

WATS: WAVELET-AWARE TEMPERATURE SCALING FOR RELIABLE GRAPH NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have demonstrated strong predictive performance on relational data; however, their confidence estimates often misalign with actual predictive correctness, posing significant limitations for deployment in safety-critical settings. While existing graph-aware calibration methods seek to mitigate this limitation, they primarily depend on coarse one-hop statistics, such as neighbor-predicted confidence, or latent node embeddings, thereby neglecting the fine-grained structural heterogeneity inherent in graph topology. In this work, we propose Wavelet-Aware Temperature Scaling (WATS), a post-hoc calibration framework for node classification that assigns node-specific temperatures based on tunable heat-kernel graph wavelet features. Specifically, WATS harnesses the scalability and topology sensitivity of graph wavelets to refine confidence estimates, all without necessitating model retraining or access to neighboring logits or predictions. Extensive evaluations across nine benchmark datasets with varying graph structures and three GNN backbones demonstrate that WATS achieves the lowest Expected Calibration Error (ECE) among most of the compared methods, outperforming both classical and graph-specific baselines by up to 41.2% in ECE and reducing calibration variance by 33.17% on average compared with graph-specific methods. Moreover, WATS remains computationally efficient, scaling well across graphs of diverse sizes and densities. The implementation is available at <https://anonymous.4open.science/status/WATS-057A>

1 INTRODUCTION

GNNs offer a principled approach for learning over structured data and have achieved strong empirical performance across a wide range of domains, including social network modeling (Fan et al., 2019), traffic forecasting (Sharma et al., 2023), and healthcare applications (Gao et al., 2024; Lu & Uddin, 2021). They support key tasks such as node classification (Zhao et al., 2021; Sun et al., 2022), link prediction (Zhang & Chen, 2018; Luo et al., 2023), and graph-level inference (Zhang et al., 2021; Godwin et al., 2021). While GNNs are widely adopted for their representational power, their output confidence often fails to reflect true predictive reliability, which is an issue of growing concern in high-stakes domains, for instance, medical diagnosis and financial risk assessment.

Model calibration, which measures the alignment between a model’s predicted confidence and its true correctness likelihood (Guo et al., 2017), is a key aspect of model reliability. A well-calibrated model is expected to produce predictions whose confidence scores accurately reflect the observed accuracy. For example, a prediction made with 70% confidence should be correct 70% of the time. Recent findings highlight that GNNs behave differently from standard independent and identically distributed (*i.i.d.*) trained models such as CNNs and transformers (Melotti et al., 2022; Tao et al., 2025; Wen et al., 2024). Unlike CNNs and transformers, which often suffer from overconfidence, GNNs tend to be systematically underconfident: their predicted confidence scores are consistently lower than their true accuracy (Wang et al., 2022; Hsu et al., 2022; Liu et al., 2022).

Several recent approaches aim to address this issue through graph-aware calibration strategies, including Graph Attention Temperature Scaling (GATS) (Hsu et al., 2022), CaGCN (Wang et al., 2021), Graph Ensemble Temperature Scaling (GETS) (Zhuang et al., 2024), and SimCalib (Tang et al., 2024). These approaches typically enhance node-level calibration by integrating neighbour structural cues with their predictive status, such as confidence level.

054 However, they predominantly rely on shallow neighborhood statistics or opaque latent representations,
 055 which may result in unstable and inaccurate uncertainty estimation. As they capture only limited,
 056 local information and fail to reflect the broader structural context, leading to unreliable calibration,
 057 especially for low-degree scenarios. For illustration, we provide empirical evidence that nodes with
 058 similar local statistics can exhibit different miscalibration levels across graphs. Based on the above
 059 limitation, we aim to build a method that: (i) flexibly incorporates neighborhood information without
 060 relying on additional explicit pretraining status (ii) maintains high calibration performance across
 061 diverse graph domains, while remaining lightweight and post-hoc. (iii) performs temperature scaling
 062 at the node level to allow identical correction based on multi-hop structural information.

063 Therefore, in this work, we propose a calibration framework for node classification, called WAVELET-
 064 AWARE TEMPERATURE SCALING (WATS), which introduces flexibly scaled structural features
 065 through graph wavelets. We incorporate graph wavelets because they offer a principled way to
 066 capture structural information at multiple scales (Donnat et al., 2018). Our methods, wavelets spatial
 067 localization controlled by the scale parameters s and k , enabling fine-grained capture of multi-hop
 068 dependencies. Differs from graph wavelet algorithms used in neural network (Donnat et al., 2018;
 069 Behmanesh et al., 2022) in that it does not aim to reconstruct or smooth node features for node
 070 classification. Instead, it uses wavelet coefficients as structural signatures to indicate the node
 071 uncertainty, which allows WATS to adaptively calibrate predictions based on the underlying structure,
 072 helping to correct confidence errors where standard methods fall short. Our main contributions are
 073 summarized as follows:
 074

WATS: We propose a novel post-hoc calibration framework that performs node-wise temperature
 075 scaling using flexibly scaled graph wavelet features.

Robust, interpretable structural features: We show that graph wavelet features are stable and
 077 geometry-aware, encoding local graph structure without relying on potentially noisy signals such as
 078 neighboring logits or distances to labeled nodes.

Extensive empirical validation: Across multiple graph benchmarks and GNN architectures. WATS
 079 consistently improves calibration quality, reducing ECE and outperforming both classical and graph-
 080 specific calibration baselines.

083 2 RELATED WORK

085 2.1 UNCERTAINTY CALIBRATION FOR NEURAL NETWORKS

087 Uncertainty calibration aims to align a model’s predicted confidence with the true likelihood of
 088 correctness. Existing approaches are typically divided into two categories: in-training and post-hoc

089 **In-training** approaches incorporate uncertainty estimation within the model optimization process.
 090 For example, Bayesian Neural Networks (BNNs) and variational inference methods achieve this by
 091 imposing probabilistic distribution over model parameters (Gal & Ghahramani, 2016; MacKay, 1995;
 092 Springenberg et al., 2016). Alternative frequentist strategies, such as quantile regression (Romano
 093 et al., 2019), are also employed to generate calibrated probability estimates.

095 **Post-hoc** methods, in contrast, calibrate a pre-trained model without modifying its internal parameters.
 096 These include non-parametric techniques such as histogram binning (Zadrozny & Elkan, 2001)
 097 and isotonic regression (Zadrozny & Elkan, 2002), parametric approaches that assume a specific
 098 transformation form, including temperature scaling (TS) (Guo et al., 2017) and Beta Calibration
 099 (Kull et al., 2017), as well as distribution-free frameworks like conformal prediction (Tibshirani et al.,
 100 2019) which provides valid coverage guarantees for model outputs.

101 2.2 GRAPH-SPECIFIC CALIBRATION METHODS

103 While post-hoc calibration methods perform well on Euclidean data with CNNs, their effectiveness
 104 declines on graph-structured data due to the lack of relational modeling (Hsu et al., 2022; Wang et al.,
 105 2021). To address this, several graph-aware approaches have been proposed. CaGCN (Wang et al.,
 106 2021) uses a GCN-based temperature predictor to incorporate structure, while GATS (Hsu et al.,
 107 2022) applies attention over neighborhoods for node-specific temperatures. GETS (Zhuang et al.,
 108 2024) introduces a sparse mixture-of-experts using degree, features, and confidence. SimCalib (Tang

et al., 2024) adds similarity-preserving regularization, and Shi et al. (2023) use reinforcement learning to adapt calibration to graph structure. Beyond post-hoc methods, Yang et al. (2024a) reweight edges during training to improve calibration, and Yang et al. (2024b) propose a calibration-aware loss targeting underconfidence caused by shallow GNNs. These methods collectively integrate graph structure and node-level signals to enhance calibration.

2.3 GRAPH WAVELET

Graph wavelets provide compact, spatially localized bases that are well suited to graph signal processing and structural representation learning. Whereas classical wavelets such as Haar and Daubechies are defined on Euclidean lattices (Bruce et al., 1996; Resnikoff & Wells, 1992), graph wavelets extend these ideas to non-Euclidean domains by leveraging the spectral properties of the graph Laplacian (Das, 2004; Shuman et al., 2013; Xu et al., 2019).

A particularly versatile construction is the lifting scheme (Sweldens, 1998), which can be transferred to graphs without any data-driven training. Hammond et al. (2011) further improved practicality by replacing the costly Laplacian eigendecomposition with Chebyshev polynomial approximations, enabling efficient wavelet transforms on large graphs. Since then, graph wavelets have supported a variety of downstream tasks, including graph convolutional architectures (Xu et al., 2019; Deb et al., 2024), multimodal wavelet networks (Behmanesh et al., 2022), community detection via scale-adaptive filtering (Tremblay & Borgnat, 2014), and diffusion-based node embeddings that capture multi-scale structural patterns (Donnat et al., 2018). All these methods and application indicates the importance of Graph wavelet in both theoretical and empirically practice

3 METHOD

3.1 PRELIMINARY STUDY

We address the problem of uncertainty calibration in semi-supervised node classification tasks over graphs. Let $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ denote a graph, where \mathcal{V} is the set of nodes and \mathcal{E} is the set of edges. The adjacency matrix is denoted by $A \in \mathbb{R}^{N \times N}$, where $N = |\mathcal{V}|$. Each node $v_i \in \mathcal{V}$ has a feature $x_i \in \mathcal{X}$, and for a subset of labeled nodes $\mathcal{L} \subseteq \mathcal{V}$, the true label $y_i \in \{1, \dots, K\}$ is provided. Let $X = [x_1, \dots, x_N]^\top$ be the feature matrix and $Y = [y_1, \dots, y_N]^\top$ the label vector, a GNN f_θ performs node classification via predicting node-wise class probabilities $\hat{p}_i(y)$ as

$$\hat{y}_i = \arg \max_y \hat{p}_i(y), \quad \hat{c}_i = \max_y \hat{p}_i(y),$$

where \hat{y}_i denotes the predicted label and \hat{c}_i denotes its confidence. In the field of model calibration, a well-calibrated model provides confidence that aligns with the true accuracy well as

$$\mathbb{P}(y_i = \hat{y}_i \mid \hat{c}_i = c) = c \quad \forall c \in [0, 1].$$

The measurement of model calibration can be computed via Expected Calibration Error (ECE) (Guo et al., 2017) as $\mathbb{E}[\mathbb{P}(y_i = \hat{y}_i \mid \hat{c}_i) - c]$, however, ECE cannot be easily computed due to limited samples. Thus, an estimation of ECE is introduced by grouping samples into M bins with equal confidence intervals as $B_m = \{j \in \mathcal{N} \mid \frac{m-1}{M} < \hat{c}_j \leq \frac{m}{M}\}$, where \mathcal{N} is the subset of node that used in evaluation $\mathcal{N} \subseteq \mathcal{V}$. Given the bin accuracy $\text{Acc}(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \mathbf{1}(\hat{y}_i = y_i)$ and bin confidence $\text{Conf}(B_m) = \frac{1}{|B_m|} \sum_{i \in B_m} \hat{c}_i$, the approximation can be achieved by computing the expected difference between bin accuracy and confidence as

$$\text{ECE} = \sum_{m=1}^M \frac{|B_m|}{|\mathcal{N}|} |\text{Acc}(B_m) - \text{Conf}(B_m)|. \quad (1)$$

3.2 UNCERTAINTY ESTIMATION IN GNNS

Calibrate via One-hop Statistics Message-passing is widely adopted in GNNS, including GCN (Kipf & Welling, 2016) and GAT (Veličković et al., 2017), which can be simplified via a degree-normalized mean aggregator as

$$h_i^{(\ell+1)} = \frac{1}{d_i + 1} \left(h_i^{(\ell)} + \sum_{j \in \mathcal{N}(i)} h_j^{(\ell)} \right), \quad d_i = |\mathcal{N}(i)|. \quad (2)$$

162 where d_i excludes the node itself, so $d_i + 1$ accounts for the self-loop. The final embedding $h_i^{(L)}$
 163 induces the confidence \hat{c}_i . This local aggregation implicitly determines the final prediction and the
 164 associated confidence \hat{c}_i of node i . Although GATS confines all structural operations, including
 165 neighbor temperature aggregation, attention weights, neighbor confidence averaging to 1-hop, and
 166 CaGCN and GETS stack two GCN layers to nominally reach 2-hop, each layer itself still performs
 167 only 1-hop aggregation. As a result, these methods are unable to adaptively capture longer-range
 168 dependencies. Although these calibration techniques show effectiveness, we argue that one-hop
 169 statistics only cannot provide an accurate estimation of node uncertainty in GNNs. Considering a
 170 simplified one-hop estimator of confidence:

$$\hat{c}_i \approx \frac{1}{d_i + 1} \sum_{j \in \{i\} \cup \mathcal{N}(i)} y_j,$$

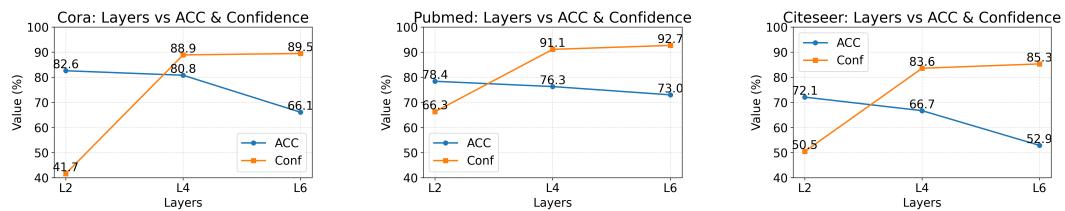
174 where $y_j \in \{0, 1\}$ is the true label indicator for node j . Then the per-node calibration bias is

$$\text{bias}_i = |\hat{c}_i - \mathbf{1}(\hat{y}_i = y_i)| \approx \left| y_i - \frac{1}{d_i + 1} \sum_{j \in \mathcal{N}(i)} y_j \right|. \quad (3)$$

179 As shown in Eq. 3, for example, when $d_i = 2$ and the neighbor labels are $[0, 1]$, the average is $1/3$
 180 regardless of the true label y_i , making the estimate uninformative, which means high uncertainty. In
 181 sparse or low-homophily regions, one-hop neighborhoods may carry weak or misleading signals,
 182 resulting in poor bias approximation. This motivates structure-aware calibration that aggregates richer
 183 signals beyond immediate neighbors.

184 A complementary critical insight into this problem was articulated by Wang et al. (2022), who
 185 uncovered a paradoxical phenomenon: as GNN depth increases, predictive accuracy diminishes, yet
 186 model confidence paradoxically rises, as shown in Figure 1. Highlighting that calibration errors may
 187 not merely from local neighbor information, but from multi-scale structural effects spanning across
 188 the graph. This observation reveals the core weakness of local-neighbor-based calibration: while
 189 shallow cues correlate with uncertainty, they cannot capture the non-local dependencies that drive
 190 systematic confidence misalignment in deeper GNNs.

191 These findings underscore the necessity of calibration approaches that go beyond local neighbor
 192 statistics. Prior works (Wang et al., 2022; Hsu et al., 2022; Tang et al., 2024) have emphasized
 193 some graph features, such as homophily and node similarity. GETS (Zhuang et al., 2024) partially
 194 addresses this by incorporating degree embeddings into a mixture-of-experts framework. While
 195 all these methods lack the ability to capture multi-hop structural patterns or incorporate unstable
 196 confidence. Therefore, addressing the above limitation and improving the calibration requires
 197 leveraging multi-hop context and structure-aware features, enabling the model to better handle both
 198 under- and over-confidence in structurally diverse regions of the graph.



207 Figure 1: Test accuracy (ACC) and average predictive confidence of GCNs with increasing depth on
 208 Cora, Pubmed, and Citeseer. In all three datasets, deeper models exhibit decreasing accuracy while
 209 confidence increases, indicating depth-induced miscalibration.

211 3.3 WAVELET-AWARE TEMPERATURE SCALING

213 We propose WATS, a lightweight and effective node-wise calibration framework that can be seamlessly
 214 applied to any pretrained GNN with scalability to large graphs. Unlike conventional or graph-specific
 215 post-hoc methods that rely on global or one-hop features, WATS introduces a structural perspective
 by leveraging graph wavelet features with tunable scales.

These wavelet representations capture rich, scalable structural signals (Hammond et al., 2011; Crovella & Kolaczyk, 2003), often neglected in calibration. By learning a temperature for each node based on its structural embedding, WATS aligns confidence with correctness in a fine-grained, node-specific manner. In addition to its strong empirical performance, WATS is also architecture-agnostic, making it broadly applicable across diverse graph types and calibration scenarios.

3.3.1 GRAPH WAVELET TRANSFORM

Traditional graph signal processing often relies on graph Fourier transform, which projects signals into the spectral domain using the eigenvectors of the normalized graph Laplacian $\mathbf{L}_{\text{sym}} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ as orthonormal bases. Given a signal $\mathbf{x} \in \mathbb{R}^N$, its Fourier transform is defined as $\hat{\mathbf{x}} = \mathbf{U}^\top \mathbf{x}$ and the inverse as $\mathbf{x} = \mathbf{U} \hat{\mathbf{x}}$, where \mathbf{U} contains the eigenvectors of \mathbf{L}_{sym} (Shuman et al., 2013). While this formulation enables spectral filtering via $\mathbf{U} g_\theta \mathbf{U}^\top \mathbf{x}$, it suffers from several limitations (Hammond et al., 2011; Xu et al., 2019; Zheng et al., 2021): (1) The eigendecomposition of \mathbf{L}_{sym} has high computational cost ($\mathcal{O}(N^3)$); (2) \mathbf{U} is generally dense, making the transform costly for large graphs; (3) The resulting filters lack localization in the vertex domain, limiting their ability to capture localized structural patterns.

To overcome these issues, we adopt the graph wavelet transform, which retains the spectral benefits of Fourier analysis while introducing localization and sparsity. Graph wavelet bases are constructed using a heat kernel scaling function $g(s\lambda) = e^{-s\lambda}$, where $s > 0$ is a scale parameter controlling the diffusion extent. The wavelet operator is defined as:

$$\Psi_s = \mathbf{U} \text{diag}(g(s\lambda_1), \dots, g(s\lambda_N)) \mathbf{U}^\top \quad (4)$$

where λ_i are the eigenvalues of \mathbf{L}_{sym} . The inverse transform uses $g(-s\lambda)$, yielding efficient localized filtering analogous to diffusion. Direct computation of Ψ_s is still impractical for large graphs. To address this, we adopt the Chebyshev polynomial approximation to avoid explicit eigendecomposition, following (Hammond et al., 2011; Xu et al., 2019). We first rescale \mathbf{L}_{sym} as: $\hat{\mathbf{L}} = \frac{2}{\lambda_{\max}} \mathbf{L}_{\text{sym}} - \mathbf{I}$, $\lambda_{\max} \approx 2$ and define Chebyshev polynomials $\{\mathbf{T}_k\}_{k=0}^K$ via the recurrence: $\mathbf{T}_0 = \mathbf{X}_0$, $\mathbf{T}_1 = \hat{\mathbf{L}} \mathbf{X}_0$, $\mathbf{T}_k = 2\hat{\mathbf{L}} \mathbf{T}_{k-1} - \mathbf{T}_{k-2}$, for $k \geq 2$ where \mathbf{X}_0 is the initial input signal. In our setting, we choose \mathbf{X}_0 as the log-degree to preserve structural properties while mitigating skewed degree distributions. Degree encodes a node's connectivity and its potential for information aggregation in message-passing GNNs, and in previous section, it is proven to be an essential factor of uncertainty. In our setting, we choose \mathbf{X}_0 as the log-degree to preserve structural properties while mitigating skewed degree distributions. Degree encodes a node's connectivity and its potential for information aggregation in message-passing GNNs, and in previous work (Zhuang et al., 2024), it is shown to be correlated with miscalibration.

The wavelet scaling function $g(s\lambda) = e^{-s\lambda}$ is approximated using a K -order Chebyshev series:

$$g(s\lambda) \approx \frac{1}{2} c_0 + \sum_{k=1}^K c_k T_k(\lambda)$$

with the Chebyshev coefficients c_k given by:

$$c_k = \frac{2}{\pi} \int_0^\pi \cos(k\theta) g\left(s \frac{\lambda_{\max}}{2} (\cos \theta + 1)\right) d\theta$$

As stated in Hammond et al. (2011), these c_k are computable constants before training. The final wavelet-transformed feature matrix \mathbf{S} is constructed by applying this polynomial filter to the input signal:

$$\mathbf{S} = \frac{1}{2} c_0 \mathbf{T}_0 + \sum_{k=1}^K c_k \mathbf{T}_k \quad (5)$$

This is followed by row-wise ℓ_1 normalization:

$$\mathbf{H}_i = \frac{\mathbf{S}_i}{\|\mathbf{S}_i\|_1}, \quad \forall i \in \{1, \dots, N\} \quad (6)$$

The hyper-parameter K sets the maximum receptive-field size (i.e., the number of hops considered), while the scale parameter s governs the extent of diffusion. A small s restricts diffusion and thus

270 accentuates local structure, whereas a large s allows more extensive diffusion, leading to stronger
 271 smoothing and the integration of broader, long-range context. In practice, selecting appropriate values
 272 for k and s enables control over the locality and granularity of the wavelet features. This flexibility is
 273 crucial for capturing diverse structural patterns across graphs of varying density and topology.
 274

275 3.3.2 NODE-WISE TEMPERATURE SCALING

276 Based on the extracted wavelet features, we predict a node-specific temperature parameter to rescale
 277 the logits produced by the original GNN. Given the feature matrix $\mathbf{H} \in \mathbb{R}^{N \times (K+1)}$, we employ
 278 a two-layer multilayer perceptron (MLP) to capture the non-linear relationship and predict the
 279 temperatures:
 280

$$281 \tau_i = \text{Softplus}(\text{MLP}(\mathbf{H}_i)) \quad (7)$$

282 where \mathbf{h}_i is the wavelet feature vector for node i , and Softplus ensures the positivity of the predicted
 283 temperatures. This design provides a flexible and efficient mechanism for uncertainty calibration
 284 across the graph. The calibrated logits are obtained via post-hoc temperature scaling:
 285

$$286 \tilde{z}_i = \frac{z_i}{\tau_i}$$

287 where z_i is the original output logit from the GNN, and \tilde{z}_i is the rescaled logit after calibration. The
 288 temperature predictor is trained by minimizing the cross-entropy loss on the validation set using the
 289 rescaled logits.
 290

291 4 EXPERIMENT

292 4.1 EXPERIMENT SETTING

293 We evaluate the calibration performance of our proposed WATS method on nine widely-used graph
 294 datasets: Cora (McCallum et al., 2000), Citeseer (Giles et al., 1998), Pubmed (Sen et al., 2008), Cora-
 295 Full (Bojchevski & Günnemann, 2017), Computers (Shchur et al., 2018), Photo (Shchur et al., 2018),
 296 Reddit (Hamilton et al., 2017), Roman and Tolokers (Platonov et al., 2023). These datasets cover a
 297 range of graph sizes, homophily, and label complexities, providing a comprehensive benchmark for
 298 calibration analysis, detailed graph summary is shown on Appendix.
 299

300 Following previous practice (Wang et al., 2021; Hsu et al., 2022; Tang et al., 2024), we adopt three
 301 commonly used GNN architectures as base models, which are GCN (Kipf & Welling, 2016), GAT
 302 (Veličković et al., 2017) and GCNII (Chen et al., 2020). The models are trained under a semi-
 303 supervised node classification setting. After training, we perform post-hoc calibration using different
 304 methods without modifying the model parameters. Detailed training setting of these based models
 305 are shown on Appendix.
 306

307 Follow the experiment settings (Hsu et al., 2022; Tang et al., 2024; Zhuang et al., 2024). We randomly
 308 use 20% of nodes for training, 10% for validation and calibration training, and 70% for testing. For
 309 each method, calibration parameters are learned on the validation set and evaluated on the test set.
 310 Calibration performance is measured using the ECE with 10 bins.
 311

312 We compare several post-hoc calibration methods. TS applies a global temperature to all logits (Guo
 313 et al., 2017), while ETS averages predictions from multiple temperature-tuned models (Zhang et al.,
 314 2020). CaGCN uses a lightweight GCN to learn node-specific temperatures (Wang et al., 2021),
 315 and GATS employs attention-based aggregation over one-hop neighbors (Hsu et al., 2022). GETS
 316 introduces a sparse mixture-of-experts that combines degree, features, and logits (Zhuang et al.,
 317 2024). WATS, our proposed method, predicts temperatures using tunable graph wavelet features and
 318 rescale logits. The detailed experiment setting are displayed in detail in Appendix.
 319

320 4.2 EVALUATION AND ANALYSIS

321 We evaluate the calibration effectiveness of WATS across nine benchmark datasets and three repre-
 322 sentative GNN architectures, with results summarized in Table 1. Empirical findings demonstrate
 323 that WATS consistently achieves the lowest ECE in most of scenarios, highlighting its efficacy in
 leveraging localized, flexibly scaled structural information for post-hoc uncertainty calibration. For

Table 1: Each result is reported as the mean \pm standard deviation over 10 runs. ‘Uncalib’ refers to uncalibrated outputs, and ‘oom’ indicates out-of-memory failures where the method could not complete. Best performance on ECE are highlighted for each configuration.

Dataset	Model	Uncalib	TS	ETS	CAGCN	GATS	GETS	WATS
Citeseer	GCN	23.20 \pm 3.21	2.57 \pm 0.78	3.45 \pm 1.03	4.44 \pm 1.47	2.38 \pm 0.65	4.09 \pm 1.36	2.11 \pm 0.43
	GAT	15.61 \pm 1.14	3.22 \pm 0.29	3.55 \pm 0.41	3.35 \pm 0.41	3.22 \pm 0.24	3.80 \pm 2.05	3.13 \pm 0.23
	GCNII	13.32 \pm 10.99	7.39 \pm 4.38	7.43 \pm 4.48	8.65 \pm 1.77	8.66 \pm 2.62	6.68 \pm 3.42	7.27 \pm 3.49
Computers	GCN	5.94 \pm 0.52	3.88 \pm 0.70	3.91 \pm 0.49	2.04 \pm 0.34	3.34 \pm 0.61	2.94 \pm 1.26	1.20 \pm 0.19
	GAT	5.86 \pm 1.26	2.12 \pm 0.19	2.11 \pm 0.20	2.99 \pm 0.64	2.01 \pm 0.17	3.95 \pm 3.73	2.17 \pm 0.16
	GCNII	10.30 \pm 1.37	10.30 \pm 0.67	6.91 \pm 0.87	5.69 \pm 0.47	5.62 \pm 0.56	2.89 \pm 1.26	3.89 \pm 0.68
Cora	GCN	22.44 \pm 1.17	2.25 \pm 0.33	2.20 \pm 0.44	2.79 \pm 0.50	2.98 \pm 0.59	2.96 \pm 0.47	1.82 \pm 0.27
	GAT	17.26 \pm 0.38	2.03 \pm 0.31	1.92 \pm 0.31	2.56 \pm 0.38	2.15 \pm 0.30	2.97 \pm 0.47	2.02 \pm 0.30
	GCNII	17.35 \pm 3.28	3.38 \pm 0.92	3.35 \pm 0.93	4.35 \pm 2.35	3.43 \pm 1.07	6.76 \pm 4.94	3.23 \pm 1.01
Cora-full	GCN	27.79 \pm 0.22	5.06 \pm 0.10	5.00 \pm 0.09	3.87 \pm 0.22	5.13 \pm 0.10	3.11 \pm 1.95	1.94 \pm 0.11
	GAT	37.21 \pm 0.37	2.50 \pm 0.23	1.32 \pm 0.16	4.79 \pm 0.34	2.70 \pm 0.26	2.16 \pm 1.11	1.11 \pm 0.18
	GCNII	9.66 \pm 1.27	3.51 \pm 0.62	3.50 \pm 0.61	3.28 \pm 0.97	3.50 \pm 0.59	3.01 \pm 0.88	2.92 \pm 0.98
Photo	GCN	3.33 \pm 0.22	2.45 \pm 0.22	2.47 \pm 0.20	1.72 \pm 0.22	2.22 \pm 0.19	3.25 \pm 1.63	1.64 \pm 0.31
	GAT	3.21 \pm 0.47	1.81 \pm 0.43	2.34 \pm 0.50	1.71 \pm 0.10	1.80 \pm 0.43	3.05 \pm 1.67	1.63 \pm 0.18
	GCNII	15.68 \pm 2.85	3.51 \pm 0.62	3.50 \pm 0.61	3.28 \pm 0.97	3.50 \pm 0.59	3.01 \pm 0.88	2.92 \pm 0.98
Pubmed	GCN	14.33 \pm 1.20	2.55 \pm 0.38	2.81 \pm 0.47	1.82 \pm 0.36	2.30 \pm 0.52	2.34 \pm 0.51	1.12 \pm 0.09
	GAT	10.67 \pm 0.30	0.88 \pm 0.09	0.88 \pm 0.09	0.91 \pm 0.11	0.89 \pm 0.10	0.90 \pm 0.22	0.84 \pm 0.08
	GCNII	12.94 \pm 1.18	3.21 \pm 0.91	3.65 \pm 0.91	2.02 \pm 1.67	2.42 \pm 0.93	2.23 \pm 0.31	2.10 \pm 0.34
Tolokers	GCN	3.36 \pm 0.12	2.99 \pm 1.59	3.44 \pm 0.67	2.54 \pm 0.38	3.67 \pm 2.64	2.54 \pm 1.08	2.45 \pm 0.22
	GAT	3.48 \pm 0.37	3.03 \pm 0.21	3.10 \pm 0.19	1.69 \pm 0.15	2.89 \pm 0.27	2.51 \pm 0.77	2.16 \pm 0.22
	GCNII	6.40 \pm 0.62	4.39 \pm 0.61	4.02 \pm 0.33	4.38 \pm 0.61	4.02 \pm 0.33	4.41 \pm 0.48	3.34 \pm 0.20
Roman	GCN	10.25 \pm 0.40	4.02 \pm 0.27	4.36 \pm 0.35	4.67 \pm 0.58	3.95 \pm 0.24	4.61 \pm 0.36	3.42 \pm 0.77
	GAT	16.43 \pm 1.66	3.91 \pm 0.89	4.61 \pm 0.94	4.51 \pm 0.68	3.62 \pm 0.84	4.48 \pm 1.44	3.31 \pm 0.59
	GCNII	21.00 \pm 0.42	3.61 \pm 0.65	3.61 \pm 0.65	4.62 \pm 0.96	4.38 \pm 0.84	4.34 \pm 1.18	2.92 \pm 1.27
Reddit	GCN	6.69 \pm 0.12	1.64 \pm 0.05	1.64 \pm 0.05	1.45 \pm 0.08	oom	2.20 \pm 0.36	0.90 \pm 0.05
	GAT	4.79 \pm 0.16	3.29 \pm 0.08	3.35 \pm 0.12	0.73 \pm 0.08	oom	1.10 \pm 0.11	0.54 \pm 0.08
	GCNII	17.73 \pm 1.10	1.41 \pm 0.36	1.44 \pm 0.34	1.20 \pm 1.20	oom	2.99 \pm 0.53	0.88 \pm 0.28

architectures like GCNII. While their initial residual connections effectively mitigate over-smoothing, the strong connections force the model to rely heavily on the original node features. In contrast, our results prove that graph wavelets are able to capture sufficient local topology information to correct these confidence levels, effectively addressing the limitations of the base models. Beyond achieving superior average ECE scores, WATS also exhibits reduced standard deviations across runs, indicating improved robustness and stability compared to existing methods. These evidence prove that graph wavelet is able to capture sufficient local topology information to correct the confidence level. Moreover, even when the base model is already reasonably well calibrated, for example, on the Photo and Computers, WATS consistently delivers further reductions in calibration error, demonstrating its ability to adaptively refine predictive confidence across a range of baseline reliability levels.

To illustrate this effect, we visualize WATS on Citeseer in Figure 2. The reliability diagram in Figure 2a shows that the uncalibrated model is systematically under confident, with predicted probabilities below empirical accuracy across bins. After calibration, the curve aligns closely with the diagonal, indicating improved confidence–accuracy agreement. The degree stratified analysis in Figure 2b shows that under confidence is strongest for nodes with low degree; calibration restores agreement across all degree ranges and reduces variance. Overall, WATS improves calibration and robustness, especially in structurally sparse regions. Full visualizations for the main experiments are provided in the Appendix.

Furthermore, GATS's reliance on full attention over a node's neighborhood leads to poor memory scalability and resulting in out-of-memory failures on large graphs such as Reddit, while WATS remains efficient, which improve the scalability of WATS.

4.3 ABLATION STUDY

4.3.1 DIFFERENT BASE SIGNAL

We ablate the base signal used by the WATS with log-degree, raw degree, and identity matrix on GCN, while keeping all other components and hyperparameters fixed. Table 2 reports ECE (\downarrow) on

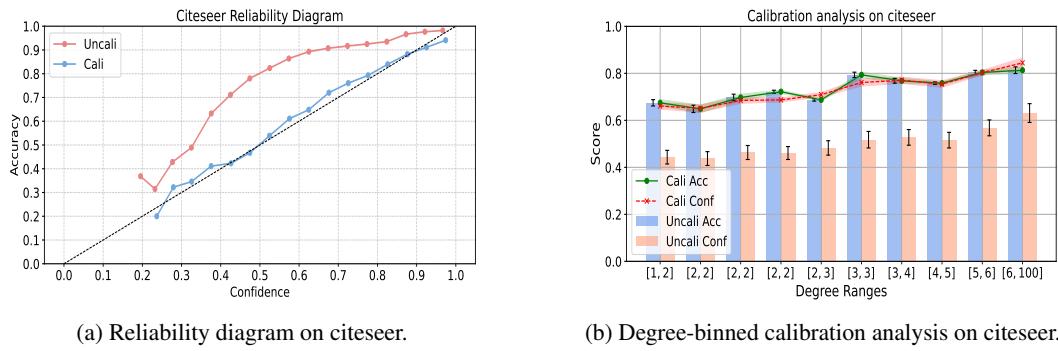


Figure 2: “Uncali” refers to the uncalibrated result and “Cali” refers to the calibrated result. (a) shows the reliability diagram comparing calibrated and uncalibrated outputs. The diagonal dashed line indicates perfect calibration (b) presents a degree-binned analysis of accuracy and confidence. Solid and dashed lines represent calibrated accuracy and confidence respectively.

nine datasets. Log-degree attains the best or tied-best ECE on the majority of datasets, consistently improving over raw degree and matching or approaching the identity baseline. The only exception is Pubmed, where the identity feature yields a marginally lower ECE. These results support the use of a logarithmic transform to compress extreme degrees while preserving the connectivity ordering, thereby stabilizing learning and improving generalization from low-degree to high-degree regions.

Table 2: ECE (\downarrow) comparison between log-degree, raw degree, and an identity matrix as base signal. This comparison isolates the effect of the base structural signal used by the temperature regressor.

	Citeseer	Computers	Cora	Photo	Cora-Full	Pubmed	Reddit	Roman	Tolokers
Log-degree	2.11 \pm 0.43	1.20 \pm 0.19	1.82 \pm 0.27	1.41 \pm 0.31	1.94 \pm 0.11	1.12 \pm 0.09	0.90 \pm 0.05	3.42 \pm 0.77	2.45 \pm 0.22
Degree	2.13 \pm 0.49	1.42 \pm 0.24	2.25 \pm 1.00	1.81 \pm 0.15	3.77 \pm 0.41	1.12 \pm 0.17	1.09 \pm 0.06	3.99 \pm 0.90	2.47 \pm 0.22
Identity Matrix	2.16 \pm 0.47	1.31 \pm 0.20	2.21 \pm 0.83	1.73 \pm 0.17	2.99 \pm 0.39	1.08 \pm 0.12	1.20 \pm 0.08	3.60 \pm 1.07	2.73 \pm 0.18

4.3.2 DIFFERENT GRAPH FEATURES

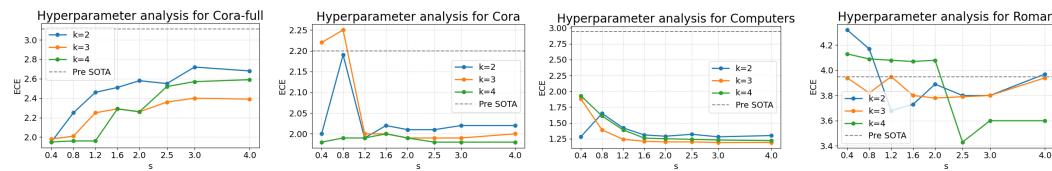
To assess the effectiveness of graph wavelet features in post-hoc calibration, we conduct a comparative analysis against several widely used structural descriptors, including log-degree, betweenness centrality, clustering coefficient, and their various combinations, all evaluated under a consistent GCN-based framework. As summarized in Table 3, wavelet-based representations consistently yield superior calibration performance across most datasets. While certain individual features or their combinations may perform competitively on specific datasets, they tend to exhibit limited generalizability and often result in higher calibration error overall. This highlights the insufficiency of isolated structural indicators and underscores the necessity of incorporating rich, multiscale topological signals. In contrast, graph wavelet features demonstrate both effectiveness and robustness across diverse graph structures, suggesting that the information they encode captures nuanced patterns that cannot be fully replicated by aggregating conventional structural features.

Table 3: ECE (\downarrow) comparison between graph wavelet and alternative structural features, where “Deg” denote log transformed degree, “Cen” denote betweenness centrality, “Clus” denote clustering coefficient, and ‘oom’ indicates out-of-memory failures where the method could not complete. Graph wavelet consistently outperforms other variants across most datasets.

Dataset	Graph wavelet	Deg	Cen	Clus	Deg, Cen	Cen, Clus	Deg, Clus	Deg, Clus, Cen
Citeseer	2.11 \pm 0.43	3.53 \pm 1.16	3.10 \pm 1.05	6.75 \pm 1.44	7.24 \pm 1.80	7.11 \pm 1.80	7.10 \pm 1.80	7.12 \pm 1.69
Computers	1.20 \pm 0.19	1.61 \pm 0.33	3.51 \pm 0.83	2.75 \pm 0.82	1.82 \pm 0.22	2.78 \pm 0.69	2.60 \pm 0.71	2.72 \pm 0.66
Cora	1.82 \pm 0.27	2.42 \pm 0.72	1.86 \pm 0.32	4.77 \pm 0.40	4.43 \pm 0.63	4.51 \pm 0.48	4.51 \pm 0.48	4.55 \pm 0.40
Cora-full	1.94 \pm 0.11	3.08 \pm 1.34	5.32 \pm 0.18	5.66 \pm 0.35	5.16 \pm 0.23	5.19 \pm 0.26	5.19 \pm 0.26	5.18 \pm 0.25
Photo	1.41 \pm 0.31	1.32 \pm 0.29	2.23 \pm 0.40	1.85 \pm 0.38	1.96 \pm 0.30	1.93 \pm 0.36	1.87 \pm 0.34	1.89 \pm 0.35
Pubmed	1.12 \pm 0.09	1.40 \pm 0.35	2.90 \pm 0.38	2.30 \pm 0.29	1.83 \pm 0.20	1.92 \pm 0.22	1.93 \pm 0.22	1.94 \pm 0.20
Tolokers	2.45 \pm 0.22	2.35 \pm 0.34	3.02 \pm 1.46	2.79 \pm 0.34	2.29 \pm 0.39	2.71 \pm 0.27	3.63 \pm 0.88	2.58 \pm 0.21
Roman	3.42 \pm 0.77	4.27 \pm 0.68	4.04 \pm 0.50	3.88 \pm 0.65	3.60 \pm 0.77	3.71 \pm 0.78	4.03 \pm 0.39	3.89 \pm 0.58
Reddit	0.90 \pm 0.05	1.58 \pm 0.17	oom	oom	oom	oom	oom	oom

432 4.3.3 SENSITIVITY ANALYSIS OF GRAPH WAVELET HYPER-PARAMETERS.
433

434 To assess the robustness of WATS, we perform an exhaustive grid search over the Chebyshev order
435 $k \in \{2, 3, 4\}$ and the heat-kernel scale $s \in \{0.4, 0.8, 1.2, 1.6, 2.0, 2.5, 3.0, 4.0\}$ on nine node-
436 classification benchmarks, we visualize the changes of ECE for varying k and s for Cora-full, Cora,
437 Computers and Roman on Figure 3 (full results about hyperparameters are in Appendix).



444 Figure 3: Sensitivity analysis of wavelet hyper-parameters. Each plot shows the ECE scores on
445 different datasets with varying wavelet scale parameter s (x-axis) and polynomial order k . Each line
446 represents a different Chebyshev order k : blue for $k = 2$, orange for $k = 3$, green for $k = 4$ and grey
447 for previous SOTA.
448

449 On highly homophilous graphs, WATS exhibits reduced hyperparameter sensitivity: variations in
450 the Chebyshev order k and the diffusion scale s induce only minor changes in ECE, yielding flatter
451 performance curves and stronger robustness when $s > 1.2$ on high-homophily graphs, such as Cora
452 and Computers. In contrast, on low-homophily graphs, like Cora-full, calibration is more sensitive to
453 s and k . On heterophilous graphs, calibration quality depends on both k and s : small orders constrain
454 the receptive field and miss meso-scale structure, whereas large orders amplify noise propagation and
455 degrade calibration. These observations yield practical guidance that favors a moderate spectral scale
456 and a mid-level polynomial order. A sensible default for new graphs is $k = 3$ with $s = 2.0$.
457

458 However, WATS surpasses the previous SOTA across a broad and practical range even away from
459 the optimum; for example, $k \in \{3, 4\}$ with a moderate s already delivers consistently lower ECE,
460 underscoring the robustness and generality of wavelet-based structural signals for calibration.

461 4.4 COMPLEXITY ANALYSIS

462 We further compare the complexity with other post-hoc calibration method to prove the computational
463 efficiency. Our method consists of two main components: graph wavelet feature extraction and a two-
464 layer MLP for temperature prediction. Let k be the Chebyshev polynomial order. Each Chebyshev
465 term requires a sparse matrix multiplication, leading to a total time complexity of $\mathcal{O}(k|\mathcal{E}| + |\mathcal{V}|k)$,
466 where $|\mathcal{E}|$ and $|\mathcal{V}|$ denote the number of edges and nodes, respectively. The first term accounts for
467 k sparse multiplications over the Laplacian, while the second accounts for the intermediate tensor
468 concatenation and normalization steps. The wavelet features of each node (dimension $k + 1$) are
469 passed through a two-layer MLP with hidden size h . The per-node computation costs $\mathcal{O}((k + 1)h)$,
470 and thus the total cost over all nodes is: $\mathcal{O}(|\mathcal{V}|kh)$. Combining the above, the overall time complexity
471 of our method is:

$$472 \mathcal{O}(k|\mathcal{E}| + |\mathcal{V}|k + |\mathcal{V}|kh) = \mathcal{O}(k|\mathcal{E}| + |\mathcal{V}|kh).$$

473 Compared to CaGCN (Wang et al., 2021) with $\mathcal{O}(|\mathcal{E}|F + |\mathcal{V}|F^2)$, and GATS (Veličković et al., 2017)
474 with $\mathcal{O}(|\mathcal{E}|FH + |\mathcal{V}|F^2)$ where F stands for the dimension of the node hidden features and H is the
475 number of independent attention heads, our model is significantly more efficient, especially when F
476 is large or multi-head attention is used. GETS (Zhuang et al., 2024) incurs higher cost due to expert
477 selection, with complexity $\mathcal{O}(k(|\mathcal{E}|F + |\mathcal{V}|F^2) + |\mathcal{V}|MF)$, where $k \ll M$. In practice, the wavelet
478 transformation can be precomputed and reused as a static input. The the wall-clock time and memory
479 usage of WATS and other baseline methods across graph datasets of varying complexity are reported
480 in the Appendix.

481 5 LIMITATIONS AND FUTURE WORK

482 **Limitations:** Our study focuses on node classification and assumes that topological signals correlate
483 with logits; when this correlation is weak or spurious, wavelet-derived temperatures may reduce
484 reliability.
485

486
487 **Future work:** we will explore integrating structurally similar yet distant neighborhoods to introduce
488 global structural context, which means capture the node with similar structural embedding. This
489 could further enhance calibration performance and robustness, provided that the inclusion of such
490 global information avoids introducing extraneous noise. Additionally, we will investigate how graph
491 wavelet would improve the performance on various graph task, such as edge prediction, dynamic
492 graph.

493

494 6 CONCLUSION

495

496 We introduce WATS, a lightweight post-hoc calibration framework that assigns node-specific tem-
497 peratures from graph wavelet features. By leveraging structural representations, WATS captures
498 diverse structural patterns and implicitly broadens each node’s receptive field, improving post-hoc
499 information use with minimal overhead. Across nine benchmarks and three GNN backbones, WATS
500 consistently attains the lowest ECE and markedly stabilizes calibration, yielding more reliable
501 predictions, especially in high-risk settings.

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Maysam Behmanesh, Peyman Adibi, Sayyed Mohammad Saeed Ehsani, and Jocelyn Chanussot.
543 Geometric multimodal deep learning with multiscaled graph wavelet convolutional network. *IEEE*
544 *Transactions on Neural Networks and Learning Systems*, 2022.

545 Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsupervised
546 inductive learning via ranking. *arXiv preprint arXiv:1707.03815*, 2017.

547 A. Bruce, D. Donoho, and H.-Y. Gao. Wavelet analysis [for signal processing]. *IEEE Spectrum*, 33
548 (10):26–35, 1996. doi: 10.1109/6.540087.

549 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
550 convolutional networks. In *International conference on machine learning*, pp. 1725–1735. PMLR,
551 2020.

552 Mark Crovella and Eric Kolaczyk. Graph wavelets for spatial traffic analysis. In *IEEE INFO-*
553 *COM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications*
554 *Societies (IEEE Cat. No. 03CH37428)*, volume 3, pp. 1848–1857. IEEE, 2003.

555 K Ch Das. The laplacian spectrum of a graph. *Computers & Mathematics with Applications*, 48(5-6):
556 715–724, 2004.

557 Swakshar Deb, Sejuti Rahman, and Shafin Rahman. Sea-gwnn: Simple and effective adaptive graph
558 wavelet neural network. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(10):
559 11740–11748, Mar. 2024. doi: 10.1609/aaai.v38i10.29058. URL <https://ojs.aaai.org/index.php/AAAI/article/view/29058>.

560 Claire Donnat, Marinka Zitnik, David Hallac, and Jure Leskovec. Learning structural node embed-
561 dings via diffusion wavelets. In *Proceedings of the 24th ACM SIGKDD international conference*
562 *on knowledge discovery & data mining*, pp. 1320–1329, 2018.

563 Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
564 networks for social recommendation, 2019. URL <https://arxiv.org/abs/1902.07243>.

565 Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
566 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
567 PMLR, 2016.

568 Chao Gao, Shu Yin, Haiqiang Wang, Zhen Wang, Zhanwei Du, and Xuelong Li. Medical-knowledge-
569 based graph neural network for medication combination prediction. *IEEE Transactions on Neural*
570 *Networks and Learning Systems*, 35(10):13246–13257, 2024. doi: 10.1109/TNNLS.2023.3266490.

571 C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing system.
572 In *Proceedings of the third ACM conference on Digital libraries*, pp. 89–98, 1998.

573 Jonathan Godwin, Michael Schaarschmidt, Alexander L. Gaunt, Alvaro Sanchez-Gonzalez, Yulia
574 Rubanova, Petar Velickovic, James Kirkpatrick, and Peter W. Battaglia. Very deep graph neural
575 networks via noise regularisation. *CoRR*, abs/2106.07971, 2021. URL <https://arxiv.org/abs/2106.07971>.

576 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
577 networks. *CoRR*, abs/1706.04599, 2017. URL <http://arxiv.org/abs/1706.04599>.

578 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
579 *Advances in neural information processing systems*, 30, 2017.

580 David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral
581 graph theory. *Applied and Computational Harmonic Analysis*, 30(2):129–150, 2011.

582 Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and Daniel Cremers. What makes graph
583 neural networks miscalibrated? *Advances in Neural Information Processing Systems*, 35:13775–
584 13786, 2022.

594 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
595 *arXiv preprint arXiv:1609.02907*, 2016.

596

597 Meelis Kull, Telmo Silva Filho, and Peter Flach. Beta calibration: a well-founded and easily
598 implemented improvement on logistic calibration for binary classifiers. In *Artificial intelligence
599 and statistics*, pp. 623–631. PMLR, 2017.

600 Tong Liu, Yushan Liu, Marcel Hildebrandt, Mitchell Joblin, Hang Li, and Volker Tresp. On calibration
601 of graph neural networks for node classification. In *2022 International Joint Conference on Neural
602 Networks (IJCNN)*, pp. 1–8. IEEE, 2022.

603

604 Haohui Lu and Shahadat Uddin. A weighted patient network-based framework for predicting chronic
605 diseases using graph neural networks. *Scientific reports*, 11(1):22607, 2021.

606

607 Zihan Luo, Hong Huang, Jianxun Lian, Xiran Song, Xing Xie, and Hai Jin. Cross-links mat-
608 ter for link prediction: Rethinking the debiased gnn from a data perspective. In A. Oh,
609 T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances in Neu-
610 ral Information Processing Systems*, volume 36, pp. 79594–79612. Curran Associates, Inc.,
611 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/fba4a59c7a569fce120eea9aa9227052-Paper-Conference.pdf.

612

613 David J.C MacKay. Bayesian neural networks and density networks. *Nuclear Instruments
614 and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
615 Associated Equipment*, 354(1):73–80, 1995. ISSN 0168-9002. doi: [https://doi.org/10.
616 1016/0168-9002\(94\)00931-7](https://doi.org/10.1016/0168-9002(94)00931-7). URL <https://www.sciencedirect.com/science/article/pii/0168900294009317>. Proceedings of the Third Workshop on Neutron Scat-
617 tering Data Analysis.

618

619 Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
620 construction of internet portals with machine learning. *Information Retrieval*, 3:127–163, 2000.

621

622 Gledson Melotti, Cristiano Premebida, Jordan J. Bird, Diego R. Faria, and Nuno Gonçalves. Reducing
623 overconfidence predictions in autonomous driving perception. *IEEE Access*, 10:54805–54821,
624 2022. doi: 10.1109/ACCESS.2022.3175195.

625

626 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
627 critical look at the evaluation of gnns under heterophily: Are we really making progress? *arXiv
628 preprint arXiv:2302.11640*, 2023.

629

630 Howard L. Resnikoff and Raymond O. Wells. Wavelet analysis and the geometry of euclidean domains.
631 *Journal of Geometry and Physics*, 8(1):273–282, 1992. ISSN 0393-0440. doi: [https://doi.org/10.
632 1016/0393-0440\(92\)90052-3](https://doi.org/10.1016/0393-0440(92)90052-3). URL <https://www.sciencedirect.com/science/article/pii/0393044092900523>.

633

634 Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. *Advances
635 in neural information processing systems*, 32, 2019.

636

637 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
638 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

639

640 Amit Sharma, Ashutosh Sharma, Polina Nikashina, Vadim Gavrilenko, Alexey Tselykh, Alexander
641 Bozhenyuk, Mehedi Masud, and Hossam Meshref. A graph neural network (gnn)-based approach
642 for real-time estimation of traffic speed in sustainable smart cities. *Sustainability*, 15(15), 2023.
643 ISSN 2071-1050. doi: 10.3390/su151511893. URL <https://www.mdpi.com/2071-1050/15/15/11893>.

644

645 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
646 of graph neural network evaluation. *Relational Representation Learning Workshop, NeurIPS 2018*,
647 2018.

648

649 Weili Shi, Xueying Yang, Xujiang Zhao, Haifeng Chen, Zhiqiang Tao, and Sheng Li. Calibrate
650 graph neural networks under out-of-distribution nodes via deep q-learning. In *Proceedings of the
651 32nd ACM International Conference on Information and Knowledge Management*, pp. 2270–2279,
652 2023.

648 David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst.
 649 The emerging field of signal processing on graphs: Extending high-dimensional data analysis to
 650 networks and other irregular domains. *IEEE signal processing magazine*, 30(3):83–98, 2013.

651

652 Jost Tobias Springenberg, Aaron Klein, Stefan Falkner, and Frank Hutter. Bayesian optimization with
 653 robust bayesian neural networks. *Advances in neural information processing systems*, 29, 2016.

654

655 Zeyu Sun, Wenjie Zhang, Lili Mou, Qihao Zhu, Yingfei Xiong, and Lu Zhang. Generalized
 656 equivariance and preferential labeling for gnn node classification. *Proceedings of the AAAI
 657 Conference on Artificial Intelligence*, 36(8):8395–8403, Jun. 2022. doi: 10.1609/aaai.v36i8.20815.
 658 URL <https://ojs.aaai.org/index.php/AAAI/article/view/20815>.

659

660 Wim Sweldens. The lifting scheme: A construction of second generation wavelets. *SIAM journal on
 661 mathematical analysis*, 29(2):511–546, 1998.

662

663 Boshi Tang, Zhiyong Wu, Xixin Wu, Qiaochu Huang, Jun Chen, Shun Lei, and Helen Meng. Simcalib:
 664 Graph neural network calibration based on similarity between nodes. In *Proceedings of the AAAI
 665 Conference on Artificial Intelligence*, volume 38, pp. 15267–15275, 2024.

666

667 Linwei Tao, Minjing Dong, and Chang Xu. Feature clipping for uncertainty calibration. *Proceedings
 668 of the AAAI Conference on Artificial Intelligence*, 39(19):20841–20849, Apr. 2025. doi: 10.
 669 1609/aaai.v39i19.34297. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34297>.

670

671 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal
 672 prediction under covariate shift. *Advances in neural information processing systems*, 32, 2019.

673

674 Nicolas Tremblay and Pierre Borgnat. Graph wavelets for multiscale community mining. *IEEE
 675 Transactions on Signal Processing*, 62(20):5227–5239, 2014.

676

677 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 678 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

679

680 Min Wang, Hao Yang, and Qing Cheng. Gcl: Graph calibration loss for trustworthy graph neural
 681 network. In *Proceedings of the 30th ACM International Conference on Multimedia*, pp. 988–996,
 682 2022.

683

684 Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! towards trustworthy graph
 685 neural networks via confidence calibration. *Advances in Neural Information Processing Systems*,
 686 34:23768–23779, 2021.

687

688 Bingbing Wen, Chenjun Xu, Robert Wolfe, Lucy Lu Wang, Bill Howe, et al. Mitigating overconfi-
 689 dence in large language models: A behavioral lens on confidence estimation and calibration. In
 690 *NeurIPS 2024 Workshop on Behavioral Machine Learning*, 2024.

691

692 Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph wavelet neural network.
 693 *arXiv preprint arXiv:1904.07785*, 2019.

694

695 Cheng Yang, Chengdong Yang, Chuan Shi, Yawen Li, Zhiqiang Zhang, and Jun Zhou. Calibrating
 696 graph neural networks from a data-centric perspective. In *Proceedings of the ACM Web Conference
 697 2024*, pp. 745–755, 2024a.

698

699 Hao Yang, Min Wang, Qi Wang, Mingrui Lao, and Yun Zhou. Balanced confidence calibration for
 700 graph neural networks. In *Proceedings of the 30th ACM SIGKDD Conference on Knowledge
 701 Discovery and Data Mining*, pp. 3747–3757, 2024b.

702

703 Bianca Zadrozny and Charles Elkan. Learning and making decisions when costs and probabilities
 704 are both unknown. In *Proceedings of the seventh ACM SIGKDD international conference on
 705 Knowledge discovery and data mining*, pp. 204–213, 2001.

706

707 Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass probabili-
 708 ty estimates. In *Proceedings of the eighth ACM SIGKDD international conference on Knowledge
 709 discovery and data mining*, pp. 694–699, 2002.

702 Jize Zhang, Bhavya Kailkhura, and T Yong-Jin Han. Mix-n-match: Ensemble and compositional
 703 methods for uncertainty calibration in deep learning. In *International conference on machine*
 704 *learning*, pp. 11117–11128. PMLR, 2020.

705 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In S. Ben-
 706 gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
 707 *Advances in Neural Information Processing Systems*, volume 31. Curran Associates, Inc.,
 708 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf.

711 Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Chee-Kong Lee. Motif-based graph
 712 self-supervised learning for molecular property prediction. In M. Ranzato, A. Beygelz-
 713 imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural In-*
 714 *formation Processing Systems*, volume 34, pp. 15870–15882. Curran Associates, Inc.,
 715 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/85267d349a5e647ff0a9edcb5ffd1e02-Paper.pdf.

717 Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification on
 718 graphs with graph neural networks. In *Proceedings of the 14th ACM International Conference on*
 719 *Web Search and Data Mining*, WSDM '21, pp. 833–841, New York, NY, USA, 2021. Association
 720 for Computing Machinery. ISBN 9781450382977. doi: 10.1145/3437963.3441720. URL
 721 <https://doi.org/10.1145/3437963.3441720>.

722 Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yu Guang Wang, Pietro Lió, Ming Li, and Guido Montúfar.
 723 How framelets enhance graph neural networks. *arXiv preprint arXiv:2102.06986*, 2021.

724 Dingyi Zhuang, Chonghe Jiang, Yunhan Zheng, Shenhao Wang, and Jinhua Zhao. Gets: Ensemble
 725 temperature scaling for calibration in graph neural networks. *arXiv preprint arXiv:2410.09570*,
 726 2024.

728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **A USAGE OF LARGE LANGUAGE MODEL**
757758 In writing this paper, we used a Large Language Model (LLM) solely as a writing assistant to enhance
759 linguistic quality, not to generate substantive content. The LLM was employed to improve readability,
760 concision, and academic tone; to correct grammar, spelling, and punctuation; and to strengthen
761 logical flow and transitions throughout the text.
762763 **B EXPERIMENT SETTING**
764765 We randomly conduct the train test split 10 times for each dataset with identical random seed. We
766 employed the GATS, GETS and CaGCN based on their paper and code. The hyperparameters for
767 backbone GNNs training are based on the complexity of graph data. The detail is given below Table
768 4 and 5.
769770 Table 4: Summary of training parameters of GCN and GAT
771772

773 Dataset	774 Hidden Dim.	775 Dropout	776 Epochs	777 Learning Rate	778 Weight Decay
Citeseer	16	0.5	200	1×10^{-2}	5×10^{-4}
Computers	64	0.8	200	1×10^{-2}	1×10^{-3}
Cora-full	64	0.8	200	1×10^{-2}	1×10^{-3}
Cora	16	0.5	200	1×10^{-2}	5×10^{-4}
Photo	64	0.8	200	1×10^{-2}	1×10^{-3}
Pubmed	16	0.5	200	1×10^{-2}	5×10^{-4}
Tolokers	16	0.2	200	1×10^{-2}	5×10^{-4}
Roman	16	0.2	200	1×10^{-2}	5×10^{-4}
Reddit	16	0.5	200	1×10^{-2}	5×10^{-4}

784 Table 5: Summary of training parameters of GCNII
785786

787 Dataset	788 Layers	789 Hidden Dim.	790 Dropout	791 Epochs	792 Learning Rate	793 Weight Decay
Citeseer	16	16	0.5	200	1×10^{-2}	5×10^{-4}
Computers	16	64	0.8	200	1×10^{-2}	1×10^{-3}
Cora-full	16	64	0.8	200	1×10^{-2}	1×10^{-3}
Cora	16	16	0.5	200	1×10^{-2}	5×10^{-4}
Photo	16	64	0.8	200	1×10^{-2}	1×10^{-3}
Pubmed	16	16	0.5	200	1×10^{-2}	5×10^{-4}
Tolokers	16	16	0.2	200	1×10^{-2}	5×10^{-4}
Roman	16	16	0.2	200	1×10^{-2}	5×10^{-4}
Reddit	16	16	0.5	200	1×10^{-2}	5×10^{-4}

794 Full details of WATS in calibration is given be on Table 6. Hidden dimension and drop out are
795 chosen based on the data complexity. The hyperparameter of graph wavelet k and s are chosen based
796 on the Ablation study.
797803 Full details of the Chosen datasets is given on Table 7. It reports the number of nodes, edges,
804 average node degree, input feature dimensions, and number of classes for each dataset. These datasets
805 cover a diverse range of graph sizes, densities, and classification tasks. This diversity ensures a
806 comprehensive evaluation of the proposed method under varying structural and semantic conditions.
807808 **Computational Environment.** All experiments are conducted using the following environment
809 with PyTorch 2.4.0 (Python 3.11, CUDA 12.4.1), Hardware: NVIDIA GTX 4090 GPU with 32 GB
RAM on Runpod cloud service (Ubuntu 22.04)

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
Table 6: Calibration settings for WATS

Dataset	Hidden Dim.	Dropout	k	s
Citeseer	32	0.4	3	0.8
Computers	64	0.4	3	2.5
Cora-full	128	0.2	4	0.4
Cora	16	0.95	4	0.4
Photo	32	0.4	4	0.8
Pubmed	32	0.4	4	0.4
Tolokers	32	0.6	4	3
Roman	32	0.2	4	2.5
Reddit	64	0.4	4	3

823
824
Table 7: Summary of selected datasets

Dataset	#Nodes	#Edges	Avg. Degree	#Features	#Classes
Citeseer	3,327	12,431	7.4	3,703	6
Computers	13,381	491,556	73.4	767	10
Cora	2,708	13,264	9.7	1,433	7
Cora-full	18,800	144,170	15.3	8,710	70
Photo	7,487	238,087	63.6	745	8
Pubmed	19,717	108,365	10.9	500	3
Tolokers	11,758	1,038,000	176.6	10	2
Roman	22,662	65,854	5.8	300	18
Reddit	232,965	114,848,857	98.5	602	41

837
838
C TIME AND PEAK MEMORY USAGE839
840
We report the wall-clock time and memory usage of WATS and other baseline methods across graph
datasets of varying complexity in Table 8 and Table 9, respectively.841
842
Table 8: Comparison of Computation Time (seconds)

Dataset	WATS Feat. Time (s)	WATS Calib Time (s)	GETS Calib Time (s)	GATS Calib Time (s)	TS Calib Time (s)	CaGCN Calib Time (s)
Cora	0.0624	1.0134	22.2517	2.1201	0.3941	4.1283
Computer	0.2374	0.7716	10.8242	5.0126	0.2408	4.9372
Cora-Full	0.3134	1.0461	9.2106	5.2835	0.4754	4.7652
Reddit	42.6636	1.3149	45.2529	NAN	1.1054	20.8815

851
852
Table 9: Comparison of Memory Usage

Dataset	WATS Feat. Memory	WATS Calib Memory	GETS Calib Memory	GATS Calib Memory	TS Calib Memory	CaGCN Calib Memory
Cora	207.31 MB	207.92 MB	97.39 MB	95.00 MB	94.65 MB	94.65 MB
Computer	207.83 MB	211.62 MB	195.91 MB	313.41 MB	172.45 MB	172.46 MB
Cora-Full	1955.27 MB	1963.90 MB	1401.74 MB	1349.16 MB	1344.47 MB	1343.71 MB
Reddit	12456.00 MB	4322.00 MB	5938.96 MB	>17.54 GiB	3855.37 MB	3857.81 MB

860
861
D HYPERPARAMETER ANALYSIS RESULTS862
863
Here is the full result for the experiment on hyperparameter analysis. Tables 10 to 12 report the cali-
bration performance measured by ECE of WATS under varying graph wavelet hyperparameters, specif-

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 9999

ically the Chebyshev order $k \in \{2, 3, 4\}$ and diffusion scale $s \in \{0.4, 0.8, 1.2, 1.6, 2.0, 2.5, 3.0, 4.0\}$. For each dataset, ECE values are presented across a range of s values.

Table 10: ECE (\downarrow) for different diffusion scales s with Chebyshev order $K=2$.

	$s=0.4$	$s=0.8$	$s=1.2$	$s=1.6$	$s=2.0$	$s=2.5$	$s=3$	$s=4$
Citeseer	2.54 \pm 0.86	2.50 \pm 0.86	2.46 \pm 0.88	2.47 \pm 0.89	2.47 \pm 0.91	2.48 \pm 0.92	2.50 \pm 0.93	2.51 \pm 0.94
Cora	2.00 \pm 0.26	1.99 \pm 0.26	1.99 \pm 0.27	2.02 \pm 0.27	2.01 \pm 0.28	2.01 \pm 0.27	2.02 \pm 0.28	2.02 \pm 0.28
Computers	2.18 \pm 0.47	1.65 \pm 0.42	1.42 \pm 0.30	1.48 \pm 0.27	1.37 \pm 0.26	1.32 \pm 0.22	1.53 \pm 0.37	1.50 \pm 0.35
Pubmed	1.17 \pm 0.19	1.19 \pm 0.19	1.20 \pm 0.20	1.20 \pm 0.17	1.21 \pm 0.18	1.20 \pm 0.17	1.18 \pm 0.13	1.17 \pm 0.13
Reddit	1.19 \pm 0.09	1.15 \pm 0.09	1.10 \pm 0.11	1.08 \pm 0.12	1.07 \pm 0.13	1.03 \pm 0.12	0.99 \pm 0.09	0.96 \pm 0.11
Cora-full	1.95 \pm 0.21	2.25 \pm 0.25	2.46 \pm 0.24	2.51 \pm 0.29	2.58 \pm 0.35	2.55 \pm 0.37	2.72 \pm 0.33	2.68 \pm 0.41
Photo	1.75 \pm 0.23	1.76 \pm 0.22	1.71 \pm 0.24	1.72 \pm 0.22	1.70 \pm 0.25	1.71 \pm 0.22	1.69 \pm 0.22	1.71 \pm 0.23
Roman	4.32 \pm 0.70	4.17 \pm 0.83	3.68 \pm 0.68	3.73 \pm 0.70	3.89 \pm 0.63	3.80 \pm 0.57	3.80 \pm 0.56	3.97 \pm 0.36
Tolokers	2.71 \pm 0.13	2.71 \pm 0.17	2.66 \pm 0.17	2.73 \pm 0.13	2.70 \pm 0.17	2.76 \pm 0.17	2.70 \pm 0.21	2.74 \pm 0.16

Table 11: ECE (\downarrow) for different diffusion scales s with Chebyshev order $K=3$.

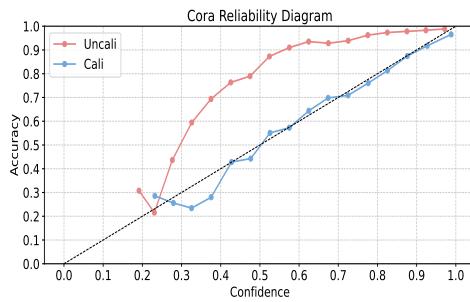
	$s=0.4$	$s=0.8$	$s=1.2$	$s=1.6$	$s=2.0$	$s=2.5$	$s=3$	$s=4$
Citeseer	2.21 \pm 0.49	2.11 \pm 0.43	2.18 \pm 0.52	2.25 \pm 0.59	2.25 \pm 0.61	2.24 \pm 0.62	2.25 \pm 0.61	2.30 \pm 0.65
Cora	2.22 \pm 0.87	2.25 \pm 1.00	2.00 \pm 0.28	2.00 \pm 0.26	1.99 \pm 0.24	1.99 \pm 0.24	1.99 \pm 0.24	2.00 \pm 0.26
Computers	1.88 \pm 0.39	1.45 \pm 0.24	1.39 \pm 0.20	1.30 \pm 0.20	1.25 \pm 0.19	1.20 \pm 0.19	1.25 \pm 0.18	1.26 \pm 0.20
Pubmed	1.14 \pm 0.18	1.16 \pm 0.18	1.18 \pm 0.18	1.17 \pm 0.12	1.18 \pm 0.13	1.18 \pm 0.13	1.18 \pm 0.12	1.19 \pm 0.12
Reddit	1.18 \pm 0.08	1.21 \pm 0.07	1.22 \pm 0.12	1.10 \pm 0.15	0.97 \pm 0.09	0.96 \pm 0.10	0.93 \pm 0.06	0.91 \pm 0.07
Cora-full	1.98 \pm 0.20	2.14 \pm 0.24	2.25 \pm 0.14	2.33 \pm 0.17	2.26 \pm 0.17	2.36 \pm 0.33	2.24 \pm 0.16	2.32 \pm 0.31
Photo	1.79 \pm 0.20	1.79 \pm 0.22	1.72 \pm 0.29	1.81 \pm 0.18	1.79 \pm 0.20	1.70 \pm 0.30	1.79 \pm 0.22	1.69 \pm 0.28
Roman	3.94 \pm 0.16	3.82 \pm 0.46	3.95 \pm 0.17	3.80 \pm 0.51	3.78 \pm 0.54	3.79 \pm 0.53	3.80 \pm 0.49	3.94 \pm 0.98
Tolokers	2.67 \pm 0.12	2.67 \pm 0.16	2.76 \pm 0.12	2.71 \pm 0.21	2.64 \pm 0.22	2.55 \pm 0.25	2.50 \pm 0.27	2.66 \pm 0.16

Table 12: ECE (\downarrow) for different diffusion scales s with Chebyshev order $K=4$.

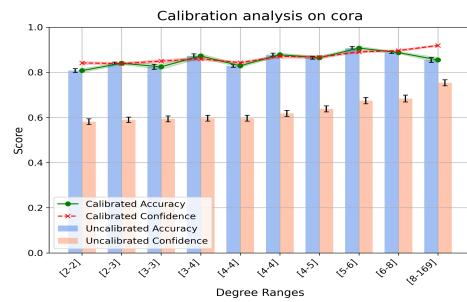
	$s=0.4$	$s=0.8$	$s=1.2$	$s=1.6$	$s=2.0$	$s=2.5$	$s=3$	$s=4$
Citeseer	2.77 \pm 1.03	2.68 \pm 1.02	2.63 \pm 1.05	2.56 \pm 0.96	2.73 \pm 1.03	2.73 \pm 1.02	2.74 \pm 1.04	2.74 \pm 1.02
Cora	1.98 \pm 0.26	1.99 \pm 0.26	1.99 \pm 0.26	2.00 \pm 0.26	1.99 \pm 0.25	1.98 \pm 0.25	1.98 \pm 0.26	1.98 \pm 0.26
Computers	1.93 \pm 0.50	1.44 \pm 0.25	1.30 \pm 0.20	1.28 \pm 0.25	1.23 \pm 0.21	1.30 \pm 0.25	1.26 \pm 0.22	1.29 \pm 0.22
Pubmed	1.12 \pm 0.09	1.18 \pm 0.12	1.18 \pm 0.12	1.19 \pm 0.13	1.21 \pm 0.13	1.19 \pm 0.12	1.19 \pm 0.09	1.20 \pm 0.11
Reddit	1.17 \pm 0.06	1.19 \pm 0.11	1.18 \pm 0.12	1.13 \pm 0.18	1.02 \pm 0.17	0.93 \pm 0.16	0.90 \pm 0.05	0.91 \pm 0.14
Cora-full	1.94 \pm 0.11	2.03 \pm 0.19	2.18 \pm 0.23	2.29 \pm 0.23	2.26 \pm 0.22	2.23 \pm 0.23	2.21 \pm 0.21	2.22 \pm 0.22
Photo	1.74 \pm 0.17	1.64 \pm 0.20	1.68 \pm 0.29	1.69 \pm 0.21	1.72 \pm 0.22	1.67 \pm 0.24	1.68 \pm 0.34	1.67 \pm 0.25
Roman	4.13 \pm 0.30	4.09 \pm 0.26	4.08 \pm 0.25	4.07 \pm 0.21	4.08 \pm 0.20	3.43 \pm 0.68	3.60 \pm 0.70	3.60 \pm 0.69
Tolokers	2.67 \pm 0.17	2.74 \pm 0.18	2.69 \pm 0.22	2.78 \pm 0.22	2.72 \pm 0.27	2.51 \pm 0.22	2.45 \pm 0.22	2.50 \pm 0.23

E FULL WATS VISUALIZATIONS

We provide the full visualizations of the calibration performance for WATS. Figures 4 to 11 illustrate the calibration performance of WATS on the other datasets. Each figure includes (a) a reliability diagram showing the alignment between predicted confidence and actual accuracy, and (b) a degree-binned analysis comparing confidence and accuracy before and after calibration. Results show that WATS significantly improves calibration and reduces the discrepancy between accuracy and confidence across all degree ranges and all confidence levels. Error bars indicate standard deviation over 10 runs.

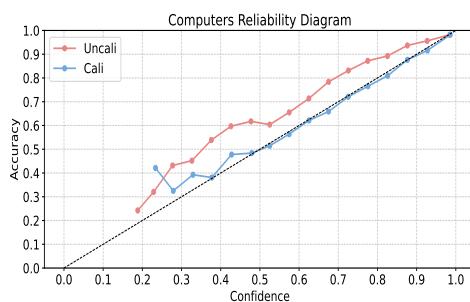


(a) Reliability diagram on Cora.

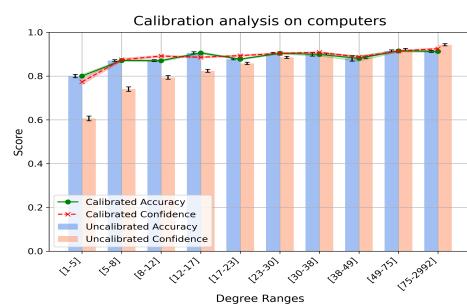


(b) Degree-binned calibration analysis on Cora.

Figure 4: Calibration performance of Cora dataset.

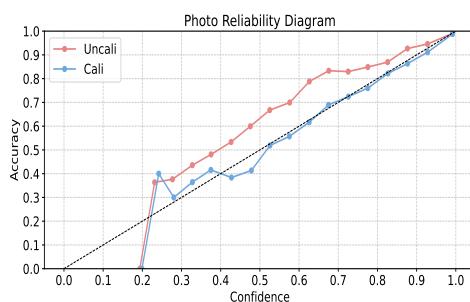


(a) Reliability diagram on Computers.

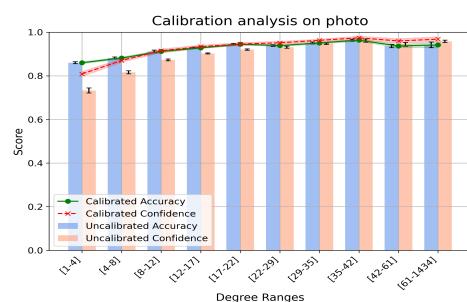


(b) Degree-binned calibration analysis on Computers.

Figure 5: Calibration performance of Computers dataset.

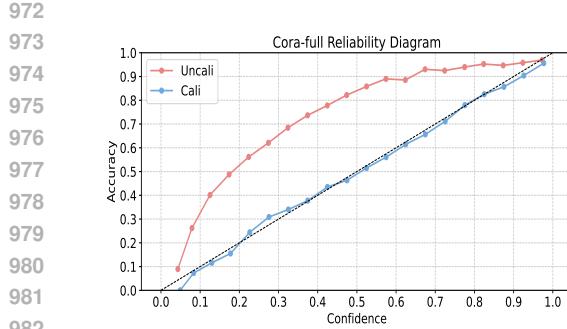


(a) Reliability diagram on Photo.

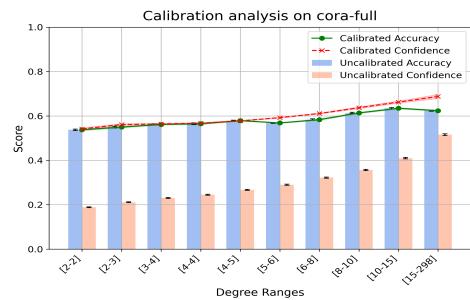


(b) Degree-binned calibration analysis on Photo.

Figure 6: Calibration performance of Photo dataset

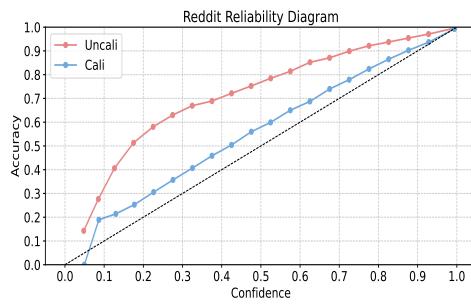


(a) Reliability diagram on Cora-full.

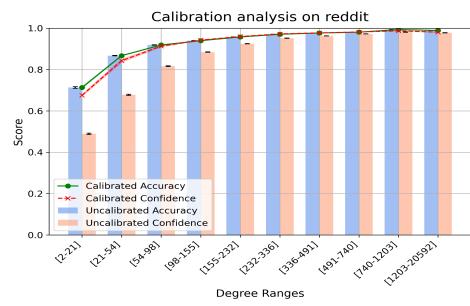


(b) Degree-binned calibration analysis on Cora-full.

Figure 7: Calibration performance of Cora-full dataset.

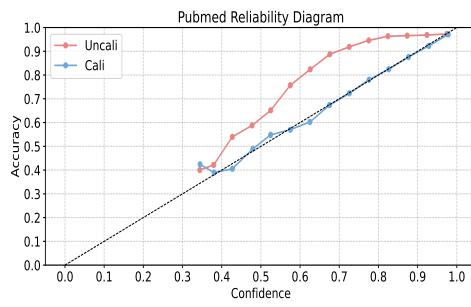


(a) Reliability diagram on Reddit.

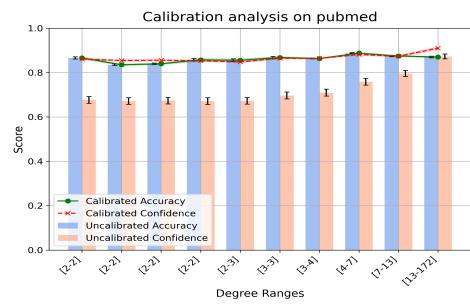


(b) Degree-binned calibration analysis on Reddit.

Figure 8: Calibration performance of Reddit dataset.

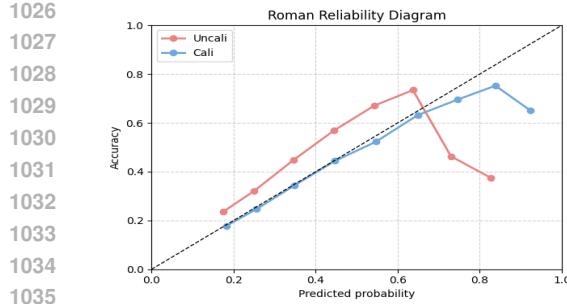


(a) Reliability diagram on Pubmed.

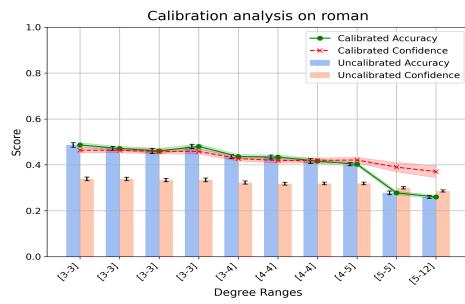


(b) Degree-binned calibration analysis on Pubmed.

Figure 9: Calibration performance of Pubmed dataset.

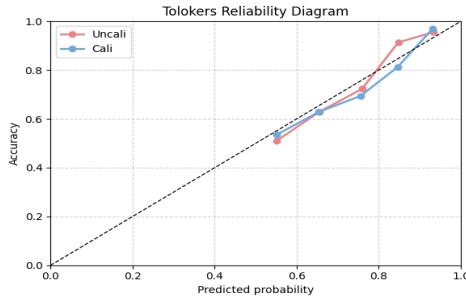


(a) Reliability diagram on Roman.

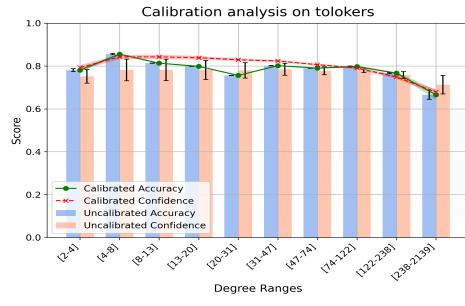


(b) Degree-binned calibration analysis on Roman.

Figure 10: Calibration performance of Roman dataset.



(a) Reliability diagram on Tolokers.



(b) Degree-binned calibration analysis on Tolokers.

Figure 11: Calibration performance of Tolokers dataset.