width do

9: sW = S(batch, W, D)
10: Depth Consolidation for anchoring ¢; and function Matching for s%’ tot;
11: A = BayesianOptimization(L)
12: =L\ sW. t)
13: grads.append(l.gradients())
14: end for
15: global_grads.append(grads)
16: end for
17: S.update(grads)
18:  end for
19: end for

3.2.4 BAYESIAN-TUNED LOSS FUNCTION

The most commonly used distribution distance loss functions for knowledge distillation methods
in SR are the Kullback-Leibler divergence metric (KL) |Gou et al.[ (2021)); |[Fu et al.| (2020); |An-
garano et al.[(2022)) and the Mean-squared Error (MSE). These loss functions are hand-tuned since
in the conventional KD methods they are only used once at the final output layers. However, in
our progressive KD method we need to calculate the loss at each block level, which makes hand
tuning each function impractical. To address this challenge, we use Bayesian Optimization (BO) to
automatically optimize the loss functions. Our loss function for block output pairs is:

L =AKL(t,s) + (1 — N MSE(t, s). (6)

Whenever we associate original model and output distributions to get the loss values, we run BO
to derive the best A value for that anchor point. We use Expected Improvement (EI) |Vazquez &
Bect| (2010) as our acquisition function as it does not require hyperparameter tuning and it is easy
for setting intuitive stop conditions. Our A values range between 0.0 — 1.0 with a 0.01 granularity.
The stopping condition is when the last 20 trials do not improve PSNR value. We run BO for each
anchor point until it reaches the stop condition. Then we use the found A value to calculate the loss
that we use to train the adaptable model weights.

3.3 AdaSR TRAINING

To support dynamic runtime environment with constantly changing available resources, it is critical
to adapt the model in real time to achieve the most profitable performance while maintaining QoS.
One potential approach is to ensemble a set of models and dynamically switch between them. How-
ever, this method results in a significantly larger memory footprint, which is infeasible for resource
constraint environment such as mobile and IoT devices. To address this challenge, we a training
method with shared architecture and weights as outlined in Algorithm [T} For each batch in every
epoch, we get the output ¢ of each block of the original model 7T'. For each combination of reduced
depth and width options W, D of the adapted model .S, we take the output s‘g of the same batch.
We match the original model’s output to the corresponding adapted model’s i*" block output using
Depth Consolidation and Function Matching. We then use Bayesian to set A for Equation|6]to calcu-
late the gradients. Once gradients for all depth and width combinations are derived, we apply them
all at once to update the adapted model S

This training method has two advantages: 1) The weights are trained to reduce output distribution
discrepancy between the original and adapted models; and 2) applying the gradients together ensures
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the final trained weights are shared. Weight sharing allows us to dynamically change the channel
and block sizes in real time with no extra memory overhead and less performance impact. Changing
the channel and block sizes can be done by bypassing channels and blocks to get the final output
on-the-fly to avoid the overhead of reloading models.
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Figure 3: Comparison between our KD-trained models against state of the art against MACs and
PSNR. Shown for Setl4 at 4x upscaling with patch size 256x256. AdaSR is capable of producing
models across a range of sizes suitable for different hardware platforms.
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Figure 4: (a-c) - Comparison of PSNR vs. inference latency trade-off between AdaSR and state-of-
the-art models designed for resource constrained deployments. AdaSR is developed by changing the
depth and width of the original CARN model. Experiment is run on Set14 with 4x upscaling factor
for path sizes 256x256. (d-e) - Memory cost and interruption time comparison between AdaSR and
state-of-the-art model assembly.

4 EVALUATION

Experimental Setup. We use 800 RGB images with patch sizes 64x64 from the standard DIV2K
Agustsson & Timofte| (2017); [Timofte et al.| (2018)) dataset to train our original models for pre-
training. We apply our method on CARN |Ahn et al.|(2018)), ESRGAN Wang et al.|(2018b), RCAN
Zhang et al.|(2018a), and FMEN Du et al.| (2022). The pre-training of the original models are done
as explained in their corresponding papers. We then freeze our original model and train the adapted
models using AdaSR with the same dataset. For the adapted models, we use batch size of 16 with
standard data augmentations of random rotation, random horizontal flipping, and normalization. We
use the ADAM optimizer with 81 = 0.9, 85 = 0.99 for all models. We use learning rates for
each compact model as described in their corresponding papers, and apply exponential learning rate
scheduling. Training till convergence takes between 50 to 200 rounds depending on the model. We
train on 4 1080Ti GPUs with batch parallelism. Evaluation is done on Urban100Huang et al.|(2015)),
Set5 Bevilacqua et al.| (2012), Set14 Zeyde et al.| (2010), BSD100 |[Martin et al.| (2001), and DIV2k
Agustsson & Timofte| (2017); [Timofte et al| (2018) datasets for both 2x and 4x scaling but present
with 4x in the interest of space.

Model Implementation. Since we reduce the width and depth of existing a variety of existing mod-
els, we denote models as - [model name]_[depth ratio]_[width ratio]. For example, the original
CARN model has 3 block layers and uses 64 cell channel size. So a CARN model with 1 block layer
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and 32 channel size is denoted as CARN _0.3_0.5. We implement our framework in Pytorch with
fp16 quantization and deployed with ONNX |onn| (2022).

Table 1: Comparison between AdaSR and state-of-the-art models. Evaluated for 4x SISR and trained

on Div2K. Patch size is 256x256.

Set5 Set14 BSD100 Urban100
Model Params  FLOPS  pLonp/GoIM  PSNR/SSIM  PSNR/SSIM  PSNR/SSIM
RCAN 1.6 1302G 32.63/0900 28.87/0788 27.77/0.743 27.01/0.814
ESRGAN-Prune 16 113.1G  28.07/0737 2521/0.634 2522/0.641 22.45/0.584
AGD-L 090  1394G 31.86/0.892 28.40/0.801 27.47/0.724 25.55/0.695
MDDC-L 079  96.6G  31.74/0887 2831/0.773 2736/0729 25.46/0.763
RCAN-1.0.75 (Ours) 097 985G  31.64/0.889 2837/0.781 27.25/0.732 25.59/0.739
CARN-M 0.4 7432 31.92/0.890 2842/0.776 27.44/0730 25.63/0.768
AGD-M 045  1109G 30.36/0.833 27.41/0754 27.59/0.742 2439/0.688
Tri-Level NAS - B 051  1174G  3034/0.821 27.29/0.722 2643/0.682 25.45/0.756
MDDC-M 036  59.6G  31.53/0.884 28.19/0.770 27.29/0727 2524/0.756
CARN-0.6 0.5 (Ours) 039 685G 31.60/0.878 28.46/0.759 27.34/0.717 25.68/0.783
DRRN 029 324G 31.40/0.852 2801/0.761 27.82/0.699 25.35/0.757
Tri-Level NAS - A 024 154G 29.80/0753 27.60/0.748 2622/0.679 24.77/0.666
MDDC-S 025 148G  3131/0879 28.04/0.767 27.19/0.723 25.03/0.747
FMEN-0.75.0.8 (Ours) 023  14.6G  3138/0.874 28.09/0.773 27.16/0731 25.11/0.714

4.1 CROSS PLATFORM PARETO OPTIMALITY

First, we evaluate AdaSR ’s ability to generate models for a wide variety of hardware platforms. We
adapt existing models to a range of sizes. We apply our training method to serveral original models,
such as CARN |Ahn et al.| (2018), ESRGAN |Wang et al.| (2018b), RCAN [Zhang et al.| (2018al),
and FMEN Du et al.| (2022). The adapted models are evaluated against state-of-the-art models in
Fig. 3| Note that AdaSR can generate models for a wide range of MAC values, while most other
frameworks are only capable of generating single models. Even though NAS frameworks such
as AutoGAN [Fu et al.| (2020), Tri-Level NAS Wu et al.| (2021), and FALSR |Chu et al.| (2021) can
generate multiple models, the range of model sizes are limited by their search spaces. Tri-Level NAS
can generate Pareto optimal architectures, but the others have relatively low performance since they
are more focused on automating SR model generation than achieving state-of-the-art performance.
In comparison, our method can utilize a wide variety of existing architectures and generate a wide
range of models with different sizes that are Pareto optimal.

4.2 DYNAMIC RUNTIME ENVIRONMENT

Next, we evaluate our framework’s ability to create models for dynamic runtime environments. Here
we take a single CARN model and use our framework to train it. This generates a single adaptable
CARN model that is capable of running inference using various shared operation sizes. We deploy
our trained adaptable model along with state-of-the-art models on a desktop GPU (1080Ti), a laptop
CPU (i5-5560), and a mobile CPU (Snapdragon 845). We choose these models specifically since
they are on the inexpensive end of the SR model space and are designed for deployment on resource
constrained hardware. We then compare our adaptable model’s performance against the others on
inference latency. The results are shown in Fig. @] It is worth noting that the state-of-the-art models
assembled together set the Pareto frontier, while ours is a single model which is capable of adapting
to various sizes and can be changed on-the-fly without model reloads.

The results show that our adapted CARN model outperforms hand-designed and NAS-designed
models in terms of performance against latency. FMEN Du et al.| (2022)) is finely tuned for reducing
inference latency and is one of the efficient models from the 2022 NTIRE challenge|Li et al.[(2022),
and it outperforms our original model at the beginning. Since FMEN is a block-based GAN, our
AdaSR can be applied on FMEN as well (results presented later). For MobiSR |Lee et al.| (2019), it
is specifically developed with consideration to mobile CPU compilers and hardware architectures,
which is why it performs better on CPU deployments but not on GPUs. Nonetheless, our adapted
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CARN model outperforms most efficient models in this size range, and is relatively close to highly
efficient hand-designed models. One additional advantage we have over other models is that our
model has a single set of weights. Different model sizes simply bypasses channels and blocks dur-
ing inference and so can be done without any interruptions. In a dynamic runtime environment,
available resource for inference fluctuate and so we need to swap among models such that a min-
imum inference latency is maintained. We can do this by having an assembled set of models and
rerouting the execution pipeline to the appropriate models as required. In Fig. we present the

23.38/0.761  23.52/0.762  24.84/0.777  25.09/0.816
RCAN 0.3 025 RCAN_0.6 0.5 RCAN_I 0.75 RCAN (original)

28.41/0.782  28.66/0.802  28.86/0.832
CARN 0.3 025 CARN_ 0.6.0.5 CARN 1075 CARN (original)

Figure 5: Visual qualitative comparison between AdaSR models and the corresponding original
models. Images taken from Urban100 (above) and Set14 (below) datasets for 4x resolution with
their Low resolution (LR) input and ground-truth High Resolution (HR) samples.

results comparing the total number of parameters of the state-of-the-art models from Fig. 4 assem-
bled together against our single adaptable model. Here, we see clearly that our model is around
20% of the assembled models, so our single model approach is significantly more memory efficient
for dynamic runtime environments. Fig. fe] shows the distribution of the amount of time taken to
swap between the state-of-the-art models vs. time for our single adaptable model to change between
compression levels. The assembled models take magnitudes larger time to load compared to AdaSR
since they have to swap between models through expensive memory loading/unloading operations
from disk, whereas ours is a single model completely loaded into the memory at all times. This
causes less interruption of service during runtime. Thus, our approach is much more suitable to
dynamic runtime environments than others in current literature.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

In addition to support adapting models for cross platform deployment and dynamic runtime en-
vironment, AdaSR achieves state-of-the-art performance (or close to it). In Table [} we present
the comparison between AdaSR and state-of-the-art models of similar sizes across a variety of SR
benchmark datasets. We group the models into three different size categories based on their number
of parameters. Our adaptive training scheme is also capable of generating models without much
fine-tuning, unlike works such as AGD which require running search phases for each model size
criteria. One interesting observation is that our adaptation of the highly efficient FMEN model also
gives highly competitive results, implying that the original model chosen for adaptation is important
for the performance of adapted models. This shows the effectiveness of AdaSR ’s focus on reducing
output discrepancy between the original and adapted models. We also present comparison of qual-
itative results in Fig. 5} Here, we compare the SR outputs of the original models and the outputs
generated by AdaSR . We observe that as we reduce the sizes of the models progressively, we note a
drop in quantitative values as expected, but also that the qualitative difference is not significant and
even our smallest models provide large improvements over the LR images.

5 CONCLUSION

In this paper, we propose AdaSR , which can be used to adapt existing SR models for different
hardware and adaptively change the compute graph in dynamic runtime environment, achieved by
changing the depth and the channel size in real time on a single architecture with no extra cost on
memory and/or storage. We perform shared weight training using a progressive training approach to
reduce output discrepancies between the original and adapted model with a combination of function
matching, max-norm regularization, Bayesian-tuned loss functions, and gradient aggregated training
to improve training performance. Extensive tests on a variety of hardware and datasets show that
AdaSR has Pareto optimal performance, reduced memory footprint, and supports real-time adaption
in dynamic runtime environments.



Under review as a conference paper at ICLR 2024

REFERENCES

Onnx. https://github.com/onnx/onnx, 2022.

Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya Patil, Kolten Pearson, and Soheil Feizi.
Compressing gans using knowledge distillation. arXiv preprint arXiv:1902.00159, 2019.

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge on single image super-resolution:
Dataset and study. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, July 2017.

Joon Young Ahn and Nam Ik Cho. Neural architecture search for image super-resolution using
densely constructed search space: Deconas. In 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 4829-4836. IEEE, 2021.

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-
resolution with cascading residual network. In Proceedings of the European conference on com-
puter vision (ECCV), pp. 252-268, 2018.

Simone Angarano, Francesco Salvetti, Mauro Martini, and Marcello Chiaberge. Generative adver-
sarial super-resolution at the edge with knowledge distillation. arXiv preprint arXiv:2209.03355,
2022.

Mustafa Ayazoglu. Extremely lightweight quantization robust real-time single-image super resolu-
tion for mobile devices. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2472-2479, 2021.

Syed Muhammad Arsalan Bashir, Yi Wang, Mahrukh Khan, and Yilong Niu. A comprehensive
review of deep learning-based single image super-resolution. PeerJ Computer Science, 7:€621,
2021.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie-Line Alberi Morel. Low-
complexity single-image super-resolution based on nonnegative neighbor embedding. In British
Machine Vision Conference (BMVC), 2012.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander
Kolesnikov. Knowledge distillation: A good teacher is patient and consistent. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10925-10934,
2022.

Yochai Blau, Roey Mechrez, Radu Timofte, Tomer Michaeli, and Lihi Zelnik-Manor. The 2018 pirm
challenge on perceptual image super-resolution. In Proceedings of the European Conference on
Computer Vision (ECCV) Workshops, pp. 00, 2018.

Kelvin CK Chan, Shangchen Zhou, Xiangyu Xu, and Chen Change Loy. Basicvsr++: Improv-
ing video super-resolution with enhanced propagation and alignment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5972-5981, 2022.

Honggang Chen, Xiaohai He, Linbo Qing, Yuanyuan Wu, Chao Ren, Ray E Sheriff, and Ce Zhu.
Real-world single image super-resolution: A brief review. Information Fusion, 79:124-145,
2022a.

Hongyuan Chen, Yanting Pei, Hongwei Zhao, and Yaping Huang. Super-resolution guided knowl-
edge distillation for low-resolution image classification. Pattern Recognition Letters, 155:62—68,
2022b.

Xi Cheng, Xiang Li, Jian Yang, and Ying Tai. Sesr: Single image super resolution with recursive
squeeze and excitation networks. In 2018 24th International conference on pattern recognition
(ICPR), pp. 147-152. IEEE, 2018.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Multi-objective reinforced evolution in mobile neural
architecture search. In European Conference on Computer Vision, pp. 99—113. Springer, 2020.

10


https://github.com/onnx/onnx

Under review as a conference paper at ICLR 2024

Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and Qingyuan Li. Fast, accurate and
lightweight super-resolution with neural architecture search. In 2020 25th International con-
ference on pattern recognition (ICPR), pp. 59-64. IEEE, 2021.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional
network for image super-resolution. In European conference on computer vision, pp. 184—199.
Springer, 2014.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):
295-307, 2015.

Chao Dong, Chen Change Loy, and Xiaoou Tang. Accelerating the super-resolution convolutional
neural network. In European conference on computer vision, pp. 391-407. Springer, 2016.

Zhekang Dong, Chun Sing Lai, Zhao Xu, and Donglian Qi. Single image super-resolution via the
implementation of the hardware-friendly sparse coding. In 2018 37th Chinese Control Conference
(CCC), pp. 8132-8137. IEEE, 2018.

Zongcai Du, Ding Liu, Jie Liu, Jie Tang, Gangshan Wu, and Lean Fu. Fast and memory-efficient
network towards efficient image super-resolution. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 853-862, 2022.

Yonggan Fu, Wuyang Chen, Haotao Wang, Haoran Li, Yingyan Lin, and Zhangyang Wang.
Autogan-distiller: searching to compress generative adversarial networks. In Proceedings of the
37th International Conference on Machine Learning, pp. 3292-3303, 2020.

Dandan Gao and Dengwen Zhou. A very lightweight and efficient image super-resolution network.
Expert Systems with Applications, 213:118898, 2023.

Qinquan Gao, Yan Zhao, Gen Li, and Tong Tong. Image super-resolution using knowledge distilla-
tion. In Asian Conference on Computer Vision, pp. 527-541. Springer, 2018.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789-1819, 2021.

Zibin He, Tao Dai, Jian Lu, Yong Jiang, and Shu-Tao Xia. Fakd: Feature-affinity based knowledge
distillation for efficient image super-resolution. In 2020 IEEE International Conference on Image
Processing (ICIP), pp. 518-522. IEEE, 2020.

Cheeun Hong, Heewon Kim, Sungyong Baik, Junghun Oh, and Kyoung Mu Lee. Daq: Channel-
wise distribution-aware quantization for deep image super-resolution networks. In Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2675-2684, 2022.

Zejiang Hou and Sun-Yuan Kung. Multi-dimensional dynamic model compression for efficient
image super-resolution. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 633-643, 2022.

Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single image super-resolution from trans-
formed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5197-5206, 2015.

Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accurate single image super-resolution via
information distillation network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 723-731, 2018.

Xinrui Jiang, Nannan Wang, Jingwei Xin, Xiaobo Xia, Xi Yang, and Xinbo Gao. Learning
lightweight super-resolution networks with weight pruning. Neural Networks, 144:21-32, 2021.

11



Under review as a conference paper at ICLR 2024

Xiao Jin, Baoyun Peng, Yichao Wu, Yu Liu, Jiaheng Liu, Ding Liang, Junjie Yan, and Xiaolin
Hu. Knowledge distillation via route constrained optimization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 1345-1354, 2019.

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Deeply-recursive convolutional network for
image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1637-1645, 2016.

Royson Lee, Stylianos I Venieris, Lukasz Dudziak, Sourav Bhattacharya, and Nicholas D Lane.
Mobisr: Efficient on-device super-resolution through heterogeneous mobile processors. In The
25th annual international conference on mobile computing and networking, pp. 1-16, 2019.

Yawei Li, Kai Zhang, Radu Timofte, Luc Van Gool, Fangyuan Kong, Mingxi Li, Songwei Liu,
Zongcai Du, Ding Liu, Chenhui Zhou, et al. Ntire 2022 challenge on efficient super-resolution:
Methods and results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp. 1062-1102, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
International Conference on Learning Representations, 2018.

Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. Pruning algorithms to accelerate
convolutional neural networks for edge applications: A survey. arXiv preprint arXiv:2005.04275,
2020.

Xiangbin Liu, Shuqi Chen, Liping Song, Marcin Wozniak, and Shuai Liu. Self-attention nega-
tive feedback network for real-time image super-resolution. Journal of King Saud University-
Computer and Information Sciences, 34(8):6179-6186, 2022.

Yinglan Ma, Hongyu Xiong, Zhe Hu, and Lizhuang Ma. Efficient super resolution using binarized
neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 0-0, 2019.

David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human segmented
natural images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001,
volume 2, pp. 416-423. IEEE, 2001.

Yiqun Mei, Yuchen Fan, and Yuqgian Zhou. Image super-resolution with non-local sparse attention.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3517-3526, 2021.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 5191-5198, 2020.

Ying Nie, Kai Han, Zhenhua Liu, An Xiao, Yiping Deng, Chunjing Xu, and Yunhe Wang. Ghostsr:
Learning ghost features for efficient image super-resolution. arXiv preprint arXiv:2101.08525,
2021.

Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. Super-resolution image reconstruction: a
technical overview. IEEE signal processing magazine, 20(3):21-36, 2003.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR), 54(4):1-34, 2021.

Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In International conference
on computational learning theory, pp. 545-560. Springer, 2005.

Anushri Suresh, JS Nisha, Varun P Gopi, et al. Rich feature distillation with feature affinity module
for efficient image dehazing. Optik, 267:169656, 2022.

12



Under review as a conference paper at ICLR 2024

Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep recursive residual network.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3147—
3155, 2017.

Radu Timofte, Shuhang Gu, Jiging Wu, Luc Van Gool, Lei Zhang, Ming-Hsuan Yang, Muhammad
Haris, et al. Ntire 2018 challenge on single image super-resolution: Methods and results. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2018.

Emmanuel Vazquez and Julien Bect. Convergence properties of the expected improvement algo-
rithm with fixed mean and covariance functions. Journal of Statistical Planning and inference,
140(11):3088-3095, 2010.

A Helen Victoria and G Maragatham. Automatic tuning of hyperparameters using bayesian opti-
mization. Evolving Systems, 12(1):217-223, 2021.

Lin Wang and Kuk-Jin Yoon. Knowledge distillation and student-teacher learning for visual in-
telligence: A review and new outlooks. [EEE Transactions on Pattern Analysis and Machine
Intelligence, 2021.

Longguang Wang, Xiaoyu Dong, Yingqian Wang, Xinyi Ying, Zaiping Lin, Wei An, and Yulan
Guo. Exploring sparsity in image super-resolution for efficient inference. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 4917-4926, 2021.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learning dy-
namic routing in convolutional networks. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pp. 409—-424, 2018a.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen
Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings
of the European conference on computer vision (ECCV) workshops, pp. 0-0, 2018b.

Yan Wu, Zhiwu Huang, Suryansh Kumar, Rhea Sanjay Sukthanker, Radu Timofte, and Luc
Van Gool. Trilevel neural architecture search for efficient single image super-resolution. arXiv
preprint arXiv:2101.06658, 2021.

Jingwei Xin, Nannan Wang, Xinrui Jiang, Jie Li, Heng Huang, and Xinbo Gao. Binarized neural
network for single image super resolution. In European conference on computer vision, pp. 91—
107. Springer, 2020.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. In International conference on curves and surfaces, pp. 711-730. Springer, 2010.

Yiman Zhang, Hanting Chen, Xinghao Chen, Yiping Deng, Chunjing Xu, and Yunhe Wang. Data-
free knowledge distillation for image super-resolution. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 7852-7861, 2021a.

Yinjie Zhang, Yuanxing Zhang, Yi Wu, Yu Tao, Kaigui Bian, Pan Zhou, Lingyang Song, and
Hu Tuo. Improving quality of experience by adaptive video streaming with super-resolution. In
IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 1957-1966. IEEE,
2020.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-
resolution using very deep residual channel attention networks. In Proceedings of the European
conference on computer vision (ECCV), pp. 286-301, 2018a.

Yulun Zhang, Yapeng Tian, Yu Kong, Bineng Zhong, and Yun Fu. Residual dense network for
image super-resolution. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2472-2481, 2018b.

Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Aligned structured sparsity learning for efficient
image super-resolution. Advances in Neural Information Processing Systems, 34:2695-2706,
2021b.

Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Learning efficient image super-resolution net-
works via structure-regularized pruning. In International Conference on Learning Representa-
tions, 2021c.

13



	Introduction
	Related Works
	Proposed Method
	Operation Reduction
	AdaSR Architecture Design
	Progressive Knowledge Distillation
	Function Matching and Regularization
	Depth Consolidation
	Bayesian-tuned Loss Function

	AdaSR Training

	Evaluation
	Cross Platform Pareto Optimality
	Dynamic Runtime Environment
	Comparison with State-of-the-art Methods

	Conclusion

