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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated strong predictive performance
on relational data; however, their confidence estimates often misalign with actual
predictive correctness, posing significant limitations for deployment in safety-
critical settings. While existing graph-aware calibration methods seek to miti-
gate this limitation, they primarily depend on coarse one-hop statistics, such as
neighbor-predicted confidence, or latent node embeddings, thereby neglecting the
fine-grained structural heterogeneity inherent in graph topology. In this work,
we propose Wavelet-Aware Temperature Scaling (WATS), a post-hoc calibration
framework for node classification that assigns node-specific temperatures based
on tunable heat-kernel graph wavelet features. Specifically, WATS harnesses the
scalability and topology sensitivity of graph wavelets to refine confidence esti-
mates, all without necessitating model retraining or access to neighboring logits or
predictions. Extensive evaluations across nine benchmark datasets with varying
graph structures and three GNN backbones demonstrate that WATS achieves the
lowest Expected Calibration Error (ECE) among most of the compared methods,
outperforming both classical and graph-specific baselines by up to 41.2% in ECE
and reducing calibration variance by 33.17% on average compared with graph-
specific methods. Moreover, WATS remains computationally efficient, scaling well
across graphs of diverse sizes and densities. The implementation is available at
https://anonymous.4open.science/status/WATS-057A

1 INTRODUCTION

GNNss offer a principled approach for learning over structured data and have achieved strong empirical
performance across a wide range of domains, including social network modeling (Fan et al., 2019)),
traffic forecasting (Sharma et al.| 2023)), and healthcare applications (Gao et al.,|2024} Lu & Uddin,
2021). They support key tasks such as node classification (Zhao et al.,|2021; Sun et al., [2022), link
prediction (Zhang & Chen, 2018} |Luo et al., 2023)), and graph-level inference (Zhang et al., 2021}
Godwin et al.;[2021)). While GNNs are widely adopted for their representational power, their output
confidence often fails to reflect true predictive reliability, which is an issue of growing concern in
high-stakes domains, for instance, medical diagnosis and financial risk assessment.

Model calibration, which measures the alignment between a model’s predicted confidence and its
true correctness likelihood (Guo et al.,[2017)), is a key aspect of model reliability. A well-calibrated
model is expected to produce predictions whose confidence scores accurately reflect the observed
accuracy. For example, a prediction made with 70% confidence should be correct 70% of the time.
Recent findings highlight that GNNs behave differently from standard independent and identically
distributed (i.7.d.) trained models such as CNNs and transformers (Melotti et al., [2022; Tao et al.,
2025 'Wen et al., [2024). Unlike CNNs and transformers, which often suffer from overconfidence,
GNNs tend to be systematically underconfident: their predicted confidence scores are consistently
lower than their true accuracy (Wang et al.|[2022; [Hsu et al., [2022; |L1u et al.| [2022)).

Several recent approaches aim to address this issue through graph-aware calibration strategies,
including Graph Attention Temperature Scaling (GATS) (Hsu et al., 2022), CaGCN (Wang et al.,
2021), Graph Ensemble Temperature Scaling (GETS) (Zhuang et al.,[2024), and SimCalib (Tang
et al.| 2024). These approaches typically enhance node-level calibration by integrating neighbour
structural cues with their predictive status, such as confidence level.
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However, they predominantly rely on shallow neighborhood statistics or opaque latent representations,
which may result in unstable and inaccurate uncertainty estimation. As they capture only limited,
local information and fail to reflect the broader structural context, leading to unreliable calibration,
especially for low-degree scenarios. For illustration, we provide empirical evidence that nodes with
similar local statistics can exhibit different miscalibration levels across graphs. Based on the above
limitation, we aim to build a method that: (i) flexibly incorporates neighborhood information without
relying on additional explicit pretraining status (ii) maintains high calibration performance across
diverse graph domains, while remaining lightweight and post-hoc. (iii) performs temperature scaling
at the node level to allow identical correction based on multi-hop structural information.

Therefore, in this work, we propose a calibration framework for node classification, called WAVELET-
AWARE TEMPERATURE SCALING (WATS), which introduces flexibly scaled structural features
through graph wavelets. We incorporate graph wavelets because they offer a principled way to
capture structural information at multiple scales (Donnat et al.,[2018)). Our methods, wavelets spatial
localization controlled by the scale parameters s and k, enabling fine-grained capture of multi-hop
dependencies. Differs from graph wavelet algorithms used in neural network (Donnat et al., 2018},
Behmanesh et al., [2022) in that it does not aim to reconstruct or smooth node features for node
classification. Instead, it uses wavelet coefficients as structural signatures to indicate the node
uncertainty, which allows WATS to adaptively calibrate predictions based on the underlying structure,
helping to correct confidence errors where standard methods fall short. Our main contributions are
summarized as follows:

WATS: We propose a novel post-hoc calibration framework that performs node-wise temperature
scaling using flexibly scaled graph wavelet features.

Robust, interpretable structural features: We show that graph wavelet features are stable and
geometry-aware, encoding local graph structure without relying on potentially noisy signals such as
neighboring logits or distances to labeled nodes.

Extensive empirical validation: Across multiple graph benchmarks and GNN architectures. WATS
consistently improves calibration quality, reducing ECE and outperforming both classical and graph-
specific calibration baselines.

2 RELATED WORK

2.1 UNCERTAINTY CALIBRATION FOR NEURAL NETWORKS

Uncertainty calibration aims to align a model’s predicted confidence with the true likelihood of
correctness. Existing approaches are typically divided into two categories: in-training and post-hoc

In-training approaches incorporate uncertainty estimation within the model optimization process.
For example, Bayesian Neural Networks (BNNs) and variational inference methods achieve this by
imposing probabilistic distribution over model parameters (Gal & Ghahramanil 2016; MacKayl {1995}
Springenberg et al.,[2016). Alternative frequentist strategies, such as quantile regression (Romano
et al.,2019), are also employed to generate calibrated probability estimates.

Post-hoc methods, in contrast, calibrate a pre-trained model without modifying its internal parameters.
These include non-parametric techniques such as histogram binning (Zadrozny & Elkanl 2001
and isotonic regression (Zadrozny & Elkan, 2002), parametric approaches that assume a specific
transformation form, including temperature scaling (TS) (Guo et al., 2017) and Beta Calibration
(Kull et al.L 2017)), as well as distribution-free frameworks like conformal prediction (Tibshirani et al.,
2019) which provides valid coverage guarantees for model outputs.

2.2  GRAPH-SPECIFIC CALIBRATION METHODS

While post-hoc calibration methods perform well on Euclidean data with CNNGs, their effectiveness
declines on graph-structured data due to the lack of relational modeling (Hsu et al., 2022; [Wang et al.|
2021). To address this, several graph-aware approaches have been proposed. CaGCN (Wang et al.,
2021) uses a GCN-based temperature predictor to incorporate structure, while GATS (Hsu et al.|
2022) applies attention over neighborhoods for node-specific temperatures. GETS (Zhuang et al.|
2024) introduces a sparse mixture-of-experts using degree, features, and confidence. SimCalib (Tang
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et al.,[2024) adds similarity-preserving regularization, and|Shi et al.[(2023)) use reinforcement learning
to adapt calibration to graph structure. Beyond post-hoc methods, |Yang et al.|(2024a)) reweight edges
during training to improve calibration, and |Yang et al.| (2024b) propose a calibration-aware loss
targeting underconfidence caused by shallow GNNs. These methods collectively integrate graph
structure and node-level signals to enhance calibration.

2.3 GRAPH WAVELET

Graph wavelets provide compact, spatially localized bases that are well suited to graph signal
processing and structural representation learning. Whereas classical wavelets such as Haar and
Daubechies are defined on Euclidean lattices (Bruce et al., |1996}; |[Resnikoff & Wells, [1992), graph
wavelets extend these ideas to non-Euclidean domains by leveraging the spectral properties of the
graph Laplacian (Das|, 2004; Shuman et al., 2013} |Xu et al.| 2019).

A particularly versatile construction is the lifting scheme (Sweldens}, |1998), which can be transferred
to graphs without any data-driven training. [Hammond et al.| (2011) further improved practicality
by replacing the costly Laplacian eigendecomposition with Chebyshev polynomial approximations,
enabling efficient wavelet transforms on large graphs. Since then, graph wavelets have supported
a variety of downstream tasks, including graph convolutional architectures (Xu et al.,[2019; Deb
et al.} 2024), multimodal wavelet networks (Behmanesh et al.,[2022), community detection via scale-
adaptive filtering (Tremblay & Borgnat, 2014)), and diffusion-based node embeddings that capture
multi-scale structural patterns (Donnat et al.,|2018). All these methods and application indicates the
importance of Graph wavelet in both theoretical and empirically practice

3 METHOD

3.1 PRELIMINARY STUDY

We address the problem of uncertainty calibration in semi-supervised node classification tasks over
graphs. Let G = (V, £) denote a graph, where V is the set of nodes and £ is the set of edges. The
adjacency matrix is denoted by A € RVY*N where N = |V|. Each node v; € V has a feature
x; € X, and for a subset of labeled nodes £ C V), the true label y; € {1,..., K} is provided.
Let X = [x1,...,2x] ' be the feature matrix and Y = [yy,...,yn]" the label vector, a GNN f
performs node classification via predicting node-wise class probabilities p;(y) as

9; = arg mgxﬁi(y), i = mjxﬁi(y)’

where y; denotes the predicted label and c; denotes its confidence. In the field of model calibration, a
well-calibrated model provides confidence that aligns with the true accuracy well as
Plyi=giléi=c)=c Vcel0,1].

The measurement of model calibration can be computed via Expected Calibration Error (ECE) (Guo
et al., 2017) as E[|P(y; = ¢:|¢;) — ¢], however, ECE cannot be easily computed due to limited
samples. Thus, an estimation of ECE is introduced by grouping samples into M bins with equal
confidence intervals as By, = {j € N | % < ¢ < -}, where A is the subset of node that
used in evaluation N” C V. Given the bin accuracy Acc(B,,) = \Bilml > ien, (0 = yi) and bin

confidence Conf(B,,) = ﬁ Dic B,, Ci» the approximation can be achieved by computing the
expected difference between bin accuracy and confidence as
o~ Bl
ECE = Z ﬁ |Acc(By,) — Conf(By,)|. (1)
m=1

3.2 UNCERTAINTY ESTIMATION IN GNNSs

Calibrate via One-hop Statistics Message-passing is widely adopted in GNNS, including GCN
(Kipf & Welling, 2016) and GAT (Velickovi¢ et al., 2017), which can be simplified via a degree-
normalized mean aggregator as

1 .
h{ED = m(hy) + Y hg‘)), d; = [N(i). )
§ JEN (i)
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where d; excludes the node itself, so d; + 1 accounts for the self-loop. The final embedding hEL)
induces the confidence ¢;. This local aggregation implicitly determines the final prediction and the
associated confidence ¢; of node ¢. Although GATS confines all structural operations, including
neighbor temperature aggregation, attention weights, neighbor confidence averaging to 1-hop, and
CaGCN and GETS stack two GCN layers to nominally reach 2-hop, each layer itself still performs
only 1-hop aggregation. As a result, these methods are unable to adaptively capture longer-range
dependencies. Although these calibration techniques show effectiveness, we argue that one-hop
statistics only cannot provide an accurate estimation of node uncertainty in GNNs. Considering a
simplified one-hop estimator of confidence:

Ci =~ d:+1 Z Yss
¢ FELIIUN(3)

where y; € {0,1} is the true label indicator for node j. Then the per-node calibration bias is

1
Vi T I Z yj‘~ 3
JEN(3)

bias; = [& — 1(§; = v:)| ~

As shown in Eq. [3| for example, when d; = 2 and the neighbor labels are [0, 1], the average is 1/3
regardless of the true label y;, making the estimate uninformative, which means high uncertainty. In
sparse or low-homophily regions, one-hop neighborhoods may carry weak or misleading signals,
resulting in poor bias approximation. This motivates structure-aware calibration that aggregates richer
signals beyond immediate neighbors.

A complementary critical insight into this problem was articulated by [Wang et al.| (2022), who
uncovered a paradoxical phenomenon: as GNN depth increases, predictive accuracy diminishes, yet
model confidence paradoxically rises, as shown in Figure|l| Highlighting that calibration errors may
not merely from local neighbor information, but from multi-scale structural effects spanning across
the graph. This observation reveals the core weakness of local-neighbor-based calibration: while
shallow cues correlate with uncertainty, they cannot capture the non-local dependencies that drive
systematic confidence misalignment in deeper GNNs.

These findings underscore the necessity of calibration approaches that go beyond local neighbor
statistics. Prior works (Wang et al.| [2022; |Hsu et al., 2022} Tang et al., |2024) have emphasized
some graph features, such as homophily and node similarity. GETS (Zhuang et al., [2024) partially
addresses this by incorporating degree embeddings into a mixture-of-experts framework. While
all these methods lack the ability to capture multi-hop structural patterns or incorporate unstable
confidence. Therefore, addressing the above limitation and improving the calibration requires
leveraging multi-hop context and structure-aware features, enabling the model to better handle both
under- and over-confidence in structurally diverse regions of the graph.
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Figure 1: Test accuracy (ACC) and average predictive confidence of GCNs with increasing depth on
Cora, Pubmed, and Citeseer. In all three datasets, deeper models exhibit decreasing accuracy while
confidence increases, indicating depth-induced miscalibration.

3.3 WAVELET-AWARE TEMPERATURE SCALING

We propose WATS, a lightweight and effective node-wise calibration framework that can be seamlessly
applied to any pretrained GNN with scalability to large graphs. Unlike conventional or graph-specific
post-hoc methods that rely on global or one-hop features, WATS introduces a structural perspective
by leveraging graph wavelet features with tunable scales.
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These wavelet representations capture rich, scalable structural signals (Hammond et al.,|2011};|Crovella
& Kolaczyk, |[2003), often neglected in calibration. By learning a temperature for each node based on
its structural embedding, WATS aligns confidence with correctness in a fine-grained, node-specific
manner. In addition to its strong empirical performance, WATS is also architecture-agnostic, making
it broadly applicable across diverse graph types and calibration scenarios.

3.3.1 GRAPH WAVELET TRANSFORM

Traditional graph signal processing often relies on graph Fourier transform, which projects signals
into the spectral domain using the eigenvectors of the normalized graph Laplacian Lgy, = I —
D~'/2AD~'/2 as orthonormal bases. Given a signal x € RY, its Fourier transform is defined
as X = UTx and the inverse as x = U%k, where U contains the eigenvectors of Lgyy, (Shuman
et al.,2013). While this formulation enables spectral filtering via Ugy U "x, it suffers from several
limitations (Hammond et al., [2011}; |Xu et al.,|2019; |Zheng et al.| 2021): (1) The eigendecomposition
of Ly, has high computational cost (O(N?)); (2) U is generally dense, making the transform costly
for large graphs; (3) The resulting filters lack localization in the vertex domain, limiting their ability
to capture localized structural patterns.

To overcome these issues, we adopt the graph wavelet transform, which retains the spectral benefits
of Fourier analysis while introducing localization and sparsity. Graph wavelet bases are constructed
using a heat kernel scaling function g(s\) = e~**, where s > 0 is a scale parameter controlling the
diffusion extent. The wavelet operator is defined as:

W, = Udiag(g(sA1),...,g9(sAn))UT “)

where )\; are the eigenvalues of Lgym. The inverse transform uses g(—s)), yielding efficient localized
filtering analogous to diffusion. Direct computation of ¥ is still impractical for large graphs. To
address this, we adopt the Chebyshev polynomial approximation to avoid explicit eigendecomposition,
following (Hammond et al., 2011} [Xu et al., 2019). We first rescale Ly, as: L= T?M(Lsym —
I, Anax = 2 and define Chebyshev polynomials {Tk}é(:o via the recurrence: Tg = Xo, T =
LXo, Ty = 2LT)_1 — Ty_», fork > 2 where X, is the initial input signal. In our setting,
we choose X as the log-degree to preserve structural properties while mitigating skewed degree
distributions. Degree encodes a node’s connectivity and its potential for information aggregation in
message-passing GNNs, and in previous section, it is proven to be an essential factor of uncertainty.
In our setting, we choose X as the log-degree to preserve structural properties while mitigating
skewed degree distributions. Degree encodes a node’s connectivity and its potential for information
aggregation in message-passing GNNs, and in previous work (Zhuang et al.,|2024), it is shown to be
correlated with miscalibration.

SA

The wavelet scaling function g(s\) = e " is approximated using a K -order Chebyshev series:

K
1
g(sA\) = 560 + ; e Te(N)
with the Chebyshev coefficients c;, given by:

2 us
cp = f/ cos(kf)g (s)\m;x(cosﬁ + 1)) de
0

™

As stated in Hammond et al.| (2011)), these ¢ are computable constants before training. The final
wavelet-transformed feature matrix S is constructed by applying this polynomial filter to the input
signal:

K
1
S=cTo+ 1; e Ty 5)
This is followed by row-wise ¢ normalization:
S;
H; = , Vie{l,...,N} (6)
[Sill1

The hyper-parameter K sets the maximum receptive-field size (i.e., the number of hops considered),
while the scale parameter s governs the extent of diffusion. A small s restricts diffusion and thus
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accentuates local structure, whereas a large s allows more extensive diffusion, leading to stronger
smoothing and the integration of broader, long-range context. In practice, selecting appropriate values
for £ and s enables control over the locality and granularity of the wavelet features. This flexibility is
crucial for capturing diverse structural patterns across graphs of varying density and topology.

3.3.2 NODE-WISE TEMPERATURE SCALING

Based on the extracted wavelet features, we predict a node-specific temperature parameter to rescale
the logits produced by the original GNN. Given the feature matrix H € RV *(K+1) we employ
a two-layer multilayer perceptron (MLP) to capture the non-linear relationship and predict the
temperatures:

7; = Softplus(MLP(H,)) @)

where h; is the wavelet feature vector for node ¢, and Softplus ensures the positivity of the predicted
temperatures. This design provides a flexible and efficient mechanism for uncertainty calibration
across the graph. The calibrated logits are obtained via post-hoc temperature scaling:
2

Ziy = —

Ti

where z; is the original output logit from the GNN, and Z; is the rescaled logit after calibration. The
temperature predictor is trained by minimizing the cross-entropy loss on the validation set using the
rescaled logits.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

We evaluate the calibration performance of our proposed WATS method on nine widely-used graph
datasets: Cora (McCallum et al., [2000), Citeseer (Giles et al., [1998), Pubmed (Sen et al., [2008)), Cora-
Full (Bojchevski & Giinnemann, [2017), Computers (Shchur et al., 2018)), Photo (Shchur et al.| [2018)),
Reddit (Hamilton et al.l |2017), Roman and Tolokers(Platonov et al., 2023)). These datasets cover a
range of graph sizes, homophily, and label complexities, providing a comprehensive benchmark for
calibration analysis, detailed graph summary is shown on Appendix.

Following previous practice (Wang et al.| 2021} Hsu et al.,2022; [Tang et al.,|2024)), we adopt three
commonly used GNN architectures as base models, which are GCN (Kipf & Welling, 2016), GAT
(Velickovi¢ et al., [2017) and GCNII (Chen et al., [2020). The models are trained under a semi-
supervised node classification setting. After training, we perform post-hoc calibration using different
methods without modifying the model parameters. Detailed training setting of these based models
are shown on Appendix.

Follow the experiment settings (Hsu et al.|[2022; [Tang et al.| 2024} Zhuang et al., 2024)), We randomly
use 20% of nodes for training, 10% for validation and calibration training, and 70% for testing. For
each method, calibration parameters are learned on the validation set and evaluated on the test set.
Calibration performance is measured using the ECE with 10 bins.

We compare several post-hoc calibration methods. TS applies a global temperature to all logits (Guo
et al., 2017), while ETS averages predictions from multiple temperature-tuned models (Zhang et al.|
2020). CaGCN uses a lightweight GCN to learn node-specific temperatures (Wang et al., [2021)),
and GATS employs attention-based aggregation over one-hop neighbors (Hsu et al., 2022). GETS
introduces a sparse mixture-of-experts that combines degree, features, and logits (Zhuang et al.|
2024). WATS, our proposed method, predicts temperatures using tunable graph wavelet features and
rescale logits. The detailed experiment setting are displayed in detail in Appendix.

4.2 EVALUATION AND ANALYSIS

We evaluate the calibration effectiveness of WATS across nine benchmark datasets and three repre-
sentative GNN architectures, with results summarized in Table [I] Empirical findings demonstrate
that WATS consistently achieves the lowest ECE in most of scenarios, highlighting its efficacy in
leveraging localized, flexibly scaled structural information for post-hoc uncertainty calibration. For
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Table 1: Each result is reported as the mean * standard deviation over 10 runs. ‘Uncalib’ refers
to uncalibrated outputs, and ‘oom’ indicates out-of-memory failures where the method could not
complete. Best performance on ECE are highlighted for each configuration.

Dataset Model Uncalib TS ETS CAGCN GATS GETS WATS
Cites GCN 23204321 2574078 3454103 4444147 2384065 4.09+£136 2114043
Heseer GAT 1561 £1.14 3224029 3554041 33542041 3224024 380+£205 3134023
GCNII 133241099 7394438 74342448 8654177 8.66+£2.62 668=342 7274349
Computers  GCN 5.94 +£0.52 3884070 3914049 2044034 334+£061 2944126 1.20£0.19
omputers - Gar 5.86 + 1.26 2124019  211+£020 299+0.64 201+£017 395+373 2.1740.16

GCNII 10.30 £ 1.37 1030 £0.67 691 £087 569+£047 562£056 2.89+126 3.890+0.68

GCN 2244 +1.17 2254033 220+044 279£050 298+£059 2964047 1.82 £ 0.27

Cora GAT 1726 £038 2034031 1.924+031 256+038 215+030 2972047 2024030
GCNII 17354328 3382092 3354093 4354235 3434107 676+£494 3234101

Coraful  GCN 27794022 5064010 5004009 387+022 513+£0.10 3.11+£195 1.94+0.11
ora-iu GAT 3721 4£037 25042023 1324016 4794034 270£026 2164111  1.11+0.18
GCNII  9.66+1.27 3514062 3502061 3284097 3.50+£059 3014088 2.92+098

Phot GCN 3334022 2454022 2474020 1724022 2224019 3254163  1.64 +0.31
oto GAT 321 4+ 047 1.814£043 2344050 171+£0.10 180043 3054167 1.63+0.18
GCNII 1568285 3512062 3502061 3284097 3.50+059 3.01+£088 292+ 0.98

Pubmed GCN 14334120 2554038 2814047 1824036 2304052 2344051 112+ 0.09
ubme GAT 1067030 0884009 088£009 091+0.11 089+£0.10 090022  0.84 % 0.08
GONII 1294 £ 1.18  321£091  3.652£091 2024+1.67 2424093 2234031 210034

Tolokers GCN 336 4 0.12 2994159  3441+067 2544038 3.67+£2.64 2544108 2454022
Oloxers GAT 3.48 £ 037 303+£021 3102019 1.69+0.15 289+£027 2514£077 2.16+£022
GCNII 6404 0.62 4394061 40242033 4382061 4024033 4414048 3344020

R GCN 10254040 4024027 4364035 467+£058 3952024 4614£036 3424077
oman GAT 1643+ 1.66  391+089 461 +094 4514+068 3.62+084 4484144  3.31+0.59
GCNII  21.004+ 042 361 +£0.65 3612065 4.624+096 438+£084 434+1.18 2924127

Reddit GCN 6.69 &£ 0.12 1.64 £0.05 1.644£005 145008 oom 220+£036 090 & 0.05
cddr GAT 4794016 3294008 335+0.12 073 +0.08 oom 110+ 0.11  0.54 £+ 0.08
GONII 1773 £1.10  141£036 1444034 1204 1.20 oom 2994053 0881028

architectures like GCNII. While their initial residual connections effectively mitigate over-smoothing,
the strong connections force the model to rely heavily on the original node features. In contrast,
our results prove that graph wavelets are able to capture sufficient local topology information to
correct these confidence levels, effectively addressing the limitations of the base models. Beyond
achieving superior average ECE scores, WATS also exhibits reduced standard deviations across runs,
indicating improved robustness and stability compared to existing methods. These evidence prove that
graph wavelet is able to capture sufficient local topology information to correct the confidence level.
Moreover, even when the base model is already reasonably well calibrated, for example, on the Photo
and Computers, WATS consistently delivers further reductions in calibration error, demonstrating its
ability to adaptively refine predictive confidence across a range of baseline reliability levels.

To illustrate this effect, we visualize WATS on Citeseer in Figure 2] The reliability diagram in
Figure [2a] shows that the uncalibrated model is systematically under confident, with predicted
probabilities below empirical accuracy across bins. After calibration, the curve aligns closely with
the diagonal, indicating improved confidence—accuracy agreement. The degree stratified analysis in
Figure [2b|shows that under confidence is strongest for nodes with low degree; calibration restores
agreement across all degree ranges and reduces variance. Overall, WATS improves calibration and
robustness, especially in structurally sparse regions. Full visualizations for the main experiments are
provided in the Appendix.

Furthermore, GATS’s reliance on full attention over a node’s neighborhood leads to poor memory
scalability and resulting in out-of-memory failures on large graphs such as Reddit, while WATS
remains efficient, which improve the scalability of WATS.

4.3 ABLATION STUDY

4.3.1 DIFFERENT BASE SIGNAL

We ablate the base signal used by the WATS with log-degree, raw degree, and identity metrix on
GCN, while keeping all other components and hyperparameters fixed. Table [2]reports ECE ({) on



Under review as a conference paper at ICLR 2026

Citeseer Reliability Diagram Calibration analysis on citeseer
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(a) Reliability diagram on citeseer. (b) Degree-binned calibration analysis on citeseer.

Figure 2: “Uncali” refers to the uncalibrated result and “Cali” refers to the calibrated result. (a)
shows the reliability diagram comparing calibrated and uncalibrated outputs. The diagonal dashed
line indicates perfect calibration (b) presents a degree-binned analysis of accuracy and confidence.
Solid and dashed lines represent calibrated accuracy and confidence respectively.

nine datasets. Log-degree attains the best or tied-best ECE on the majority of datasets, consistently
improving over raw degree and matching or approaching the identity baseline. The only exception
is Pubmed, where the identity feature yields a marginally lower ECE. These results support the use
of a logarithmic transform to compress extreme degrees while preserving the connectivity ordering,
thereby stabilizing learning and improving generalization from low-degree to high-degree regions.

Table 2: ECE ({) comparison between log-degree, raw degree, and an identity matrix as base signal.
This comparison isolates the effect of the base structural signal used by the temperature regressor.

Citeseer Computers Cora Photo Cora-Full Pubmed Reddit Roman Tolokers
Log-degree 211+£043 1.20£0.19 1.82+027 1414+031 1.94+0.11 1.12+£0.09 0.90+0.05 3.42+0.77 2.45+0.22
Degree 2134049 142+024 225+1.00 1.814+0.15 3774+041 1.12£0.17 1.09+£0.06 3.99+090 24740.22
Identity Matrix  2.16 £ 047 1.31+£0.20 221+083 173+£0.17 2994039 1.08+0.12 1.20+0.08 3.60+1.07 2.73+0.18

4.3.2 DIFFERENT GRAPH FEATURES

To assess the effectiveness of graph wavelet features in post-hoc calibration, we conduct a comparative
analysis against several widely used structural descriptors, including log-degree, betweenness central-
ity, clustering coefficient, and their various combinations, all evaluated under a consistent GCN-based
framework. As summarized in Table [3] wavelet-based representations consistently yield superior
calibration performance across most datasets. While certain individual features or their combinations
may perform competitively on specific datasets, they tend to exhibit limited generalizability and
often result in higher calibration error overall. This highlights the insufficiency of isolated structural
indicators and underscores the necessity of incorporating rich, multiscale topological signals. In
contrast, graph wavelet features demonstrate both effectiveness and robustness across diverse graph
structures, suggesting that the information they encode captures nuanced patterns that cannot be fully
replicated by aggregating conventional structural features.

Table 3: ECE (]) comparison between graph wavelet and alternative structural features, where
"Deg" denote log transformed degree, "Cen" denote betweenness centrality, "Clus" denote clustering
coefficient, and ‘oom’ indicates out-of-memory failures where the method could not complete. Graph
wavelet consistently outperforms other variants across most datasets.

Dataset Graph wavelet Deg Cen Clus Deg, Cen Cen, Clus Deg, Clus  Deg, Clus, Cen
Citeseer 211+043 353+1.16 3.10+1.05 675+144 7244180 7.11+180 7.10+ 1.80 7.12 £ 1.69
Computers 1.20 + 0.19 1.61 £033 351+083 2754082 1824022 278+0.69 2.60+0.71 2.72 4+ 0.66
Cora 1.82+027 242+072 18640.32 477 +040 4.434+0.63 4511048 4.51+048 4.55 + 0.40
Cora-full 1.94 + 0.11 3.08+1.34 532+0.18 5664035 516+023 5194026 5.19+0.26 5.18 +0.25
Photo 1.41 £0.31 1.32+029 223+040 1.85+038 1.96+£030 193+£0.36 1.87+0.34 1.89 £0.35
Pubmed 1.12 + 0.09 1.40£035 290£0.38 230£029 1834020 1924022 1934022 1.94 £ 0.20
Tolokers 2454+022 2354034 3.02+146 2794+034 2294039 2.71+027 3.63+0.88 2.58 +0.21
Roman 3424+0.77 427+0.68 4.04+050 3.88+0.65 3.60+0.77 3.714+0.78 4.03+0.39 3.89 +0.58
Reddit 0.90 £ 0.05 1.58 £ 0.17 oom oom oom oom oom oom
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4.3.3 SENSITIVITY ANALYSIS OF GRAPH WAVELET HYPER-PARAMETERS.

To assess the robustness of WATS, we perform an exhaustive grid search over the Chebyshev order
k € {2,3,4} and the heat-kernel scale s € {0.4, 0.8, 1.2, 1.6, 2.0, 2.5, 3.0, 4.0} on nine node-
classification benchmarks, we visualize the changes of ECE for varying k and s for Cora-full, Cora,
Computers and Roman on Figure [3|(full results about hyperparameters are in Appendix).

Hyperparameter analysis for Cora-full Hyperparameter analysis for Cora Hyperparameter analysis for Computers Hyperparameter analysis for Roman
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Figure 3: Sensitivity analysis of wavelet hyper-parameters. Each plot shows the ECE scores on
different datasets with varying wavelet scale parameter s (x-axis) and polynomial order k. Each line
represents a different Chebyshev order k: blue for k£ = 2, orange for £ = 3, green for k = 4 and grey
for previous SOTA.

On highly homophilous graphs, WATS exhibits reduced hyperparameter sensitivity: variations in
the Chebyshev order k and the diffusion scale s induce only minor changes in ECE, yielding flatter
performance curves and stronger robustness when s > 1.2 on high-homophily graphs, such as Cora
and Computers. In contrast, on low-homophily graphs, like Cora-full, calibration is more sensitive to
s and k. On heterophilous graphs, calibration quality depends on both k and s: small orders constrain
the receptive field and miss meso-scale structure, whereas large orders amplify noise propagation and
degrade calibration. These observations yield practical guidance that favors a moderate spectral scale
and a mid-level polynomial order. A sensible default for new graphs is k = 3 with s = 2.0.

However, WATS surpasses the previous SOTA across a broad and practical range even away from
the optimum; for example, k € {3,4} with a moderate s already delivers consistently lower ECE,
underscoring the robustness and generality of wavelet-based structural signals for calibration.

4.4 COMPLEXITY ANALYSIS

We further compare the complexity with other post-hoc calibration method to prove the computational
efficiency. Our method consists of two main components: graph wavelet feature extraction and a two-
layer MLP for temperature prediction. Let & be the Chebyshev polynomial order. Each Chebyshev
term requires a sparse matrix multiplication, leading to a total time complexity of O(k|E| + |V|k),
where |£] and |V| denote the number of edges and nodes, respectively. The first term accounts for
k sparse multiplications over the Laplacian, while the second accounts for the intermediate tensor
concatenation and normalization steps. The wavelet features of each node (dimension k£ + 1) are
passed through a two-layer MLP with hidden size h. The per-node computation costs O((k + 1)h),
and thus the total cost over all nodes is: O(|V|kh). Combining the above, the overall time complexity
of our method is:
Ok|El + V|k + |V|Eh) = O(K|E| + |VIkR).

Compared to CaGCN (Wang et al.,[2021) with O(|E|F + |V|F?), and GATS (Veli¢kovic et al.,[2017)
with O(|E|F H + |V|F*#) where F stands for the dimension of the node hidden features and H is the
number of independent attention heads, our model is significantly more efficient, especially when F'
is large or multi-head attention is used. GETS (Zhuang et al., 2024) incurs higher cost due to expert
selection, with complexity O(k(|E|F + |V|F?) + [VIMF), where k < M. In practice, the wavelet
transformation can be precomputed and reused as a static input. The the wall-clock time and memory
usage of WATS and other baseline methods across graph datasets of varying complexity are reported
in the Appendix.

5 LIMITATIONS AND FUTURE WORK

Limitations: Our study focuses on node classification and assumes that topological signals correlate
with logits; when this correlation is weak or spurious, wavelet-derived temperatures may reduce
reliability.
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Future work: we will explore integrating structurally similar yet distant neighborhoods to introduce
global structural context, which means capture the node with similar structural embedding. This
could further enhance calibration performance and robustness, provided that the inclusion of such
global information avoids introducing extraneous noise. Additionally, we will investigate how graph
wavelet would improve the performance on various graph task, such as edge prediction, dynamic
graph.

6 CONCLUSION

We introduce WATS, a lightweight post-hoc calibration framework that assigns node-specific tem-
peratures from graph wavelet features. By leveraging structural representations, WATS captures
diverse structural patterns and implicitly broadens each node’s receptive field, improving post-hoc
information use with minimal overhead. Across nine benchmarks and three GNN backbones, WATS
consistently attains the lowest ECE and markedly stabilizes calibration, yielding more reliable
predictions, especially in high-risk settings.

10
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A USAGE OF LARGE LANGUAGE MODEL

In writing this paper, we used a Large Language Model (LLM) solely as a writing assistant to enhance
linguistic quality, not to generate substantive content. The LLM was employed to improve readability,
concision, and academic tone; to correct grammar, spelling, and punctuation; and to strengthen
logical flow and transitions throughout the text.

B EXPERIMENT SETTING

We randomly conduct the train test split 10 times for each dataset with identical random seed. We
employed the GATS, GETS and CaGCN based on their paper and code. The hyperparameters for
backbone GNNss training are based on the complexity of graph data. The detail is given below Table

Ml and

Table 4: Summary of training parameters of GCN and GAT

Dataset Hidden Dim. Dropout Epochs Learning Rate Weight Decay

Citeseer 16 0.5 200 1x 1072 5x 10~*
Computers 64 0.8 200 1 x1072 1x1073
Cora-full 64 0.8 200 1x 1072 1x1073
Cora 16 0.5 200 1x10°2 5x 1074
Photo 64 0.8 200 1x 1072 1x 1073
Pubmed 16 0.5 200 1x1072 5x 1074
Tolokers 16 0.2 200 1x 1072 5x 1074
Roman 16 0.2 200 1x 1072 5x 1074
Reddit 16 0.5 200 1x 1072 5x 1074

Table 5: Summary of training parameters of GCNII

Dataset Layers Hidden Dim. Dropout Epochs Learning Rate Weight Decay

Citeseer 16 16 0.5 200 1x 1072 5x 1074
Computers 16 64 0.8 200 1 x 1072 1x1073
Cora-full 16 64 0.8 200 1x 1072 1x 1073
Cora 16 16 0.5 200 1x1072 5x 1074
Photo 16 64 0.8 200 1x 1072 1x 1073
Pubmed 16 16 0.5 200 1x1072 5x 1074
Tolokers 16 16 0.2 200 1x 1072 5x 1074
Roman 16 16 0.2 200 1x1072 5x 1074
Reddit 16 16 0.5 200 1x 102 5x 1074

Full details of WATS in calibration is given be on Table [] Hidden dimension and drop out are
chosen based on the data complexity. The hyperparameter of graph wavelet k and s are chosen based
on the Ablation study.

Full details of the Chosen datasets is given on Table It reports the number of nodes, edges,
average node degree, input feature dimensions, and number of classes for each dataset. These datasets
cover a diverse range of graph sizes, densities, and classification tasks. This diversity ensures a
comprehensive evaluation of the proposed method under varying structural and semantic conditions.

Computational Environment. All experiments are conducted using the following environment
with PyTorch 2.4.0 (Python 3.11, CUDA 12.4.1), Hardware: NVIDIA GTX 4090 GPU with 32 GB
RAM on Runpod cloud service (Ubuntu 22.04)
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Table 6: Calibration settings for WATS

Dataset Hidden Dim. Dropout k s

Citeseer 32 0.4 3 08

Computers 64 0.4 3 25

Cora-full 128 0.2 4 04

Cora 16 0.95 4 04

Photo 32 0.4 4 08

Pubmed 32 0.4 4 04

Tolokers 32 0.6 4 3

Roman 32 0.2 4 25

Reddit 64 0.4 4 3

Table 7: Summary of selected datasets

Dataset #Nodes #Edges Avg. Degree #Features #Classes
Citeseer 3,327 12,431 7.4 3,703 6
Computers 13,381 491,556 73.4 767 10
Cora 2,708 13,264 9.7 1,433 7
Cora-full 18,800 144,170 15.3 8,710 70
Photo 7,487 238,087 63.6 745 8
Pubmed 19,717 108,365 10.9 500 3
Tolokers 11,758 1,038,000 176.6 10 2
Roman 22,662 65,854 5.8 300 18
Reddit 232,965 114,848,857 98.5 602 41

C TIME AND PEAK MEMORY USAGE

We report the wall-clock time and memory usage of WATS and other baseline methods across graph
datasets of varying complexity in Table [§and Table [J] respectively.

Table 8: Comparison of Computation Time (seconds)

Dataset WATS Feat. WATS Calib GETS Calib GATS Calib TS Calib CaGCN Calib
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)
Cora 0.0624 1.0134 22.2517 2.1201 0.3941 4.1283
Computer 0.2374 0.7716 10.8242 5.0126 0.2408 4.9372
Cora-Full 0.3134 1.0461 9.2106 5.2835 0.4754 4.7652
Reddit 42.6636 1.3149 45.2529 NAN 1.1054 20.8815
Table 9: Comparison of Memory Usage
Dataset WATS Feat. WATS Calib GETS Calib GATS Calib TS Calib CaGCN Calib
Memory Memory Memory Memory Memory Memory
Cora 207.31 MB 207.92 MB 97.39 MB 95.00 MB 94.65 MB 94.65 MB
Computer 207.83 MB 211.62 MB 195.91 MB 313.41 MB 172.45 MB 172.46 MB
Cora-Full 1955.27 MB 196390 MB  1401.74 MB  1349.16 MB  1344.47 MB 1343.71 MB
Reddit 12456.00 MB  4322.00 MB 593896 MB >17.54 GiB 3855.37 MB  3857.81 MB

D HYPERPARAMETER ANALYSIS RESULTS

Here is the full result for the experiment on hyperparameter analysis. Tables [I0]to[I2]report the cali-
bration performance measured by ECE of WATS under varying graph wavelet hyperparameters, specif-
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ically the Chebyshev order k € {2, 3,4} and diffusion scale s € {0.4,0.8,1.2,1.6,2.0, 2.5, 3.0,4.0}.
For each dataset, ECE values are presented across a range of s values.

Table 10: ECE () for different diffusion scales s with Chebyshev order K=2.

s=0.4 s=0.8 s=1.2 s=1.6 $=2.0 s=2.5 s=3 s=4
Citeseer 2.54+0.8 2.50+0.86 2.46+0.88 247+0.89 247+0.91 248+0.92 2.50+£0.93 2.51+£0.94
Cora 2.00£0.26 1.994+0.26 1.99+0.27 2.02+0.27 2.01+0.28 2.014+0.27 2.02+0.28 2.02+0.28

Computers  2.184+0.47 1.65+0.42 142+030 1.48+0.27 137+0.26 1.32+0.22 1.53£0.37 1.50=+0.35
Pubmed 1.17+0.19 1.194+0.19 1.20+£0.20 1.204+0.17 1.21+0.18 1.20+0.17 1.184+0.13 1.17+0.13

Reddit 1.19+0.09 1.154+0.09 1.10+£0.11 1.084+0.12 1.07+0.13 1.03+£0.12 0.994+0.09 0.96+0.11
Cora-full 1.95+0.21 2254025 246+0.24 2514029 2584035 2.55+0.37 2724033 2.68+£0.41
Photo 1.75+£0.23 1.76+022 1.71£024 1724022 1.70£0.25 1.71+£0.22 1.694+022 1.71£0.23
Roman 432+0.70 4.17£0.83 3.68+0.68 3.73+£0.70 3.89+£0.63 3.80+0.57 3.80£0.56 3.97+0.36

Tolokers 2.71+0.13 271£0.17 2.66+0.17 273+0.13 270+£0.17 2.76+£0.17 2.70+0.21 2.74+0.16

Table 11: ECE () for different diffusion scales s with Chebyshev order K=3.

5=0.4 5=0.8 s=1.2 5=1.6 5=2.0 5=2.5 5=3 s=4
Citeseer 2214049 2114043 2184052 2.254+0.59 2.254+0.61 2.244+0.62 2.25+0.61 2.30+0.65
Cora 2.224+0.87 2.254+1.00 2.00+0.28 2.00+0.26 1.994+0.24 1.994+0.24 1.99+0.24 2.00+ 0.26

Computers  1.88+0.39 1.45+0.24 1.394+0.20 1.30+£0.20 1.254+0.19 1.20£0.19 1.25+0.18 1.264+0.20
Pubmed 1.14+0.18 1.16+0.18 1.18+0.18 1.174+0.12 1.18£0.13 1.18+0.13 1.184+0.12 1.19+£0.12

Reddit 1.18+£0.08 1.214+0.07 1.22+£0.12 1.10+0.15 097£0.09 0.96+£0.10 0.93+0.06 0.91£0.07
Cora-full 1.98+0.20 2144024 225+£0.14 2334+£0.17 226+£0.17 236+£0.33 2244016 2.32+£0.31
Photo 1.794+£0.20 1.79+0.22 1.72+£0.29 1.81£0.18 1.794+0.20 1.70£0.30 1.79£0.22 1.69+0.28
Roman 3944016 3.82+£046 3.95+0.17 3804051 3.78+0.54 3.794+0.53 3.80+£0.49 3.9440.98

Tolokers 2.67+£0.12 267+0.16 276+0.12 2.71+£0.21 2644022 255+£0.25 2.50+0.27 2.66+0.16

Table 12: ECE ({) for different diffusion scales s with Chebyshev order K=4.

s=0.4 s=0.8 s=1.2 s=1.6 5=2.0 s=2.5 s=3 s=4
Citeseer 2.77+1.03 2.68+1.02 2.63+1.05 2.56+096 2.73+1.03 2.73+1.02 2.74+1.04 2.74+1.02
Cora 1.98+0.26 1.99+0.26 1.99+0.26 2.00+£0.26 1.99+0.25 1.98+0.25 1.98+0.26 1.98+0.26

Computers  1.93+0.50 1.44+0.25 1.30+0.20 1.28+0.25 1.234+0.21 1.30£0.25 126+0.22 1.294+0.22
Pubmed 1.12+£0.09 1.184+0.12 1.18+£0.12 1.194+0.13 1.21£0.13 1.19+£0.12 1.194+0.09 1.20£0.11

Reddit 1.174+0.06 1.19+0.11 1.18+0.12 1.13+0.18 1.024+0.17 0.93+£0.16 0.90£0.05 0.91+0.14
Cora-full 1.944+0.11 203+0.19 218+0.23 2.29+0.23 2264+0.22 223+0.23 221£021 2.2240.22
Photo 1.74+0.17 1644020 1.68+0.29 1.694+0.21 1.724+0.22 1.67+0.24 1.684+0.34 1.67+£0.25
Roman 4134030 4.09+£0.26 4.08+0.25 4.07+0.21 4.08+£0.20 3434+0.68 3.60+£0.70 3.60=+0.69

Tolokers 2.67+£0.17 2.74+0.18 2694022 278+£0.22 2724027 251£022 245+0.22 2.50+0.23

E FuLL WATS VISUALIZATIONS

We provide the full visualizations of the calibration performance for WATS. Figures []to [[T]illustrate
the calibration performance of WATS on the other datasets. Each figure includes (a) a reliability
diagram showing the alignment between predicted confidence and actual accuracy, and (b) a degree-
binned analysis comparing confidence and accuracy before and after calibration. Results show
that WATS significantly improves calibration and reduces the discrepancy between accuracy and
confidence across all degree ranges and all confidence levels. Error bars indicate standard deviation
over 10 runs.
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Figure 4: Calibration performance of Cora dataset.
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Figure 5: Calibration performance of Computers dataset.
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Figure 6: Calibration performance of Photo dataset.
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Figure 7: Calibration performance of Cora-full dataset.
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Figure 8: Calibration performance of Reddit dataset.
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Figure 9: Calibration performance of Pubmed dataset.
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Figure 10: Calibration performance of Roman dataset.
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Figure 11: Calibration performance of Tolokers dataset.
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