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ABSTRACT

Reverse Kullback–Leibler (KL) divergence-based regularization with respect to
a fixed reference policy is widely used in modern reinforcement learning to pre-
serve the desired traits of the reference policy and sometimes to promote explo-
ration (using uniform reference policy, known as entropy regularization). Beyond
serving as a mere anchor, the reference policy can also be interpreted as encoding
prior knowledge about good actions in the environment. In the context of align-
ment, recent game-theoretic approaches have leveraged KL regularization with
pretrained language models as reference policies, achieving notable empirical suc-
cess in self-play–based methods. Despite these advances, the theoretical benefits
of KL regularization in game-theoretic settings remain poorly understood. In this
work, we develop and analyze algorithms that provably achieve improved sample
efficiency under KL regularization. We study both two-player zero-sum Matrix
games and Markov games: for Matrix games, we propose OMG, an algorithm
based on best response sampling with optimistic bonuses, and extend this idea to
Markov games through the algorithm SOMG, which also uses best response sam-
pling and a novel concept of superoptimistic bonuses. Both algorithms achieve a
logarithmic regret in T that scales inversely with the KL regularization strength
β in addition to the standard Õ(

√
T ) regret independent of β which is attained in

both regularized and unregularized settings.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a key framework for modeling strategic
interactions among multiple decision makers, providing a powerful tool for analyzing both cooper-
ative and competitive dynamics in domains such as robotics, game playing, and intelligent systems
(Busoniu et al., 2008). A fundamental and well-studied case of competitive interactions is the finite-
horizon two-player zero-sum Markov game (Shapley, 1953), where agents share a common state,
the transition dynamics depend on both agents’ actions, and the stagewise rewards sum to zero. The
matrix game is a further special case corresponding to the one-step setting (horizon H = 1) with no
state transitions. Considerable progress has been made in designing sample-efficient online learn-
ing algorithms for both zero-sum matrix games (O’Donoghue et al., 2021; Yang et al., 2025a) and
Markov games (Bai et al., 2020; Bai & Jin, 2020; Jin et al., 2022; Liu et al., 2021; Xie et al., 2023;
Chen et al., 2022; Huang et al., 2022; Cai et al., 2023), leading to nearly optimal rates and a deeper
understanding of the computational and statistical challenges inherent in multi-agent systems. Most
existing works assume agents learn from scratch, starting with random policies and no knowledge
of the environment. This neglects practical settings where prior demonstrations, expert policies, or
structural knowledge could accelerate learning and improve performance.

Modern deep reinforcement learning algorithms often use some form of KL or entropy regularization
to encourage exploration or to incorporate prior knowledge from a reference policy (Schulman et al.,
2015; Haarnoja et al., 2018; Mnih et al., 2016), often initialized via imitation learning from expert
demonstrations. These techniques have recently gained substantial attention due to their success
in post-training large language models (LLMs) with RL, using either preference feedback (Ouyang
et al., 2022) or a learned verifier/reward model (Guo et al., 2025). In this setting, the pretrained
LLM serves as the reference policy. Game-theoretic alignment methods and self-play relying on KL
regularization (Calandriello et al., 2024; Ye et al., 2024; Munos et al., 2024; Tiapkin et al., 2025;
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Zhang et al., 2025c; Chen et al., 2024; Wang et al., 2025; Shani et al., 2024; Yang et al., 2025b;
Park et al., 2025a) have demonstrated superior empirical performance in reducing over-optimization
and improving sample efficiency (Zhang et al., 2025b; Son et al., 2024). Within this paradigm, self-
play optimization is framed as a two-player game, where models iteratively improve using their own
responses by solving for the Nash Equilibrium (NE) (Nash Jr, 1950) of the regularized game, also
known as the Quantal Response Equilibrium (QRE) (McKelvey & Palfrey, 1995). Under the full
information setting, the computational benefits of KL regularization are well understood in terms of
fas ter convergence to the NE of the regularized game (Cen et al., 2023; 2024; Zeng et al., 2022).

However, their sample efficiency gains over unregularized methods remains poorly understood since
these analyses that demonstrate superior performance under KL regularization assume access to
the ground-truth payoff function/oracle. None address the practical setting where the reward func-
tion/transition model is unknown and must be learned online simultaneously via exploration using
adaptive queries in a sample-efficient manner (known as online learning under bandit feedback). Re-
cent work has established logarithmic regret for single-agent settings under KL regularization in the
bandit feedback regime (Tiapkin et al., 2024; Zhao et al., 2025b; Foster et al., 2025). In contrast, no
such results exist for game-theoretic settings, where current analyses under KL regularization (Ye
et al., 2024; Yang et al., 2025a) still maintain O(

√
T ) regret, matching the unregularized case. In

this paper, we develop algorithms to close this gap and answer the following question:

Can we design learning algorithms that, when equipped with KL regularization, achieve provably
superior sample efficiency in game-theoretic settings?

Our Contributions: In this work, we develop provably efficient algorithms for competitive games
that achieve logarithmic regret in the number of episodes T under KL-regularized settings, in con-
trast to the standard O(

√
T ) regret typically obtained in unregularized settings. Under KL regu-

larization, the best response of a player to a fixed opponent strategy admits a Gibbs distribution
with closed-form expression that depends on the environment parameters to be estimated and the
opponent’s fixed strategy, both in matrix and Markov games. Our algorithms systematically lever-
age this property by collecting best-response pairs and exploiting the resulting structure. For matrix
games, we design algorithms based on optimistic bonuses, while for Markov games, we introduce
an algorithm based on a novel super-optimistic bonus to achieve logarithmic regret dependent on the
regularization strength (β > 0). Given δ ∈ (0, 1),

• for two-player zero-sum matrix games, in Section 2, we propose OMG (Algorithm 1) based on
optimistic bonuses and best response sampling, which achieves with probability at least 1 − δ, a
regularization-dependent regret of O(β−1d2 log2(T/δ)) and a regularization-independent regret
of O(d

√
T log(T/δ)), where d is the feature dimension and T is the number of iterations.

• for two-player zero-sum Markov games, in Section 3, we propose SOMG (Algorithm 2), which
learns the NE via solving stage-wise zero-sum matrix games using best-response sampling and
a novel concept of super-optimistic bonuses. These bonuses are chosen such that the superop-
timistic Q-function exceeds its standard optimistic estimate. With probability at least 1 − δ,
SOMG achieves a regularization-dependent logarithmic regret of O(β−1d3H7 log2(dT/δ)) and
a regularization-independent regret of O(d3/2H3

√
T log(dT/δ)), where d is the feature dimen-

sion, H is the horizon length, and T is the number of episodes.

To the best of our knowledge, this is the first work to establish logarithmic regret guarantees and
sample complexities for learning an ε-NE that only scale linearly in 1/ε in any KL regularized
game-theoretic setting.1 Table 1 summarizes our results against prior work. Discussion of related
works and full proofs are deferred to the appendix.

Notation: For n ∈ N+, we use [n] to denote the index set {1, · · · , n}. We use ∆n to denote the
n-dimensional simplex, i.e., ∆n := {x ∈ Rn : x ≥ 0,

∑n
i=1 xi = 1}. The Kullback-Leibler (KL)

divergence between two distributions P and Q is denoted by KL(P ∥Q) :=
∑

x P (x) log
P (x)
Q(x) .

For a matrix M ∈ Rm×n, we denote by M(i, :) its i-th row and by M(:, j) its j-th column. We
use O(·) to denote the standard order-wise notation and Õ(·) is used to denote order-wise notation
which suppresses any logarithmic dependencies.

1The sample complexities follow using standard regret-to-batch conversion for the time-averaged policy.
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Problem Algorithm Setting Regret Sample Comp.

Matrix
Games

(O’Donoghue et al., 2021) Unreg. Õ(d
√
T ) Õ(d2/ε2)

VMG (Yang et al., 2025a) Both Õ(d
√
T ) Õ(d2/ε2)

OMG (Algorithm 1)
Unreg. Õ(d

√
T ) Õ(d2/ε2)

Reg.
min

{
Õ(d
√
T ),

O(β−1d2 log2(T ))
} min

{
Õ(d2/ε2),

Õ(β−1d2/ε)
}

Markov
Games

OMNI-VI (Xie et al., 2023) Unreg. Õ(d3/2H2
√
T ) Õ(d3H4/ε2)

Nash-UCRL (Chen et al., 2022) Unreg. Õ(dH3/2
√
T ) Õ(d2H3/ε2)

VMG (Yang et al., 2025a) Both Õ(dH3/2
√
T ) Õ(d2H3/ε2)

SOMG (Algorithm 2)
Unreg. Õ

(
d3/2H2

√
T
)

Õ(d3H4/ε2)

Reg.
min

{
Õ
(
d3/2H3

√
T
)

,

O(β−1d3H7 log2(T ))
} min

{
Õ
(
d3H6/ε2

)
, Õ(β−1d3H7/ε)

}
Table 1: Summary of results: For uniformity, we report all sample complexities (number of samples
needed to learn ε-NE) in terms of the number of episodes T , results from O’Donoghue et al. (2021)
are translated from tabular to linear function approximation. ”Reg.” refers to the case with the
regularization parameter β and bounds for learning the regularized NE, while “Unreg.” denotes the
standard unregularized setting with β = 0. “Both” indicates cases that apply to both settings and
Õ(·) hides the logarithmic terms. We only report the dominant O(

√
T ) terms for prior works; the

omitted lower-order terms typically exhibit worse dependence on H and d.

2 TWO-PLAYER ZERO-SUM MATRIX GAMES

2.1 PROBLEM SETUP

We first consider two-player zero-sum matrix games as the foundation of our algorithmic framework.
The KL-regularized payoff function is given as

fµ,ν(A) = µ⊤Aν − βKL(µ∥µref) + βKL(ν∥νref), (1)

where µ ∈ ∆m (resp. ν ∈ ∆n) denotes the policy of the max (resp. min) player. The reference
policy µref ∈ ∆m (resp. νref ∈ ∆n) encodes prior strategies for the max (resp. min) player and is
used to incorporate prior knowledge about the game (e.g., pretrained policies). Here, A ∈ Rm×n is
the true (unknown) payoff matrix and β ≥ 0 is the regularization parameter. The Nash Equilibrium
(NE) (µ⋆, ν⋆) is defined as the solution of the following saddle-point problem.

µ⋆ = arg max
µ∈∆m

min
ν∈∆n

fµ,ν(A) and ν⋆ = arg min
ν∈∆n

max
µ∈∆m

fµ,ν(A). (2)

For the NE policies (µ⋆, ν⋆) and all µ ∈ ∆m, ν ∈ ∆n we have

fµ,ν
⋆

(A) ≤ fµ
⋆,ν⋆

(A) ≤ fµ
⋆,ν(A). (3)

Noisy Bandit Feedback: The matrixA is unknown and can be accessed through noisy oracle bandit
queries. For any i ∈ [m] and j ∈ [n], we can query the oracle and receive feedback Â(i, j) where

Â(i, j) = A(i, j) + ξ.

Here, ξ is i.i.d zero mean subgaussian random variable with parameter σ > 0. We are interested in
learning the NE of the matrix game (1) in a sample-efficient manner using as few queries as possible.

Goal: Regret minimization. We define the dual-gap corresponding to the policy pair (µ, ν) as

DualGap(µ, ν) := f⋆,ν(A)− fµ,⋆(A) = f⋆,ν(A)− fµ,ν(A)︸ ︷︷ ︸
min player exploitability(ν)

+ fµ,ν(A)− fµ,⋆(A)︸ ︷︷ ︸
max player exploitability(µ)

,
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where
f⋆,ν(A) := max

µ∈∆m
fµ,ν(A), fµ,⋆(A) := min

ν∈∆n
fµ,ν(A). (4)

The dual gap can be viewed as the total exploitability (Davis et al., 2014) of the policy pair (µ, ν)
by the respective opponent. The dual gap of the NE policy pair (µ⋆, ν⋆) is zero (see (3)). In order
to capture the cumulative regret of both the players over T rounds, for a sequence of policy pairs
{(µt, νt)}Tt=1, the cumulative regret over T rounds is given by the sum of dual gaps

Regret(T ) =
T∑

t=1

DualGap(µt, νt) =

T∑
t=1

(f⋆,νt(A)− fµt,⋆(A)) .

2.2 ALGORITHM DEVELOPMENT

We propose a model-based algorithm (Algorithm 1) called Optimistic Matrix Game (OMG) based
on UCB-style bonuses (Auer et al., 2002). To enable function approximation, we parameterize the
payoff matrix by Aω with ω ∈ Rd as the parameter vector. At each step t ∈ [T ], OMG estimates
the payoff matrix based on collected samples and collects bandit feedback using the optimistic best
response policy pairs. To elaborate further,

• Payoff matrix update: Given the setDt−1, the matrixAt is computed as the model that minimizes
the regularized least-squares loss between the model and the collected feedback (6). The policy
pair (µt, νt) is computed as the KL-regularized NE policies under the payoff matrix At.

• Data collection using optimistic best response pairs: The optimistic modelA+
t (resp. A−

t ) for the
max (resp. min) players is computed by adding (resp. subtracting) the bonus matrix bt to the MSE
matrix At (7). Each player’s best response under its respective optimistic model is obtained by
fixing the other’s strategy (8), yielding policy pairs (µ̃t, νt) and (µt, ν̃t). We sample (i+t , j

+
t ) ∼

(µ̃t, νt), (i−t , j
−
t ) ∼ (µt, ν̃t) and collect noisy feedback Â(i+t , j

+
t ) and Â(i−t , j

−
t ). Update Dt =

D+
t ∪D−

t whereD+
t = D+

t−1∪
{
(i+t , j

+
t , Â(i

+
t , j

+
t ))
}

andD−
t = D−

t−1∪
{
(i−t , j

−
t , Â(i

−
t , j

−
t ))
}

.

2.3 THEORETICAL GUARANTEES

Assumption 1 (Linear function approximation (Yang et al., 2025a)). The true payoff matrix belongs
to the function class

Aω(i, j) := ⟨ω, ϕ(i, j)⟩, ∀i ∈ [m], j ∈ [n],

where ω ∈ Rd is the parameter vector, and ϕ(i, j) ∈ Rd is the feature vector associated with the
(i, j)th entry. The feature vectors are known and fixed, satisfying ∥ϕ(i, j)∥2 ≤ 1 ∀ i ∈ [m], j ∈ [n].

Assumption 2 (Realizability). There exists ω⋆ ∈ Rd such that A = Aω⋆ and ∥ω⋆∥2 ≤
√
d.

Bonus Function: Under Assumption 1, given δ ∈ (0, 1), the bonus matrix bt at time t is defined as
bt(i, j) = ηT ∥ϕ(i, j)∥Σ−1

t
, (5)

wherein Σt = λI+
∑

(i,j)∈Dt−1
ϕ(i, j)ϕ(i, j)⊤ and ηT = σ

√
d log

(
3(1+2T/λ)

δ

)
+
√
λd.

Regret Guarantees. We now present the main results for the OMG algorithm. Full proofs are
deferred to Appendix E.
Theorem 2.1. Under Assumptions 1 and 2, for any fixed δ ∈ (0, 1) and reference policies (µref, νref),
choosing λ = 1 and bt(i, j) per eq. (5) in Algorithm 1, we have the following guarantees hold
simultaneously w.p. 1− δ

• Regularization-dependent guarantee: For any β > 0, we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
β−1d2

(
1 + σ2 log

(
T

δ

))
log

(
T

d

))
.

• Regularization-independent guarantee: For any β ≥ 0, we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
(1 + σ)d

√
T log

(
T

δ

))
.
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Under bounded noise σ, OMG achieves a regret bound of min{Õ(d
√
T ), O(β−1d2 log2(T/δ))},

which grows only logarithmically with T . This significantly improves upon the prior rate Õ(d
√
T )

in Yang et al. (2025a) under KL-regularization. For smaller values of T or the regularization pa-
rameter β (even β = 0), OMG recovers the Õ(d

√
T ) regret guarantee of the standard algorithms

designed for the unregularized setting through the regularization-independent bound. Consequently,
OMG can learn an ε-NE using min{Õ(d2/ε2), Õ(β−1d2/ε)} samples.

Algorithm 1 Optimistic Matrix Game (OMG)

1: Input: Reg. parameter β, regularization, iteration number T , ref. policies (µref, νref).
2: Initialization: Dataset D0 := ∅, λ > 0, initial parameter ω0

3: for t = 1, · · · , T do
4: Compute the LMSE matrix At := Aωt where

ωt = arg min
ω∈Rd

∑
(i,j,Â(i,j))∈Dt−1

(
Aω(i, j)− Â(i, j)

)2
+ λ∥ω∥22. (6)

5: Compute optimistic matrix games for both players using bt in (5):

A+
t := At + bt A−

t := At − bt. (7)

6: Compute the NE (µt, νt) of the matrix gameAt, and the best response pairs under optimism

µ̃t = arg max
µ∈∆m

fµ,νt(A+
t ), ν̃t = arg min

ν∈∆n
fµt,ν(A−

t ). (8)

7: Sample (i+t , j
+
t ) ∼ (µ̃t, νt), (i−t , j

−
t ) ∼ (µt, ν̃t), collect feedback, and update Dt.

8: end for

3 TWO-PLAYER ZERO-SUM MARKOV GAMES

3.1 PROBLEM SETUP

We consider a two-player zero-sum KL-regularized Markov game with a finite horizon represented
as M := {S,U ,V, P, r,H} where S is a possibly infinite state space, U ,V are the finite action
spaces of the max and min players respectively. H ∈ N+ is the horizon and P = {Ph}Hh=1 where
P : S × U × V → ∆(S) is the set of inhomogeneous transition kernels and r = {rh}Hh=1 with
rh : S × U × V → [0, 1] the reward function. Here, we will focus on the class of Markovian
policies µ := {µh}Hh=1 (resp. ν := {νh}Hh=1) for the max (resp. min) player, where the action
of each player at any step h only depends on the current state (µh : S×[H] → ∆(U) and νh :
S×[H]→ ∆(V)) with no dependence on the history. For reference policies µref : S×[H]→ ∆(U),
νref : S×[H] → ∆(V) ∀(s, i, j) ∈ S × U × V, h ∈ [H] the KL-regularized value and Q-function
under this setup is given as (Cen et al., 2024)

V µ,ν
h (s) := E

[
H∑

k=h

rk(sk, i, j)− β log
µk(i|sk)
µref,k(i|sk)

+ β log
νk(j|sk)
νref,k(j|sk)

∣∣∣∣∣sh = s

]
, (9)

Qµ,ν
h (s, i, j) := rh(s, i, j) + E

s′∼Ph(·|sh,i,j)

[
V µ,ν
h+1(s

′)
]
. (10)

The value function can be expressed in terms of the Q-function as follows

V µ,ν
h (s) = Ei∼µh(·|s)

j∼νh(·|s)

[
Qµ,ν

h (s, i, j)− β log µh(i|s)
µref,h(i|s)

+ β log
νh(j|s)
νref,h(j|s)

]
(11)

= Ei∼µh(·|s)
j∼νh(·|s)

[Qµ,ν
h (s, i, j)]− βKL (µh(·|s)∥µref,h(·|s)) + βKL (νh(·|s)∥νref,h(·|s)) .

For fixed policy ν of the min player, the best response value function of the max player is defined as

∀s ∈ S, h ∈ [H] : V ⋆,ν
h (s) = max

µ
V µ,ν
h (s). (12)

5
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The associated best response policy, denoted µ†(ν), follows from solving (12), admits a closed-form
expression given by

∀i ∈ U , s ∈ S, h ∈ [H] µ†
h(i|s) =

µref,h(i|s) exp
(
Ej∼νh(·|s)[Q

µ†,ν(s, i, j)/β]
)

∑
i′∈U µref,h(i′|s) exp

(
Ej∼νh(·|s)[Q

µ†,ν(s, i′, j)/β]
) . (13)

Similarly we define ν†(µ), the best response of the min player to a fixed strategy µ of the max player.
A policy pair (µ⋆, ν⋆) is called the Nash equilibrium of the Markov game if both the policies µ⋆ and
ν⋆ are best responses to each other. The dual gap associated with a policy pair (µ, ν) is given by

DualGap(µ, ν) := V ⋆,ν
1 (ρ)− V µ,⋆

1 (ρ).

Here V µ,ν
1 (ρ) = Es1∼ρ[V

µ,ν
1 (s1)] where ρ is the initial state distribution. The cumulative regret

associated with sequence of policies {(µt, νt)}Tt=1 is given by the sum of dual gaps

Regret(T ) =
T∑

t=1

DualGap(µt, νt) =

T∑
t=1

V ⋆,νt

1 (ρ)− V µt,⋆
1 (ρ).

3.2 ALGORITHM DEVELOPMENT

We propose a model-free algorithm (Algorithm 2) called SOMG which uses bonuses based on su-
peroptimistic confidence intervals, larger than the ones used in standard UCB style analysis (Auer
et al., 2002) to ensure efficient exploration-exploitation tradeoff and achieve logarithmic regret. To
enable function approximation, we use the function class fθh : S × U × V → R parameterized by
θ ∈ Θ for the regression step (14). The Q functions are obtained subsequently using a projection
operation (15). The algorithm, on a high level maintains three Q and V functions, estimates su-
peroptimistic best response for each player by solving stagewise matrix games and performs data
collection using the best response policy pairs. Here we further elaborate the algorithm:

• Q function updates: SOMG maintains three value (V h, V +
h and V −

h ) and Q functions (Qh,
Q+

h and Q−
h ). The Q functions are updated in two steps. 1) Solving the regularized least mean

squared error with respective bellman targets (rh +Vh+1) using data collected until t− 1 (Dt−1).
(14) followed by a 2) projection step (15) wherein the Q functions are projected onto respective
feasible regions. The projection operator is defined as follows

Πh(x) = max{0,min{x,H − h+ 1}}, (19a)

Π+
h (x) = max

{
0,min{x, 3(H − h+ 1)2}

}
, (19b)

Π−
h (x) = min

{
−3(H − h+ 1)2,max{x,H − h+ 1}

}
. (19c)

The projection operator is designed to enable superoptimism by choosing a ceiling higher than
the maximum attainable value. Standard optimistic algorithms use the same projection operator
for the optimistic estimates of both the players Πopt

h (x) = max{0,min{x, (H − h+ 1)}}.
• Superoptimism:2 To calculate the superoptimistic Q function for the max (resp. min) player we

add (resp. subtract) the super optimistic bonus (bsuph,t ). Standard optimism only adds an optimistic
bonus bh,t (20) which is a high probability upper bound on the Bellman error of the superopti-
mistic Q function (called optimistic Q function under vanilla optimism):∣∣∣∣fθ+

h,t

h (s, i, j)− rh(s, i, j) + PV +
h+1(s, i, j)

∣∣∣∣ ≤ bh,t(s, i, j) (20a)

Q+
h,t(s, i, j) = Π

(
f
θ+
h,t

h (s, i, j) + bh,t(s, i, j)

)
. (20b)

However SOMG uses a superoptimistic bonus defined as:

bsuph,t (s, i, j) = bh,t(s, i, j) + 2bmseh,t (s, i, j), (21)

2A similar concept called over-optimism where extra padding is added to the bonus was used in single-agent
RL (Agarwal et al., 2023) for a different purpose of maintaining monotonicity of variance estimates.
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Algorithm 2 Super-Optimistic Markov Game (SOMG)

1: Input: Reg. parameter β iteration no. T , ref. policies (µref, νref).
2: Initialization: Dataset D0 := ∅, λ ≥ 0, initial parameters {θh,0, θ+h,0, θ

−
h,0}Hh=1.

3: for t = 1, · · · , T do
4: for h = H,H − 1 · · · , 1 do
5: Regress onto MSE Bellman target, optimistic Bellman targets for each player

θh,t ← argmin
θ∈Θ

|Dt−1|∑
k=1

(
fθh(sh,k, ih,k, jh,k)− rh,k − V h+1,t(sh+1,k)

)2
+ λ∥θ∥22, (14a)

θ+h,t ← argmin
θ∈Θ

|Dt−1|∑
k=1

(
fθh(sh,k, ih,k, jh,k)− rh,k − V +

h+1,t(sh+1,k)
)2

+ λ∥θ∥22, (14b)

θ−h,t ← argmin
θ∈Θ

|Dt−1|∑
k=1

(
fθh(sh,k, ih,k, jh,k)− rh,k − V −

h+1,t(sh+1,k)
)2

+ λ∥θ∥22. (14c)

6: Compute MSE, superoptimistic Q functions for both players

Qh,t(s, i, j) := Πh

{
f
θh,t

h (s, i, j)
}
, (15a)

Q+
h,t(s, i, j) := Π+

h

{
f
θ+
h,t

h (s, i, j) + bsuph,t (s, i, j)

}
, (15b)

Q−
h,t(s, i, j) := Π−

h

{
f
θ−
h,t

h (s, i, j)− bsuph,t (s, i, j)

}
. (15c)

7: Compute Nash equilibrium w.r.t. LMSE game, and the

(µh,t(·|s), νh,t(·|s))← Nash Zero-sumβ((Qh,t)(s, ·, ·)). (16)

8: Compute Optimistic Best Responses for both players

µ̃h,t(·|s)← Best Responseβ(Q
+
h,t(s, ·, ·), νh,t(·|s)), (17a)

ν̃h,t(·|s)← Best Responseβ(Q
−
h,t(s, ·, ·), µh,t(·|s)). (17b)

9: Compute the value functions

V h,t(s)← Ei∼µh,t(·|s)
j∼νh,t(·|s)

[
Qh,t(s, i, j)

]
− βKL(µh,t∥µref,h)(s) + βKL(νh,t∥νref,h)(s) (18a)

V +
h,t(s)← Ei∼µ̃h,t(·|s)

j∼νh,t(·|s)

[
Q+

h,t(s, i, j)
]
− βKL(µ̃h,t||µref,h)(s) + βKL(νh,t||νref,h)(s) (18b)

V −
h,t(s)← Ei∼µh,t(·|s)

j∼ν̃h,t(·|s)

[
Q−

h,t(s, i, j)
]
− βKL(µh,t||µref,h)(s) + βKL(ν̃h,t∥νref,h)(s) (18c)

10: end for
11: Receive s1,t ∼ ρ, sample τ+t ∼ (µ̃t, νt) and τ−t ∼ (µt, ν̃t), and update Dt.
12: end for

where the additional bonus bmseh,t (s, i, j) is a high probability upper bound on the Bellman error in
the MSE Q function.∣∣Qh(s, i, j)− rh(s, i, j) + PV h+1(s, i, j)

∣∣ ≤ bmseh,t (s, i, j),

which results in the super optimistic Q function being strictly greater than the high confidence
upper bound (20) one obtains from optimism.

• Best response computation: The stagewise Nash Equilibrium policy pair (µh,t(·|s), νh,t(·|s)) is
computed by solving the KL regularized zero-sum matrix (2) game with the payoff matrix being

7
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A = Qh,t(s, ·, ·) and reference policies µref,h(·|s) and νref,h(·|s) (16). The policies µ̃h,t(·|s) and
ν̃h,t(·|s) are computed as the best responses to policies νh,t(·|s) and µh,t(·|s) under matrix games
with payoff matrices Q+

h,t(s, i, j) and Q−
h,t(s, i, j) respectively.

• Value function update and Data collection: The value functions V h,t(s), V +
h,t(s) and V −

h,t(s) are
updated via the Bellman equation (11) using policy pairs (µh,t, νh,t), (µ̃h,t, νh,t), and (µh,t, ν̃h,t),
respectively (18). We use KL(a|b)(s) as shorthand for KL(a(·|s)|b(·|s)). Two new trajectories

τ+t =
{
(s+h,t, i

+
h,t, j

+
h,t, r

+
h,t, s

+
h+1,t)

}H

h=1
and τ−t =

{
(s−h,t, i

−
h,t, j

−
h,t, r

−
h,t, s

−
h+1,t)

}H

h=1

are collected by following policies (µ̃t, νt) = {(µ̃h,t, νh,t)}Hh=1 and (µt, ν̃t) = {(µh,t, ν̃h,t)}Hh=1

respectively. Update the dataset D+
t = D+

t−1 ∪
{
τ+t
}

and D−
t = D−

t−1 ∪
{
τ−t
}

, Dt = D+
t ∪D−

t .

Computational benefit of Regularization: The Nash equilibrium computation steps in line 6 of Al-
gorithm 1 , as well as equations (16) of Algorithm 2, require solving for the NE of a KL-regularized
zero-sum matrix game. This can be accomplished using policy extragradient/Mirror descent based
methods (Cen et al., 2023; 2024; Sokota et al., 2023), which guarantee last-iterate linear conver-
gence. In contrast, solving the corresponding problem in the unregularized setting only yields an
O(1/T ) convergence rate.

3.3 THEORETICAL GUARANTEES

Assumption 3 (Linear MDP (Jin et al., 2020; Xie et al., 2023)). The MDPM := {S,U ,V, r, P,H}
is a linear MDP with features ϕ : S × U × V → Rd and for every h ∈ [H] there exists an unknown
signed measure ψh(·) ∈ Rd over S and an unknown fixed vector ωh ∈ Rd such that

Ph(· | s, i, j) = ⟨ϕ(s, i, j), ψh(·)⟩, rh(s, i, j) = ⟨ϕ(s, i, j), ωh⟩.
Without loss of generality, we assume ∥ϕ(s, i, j)∥ ≤ 1 for all (s, i, j) ∈ S × U × V , and
max{∥ψh(S)∥, ∥ωh∥} ≤

√
d for all h ∈ [H].

We use linear function approximation with fθh(s, i, j) := ⟨θ, ϕ(s, i, j)⟩ and Θ = Rd. Under linear
function approximation and Assumption 3 we get realizability for free (see Lemma F.8). Note that
Dt−1 contains 2(t− 1) trajectories; for convenience we index them by τ , with each trajectory of the
form

{
(sτh, i

τ
h, j

τ
h , r

τ
h, s

τ
h+1)

}H
h=1

. We define Σh,t as follows:

Σh,t := λI+
∑

τ∈Dt−1

ϕ(sτh, i
τ
h, j

τ
h)ϕ(s

τ
h, i

τ
h, j

τ
h)

⊤.

The expressions for θh,t, θ+h,t and θ−h,t are given by

θh,t = Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ
[
rh,τ + V h+1,t(s

τ
h+1)

]
,

θ+h,t = Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ

[
rh,τ + V +

h+1,t(s
τ
h+1)

]
,

θ−h,t = Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ

[
rh,τ + V −

h+1,t(s
τ
h+1)

]
.

where ϕh,τ is the feature map corresponding to the state sτh.

Bonus function: Under Assumption 3, the superoptimistic bonus function bsuph,t is defined as in eq.
(21) with

bmseh,t (s, i, j) = η1∥ϕ(s, i, j)∥Σ−1
h,t

and bh,t(s, i, j) = η2∥ϕ(s, i, j)∥Σ−1
h,t
, (22)

where η1 = c1
√
dH
√
log
(
16T
δ

)
and η2 = c2dH

2
√
log
(
16dT

δ

)
for some determinable universal

constants c1, c2 > 0.

Regret Guarantees: We now present the main results for the SOMG algorithm. Full proofs are
deferred to Appendix F.
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Theorem 3.1. Under Assumption 3, for any reference policies (µref, νref) =

({µref,h(·|·)}Hh=1 , {νref,h(·|·)}Hh=1), any fixed δ ∈ [0, 1], choosing λ = 1 and bsuph,t (s, i, j) as
per eq. (22) in algorithm 2, we have the following guarantees hold simultaneously w.p. (1− δ)

• Regularization-dependent guarantee: For any β > 0, we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
β−1d3H7 log2

(
dT

δ

))
.

• Regularization-independent guarantee: For any β ≥ 0, we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
d3/2H3

√
T log

(
dT

δ

))
,

As demonstrated in Theorem 3.1, for the regularized (β > 0) setting, SOMG, achieves a re-
gret bound of min{Õ(d3/2H3

√
T ), O(β−1d3H7 log2(T/δ))}, 3 which grows only logarithmically

with T . Consequently, SOMG needs only min{Õ(d3H6/ε2), Õ(β−1d3H7/ε)} samples to learn
an ε-NE. Moreover, for β = 0, employing an alternative design of the projection operator and
bonus function (Appendix F.6), SOMG attains a tighter regularization-independent regret bound of
Õ(d3/2H2

√
T ). This, in turn, implies a sample complexity of Õ(d3H4/ε2) for learning an ε-NE.

Reduction to the single agent case: Both OMG and SOMG naturally reduce to multi-armed Bandit
and single-agent RL respectively when the min-player’s action space is a singleton. As elaborated
in Appendix, for single agent setting SOMG can additionally obtain improved regret guarantees
of O

(
β−1d3H5 log2

(
dT
δ

))
in the regularization-dependent, and O

(
d3/2H2

√
T log

(
dT
δ

))
in the

regularization-independent cases.

Technical Challenges. In single-agent settings (bandits and RL), analyses of algorithms achiev-
ing logarithmic regret rely on the fact that the optimal policy for a given transition–reward model
pair directly admits a Gibbs-style closed-form solution (Zhao et al., 2025b;a; Tiapkin et al., 2024).
In contrast, in game-theoretic settings, no such direct closed-form expression exists for Nash equi-
librium policies. The same absence of closed form expressions also arises in Coarse Correlated
Equilibrium (CCE)–based approaches, which are commonly employed to achieve O(

√
T ) regret

when learning Nash equilibrium for zero-sum games (Xie et al., 2023; Jin et al., 2022; Chen et al.,
2022; Liu et al., 2021). We address this challenge by leveraging best response sampling, where the
best response to a fixed opponent policy does admit a closed-form expression.

Moreover in the single-agent RL setting with KL regularization, the value function does not include
any positive KL regularization terms. Thus, both the value and Q-functions are upper bounded by
H . As a consequence, the optimistic Q-function is bounded within [0, H]. This boundedness en-
ables the direct construction of confidence intervals for the optimistic Q-function using standard
concentration results, which in turn allows algorithms from the unregularized setting to be carried
over to the regularized setting with minimal modifications. However, in the KL-regularized game
(9)(10), the value functions contain positive KL terms, which can cause them to take arbitrarily
large values exceeding H . This makes it challenging to construct confidence intervals for the opti-
mistic (superoptimistic in our case) Q-functions directly. We solve this problem using best response
sampling and superoptimism. (More details in appendix section B.2)

4 CONCLUSION

In this work, we develop algorithms that achieve provably superior sample efficiency in competitive
games under KL regularization. For matrix games, we introduced OMG, based on optimistic best-
response sampling, and for Markov games, we developed SOMG, which relies on super-optimistic

3By employing Bernstein-based (Xie et al., 2021) bonuses in SOMG, one could potentially shave off
an additional Hd1/2 dependence in the regularization-independent bound and the H2d dependence in the
regularization-dependent bound.
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best-response sampling. Both methods attain regret that scales only logarithmically with the number
of episodes T . Our analysis leverages the fact that in two-player zero-sum games, best responses to
fixed opponent strategies admit closed-form solutions. To our knowledge, this is the first work to
characterize the statistical efficiency gains under KL regularization in game-theoretic settings.

Several avenues for future work remain open, including deriving instance/gap-dependent regret guar-
antees under KL regularization that also capture the dependence on reference policies and develop-
ing offline counterparts of optimistic best-response sampling that achieve superior sample efficiency
with KL regularization under reasonable coverage assumptions. Extending our methods to general
multi-agent settings, where the objective is to compute coarse correlated equilibria (CCE) and best
responses or optimal policies do not admit a closed form expression is another promising direction.
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A RELATED WORKS

In this section we will discuss theoretical works that are related to ours

Two Player Matrix Games: Two-player zero-sum matrix games have been studied extensively,
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from the foundational work of (Shapley, 1953) to more recent analyses of convergence in the un-
regularized setting (Mertikopoulos et al., 2018; Daskalakis & Panageas, 2018; Wei et al., 2021).
In settings with KL regularization, faster last-iterate linear convergence guarantees have also been
established (Cen et al., 2023; 2024). However, these works focus on the tabular full-information
setting. Closer to our setting are O’Donoghue et al. (2021); Yang et al. (2025a), where the payoff
matrix is unknown and must be estimated through noisy oracle queries. O’Donoghue et al. (2021) in-
troduced UCB/optimism (Lai, 1987) and K-Learning (similar to Thompson sampling (Russo et al.,
2018)) based approaches in the tabular unregularized setting, while Yang et al. (2025a) proposed
a value-incentivization based approach (Liu et al., 2023) and established regret guarantees in the
regularized setting with function approximation. Learning from preference feedback has also been
studied in Ye et al. (2024). However, none of these approaches exploit the structure of the KL-
regularized problem to achieve logarithmic regret; instead, they maintain O(

√
T ) regret.

Two Player Markov Games: Two-player zero-sum Markov games (Littman, 1994) generalize
single-agent MDPs to competitive two-player settings. The problem has widely studied in the fi-
nite horizon tabular setting (Bai & Jin, 2020; Bai et al., 2020; Liu et al., 2021), under linear function
approximation (Xie et al., 2023; Chen et al., 2022), in the context of general function approximation
(Jin et al., 2022; Huang et al., 2022) and under the infinite horizon setting (Sidford et al., 2020;
Sayin et al., 2021). Many of these algorithms use optimism-based methods, using upper and lower
bounds on the value functions to define a general-sum game. They sidestep the need to solve for a
Nash equilibrium in general-sum games by employing CCE-based sampling, exploiting the fact that
in two-player settings the dual gap of a joint policy over the joint action space matches that of the
corresponding marginal independent policies. In addition there have also been works solving the
problem under full information setting with exact/first order oracle access (Zeng et al., 2022; Cen
et al., 2023; 2024; Yang & Ma, 2023) and offline setting (Cui & Du, 2022; Zhong et al., 2022; Yan
et al., 2024). All prior works consider the unregularized setting, except Zeng et al. (2022); Cen et al.
(2024), which achieves linear convergence under entropy regularization, compared to the O(T−1)
rate in the unregularized case.

Entropy/KL Regularization in Decision Making: Entropy regularization methods are widely used
as a mechanism for encouraging exploration (Neu et al., 2017; Geist et al., 2019). These methods
have been studied from a policy optimization perspective with some form of gradient oracle/first-
order oracle access in single agent RL (Cen et al., 2022b; Lan, 2023), zero-sum matrix and markov
games (Cen et al., 2023; 2024), zero-sum polymatrix games (Leonardos et al., 2021) and potential
games (Cen et al., 2022a). Under bandit/preference feedback, value-biased bandit-based methods
have been proposed that, like DPO (Rafailov et al., 2023), exploit the closed-form optimal policy
to bypass the two-step RLHF procedure, for both offline (Cen et al., 2025) and online settings (Cen
et al., 2025; Xie et al., 2025; Zhang et al., 2025a). These results were further extended to game-
theoretic settings (Wang et al., 2023; Ye et al., 2024). Yang et al. (2025a) develop value-biased
algorithms for learning Nash Equilibrium in zero-sum matrix games and Coarse Correlated Equi-
librium (CCE) in general-sum Markov games. However, none of these approaches leverage the
structure of KL regularization and maintain a O(

√
T ) regret. More recently Zhao et al. (2025a)

achieved O(1/ε) sample complexity in the KL-regularized contextual bandits setting with a strong
coverage assumption on the reference policy. Subsequently, Zhao et al. (2025b); Tiapkin et al.
(2024) proposed optimistic bonus–based algorithms for KL-regularized bandits and RL that achieve
logarithmic regret (O(β−1d2 log2(T )) in bandits andO(β−1H5d3 log2(T )) in RL)4 without cover-
age assumptions, leveraging the closed-form optimal policy in their analysis. However, their results
are limited to the single-player setting, where the optimal policy admits a closed-form expression
in terms of the reward model. Similar faster convergence guarantees were also achieved for the RL
setting by Foster et al. (2025) and for offline contextual bandits with f -divergences (Zhao et al.,
2025c).

Game Theoretic Methods in LLM Alignment: Fine-tuning large language models with reinforce-
ment learning is a core part of modern post-training pipelines, enhancing reasoning and problem-
solving (Guo et al., 2025). Game-theoretic and self-play methods extend reinforcement learning to
multi-agent settings, with applications in alignment (Calandriello et al., 2024; Rosset et al., 2024;
Munos et al., 2024; Zhang et al., 2025c) and reasoning (Cheng et al., 2024; Liu et al., 2025). Within

4For uniformity, we report the sample complexities under linear function approximation/linear MDP and
per-step rewards rh ∈ [0, 1] and trajectory reward

∑H
h=1 rh ∈ [0, H].
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this paradigm, self-play optimization is framed as an online two player matrix/markov game, where
models iteratively improve using their own responses by solving for the Nash Equilibrium (Wu
et al., 2025b; Chen et al., 2024; Swamy et al., 2024; Tang et al., 2025; Wang et al., 2025). More
broadly, game theory has been applied to modeling non-transitive preferences (Swamy et al., 2024;
Ye et al., 2024; Tiapkin et al., 2025), enabling collaborative post-training and decision-making (Park
et al., 2025a;b), accelerating Best-of-N distillation (Yang et al., 2025b), and for multi-turn align-
ment/RLHF (Wu et al., 2025a; Shani et al., 2024) among other LLM applications.

B PROOF OVERVIEW AND MECHANISMS

B.1 MATRIX GAMES

The cumulative regret can be decomposed as the cumulative sum of exploitability of the min and the
max player

Regret(T) =
T∑

t=1

(f⋆,νt(A)− fµt,⋆(A))

=

T∑
t=1

(f⋆,νt(A)− fµt,νt(A))︸ ︷︷ ︸
Exploitability of the max player

+

T∑
t=1

(fµt,νt(A)− fµt,⋆(A))︸ ︷︷ ︸
Exploitability of the min player

. (23)

We bound the first term (exploitability of the max player) and the bounding of the second term
follows analogous arguments. Now we have the following concentration inequality for Matrix games
The first term in eq. (23) can be further decomposed as

T∑
t=1

(f⋆,νt(A)− fµt,νt(A))︸ ︷︷ ︸
Exploitability of the max player

=

T∑
t=1

(f⋆,νt(A)− f µ̃t,νt(A))︸ ︷︷ ︸
T1

+

T∑
t=1

(f µ̃t,νt(A)− fµt,νt(A))︸ ︷︷ ︸
T2

We will now analyze these terms individually.

Bandits view for bounding T1: By construction of the algorithm, the strategies µt, µ̃t, and µ̇t are
best responses to the common fixed strategy νt of the min-player under the payoff matrices At, A+

t ,
and A respectively. This property not only provides closed-form representations but also facilitates
cancellation of the KL terms corresponding to νt in T1 and T2. As a result of fixed νt, one can view
the min-player strategy νt as part of the environment and bound T1 the same way as done in bandits
with the max player as the decision making entity.

REGULARIZATION-DEPENDENT BOUND

Traditional regret analysis in matrix games ignores the regularization terms and bounds the regret
using the sum of bonuses c

∑T
t=1 E[bt(i, j)] which is further bounded as

√
T log(T ) using Jensen’s

inequality and the elliptical potential lemma/eluder dimension (Lemma D.6). However in the pres-
ence of regularization the originally payoff landscape, linear in µ and ν (1) becomes β strongly
convex in the policy ν and β strongly concave in µ. Under the full information setting it is well
known that this facilitates design of algorithms that achieve faster convergence to the equilibrium
(Cen et al., 2023; 2024). This intuitively suggests one can also design algorithms which achieve
sharper regret guarantees in the regularized setting under bandit feedback. Specifically we show that
we can bound the regret by the sum of squared bonuses cβ−1

∑T
t=1 E[bt(i, j)2] which enables using

to circumvent the need for Jensen’s inequality which contributes the
√
T term and directly bound

the terms using the elliptical potential lemma (Lemma D.6) to obtain a O(β−1 log2(T )) regret. We
detail the analysis as follows

Leveraging the bandits view, one can bound the term T1 adapting the arguments from Zhao et al.
(2025b) (Theorem 4.1) as detailed in section E.1 to obtain T1 ≤ cβ−1 Ei∼µ̃t

[
(Ej∼νt

[(bt(i, j))])
2
]
.

In order to bound the term T2 we use a mean value theorem based argument (detailed in section E.1
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Step 2) and the property

2(|A+
t (i, :)−At(i, :)|νt) ≥ (|A+

t (i, :)−A(i, :)|νt), (24)

to show that T2 ≤ c′β−1 Ei∼µ̃t

[
(Ej∼νt [(bt(i, j))])

2
]
.The property in eq. (24) is a direct conse-

quence of optimistic bonus function used in algorithm 1, however, we will need a superoptimistic
bonus to obtain a similar property in Markov Games. Thus we have

T1 + T2 ≤ c′′β−1
T∑

t=1

E
i∼µ̃t

[(
E

j∼νt

[(bt(i, j))]

)2
]
≤ c′′β−1

T∑
t=1

E
i∼µ̃t
j∼νt

[
(bt(i, j))

2
]
.

The final bound is obtained by substituting the expression for the bonus terms and using Lemmas
D.2 and D.6 and using analogous arguments to bound the second term in eq. (23) resulting in

Regret(T ) ≤ O
(
β−1d2

(
1 + σ2 log

(
T

δ

))
log

(
T

d

))
.

REGULARIZATION-INDEPENDENT BOUND

Using the bandits view, the term T1 can be bounded by O
(
(1 + σ)d

√
T log

(
T
δ

))
using the similar

arguments to ones used in standard UCB bounds as done in section E.2 step 1. We bound T2 by
O
(
(1 + σ)d

√
T log

(
T
δ

))
as detailed in section E.2 step 2. Similarly bounding the second term in

eq. (23) we have

Regret(T ) ≤ O
(
(1 + σ)d

√
T log

(
T

δ

))
.

B.2 MARKOV GAMES

In this section we extend the arguments from the matrix games section to design and analyse the
SOMG Algorithm 2 for achieving logarithmic regret in Markov games. We begin by elaborating
some algorithmic choices before proceeding with the proof outline. The value function in eq. (9)
which can be rewritten as

V µt,νt

h (s) :=

Eµt,νt

[
H∑

k=h

rk(sk, i, j)− βKL (µk(·|sk)∥µref,k(·|sk)) + βKL (νk(·|sk)∥νref,k(·|sk))

∣∣∣∣∣sh = s

]
.

This can be unbounded from both above and below depending on µt and νt due to the unbounded
nature of the KL regularization terms. For instance, if νt deviates substantially from the reference
policy νref in certain states, the max-player can exploit this by selecting policies that steer the MDP
toward those states, thereby attaining a higher overall return in regions where the KL divergence
between νt and νref is large. This unbounded nature of the value function is problematic when
designing confidence intervals for bellman errors. We address this problem by choosing the policy
pair (µh,t, νh,t) to the Nash equilibrium policies under the matrix game Qh,t in eq. (16). As a
consequence of this choice we have for any β > 0 (full details in Lemma F.6)

βKL (µh,t(.|sh)∥µref,h(.|sh)) ∈ [0, H − h+ 1], (25)
βKL (νh,t(.|sh)∥νref,h(.|sh)) ∈ [0, H − h+ 1]. (26)

From eq. 26 one can show for the policies (µt, νt) Algorithm 2 chooses, we have V µt,νt

h (s) ∈
[−c1(H − h + 1)2, c2(H − h + 1)2]. (Lemma F.7) and one can proceed to bound Bellman errors
for the resulting policies. This is also the reason our projection operator (19) has the ceiling of the
order (H − h + 1)2 as opposed to standard (H − h + 1) as done in most unregularized works Xie
et al. (2023). The constant 3 comes from superoptimism (lemma F.4).

We also use properties of optimism and superoptimistic gap in our proofs. For notational simplicity,
while stating the these properties we will omit the superscript νt and also the dependence on t. The
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properties hold for all t ∈ [T ]. Consequently, the symbol µ here should be interpreted as the time-
indexed policy µt, rather than an arbitrary policy.

Optimism: For the setting in algorithm 2 and any policy µ′, we have

Q+
h (sh, ih, jh) ≥ Qh(sh, ih, jh) and Q+

h (sh, ih, jh) ≥ Q
µ′

h (sh, ih, jh). (27)

Superoptimistic gap: For the setting in algorithm 2, we have

2
∣∣(Q+

h (sh, ih, jh)−Qh(sh, ih, jh)
)∣∣ ≥ ∣∣Q+

h (sh, ih, jh)−Q
µ
h(sh, ih, jh)

∣∣ . (28)

Standard analysis that achieves Õ(
√
T ) regret uses just optimism meaning they just need

Q+
h (sh, ih, jh) ≥ Q†

h(sh, ih, jh) and thus they only add the bonus term bh(sh, ih, jh) to account
for the bellman error incurred while regression used to compute Q+

h (sh, ih, jh) (since the bellman
error of the term Q†

h(sh, ih, jh) is 0). However for our proof technique we additionally require the
property in eq. (28) to hold. Under optimism property in eq. (27) the eq. (28) is equivalent to(

Q+
h (sh, ih, jh)−Qh(sh, ih, jh)

)
≥ Qh(sh, ih, jh)−Q

µ
h(sh, ih, jh). (29)

This property follows as a consequence of the design of the superoptimistic bonus (22) and pro-
jection operator (19). As detailed in Lemma F.4, we enable this by the addition of the bonus
bsuph (sh, ih, jh) = bh(sh, ih, jh) + 2bmseh (sh, ih, jh) where bsuph (sh, ih, jh) adjusts for the Bellman
error in the term Q+

h (sh, ih, jh) while 2bmseh (sh, ih, jh) adjusts for the bellman errors in the the two
Qh(sh, ih, jh) terms while the Bellman error of the term Qµ

h(sh, ih, jh) is 0 in (29). The property
holds with just plain optimism when H = 1 for matrix games.

Lastly note that the bonus is superoptimistic in the sense that we add the term bsuph (sh, ih, jh)

while constructing Q+
h (sh, ih, jh) in eq. (15b) although we have with high probability the high-

est value (optimistic value) of Q+
h (sh, ih, jh) can be upperbounded just by adding bh(sh, ih, jh) -

the standard optimistic bonus yet we add bsuph (sh, ih, jh) = bh(sh, ih, jh)+2bmseh (sh, ih, jh) where
bmseh (sh, ih, jh) is the bonus used in addition to optimism - the delusional bonus.

Design of the Superoptimistic projection operator: Recall that the projection operator in eq. (19b)
is given by

Π+
h (x) = max

{
0,min{x, 3(H − h+ 1)2}

}
.

We can show (Lemma F.7) that the maximum value that can be attained by any policy’s (µ′) value
function

Qµ′,νt

h (s, i, j) ≤ (H − h+ 1)2.

However, during the projection operation we set the projection ceiling to 3(H − h + 1)2. This is
again done to facilitate the superoptimistic gap in eq. (28) when the Q+

h (s, i, j) attains its ceiling
value.

The dual gap at time t can be decomposed as follows

DualGap(µt, νt) = V ⋆,νt

1 (s1)− V µt,⋆
1 (s1) = V ⋆,νt

1 (s1)− V µt,νt

1 (s1)︸ ︷︷ ︸
Exploitability of the max player

+V µt,νt

1 (s1)− V µt,⋆
1 (s1)︸ ︷︷ ︸

Explotaibility of the min player

.

(30)

We elaborate the bounding of the first term (exploitability of the max player) and the bounding of
the second term follows analogous arguments. One can further decompose the first term in eq. (30)
as

V ⋆,ν
1 (s1)− V µ,ν

1 (s1) = V ⋆,ν
1 (s1)− V µ̃,ν

1 (s1)︸ ︷︷ ︸
T5

+V µ̃,ν
1 (s1)− V µ,ν

1 (s1)︸ ︷︷ ︸
T6

. (31)

RL view for bounding T5: As a result of fixed νt, one can view the min-player strategy νt as part
of the environment and bound T5 the same way as done in RL with the max player as the decision
making entity. Here µ†

h and µ̃h are stagewise best responses to the fixed strategy νh under matrix

games with parameters Qµ†,ν
h and Q+

h respectively
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Regret Guarantees: Leveraging the RL view one can bound the term T5 adapting the arguments
from Zhao et al. (2025b) (Theorem 5.1) and accounting for changing νt as detailed in section F.2
step 1 for the regularization-dependent bound and standard single agent RL analysis as detailed in
F.3.1 step 1 for the regularization-independent bound. This does not require anything beyond the
standard optimism property (27).

The bounding of T6 is elaborated in section F.2 step 2 for the regularization-dependent bound and
section F.3.1 step 2 for the regularization-independent bound and requires both optimism (27) and
superoptimistic gap (28) properties.

C NUMERICAL EXPERIMENTS

To evaluate whether SOMG (Algorithm 2) stabilizes learning, we conduct experiments on randomly
generated linear MDPs, as shown in Figure 1. We randomly generate two MDP environments with
the parameter settings indicated in the figure and track the dual gap (log scale) as a function of the
number of collected trajectories. Note that in each iteration of Step 11 in SOMG, two trajectories
are sampled. The reference policies for both the players (µref, νref) for all states is set to uniform of
actions (Entropy regularization).

(a) H = 4, |S| = 7, A1 = A2 = 7, d = 5 (b) H = 7, |S| = 20, A1 = A2 = 11, d = 10

Figure 1: Dual gap (log scale) vs trajectories collected for KL regularized Markov Games,H denotes
the horizon length, |S| denotes the number of states, Ai denotes the number of actions of player i
and d denotes the feature dimension. The spread shows standard deviation averaged over 3 runs

For each MDP we compute the stagewise Nash equilibrium which essentially involves solving a zero
sum KL regularized matrix game (SOMG step 7 equation (16)) with the estimated MSE Q function
Qh,t(s, ·, ·) as the payoff matrix for step h at time t. The estimated game is then solved using policy
extragradient methods. More specifically we use the Predictive Update (PU) method from Algorithm
1 in Cen et al. (2024) which given a payoff matrix can find the εcomp-NE in log(1/εcomp) steps.
The plots for both the settings are shown for 5 different values of the regularization strength β =
[0.01, 0.05, 0.1, 0.2, 0.5] with higher β demonstrating faster convergence validating our theoretical
results from section 3.

D USEFUL LEMMAS

Lemma D.1 (Covering number of the ℓ2 ball, Lemma D.5 in Jin et al. (2020)). For any ϵ > 0 and
d ∈ N+, the ϵ-covering number of the ℓ2 ball of radius R in Rd is at most

(
1 + 2R

ϵ

)d
.

Lemma D.2 (Martingale Concentration, Lemma B.2 in Foster et al. (2021)). Let (Xt)t≤T be a
sequence of real-valued random variables adapted to a filtration Ft and Et[·] := E[·|Ft] denote the
conditional expectation. Suppose that |Xt| ≤ R almost surely for all t. Then, with probability at
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least 1− δ, the following inequalities hold:
T∑

t=1

Xt ≤
3

2

T∑
t=1

Et−1[Xt] + 4R log(2δ−1), and
T∑

t=1

Et−1[Xt] ≤ 2

T∑
t=1

Xt + 8R log(2δ−1).

Lemma D.3 (Confidence Ellipsoid: Theorem 2 Abbasi-Yadkori et al. (2011)). Let ξt be a condi-
tionally R sub-gaussian random variable adapted to the filtration Ft and {Xt}∞t=1, ∥Xt∥ ≤ L be a
Ft−1 measurable stochastic process in Rd. Define Yt = ⟨Xt, θ⋆⟩ + ξt where ∥θ⋆∥2 ≤

√
S. Let θt

be the solution to the regularized least squares problem given by

θt = argmin
θ∈R

t−1∑
i=1

(⟨Xt, θ⟩ − Yt)2 + λ∥θ∥22,

then for any δ ∈ [0, 1], for all t ≥ 0, with probability atleast 1− δ we have

∥∥θt − θ⋆∥∥Vt
≤ R

√
d log

(
1 + tL2/λ

δ

)
+
√
λS.

Lemma D.4 (Lemma 11 in Abbasi-Yadkori et al. (2011)). Let {ϕs}s∈[T ] be a sequence of vectors
with ϕs ∈ Rd and ∥ϕs∥ ≤ L. Suppose Λ0 is a positive definite matrix and define Λt = Λ0 +∑t

s=1 ϕsϕ
⊤
s . Then if λmin(Λ0) > max{1, L2}, the following inequality holds:

T∑
s=1

min
{
1, ∥ϕs∥2Λ−1

s−1

}
≤ 2 log

(
det(ΛT )

det(Λ0)

)
.

Lemma D.5 (Lemma F.3 in Du et al. (2021)). Let X ⊂ Rd and suppose supx∈X ∥x∥2 ≤ BX . Then
for any n ∈ N, we have

∀λ > 0 : max
x1,...,xn∈X

log det

(
Id +

1

λ

n∑
i=1

xix
⊤
i

)
≤ d log

(
1 +

nB2
X

dλ

)
.

As a direct consequence of lemmas D.4 and D.5 we have
Lemma D.6 (Elliptical Potential Lemma). Let x1, . . . ,xT ∈ Rd satisfy ∥xt∥2 ≤ 1 for all t ∈ [T ].
Fix λ > 0, and let Vt = λI+

∑t−1
i=1 xix

⊤
i . Then

T∑
t=1

min
{
1, ∥xt∥2V −1

t

}
≤ 2d log

(
1 + λ−1T/d

)
.

Specifically for λ = 1 we have
T∑

t=1

min
{
1, ∥xt∥2V −1

t

}
=

T∑
t=1

∥xt∥2V −1
t
≤ 2d log

(
1 + T/d

)
.

Lemma D.7 (Lemma D.1 in Jin et al. (2020)). Consider the matrix Σt = λI+
∑t−1

i=1 ϕiϕ
⊤
i , where

ϕi ∈ Rd and λ > 0. Then the following inequality holds ∀ t:
t−1∑
i=1

ϕ⊤i Σ
−1
t ϕi ≤ d.

Lemma D.8 (Lemma D.4 in Jin et al. (2020)). Consider a stochastic process {sτ}∞τ=1 on a
state space S with associated filtration {Fτ}∞τ=0, and an Rd-valued process {ϕτ}∞τ=0 such that
ϕτ ∈ Fτ−1 and ∥ϕτ∥ ≤ 1. Define Λk = λI +

∑k
τ=1 ϕτϕ

⊤
τ . Let V be a function class such that

supx |V (x)| ≤ B1 for some constant B1 > 0, and let Nϵ be its ϵ-covering number under the dis-
tance dist(V1, V2) = sups |V1(s)− V2(s)|. Then, for any δ ∈ (0, 1), with probability at least 1− δ,
for all k ≥ 0 and any V ∈ V , we have:∥∥∥∥∥

k∑
τ=1

ϕτ
{
V (sτ )− E[V (sτ )|Fτ−1]

}∥∥∥∥∥
2

Λ−1
k

≤ 4B2
1

[
d

2
log

(
k + λ

λ

)
+ log

(
Nϵ

δ

)]
+

8k2ϵ2

λ
.
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E MATRIX GAME PROOFS

Proposition E.1 (Optimism/Concentration). Let E1 be the event ∥ωt − ω⋆∥Σt ≤ ηT , then we have
P(E1) ≥ (1− δ/3), under the event E1 we have

|(At(i, j)−A(i, j))| ≤ bt(i, j) ∀(i, j), (32a)

A+
t (i, j)−A(i, j) ≤ 2bt(i, j) and A+

t (i, j) ≥ A(i, j) ∀(i, j), (32b)

A(i, j)−A−
t (i, j) ≤ 2bt(i, j) and A(i, j) ≥ A−

t (i, j) ∀(i, j), (32c)

where bt(i, j) = ηT ∥ϕ(i, j)∥Σ−1
t

and ηT = σ

√
d log

(
3(1+2T/λ)

δ

)
+
√
λd.

Proof. Recall that ωt is computed in algorithm 1 as

ωt = arg min
ω∈Rd

∑
(i,j,Â(i,j))∈Dt−1

(
Aω(i, j)− Â(i, j)

)2
+ λ∥ω∥22.

Now using Lemma D.3 with S = d, L = 1 (assumption 1) and accounting for the 2(t − 1) points
collected until t, we have ∀ t ≥ 0

∥ωt − ω⋆∥Σt
≤ σ

√
d log

(
3(1 + 2t/λ)

δ

)
+
√
λd w.p. 1− δ/3. (33)

Since ηT = σ

√
d log

(
3(1+2T/λ)

δ

)
+
√
λd we have P(E1) = 1− δ/3. Using eq. (33) we have

|(At(i, j)−A(i, j)| = |⟨ωt − ω⋆, ϕ(i, j)⟩| ≤ ∥ωt − ω⋆∥Σt
∥ϕ(i, j)∥Σ−1

t

≤

(
σ

√
d log

(
3(1 + T/λ)

δ

)
+
√
λd

)
∥ϕ(i, j)∥Σ−1

t

= ηT ∥ϕ(i, j)∥Σ−1
t

= bt(i, j) (34)

Here eq. (34) follows from the result in eq. (33) under the event E1. Lastly A+
t (i, j) = At(i, j) +

bt(i, j) implies 0 ≤ A+
t (i, j) − A(i, j) ≤ 2bt(i, j). Similar arguments can be used to prove eq.

(32c).

Now Theorem 2.1 holds as long as for any fixed δ ∈ [0, 1], for some events Ematrix
dep , Ematrix

ind and
Ematrix := Ematrix

dep ∩ Ematrix
ind with P(Ematrix) ≥ 1− δ the following theorems can be established.

Theorem E.1 (Regularization-dependent guarantee). Under assumptions 1 and 2, for any β > 0,
reference policies (µref, νref), choosing λ = 1 and bt(i, j) as per eq. (5) in Algorithm 1, under the
event Ematrix

dep we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
β−1d2

(
1 + σ2 log

(
T

δ

))
log

(
T

d

))
.

Theorem E.2 (Regularization-independent guarantee). Under assumptions 1 and 2, β ≥ 0, refer-
ence policies (µref, νref), choosing λ = 1 and bt(i, j) as per eq. (5) in Algorithm 1, under the event
Ematrix

ind we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
(1 + σ)d

√
T log

(
T

δ

))
.

E.1 PROOF OF THEOREM E.1: REGULARIZATION-DEPENDENT BOUND

The regret can be upper bounded as follows

Regret(T) =
T∑

t=1

(f⋆,νt(A)− fµt,⋆(A))
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=

T∑
t=1

(f⋆,νt(A)− f µ̃t,νt(A))︸ ︷︷ ︸
T1

+

T∑
t=1

(f µ̃t,νt(A)− fµt,νt(A))︸ ︷︷ ︸
T2

+

T∑
t=1

(fµt,νt(A)− fµt,ν̃t(A))︸ ︷︷ ︸
T3

+

T∑
t=1

(fµt,ν̃t(A)− fµt,⋆(A))︸ ︷︷ ︸
T4

. (35)

Here we will bound the terms T1 and T2, the terms T3 and T4 can be bounded similarly. We use
µ(A′, ν′) := argmaxµ f

µ,ν′
(A′) to denote the max player’s best response strategy to ν′ under the

payoff matrix A′. Similarly one can define ν(A′, µ′). One can derive the closed form expressions
for the best response to νt under models A, A+

t and At to be µ†
t , µ̃t and µt respectively by solving

eq. (4) to be

µ†
t,i = µ(A, νt)i = argmax

µ
fµ,νt(A) = µref,i exp

(
A(i, :)νt

β

)/
Z(A, νt), (36a)

µ̃t,i = µ(A+
t , νt)i = argmax

µ
fµ,νt(A+

t ) = µref,i exp

(
A+

t (i, :)νt
β

)/
Z(A+

t , νt), (36b)

µt,i = µ(At, νt)i = argmax
µ

fµ,νt(At) = µref,i exp

(
At(i, :)νt

β

)/
Z(At, νt), (36c)

where

Z(A′, ν′) =
∑
i

µref,i exp

(
A′(i, :)ν′

β

)
.

Step 1: Bounding T1
From definition of the objective function (1) we have

f⋆,νt(A)− f µ̃t,νt(A) = E
i∼µ†

t
j∼νt

[A(i, j)]− βKL(µ†
t ||µref)−

 E
i∼µ̃t
j∼νt

[A(i, j)]− βKL(µ̃t||µref)

 (37)

= β log(Z(A, νt))− β log(Z(A+
t , νt)) + µ̃⊤

t (A
+
t −A)νt (38)

= ∆(A+
t , νt)−∆(A, νt), (39)

where we define ∆(A′, ν′) = −β log(Z(A′, ν′)) + µ(A′, ν′)⊤(A′ − A)ν′. Eq. (38) follows from
the closed form expressions for the best responses (36). Using the mean value theorem for some
Γ ∈ [0, 1] with AΓ = ΓA+

t + (1− Γ)A we have

f⋆,νt(A)− f µ̃t,νt(A)

= ∆(A+
t , νt)−∆(A, νt)

=
∑
i

∂∆(AΓ, νt)

∂ (AΓ(i, :)νt)
(A+

t (i, :)−A(i, :))νt

=
∑
i

(
β−1µ(AΓ, νt)i

[
(AΓ(i, :)−A(i, :))νt

− E
i′∼µ(AΓ,νt)

[(AΓ(i
′, :)−A(i′, :))νt]

])
(A+

t (i, :)−A(i, :))νt (40)

=
∑
i

(
Γβ−1µ(AΓ, νt)i

[
(A+

t (i, :)−A(i, :))νt

− E
i′∼µ(AΓ,νt)

[(A+
t (i

′, :)−A(i′, :))νt]

])
(A+

t (i, :)−A(i, :))νt
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= Γβ−1

(
E

i∼µ(AΓ,νt)

[(
(A+

t (i, :)−A(i, :))νt
)2]− ( E

i∼µ(AΓ,νt)

[(
A+

t (i, :)−A(i, :)
)
νt
])2

)
≤ β−1 E

i∼µ(AΓ,νt)

[(
(A+

t (i, :)−A(i, :))νt
)2]

. (41)

Here eq. (40) follows from Lemma E.1. Let dt(i) = Ej∼νt

[(
A+

t (i, j)−A(i, j)
)]

, now consider
the term

G1(Γ) := E
i∼µ(AΓ,νt)

[(
(A+

t (i, :)−A(i, :))νt
)2]

=
∑
i

(
E

j∼νt

[(
A+

t (i, j)−A(i, j)
)])2

µ(AΓ, νt)i =
∑
i

dt(i)
2µ(AΓ, νt)i. (42)

Under the event E1 (Proposition E.1), we have

∂G1(Γ)

∂Γ

=
∑
i

(dt(i))
2 ∂µ(AΓ, νt)i

∂Γ

=
∑
i

(dt(i))
2

{
µref,i exp

(
β−1 (A(i, :)νt + Γdt(i))

)∑
i′ µref,i′ exp (β−1 (A(i′, :)νt) + Γdt(i′))

β−1dt(i)

−
µref,i exp

(
β−1 (A(i, :)νt + Γdt(i))

)∑
i′ β

−1dt(i
′)µref,i′ exp

(
β−1 (A(i′, :)νt + Γdt(i

′))
)

(
∑

i′ µref,i′ exp (β−1 (A(i′, :)νt + Γdt(i′))))
2

}

= β−1

(
E

i∼µ(AΓ,νt)
[dt(i)

3]− E
i∼µ(AΓ,νt)

[dt(i)
2] E

i∼µ(AΓ,νt)
[dt(i)]

)
= β−1Cov(dt(i), dt(i)2) ≥ 0. (43)

Here eq. (43) follows since under the event E1 we have dt(i) ≥ 0 ∀i and for any positive random
variable X

Cov(X,X2) = E[X3]− E[X2]E[X] = E
[
(X2)3/2

]
− E[X2]E[X]

≥
(
E
[
X2
])3/2 − E[X2]E[X] = E[X2]

(√
E [X2]− E[X]

)
≥ 0. (44)

Thus we have G1(Γ) ≤ G1(1) and using eq. (41)

f⋆,νt(A)− f µ̃t,νt(A) ≤ β−1G1(Γ)

≤ β−1G1(1) = β−1 E
i∼µ(A+

t ,νt)

[(
(A+

t (i, :)−A(i, :))νt
)2]

(45)

≤ 4β−1 E
i∼µ(A+

t ,νt)

[(
E

j∼νt

[bt(i, j)]

)2
]
, (46)

where the last inequality follows from Proposition E.1 under the event E1.

Step 2: Bounding T2
From the definition of the objective function (1) we have

f µ̃t,νt(A)− fµt,νt(A)

= E
i∼µ̃t
j∼νt

[A(i, j)]− βKL(µ̃t||µref)−

 E
i∼µt
j∼νt

[A(i, j)]− βKL(µt||µref)

 (47)

=
(
β log(Z(A+

t , νt))− µ̃⊤
t (A

+
t −A)νt

)
−
(
β log(Z(At, νt))− µ⊤

t (At −A)νt
)

(48)

= ∆(At, νt)−∆(A+
t , νt). (49)
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Eq. (48) follows from the closed form expressions for the best responses (36). Using the mean value
theorem for some Γ ∈ [0, 1] with AΓ = ΓAt + (1− Γ)A+

t we have

f µ̃t,νt(A)− fµt,νt(A)

= ∆(At, νt)−∆(A+
t , νt)

=
∑
i

∂∆(AΓ, νt)

∂ (AΓ(i, :)νt)
(At(i, :)−A+

t (i, :))νt

=
∑
i

(
β−1µ(AΓ, νt)i

[
(AΓ(i, :)−A(i, :))νt

− E
i′∼µ(AΓ,νt)

[(AΓ(i
′, :)−A(i′, :))νt]

])
(At(i, :)−A+

t (i, :))νt

= β−1(E[XY ]− E[X]E[Y ]), (50)

where the penultimate equality follows from Lemma E.1, and in the last line we defineX = (AΓ(i, :
) − A(i, :))νt, Y = (At(i, :) − A+

t (i, :))νt, and the expectation is taken w.r.t. i ∼ µ(AΓ, νt). Note
that

X = Γ (At(i, :)−A(i, :))νt︸ ︷︷ ︸
:=p

+(1− Γ) (A+
t (i, :)−A(i, :))νt︸ ︷︷ ︸

:=q

= Γ(p− q) + q,

and

Y = (At(i, :)−A(i, :))νt − (A+
t (i, :)−A(i, :))νt = p− q.

Thus

E[XY ]− E[X]E[Y ] = E[Γ(p− q)2 + q(p− q)]− Γ(E[p− q])2 − E[q]E[(p− q)]
= Γvar(p− q) + Cov(q, p− q)
≤ E[(p− q)2] + max{E[q2],E[(p− q)2]}. (51)

By equations (50) and (51) we know that, under the event E1,

f µ̃t,νt(A)− fµt,νt(A)

≤ β−1 E
i∼µ(AΓ,νt)

[((At(i, :)−A+
t (i, :))νt)

2]+

β−1 max

{
E

i∼µ(AΓ,νt)
[((At(i, :)−A+

t (i, :))νt)
2], E

i∼µ(AΓ,νt)
[((A+

t (i, :)−A(i, :))νt)2]

}

≤ 5β−1 E
i∼µ(AΓ,νt)

[(
E

j∼νt

[bt(i, j)]

)2
]
= 5β−1 E

i∼µ(AΓ,νt)

[(
|A+

t (i, :)−At(i, :)|νt
)2]

, (52)

where the last inequality follows from the fact that (|A+
t (i, :) − At(i, :)|νt) = Ej∼νt

[bt(i, j)] and
(|A(i, :) − A+

t (i, :)|νt) ≤ 2Ej∼νt
[bt(i, j)] = 2(|A+

t (i, :) − At(i, :)|νt) given by Proposition E.1.
One can also bound the same thing slightly tighter as follows

E[XY ]− E[X]E[Y ]

= E[p(p− q)− (1− Γ)(q − p)2]− E[p− q]E[(1− Γ)(q − p)]− E[p− q]E[p]
= Cov(p, p− q)− (1− Γ)Var(p− q) ≤ max

{
E[p2],E[(p− q)2]

}
. (53)

under the event E1 (c.f. Proposition E.1), using eqs. (50) and (53) we have

f µ̃t,νt(A)− fµt,νt(A)

≤ β−1 max

{
E

i∼µ(AΓ,νt)
[((At(i, :)−A+

t (i, :))νt)
2], E

i∼µ(AΓ,νt)
[((At(i, :)−A(i, :))νt)2]

}
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≤ β−1 E
i∼µ(AΓ,νt)

[(
E

j∼νt

[bt(i, j)]

)2
]
= β−1 E

i∼µ(AΓ,νt)

[(
E

j∼νt

[
A+

t (i, j)−At(i, j)
])2

]
,

(54)

where the last inequality follows from Proposition E.1. Now let dt(i) :=

Ej∼νt

[
A+

t (i, j)−At(i, j)
]

and consider the term

G2(Γ) := E
i∼µ(AΓ,νt)

[(
E

j∼νt

[
A+

t (i, j)−At(i, j)
])2

]
=
∑
i

(
dt(i)

)2
µ(AΓ, νt)i. (55)

Let Γ̌ = 1− Γ, then we have

∂G2(Γ)

∂Γ
=
∑
i

(
dt(i)

)2 ∂µ(AΓ, νt)i
∂Γ

=
∑
i

(
dt(i)

)2{− µref,i exp
(
β−1

(
At(i, :)νt + Γ̌dt(i)

))∑
i′ µref,i′ exp

(
β−1

(
At(i′, :)νt + Γ̌dt(i′)

))β−1dt(i)

+
µref,i exp

(
β−1

(
At(i, :)νt + Γ̌dt(i)

))∑
i′ β

−1dt(i
′)µref,i′ exp

(
β−1

(
At(i

′, :)νt + Γ̌dt(i
′)
))(∑

i′ µref,i′ exp
(
β−1

(
At(i′, :)νt + Γ̌dt(i′)

)))2
}

= −β−1

(
E

i∼µ(AΓ,νt)

[(
dt(i)

)3]− E
i∼µ(AΓ,νt)

[(
dt(i)

)2]
E

i∼µ(AΓ,νt)

[
dt(i)

])
= −β−1Cov(dt(i)2, dt(i)) ≤ 0, (56)

last line follows since under the event E1 we have dt(i) ≥ 0 ∀i and for any positive random variable
X using eq. (44) we have Cov(X,X2) ≥ 0 Thus the term G2(Γ) ≤ G2(0). Hence from eq. (54)
we have

T2 = f µ̃t,νt(A)− fµt,νt(A)

≤ β−1 E
i∼µ(AΓ,νt)

[(
dt(i)]

)2]
= β−1G2(Γ)

≤ β−1G2(0) = β−1 E
i∼µ(A+

t ,νt)

[(
dt(i)

)2]
= β−1 E

i∼µ(A+
t ,νt)

[(
E

j∼νt

[bt(i, j)]

)2
]
. (57)

Step 3: Finishing up

From equations (46) and (57) w.p. 1− δ/3 (Under event E1) we have

T1 + T2 ≤ 5β−1
T∑

t=1

E
i∼µ(A+

t ,νt)

[(
E

j∼νt

[bt(i, j)]

)2
]

≤ 5β−1
T∑

t=1

E
i∼µ̃t
j∼νt

[
(bt(i, j))

2
]
.

Similarly w.p. 1 − δ/3 (Under event E1) using the same arguments as above for the min player we
have

T3 + T4 ≤ 5β−1
T∑

t=1

E
i∼µt
j∼ν̃t

[
(bt(i, j))

2
]
.

Define

Σ+
t := λI+

∑
(i,j)∈D+

t−1

ϕ(i, j)ϕ(i, j)⊤ and Σ−
t = λI+

∑
(i,j)∈D−

t−1

ϕ(i, j)ϕ(i, j)⊤. (58)
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By defining the filtration Ft−1 = σ

({
(i+l , j

+
l , Â(i

+
l , j

+
l )), (i−l , j

−
l , Â(i

−
l , j

−
l ))
}t−1

l=1

)
, we observe

that random variables
∥∥ϕ (i+t , j+t )∥∥2(Σ+

t )
−1 and

∥∥ϕ (i−t , j−t )∥∥2(Σ−
t )

−1 are Ft-measurable, while the

policies µ̃t, µt, ν̃t and νt are Ft−1 measurable. Define the events

E2 =


T∑

t=1

E
i∼µ̃t
j∼νt

∥ϕ(i, j)∥2
(Σ+

t )−1 ≤ 2

T∑
t=1

∥ϕ(i+t , j+t )∥2
(Σ+

t )−1 + 8 log

(
12

δ

) ,

E3 =


T∑

t=1

E
i∼µt
j∼ν̃t

∥ϕ(i, j)∥2
(Σ−

t )−1 ≤ 2

T∑
t=1

∥ϕ(i−t , j−t )∥2
(Σ−

t )−1 + 8 log

(
12

δ

) .

Choosing λ = 1 and using Lemma D.2 with R = 1 (since ∥ϕ(i, j)∥2
(Σ−

t )−1
≤ 1 ∀ (i, j) ∈ [m]× [n]

from assumption 1), we have P(E2) ≥ 1 − δ/6 and P(E3) ≥ 1 − δ/6. Thus from (35), under the
event Ematrix

dep := E1 ∩ E2 ∩ E3 we have the dual gap bounded as

Regret(T) =
T∑

t=1

(f⋆,νt(A)− fµt,⋆(A))

= 5β−1
T∑

t=1

E
i∼µ̃t
j∼νt

[
(bt(i, j))

2
]
+ 5β−1

T∑
t=1

E
i∼µt
j∼ν̃t

[
(bt(i, j))

2
]

= 5β−1η2T

T∑
t=1

 E
i∼µ̃t
j∼νt

∥ϕ(i, j)∥2
Σ−1

t
+ E

i∼µt
j∼ν̃t

∥ϕ(i, j)∥2
Σ−1

t


≤ 5β−1η2T

T∑
t=1

 E
i∼µ̃t
j∼νt

∥ϕ(i, j)∥2
(Σ+

t )−1 + E
i∼µt
j∼ν̃t

∥ϕ(i, j)∥2
(Σ−

t )−1


≤ 10β−1η2T

(
T∑

t=1

(
∥ϕ(i+t , j+t )∥2

(Σ+
t )−1 + ∥ϕ(i−t , j−t )∥2

(Σ−
t )−1

)
+ 8 log(12δ−1)

)

= O

(
β−1

(
1 + σ

√
log

(
T

δ

)
+ σ2 log

(
T

δ

))
d2 log

(
T

d

))
, (59)

where the third line follows from the fact Σ+
t ⪯ Σt and Σ−

t ⪯ Σt, the penultimate line comes from
event E3 ∩ E3. Where λ = 1 and we use the elliptical potential lemma (Lemma D.6) to obtain the
last line.

E.2 PROOF OF THEOREM E.2: REGULARIZATION-INDEPENDENT BOUND

Using eq. (35) we have Regret(T ) = T1+T2+T3+T4 and T3+T4 can be bound similar to T1+T2.
Let µ†

t be the best response to νt under A (c.f. (36)). We bound T1 using UCB style analysis, under
the event E1, as follows:

T1 =

T∑
t=1

(fµ
†
t ,νt(A)− f µ̃t,νt(A)) ≤

T∑
t=1

(fµ
†
t ,νt(A+

t )− f µ̃t,νt(A)) (60)

≤
T∑

t=1

(f µ̃t,νt(A+
t )− f µ̃t,νt(A)) =

T∑
t=1

E
i∼µ̃t
j∼νt

[A+
t (i, j)−A(i, j)] (61)

≤ 2

T∑
t=1

E
i∼µ̃t
j∼νt

[bt(i, j)] = 2

T∑
t=1

ηT E
i∼µ̃t
j∼νt

[∥ϕ(i, j)∥Σ−1
t
] ≤ 2

T∑
t=1

ηT E
i∼µ̃t
j∼νt

∥ϕ(i, j)∥(Σ+
t )

−1 . (62)
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Eq. (60) and the first inequality in (62) follow from the Proposition E.1. Here (61) follows since
µ̃t = argmax

µ
fµ,νt(A+

t ). The second inequality in eq. (62) comes from the fact Σ+
t ⪯ Σt.

Similarly, under the event E1, we can bound T2 as follows

T2 =

T∑
t=1

(f µ̃t,νt(A)− fµt,νt(A))

≤
T∑

t=1

(f µ̃t,νt(A)− f µ̃t,νt(At)) +

T∑
t=1

(fµt,νt(At)− fµt,νt(A)) (63)

≤
T∑

t=1

E
i∼µ̃t
j∼νt

[bt(i, j)] +

T∑
t=1

E
i∼µt
j∼νt

[bt(i, j)] (64)

≤ 2

T∑
t=1

E
i∼µ̃t
j∼νt

[bt(i, j)] = 2

T∑
t=1

ηT E
i∼µ̃t
j∼νt

[∥ϕ(i, j)∥Σ−1
t
] (65)

≤ 2ηT

T∑
t=1

E
i∼µ̃t
j∼νt

∥ϕ(i, j)∥(Σ+
t )

−1 , (66)

where (63) follows from the fact that µt = argmax
µ

fµ,νt(At), (64) follows from Proposition E.1,

(65) follows since fµt,νt(At) ≥ f µ̃t,νt(At) and

fµt,νt(At) + E
i∼µt
j∼νt

[bt(i, j)] = fµt,νt(A+
t ) ≤ f µ̃t,νt(A+

t ) = f µ̃t,νt(At) + E
i∼µ̃t
j∼νt

[bt(i, j)],

and (66) follows from the fact Σ+
t ⪯ Σt. Define the filtration

Ft−1 = σ

({
(i+l , j

+
l , Â(i

+
l , j

+
l )), (i−l , j

−
l , Â(i

−
l , j

−
l ))
}t−1

l=1

)
.

We have random variable
∥∥ϕ (i+t , j+t )∥∥(Σ+

t )
−1 is Ft-measurable, while the policies µ̃t, µt, ν̃t and νt

are Ft−1 measurable. Define the events

E4 =


T∑

t=1

E
i∼µ̃t
j∼νt

[
∥ϕ(i, j)∥(Σ+

t )−1

]
≤ 2

T∑
t=1

∥ϕ(i+t , j+t )∥(Σ+
t )−1 + 8 log

(
12

δ

) ,

E5 =


T∑

t=1

E
i∼µt
j∼ν̃t

[
∥ϕ(i, j)∥(Σ−

t )−1

]
≤ 2

T∑
t=1

∥ϕ(i−t , j−t )∥(Σ−
t )−1 + 8 log

(
12

δ

) .

Choosing λ = 1 we have P(E4) ≥ 1 − δ/6 and P(E5) ≥ 1 − δ/6 using Lemma D.2 with R = 1
(since ∥ϕ(i, j)∥(Σ−

t )−1 ≤ 1 ∀ (i, j) ∈ [m]× [n] from assumption 1). Under the event E1 ∩ E4, using
equations (62) and (66) we have

T1 + T2 ≤ 4ηT

T∑
t=1

E
i∼µ̃t
j∼νt

[
∥ϕ(i, j)∥(Σ+

t )
−1

]

≤ 8ηT

(
T∑

t=1

∥∥ϕ(i+t , j+t )
∥∥
(Σ+

t )
−1 + 4 log

(
12

δ

))
(67)

≤ 8ηT


√√√√T

T∑
t=1

∥∥ϕ(i+t , j+t )
∥∥2
(Σ+

t )
−1 + 4 log

(
12

δ

) = O
(
(1 + σ)d

√
T log

(
T

δ

))
.

(68)
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The equations (67) and (68) follow from event E4 and Lemma D.6 (elliptical potential lemma)
respectively. Similarly one can bound T3 + T4 under the event E1 ∩ E5 by O

(
σd
√
T log

(
T
δ

))
.

Thus under the event Ematrix
ind := E1 ∩ E4 ∩ E5, we have

Regret(T ) ≤ O
(
(1 + σ)d

√
T log

(
T

δ

))
. (69)

Finally under the event Ematrix = Ematrix
dep ∩ Ematrix

ind = E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 (w.p. atleast 1 − δ)
equations eqs. (59) and (69) hold simultaneously which completes the proof of Theorem 2.1.

E.3 AUXILIARY LEMMAS

Lemma E.1. The partial derivative ∂∆(A′,ν′)
∂A′(i:)ν′ is given by

∂∆(A′, ν′)

∂A′(i, :)ν′

= β−1µ(A′, ν′)i(A
′(i, :)−A(i, :))ν′ − β−1µ(A′, ν′)i

∑
i′

µ(A′, ν′)i′(A
′(i′, :)−A(i′, :))ν′

= β−1µ(A′, ν′)i

[
(A′(i, :)−A(i, :))ν′ − E

i′∼µ(A′,ν′)
[(A′(i′, :)−A(i′, :))ν′]

]
. (70)

Proof. The symbol ∂
∂A′(i,:)ν′ denotes differentiation with respect to the scalar quantity A′(i, :)ν′.

Throughout this differentiation we regard the vector ν′ as constant, and keep every row of A′ except
the ith row fixed. Because the other rows are held fixed, the cross-derivatives vanish: ∂A′(i′,:)ν′

∂A′(i,:)ν′ =

0, ∀i′ ̸= i, so each row contributes an independent gradient term.

∂∆(A′, ν′)

∂A′(i, :)ν′
=
∂ [−β log(Z(A′, ν′)) + µ(A′, ν′)(A′ −A)ν′]

∂A′(i, :)ν′

= − β

Z(A′, ν′)

∂Z(A′, ν′)

∂A′(i, :)ν′
+ [µ(A′, ν′)]i +

∂ ([µ(A′, ν′)]i)

∂A′(i, :)ν′
(A′(i, :)−A(i, :))ν′

+
∑
i′ ̸=i

∂[µ(A′, ν′)]i′

∂A′(i, :)ν′
(A′(i′, :)−A(i′, :))ν′. (71)

We have

∂Z(A′, ν′)

∂
(
A′(i, :)ν′

) = µref,i exp
(

A′(i,:)ν′

β

) 1

β
=
Z(A′, ν′)

β
[µ(A′, ν′)]i,

∂ ([µ(A′, ν′)]i)

∂A′(i, :)ν′
=
∂ (µref,i exp (A

′(i, :)ν′/β) /Z(A′, ν′))

∂A′(i, :)ν′

=
β−1

(
µref,i exp (A

′(i, :)ν′/β)Z(A′, ν′)− (µref,i exp (A
′(i, :)ν′/β)

2
)

Z(A′, ν′)2

= β−1
(
[µ(A′, ν′)]i − [µ(A′, ν′)]2i

)
,

∂ ([µ(A′, ν′)]i′)

∂A′(i, :)ν′
=
∂ (µref,i′ exp (A

′(i′, :)ν′/β) /Z(A′, ν′))

∂A′(i, :)ν′

=
−β−1 (µref,i exp (A

′(i, :)ν′/β)µref,i′ exp (A
′(i′, :)ν′/β))

Z(A′, ν′)2

= −β−1[µ(A′, ν′)]i[µ(A
′, ν′)]i′ .

Substituting back in eq. (71) we get the desired result.
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F MARKOV GAME PROOFS

Notation and Convention For any function f : S → R we define Phf(s, i, j) :=
Es′∼Ph(·|s,i,j)[f(s

′)]. We also use the notation

E
sh+1|sh,ih,jh

(f(sh+1)) := Esh+1∼Ph(·|sh,ih,jh)[f(sh+1)] = Phf(sh, ih, jh).

For all K > H and (s, i, j) ∈ S × U × V we set Q̂K(s, i, j) = 0, V̂K(s) = 0,
KL(µ̂H+1(·|s)∥µref,K(·|s)) = 0, and KL(ν̂K(·|s)∥νref,K(·|s)) = 0. These conventions apply to
every value function V̂ , every Q-function Q̂ (both estimates and true values), and all feasible poli-
cies µ̂ and ν̂.
Proposition F.1. The closed form expressions of the best response to min-player strategy ν′ under
for a Q function Q′

h(s, i, j) ∀(s, i, j) ∈ S × U × V, h ∈ [H] denoted by µ(Q′, ν′) where Q′ :=

{Q′
h}

H
h=1 is given by

[µh,t(Q
′, ν′)](i|s) =

µref,h(i|s) exp
(
Ej∼ν′

h(·|s)[Q
′(s, i, j)/β]

)
∑

i′∈U µref,h(i′|s) exp
(
Ej∼ν′

h(·|s)[Q
′(s, i′, j)/β]

)
and we have µt = µ(Qt, νt), µ̃t = µ(Q+

t , νt) and µ†
t = µ(Qµ†

t ,νt , νt)

Proof. The result is an immediate consequence of the definitions and routine calculations.

Now in order to prove our main result we note that Theorem 3.1 holds as long as for any δ ∈ [0, 1]
the Theorems F.1 and F.2 can be established.
Theorem F.1 (Regularization-dependent guarantee). Under assumption 3, for any fixed δ ∈ [0, 1]

and any β > 0, reference policies (µref, νref) = ({µref,h(·|·)}Hh=1 , {νref,h(·|·)}Hh=1), choosing λ = 1
and bsuph,t (s, i, j) as per eq. (22) in algorithm 2, we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
β−1d3H7 log2

(
dT

δ

))
w.p. 1− δ/2.

Theorem F.2 (Regularization-independent guarantee). Under assumption 3, for any fixed δ ∈ [0, 1]

and any β ≥ 0, reference policies (µref, νref) = ({µref,h(·|·)}Hh=1 , {νref,h(·|·)}Hh=1), choosing λ = 1
and bsuph,t (s, i, j) as per eq. (22) in algorithm 2, we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
d3/2H3

√
T log

(
dT

δ

))
w.p. 1− δ/2.

F.1 SUPPORTING LEMMAS

We begin by introducing some lemmas that will be used in proving the main result. The proofs of
these lemmas are deferred to Section F.4

In Lemmas F.1, F.2 and Corollary F.1 we introduce high probability concentration events and Bell-
man error bounds used in proving our main results.
Lemma F.1 (Concentration of MSE Bellman errors). Define the Bellman error of the MSE Q func-
tion as

eh,t(s, i, j) := Qh,t(s, i, j)− rh(s, i, j)− PhV h+1(s, i, j). (72)

Then under the setting in Algorithm 2, choosing λ = 1, ∀(s, i, j) ∈ S × U × V, h ∈ [H], the event

E6 :=
{
|eh,t(s, i, j)| ≤ η1∥ϕ(s, i, j)∥Σ−1

h,t
:= bmseh,t (s, i, j)

}
(73)

occurs with probability at least 1 − δ/16. Here η1 := c1
√
dH
√

log
(
16T
δ

)
, where c1 > 0 is a

universal constant.
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Lemma F.2 (Concentration of Superoptimistic Bellman errors). Under the setting in Algorithm 2,
choosing λ = 1, ∀(s, i, j) ∈ S × U × V, h ∈ [H], the event

E7 :=
{∣∣∣〈θ+h,t, ϕ(s, i, j)〉− rh(s, i, j)− PhV

+
h+1(s, i, j)

∣∣∣ ≤ η2∥ϕ(s, i, j)∥Σ−1
h,t

:= bh,t(s, i, j)
}

occurs with probability 1−δ/16. Here η2 = c2dH
2
√

log
(
16dT

δ

)
and c2 > 0 is a universal constant.

Corollary F.1 (Bounds on Superoptimistic Bellman error w.r.t. the Q+ function). Let

e+h,t(s, i, j) := Q+
h,t(s, i, j)− rh(s, i, j)− PhV

+
h+1(s, i, j),

then under the event E7, for bsuph,t (s, i, j) := bh,t(s, i, j) + 2bmseh,t (s, i, j), we have∣∣∣e+h,t(s, i, j)∣∣∣ ≤ 2bh,t(s, i, j) + 2bmseh,t (s, i, j) = bsuph,t (s, i, j) + bh,t(s, i, j).

For notational simplicity, while stating the next two lemmas we will omit the superscript νt and also
the dependence on t. Both lemmas are valid for all t ∈ [T ]. Consequently, the symbols µ and µ̃ in
Lemma F.3 and Lemma F.4 should be interpreted as the time-indexed policies µt and µ̃t, rather than
an arbitrary policies.

Lemma F.3 formalizes the notion of optimism for Algorithm 2.

Lemma F.3 (Optimism). For the setting in Algorithm 2, under the event E6 ∩ E7, ∀(sh, ih, jh) ∈
S × U × V, h ∈ [H +1] and any policy µ′ of the max player, we have the following equations hold:

Q+
h (sh, ih, jh) ≥ Qh(sh, ih, jh), (74a)

Q+
h (sh, ih, jh) ≥ Q

µ′

h (sh, ih, jh). (74b)

The next lemma introduces the concept of the superoptimistic gap, arising from the construction of
the superoptimistic bonus term and the projection operators.

Lemma F.4 (Super-optimistic gap). For the setting in Algorithm 2, under the event E6 ∩ E7,
∀(sh, ih, jh) ∈ S × U × V, h ∈ [H + 1], we have

2
∣∣(Q+

h (sh, ih, jh)−Qh(sh, ih, jh)
)∣∣ ≥ ∣∣Q+

h (sh, ih, jh)−Q
µ
h(sh, ih, jh)

∣∣ . (75)

Note that this is the exact condition used in the matrix games section that we use to bound the term
T2 using an expectation of some function over actions sampled using the best response policy µ̃
using the first bounding method (51).

F.2 PROOF OF THEOREM F.1: REGULARIZATION-DEPENDENT BOUND

For simplicity we fix the initial state to s1, extending the arguments to a fixed initial distribution
s1 ∼ ρ is trivial. One step regret is given by

DualGap(µt, νt) = V ⋆,νt

1 (s1)− V µt,⋆
1 (s1)

= V ⋆,νt

1 (s1)− V µ̃t,νt

1 (s1)︸ ︷︷ ︸
T

(t)
5

+V µ̃t,νt

1 (s1)− V µt,νt

1 (s1)︸ ︷︷ ︸
T

(t)
6

+ V µt,νt

1 (s1)− V µt,ν̃t

1 (s1)︸ ︷︷ ︸
T

(t)
7

+V µt,ν̃t

1 (s1)− V µt,⋆
1 (s1)︸ ︷︷ ︸

T
(t)
8

. (76)

Below bound T5 and T6, and the remaining two terms can be bounded similarly.

Step 1: Bounding T (t)
5

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

For notational simplicity we will omit the superscript νt here as we try to bound both T5 and T6.
Given a fixed strategy of the minimizing player one can treat the best response computation objective
as a RL policy optimization. Let µ†

t denote the best response to ν̃t at t. We will use the following
leafing here inspired from Zhao et al. (2025b). Let µ(h) := µ̃1:h ⊕ µ†

h+1:H denote the concatenated
policy that plays µ̃ for the first h steps and then executes µ† for the remaining steps. Again we drop
the subscript t here for notational simplicity. Consider the term

T5 = V µ†

1 (s1)− V µ̃
1 (s1)

=

H−1∑
h=0

V µ(h)

1 (s1)− V µ(h+1)

1 (s1)︸ ︷︷ ︸
Ih+1

.

For any policy pair (µ′, ν′), h ∈ [H], let dµ
′,ν′

h denote the state distribution induced at step h when
following the policy (µ′, ν′). Under the event E6 ∩ E7, we can bound each Ih+1 as follows

Ih+1 = E
sh+1∼dµ̃,ν

h+1

[
V µ(h)

h+1 (sh+1)− V µ(h+1)

h+1 (sh+1)
]

= E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µ†

h+1(·|sh+1)

jh+1∼νh+1(·|sh+1)

[
Qµ†

h+1(sh+1, ih+1, jh+1)− βKL(µ†
h+1(·|sh+1)∥µref,h+1(·|sh+1))

]

− E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Qµ†

h+1(sh+1, ih+1, jh+1)− βKL(µ̃h+1(·|sh+1)∥µref,h+1(·|sh+1))
]

(77)

≤ β−1 E
sh+1∼dµ̃,ν

h+1

ih+1∼µ̃h+1(·|sh+1)

[(
E

jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)

−Qµ†

h+1(sh+1, ih+1, jh+1)

])2]
(78)

≤ β−1 E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[(
Q+

h+1(sh+1, ih+1, jh+1)−Qµ†

h+1(sh+1, ih+1, jh+1)
)2]

.

Note that here (77) follows from the fact Qµ(h)

h+1(s, i, j) = Qµ(h+1)

h+1 (s, i, j) = rh+1(s, i, j) +

Ph+1V
µ†

h+2(s, i, j) = Qµ†

h+1(s, i, j) ∀(s, i, j) ∈ S × U × V, h ∈ [H]. Eq. (78) comes from (for

Q+
h+1(sh+1, ih+1, jh+1) ≥ Qµ†

h+1(sh+1, ih+1, jh+1)) Lemma F.3 and the same analysis used for

bounding the term T1 (see eqs. (37)-(45)). Here Qµ†

h+1(sh+1, ·, ·) will be mapped to A(·, ·) and
Q+

h+1(sh+1, ·, ·) to A+(·, ·) from the matrix games section. Let ah+1 = (ih+1, jh+1), now using
Lemma F.3 we have

0 ≤ Q+
h+1(sh+1, ih+1, jh+1)−Qµ†

h+1(sh+1, ih+1, jh+1)

= E
sh+2|sh+1,ah+1

(
V +
h+2(sh+2)− V µ†

h+2(sh+2)
)
+ e+h+1(sh+1, ih+1, jh+1)

= E
sh+2|sh+1,ah+1

E
ih+2∼µ̃h+2(·|sh+2)
jh+2∼νh+2(·|sh+2)

(
Q+

h+2(sh+2, ih+2, jh+2)

− βKL(µ̃h+2(·|sh+2)∥µref,h+2(·|sh+2)) + βKL(νh+2(·|sh+2)∥νref,h+2(·|sh+2))

)
− E

sh+2|sh+1,ah+1

E
ih+2∼µ†

h+2(·|sh+2)

jh+2∼νh+2(·|sh+2)

(
Qµ†

h+2(sh+2, ih+2, jh+2)
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− βKL(µ†
h+2(·|sh+2)∥µref,h+2(·|sh+2)) + βKL(νh+2(·|sh+2)∥νref,h+2(·|sh+2))

)
+ e+h+1(sh+1, ih+1, jh+1)

≤ E
sh+2|sh+1,ah+1

E
ih+2∼µ̃h+2(·|sh+2)
jh+2∼νh+2(·|sh+2)

[
Q+

h+2(sh+2, ih+2, jh+2)−Qµ†

h+2(sh+2, ih+2, jh+2)
]

+ e+h+1(sh+1, ih+1, jh+1) (79)

≤ · · ·

≤ Eµ̃,ν
.|sh+1,ah+1

[
H∑

k=h+1

e+k (sk, ik, jk)

]
.

Here Eµ̃,ν
.|sh+1,ah+1

denotes expectation with respect to the law of sk ∼ µ̃, ν|sh+1, ah+1, that is, the
distribution of sk induced by policy (µ̃, ν) when starting from state sh+1, taking action ah+1 at
step h + 1 , ik ∼ µ̃k(·|sk) and jk ∼ νk(·|sk) for k > h + 1. Here e+h (sh, ih, jh) is the Bellman
error of the optimistic Q function and the Bellman error of Qµ†

(sh, ih, jh) = rh(sh, ih, jh) +

PhV
µ†

h+1(sh, ih, jh) is zero. Eq. (79) follows by lower bounding the second term by swapping
µ†
h+2(·|sh+2) to the policy µ̃h+2(·|sh+2) since

µ†
h+2(·|sh+2) =

arg max
µ′
h+2(·|sh+2)

E
ih+2∼µ′

h+2(·|sh+2)

jh+2∼νh+2(·|sh+2)

(
Qµ†

h+2(sh+2, ih+2, jh+2)− βKL(µ′
h+2(·|sh+2)∥µref,h+2)

)
.

Thus we have

Ih+1 ≤ β−1 E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

(Eµ̃,ν
.|sh+1,ah+1

H∑
k=h+1

e+k (sk, ik, jk)

)2


≤ β−1Eµ̃,ν

( H∑
k=h+1

e+k (sk, ik, jk)

)2
 .

Here Eµ̃,ν is used to denote sk ∼ dµ̃,νk , ik ∼ µ̃k(·|sk) and jk ∼ νk(·|sk). Thus we have

T5 =

H−1∑
h=0

Ih+1 ≤ β−1
H−1∑
h=0

Eµ̃,ν

( H∑
k=h+1

e+k (sk, ik, jk)

)2
 . (80)

Step 2: Bounding T (t)
6

Similar to bounding T5 we leaf the policy in the following. Let µ(h) = µ̃1:h ⊕ µh+1:H , we have

T6 = V µ̃
1 (s1)− V µ

1 (s1)

=

H−1∑
h=0

V µ(H−h)

1 (s1)− V µ(H−h−1)

1 (s1)︸ ︷︷ ︸
JH−h−1

. (81)

We can write Jh (h = 0, · · · , H − 1) as follows

Jh = E
sh+1∼dµ̃,ν

h+1

[
V µ(h+1)

h+1 (sh+1)− V µ(h)

h+1 (sh+1)
]

= E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Qµ

h+1(sh+1, ih+1, jh+1)− βKL(µ̃h+1(·|sh+1)∥µref,h+1(·|sh+1))
]
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− E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µh+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Qµ

h+1(sh+1, ih+1, jh+1)− βKL(µh+1(·|sh+1)∥µref,h+1(·|sh+1))
]

(82)

Note that here eq. (82) follows from the fact Qµ(h)

h+1(s, i, j) = Qµ(h+1)

h+1 (s, i, j) = rh+1(s, i, j) +

Ph+1V
µ
h+2(s, i, j) = Qµ

h+1(s, i, j) ∀(s, i, j) ∈ S × U × V, h ∈ [H]. Now under the event E6 ∩ E7,
∃ Γ ∈ [0, 1] such that, for

g1(sh+1) := β−1 E
ih+1∼µΓ

h+1(·|sh+1)

[(
E

jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)

−Qh+1(sh+1, ih+1, jh+1)

])2]
,

and

g2(sh+1) := β−1 E
ih+1∼µΓ

h+1(·|sh+1)

[(
E

jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)

−Qµ
h+1(sh+1, ih+1, jh+1)

])2]
.

we have

Jh ≤ E
sh+1∼dµ̃,ν

h+1

[g1(sh+1) + max{g1(sh+1), g2(sh+1)}] . (83)

Here eq.. (83) is obtained using the same arguments as the matrix games section, specifically the
first way of bounding T2 (see eqs.(47)-(51)). Here we can map eq. (82) to the eq. (47) specifi-
cally Qµ

h+1(sh+1, ·, ·) can be mapped to A(·, ·), Q+
h+1(sh+1, ·, ·) to A+(·, ·) and Qh+1(sh+1, ·, ·)

to A(·, ·) from the matrix games section. The policy µΓ
h+1(·|sh+1) is the optimal best response to

νh+1(·|sh+1) under the reward modelQΓ
h+1(·|sh+1) (µΓ

h+1 := µ(QΓ, ν), see Proposition F.1) where

QΓ
h+1(sh+1, ih+1, jh+1) = ΓQh+1(sh+1, ih+1, jh+1) + (1− Γ)Q+

h+1(sh+1, ih+1, jh+1)

= Qh+1(sh+1, ih+1, jh+1)

+ (1− Γ)
(
Q+

h+1(sh+1, ih+1, jh+1)−Qh+1(sh+1, ih+1, jh+1)
)

Now using Lemma F.4 we have

g2(sh+1) ≤ 4β−1 E
ih+1∼µΓ

h+1(·|sh+1)

[(
E

jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)

−Qh+1(sh+1, ih+1, jh+1)

])2]
.

and thus

Jh ≤ 5β−1 E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µΓ

h+1(·|sh+1)

[(
E

jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)

−Qh+1(sh+1, ih+1, jh+1)

])2]
≤ 5β−1 E

sh+1∼dµ̃,ν
h+1

E
ih+1∼µΓ

h+1(·|sh+1)

jh+1∼νh+1(·|sh+1)

[(
Q+

h+1(sh+1, ih+1, jh+1)−Qh+1(sh+1, ih+1, jh+1)
)2]

.

Note that this is the exact form we obtain while bounding the term T2 and using the same arguments
(55)-(57) one can show that the term is maximized at Γ = 0 and we have µ0

h+1 = µ̃h+1, specifically
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Qµ
h+1(sh+1, ·, ·) will be mapped to A(·, ·), Q+

h+1(sh+1, ·, ·) to A+(·, ·), QΓ
h+1(sh+1, ·, ·) will be

mapped to AΓ(·, ·) and Qh+1(sh+1, ·, ·) to A(·, ·).

Jh ≤ 5β−1 E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[(
Q+

h+1(sh+1, ih+1, jh+1)−Qh+1(sh+1, ih+1, jh+1)
)2]

.

(84)

Let ah+1 = (ih+1, jh+1), using Lemma F.3 we have

0 ≤ Q+
h+1(sh+1, ih+1, jh+1)−Qh+1(sh+1, ih+1, jh+1) (85)

= E
sh+2|sh+1,ah+1

(
V +
h+2(sh+2)− V h+2(sh+2)

)
+ e+h+1(sh+1, ih+1, jh+1)− eh+1(sh+1, ih+1, jh+1)

= E
sh+2|sh+1,ah+1

E
ih+2∼µ̃h+2(·|sh+2)
jh+2∼νh+2(·|sh+2)

(
Q+

h+2(sh+2, ih+2, jh+2)

− βKL(µ̃h+2(·|sh+2)∥µref,h+2(·|sh+2)) + βKL(νh+2(·|sh+2)∥νref,h+2(·|sh+2))
)

− E
sh+2|sh+1,ah+1

E
ih+2∼µh+2(·|sh+2)
jh+2∼νh+2(·|sh+2)

(
Qh+2(sh+2, ih+2, jh+2)

− βKL(µh+2(·|sh+2)∥µref,h+2(·|sh+2)) + βKL(νh+2(·|sh+2)∥νref,h+2(·|sh+2))
)

+ e+h+1(sh+1, ih+1, jh+1)− eh+1(sh+1, ih+1, jh+1)

≤ E
sh+2|sh+1,ah+1

E
ih+2∼µ̃h+2(·|sh+2)
jh+2∼νh+2(·|sh+2)

[
Q+

h+2(sh+2, ih+2, jh+2)−Qh+2(sh+2, ih+2, jh+2)
]

+ e+h+1(sh+1, ih+1, jh+1)− eh+1(sh+1, ih+1, jh+1) (86)

≤ · · ·

≤ Eµ̃,ν
.|sh+1,ah+1

[
H∑

k=h+1

e+k (sk, ik, jk)− ek(sk, ik, jk)

]

≤

(
Eµ̃,ν
.|sh+1,ah+1

[
H∑

k=h+1

∣∣e+k (sk, ik, jk)∣∣
]
+ Eµ̃,ν

.|sh+1,ah+1

[
H∑

k=h+1

|ek(sk, ik, jk)|

])
. (87)

Here eq. (86) follows from lower bounding the second term by swapping the policy µ by µ̃ since µ
is the maximizer under Q(·|sh+2)

µh+2(·|sh+2) = arg max
µ′
h+2(·|sh+2)

E
ih+2∼µ′

h+2(·|sh+2)

jh+2∼νh+2(·|sh+2)

(
Qh+2(sh+2, ih+2, jh+2)

− βKL(µ′
h+2(·|sh+2)∥µref,h+2(·|sh+2))

)
Thus combining equations (84) and (87) we have

Jh ≤ 5β−1 E
sh+1∼dµ̃,ν

h+1

E
ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[(
Eµ̃,ν
.|sh+1,ah+1

[
H∑

k=h+1

∣∣e+k (sk, ik, jk)∣∣
+

H∑
k=h+1

|ek(sk, ik, jk)|

])2]

≤ 5β−1Eµ̃,ν

( H∑
k=h

∣∣e+k (sk, ik, jk)
∣∣+ |ek (sk, ik, jk)|)2

 . (88)
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Here Eµ̃,ν is used to denote sk ∼ dµ,νk , ik ∼ µ̃k(·|sk) and jk ∼ νk(·|sk).

Step 3: Finishing up

Define
Σ+

h,t := λI+
∑

τ∈D+
t−1

ϕ(sτh, i
τ
h, j

τ
h)ϕ(s

τ
h, i

τ
h, j

τ
h)

⊤,

Σ−
h,t := λI+

∑
τ∈D−

t−1

ϕ(sτh, i
τ
h, j

τ
h)ϕ(s

τ
h, i

τ
h, j

τ
h)

⊤.

By defining the filtrationFt−1 = σ
(
{τ+l , τ

−
l }

t−1
l=1

)
, where τ+t =

{
(s+h,t, i

+
h,t, j

+
h,t, r

+
h,t, s

+
h+1,t)

}H

h=1

and τ−t =
{
(s−h,t, i

−
h,t, j

−
h,t, r

−
h,t, s

−
h+1,t)

}H

h=1
as defined in algorithm 2, we observe that the random

variable
∑H

h=1

∥∥∥ϕ(s+h,t, i+h,t, j+h,t)∥∥∥2(Σ+
h,t)

−1
is Ft measurable while the policies µ̃t and νt are Ft−1

measurable. Now let E8 denote the event

E8 =

{
T∑

t=1

Eµ̃t,νt

[
H∑

h=1

∥ϕ (sh, ih, jh)∥2(Σ+
h,t)

−1

]

≤ 2

T∑
t=1

H∑
h=1

∥∥∥ϕ(s+h,t, i+h,t, j+h,t)∥∥∥2(Σ+
h,t)

−1
+ 8H log

(
16

δ

)}
.

Then choosing λ = 1, P(E8) ≥ 1 − δ/8 using Lemma D.2 with R = H since∑H
h=1 ∥ϕ (sh, ih, jh)∥

2

(Σ+
h,t)

−1 ≤ H by assumption 1. Now under the event E6 ∩ E7 ∩ E8 (w.p.

at least 1− δ/4), combining equations (80), (81),(88) and bringing back the t in the superscript we
have

T∑
t=1

(T
(t)
5 + T

(t)
6 )

≤ β−1
T∑

t=1

H∑
h=1

(
5Eµ̃t,νt

( H∑
k=h

∣∣∣e+k,t (sk, ik, jk)∣∣∣+ |ek,t (sk, ik, jk)|
)2


+ Eµ̃t,νt

( H∑
k=h

∣∣∣e+k,t (sk, ik, jk)∣∣∣
)2
)

≤ β−1
T∑

t=1

H∑
h=1

(
5Eµ̃t,νt

( H∑
k=h

2bk,t (sk, ik, jk) + 3bmsek,t (sk, ik, jk)

)2


+ Eµ̃t,νt

( H∑
k=h

bk,t (sk, ik, jk)

)2
) (89)

≤ β−1H2
T∑

t=1

H∑
h=1

(
5Eµ̃t,νt

[(
2bh,t (sh, ih, jh) + 3bmseh,t (sh, ih, jh)

)2]
+ Eµ̃t,νt

[
(bh,t (sh, ih, jh))

2
])

≤ c3β−1d2H6 log

(
16dT

δ

) T∑
t=1

H∑
h=1

Eµ̃t,νt

[
∥ϕ (sh, ih, jh)∥2Σ−1

h,t

]
(90)

≤ c3β−1d2H6 log

(
16dT

δ

) T∑
t=1

H∑
h=1

Eµ̃t,νt

[
∥ϕ (sh, ih, jh)∥2(Σ+

h,t)
−1

]
(91)

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

≤ 2c3β
−1d2H6 log

(
16dT

δ

)( T∑
t=1

(
H∑

h=1

∥∥∥ϕ(s+h,t, i+h,t, j+h,t)∥∥∥2(Σ+
h,t)

−1

)
+ 4H log

(
16

δ

))
(92)

≤ c′3β−1d3H7 log

(
16dT

δ

)
log

(
T + 1

δ

)
. (93)

Here we use Corollary F.1 and Lemma F.1 to obtain eq. (89). Eq. (90) can be derived for some
universal constant c3 by substituting the expressions for bmseh,t (sh, ih, jh) and bh,t(sh, ih, jh). Eq.

(91) relies on the identity Σh,t = Σ+
h,t +Σ−

h,t, which implies that Σ−1
h,t ⪯

(
Σ+

h,t

)−1

. Eq. (92) from
event E8. Eq. (93) follows from the elliptical potential lemma (Lemma D.6). One can similarly
bound the term

∑T
t=1

(
T

(t)
7 + T

(t)
8

)
(w.p. 1− δ/4) to obtain

Regret(T ) =
T∑

t=1

DualGap(µt, νt) ≤ O
(
β−1d3H7 log2

(
dT

δ

))
w.p. (1− δ/2).

F.3 PROOF OF THEOREM F.2: REGULARIZATION-INDEPENDENT BOUND

F.3.1 REGULARIZED SETTING

For simplicity we again fix the initial state to s1, extending the arguments to a fixed initial dis-
tribution s1 ∼ ρ is trivial. Recall the dual gap can be decomposed as DualGap(µt, νt) =

T
(t)
5 + T

(t)
6 + T

(t)
7 + T

(t)
8 as per equation (76). We will bound the terms T (t)

5 and T (t)
6 and the

remaining terms can be bounded similarly

Step 1: Bounding T (t)
5 Let µ†

t denote the best response to νt at time t. We shall omit νt in the
superscript of Q for notational simplicity. Then under the event E6 ∩ E7 we have

T
(t)
5 = V ⋆,νt

1 (s1)− V µ̃t,νt

1 (s1)

= E
i1∼µ†

1,t(·|s1)
ji∼ν1,t(·|s1)

[
Q

µ†
t

1 (s1, i1, j1)
]
− βKL(µ†

1,t(·∥s1)||µref,1(·∥s1))

−

 E
i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
Qµ̃t

1 (s1, i1, j1)
]
− βKL(µ̃1,t(·∥s1)||µref,1(·∥s1))


≤ E

i1∼µ†
1,t(·|s1)

ji∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)
]
− βKL(µ†

1,t(·∥s1)||µref,1(·∥s1))

−

 E
i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
Qµ̃t

1 (s1, i1, j1)
]
− βKL(µ̃1,t(·∥s1)||µref,1(·∥s1))

 (94)

≤ E
i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)
]
− E

i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
Qµ̃t

1 (s1, i1, j1)
]

(95)

= E
i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
P1V

+
2,t(s1, i1, j1)

]
− E

i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
P1V

µ̃t

2,t (s1, i1, j1)
]

+ E
i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
e+1,t(s1, i1, j1)

]
= Eµ̃t,νt

[
V +
2,t(s2)− V

µ̃t

2,t (s2)
]
+ Eµ̃t,νt

[
e+1,t(s1, i1, j1)

]
= · · ·
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= Eµ̃t,νt

[
H∑

h=1

e+h,t(sh, ih, jh)

]
. (96)

Here eq. (94) follows from optimism (Lemma F.3) and eq. (95) follows since µ̃1,t(·|s1) is the
optimal policy under Q+

1 (s1, ·, ·).

Step 2: Bounding T (t)
6

We have

T
(t)
6 = V µ̃t,νt

1 (s1)− V µt,νt

1 (s1)

= V µ̃t,νt

1 (s1)− V 1,t(s1)︸ ︷︷ ︸
T

(t)
6a

+V 1,t(s1)− V µt,νt

1 (s1)︸ ︷︷ ︸
T

(t)
6b

.

Here we again omit νt in the superscript for notational simplicity. Under the event E6 ∩ E7, the term
T

(t)
6a can be bounded as follows

T
(t)
6a = V µ̃t,νt

1 (s1)− V 1,t(s1)

= E
i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
Qµ̃t

1 (s1, i1, j1)
]
− βKL(µ̃1,t(·∥s1)||µref,1(·∥s1))

−

 E
i1∼µ1,t(·|s1)
ji∼ν1,t(·|s1)

[
Q1,t(s1, i1, j1)

]
− βKL(µ1,t(·∥s1)||µref,1(·∥s1))


≤ E

i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)
]
− βKL(µ̃1,t(·∥s1)||µref,1(·∥s1))−

 E
i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
Q1,t(s1, i1, j1)

]
− βKL(µ̃t(·∥s1)||µref(·∥s1))

 (97)

= E
i1∼µ̃1,t(·|s1)
ji∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)−Q1,t(s1, i1, j1)
]
. (98)

Here eq. (97) follows by upper bounding Qµ̃t

1 by Q+
1,t using optimism (Lemma F.3) in the first

(positive) term and lower bounding the second (negative) term by switching the max players policy
to µ̃1,t(·|s1) since

µ1,t(·|s1) = arg max
µ′
1(·|s1)

 E
i1∼µ′

1,t(·|s1)
ji∼ν1,t(·|s1)

[
Q1,t(s1, i1, j1)

]
− βKL(µ′

1(·∥s1)||µref,1(·∥s1))


is the optimal policy under Q1,t. Under the event E6 ∩ E7, we bound T (t)

6b as follows

T
(t)
6b = V 1,t(s1)− V µt,νt

1 (s1)

= E
i1∼µ1,t(·|s1)
j1∼ν1,t(·|s1)

[
Q1,t(s1, i1, j1)−Q

µt

1 (s1, i1, j1)
]

≤ E
i1∼µ1,t(·|s1)
j1∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)−Q1,t(s1, i1, j1)
]

(99)

= E
i1∼µ1,t(·|s1)
j1∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)
]
− βKL(µ1,t(·∥s1)||µref,1(·∥s1))

−

 E
i1∼µ1,t(·|s1)
j1∼ν1,t(·|s1)

[
Q1,t(s1, i1, j1)

]
− βKL(µ1,t(·∥s1)||µref,1(·∥s1))


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≤ E
i1∼µ̃1,t(·|s1)
j1∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)
]
− βKL(µ̃t(·∥s1)||µref(·∥s1))

−

 E
i1∼µ̃1,t(·|s1)
j1∼ν1,t(·|s1)

[
Q1,t(s1, i1, j1)

]
− βKL(µ̃1,t(·∥s1)||µref,1(·∥s1))

 (100)

= E
i1∼µ̃1,t(·|s1)
j1∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)−Q1,t(s1, i1, j1)
]
. (101)

Here eq. (99) follows from Lemma F.4 and Lemma F.3. Eq. (100) follows by upper bound-
ing the first term and lower bounding the second term by swapping policy µt(·∥s1) by µ̃t(·∥s1)
since µ̃1,t(·∥s1) is the optimal policy under Q+

1,t(s1, ·, ·) and µt(·∥s1) is the optimal policy under
Q1,t(s1, ·, ·). From equations (98) and (101) under the event E6 ∩ E7, we have

T
(t)
6 ≤ 2 E

i1∼µ̃1,t(·|s1)
j1∼ν1,t(·|s1)

[
Q+

1,t(s1, i1, j1)−Q1,t(s1, i1, j1)
]

≤ 2

(
Eµ̃t,νt

[
H∑

k=1

∣∣∣e+h,t(sh, ih, jh)∣∣∣
]
+ Eµ̃t,νt

[
H∑

h=1

|eh,t(sh, ih, jh)|

])
. (102)

Here eq. (102) can be obtained using the same steps used in obtaining equations (85)-(87).

Step 3: Finishing up

By defining the filtration Ft−1 = σ
(
{τ+l , τ

−
l }

t−1
l=1

)
, we observe that the random variable∑H

h=1

∥∥∥ϕ(s+h,t, i+h,t, j+h,t)∥∥∥(Σ+
h,t)

−1
is Ft measurable while the policies µ̃t and νt are Ft−1 measur-

able. Now let E9 denote the event

E9 =

{
T∑

t=1

Eµ̃t,νt

[
H∑

h=1

∥ϕ (sh, ih, jh)∥(Σ+
h,t)

−1

]

≤ 2

T∑
t=1

H∑
h=1

∥∥∥ϕ(s+h,t, i+h,t, j+h,t)∥∥∥(Σ+
h,t)

−1
+ 8H log

(
16

δ

)}
.

Then choosing λ = 1, P(E9) ≥ 1 − δ/8 by Lemma D.2 with R = H since∑H
h=1 ∥ϕ (sh, ih, jh)∥(Σ+

h,t)
−1 ≤ H by assumption 1. Now using equations (96) and (102) under

the event E6 ∩ E7 ∩ E9 (w.p. 1− δ/4) we have
T∑

t=1

(
T

(t)
5 + T

(t)
6

)
≤

T∑
t=1

(
3Eµ̃t,νt

[
H∑

h=1

∣∣∣e+h,t(sh, ih, jh)∣∣∣
]
+ 2Eµ̃t,νt

[
H∑

h=1

|eh,t(sh, ih, jh)|

])

≤
T∑

t=1

(
3Eµ̃t,νt

[
H∑

h=1

(
2bh,t (sh, ih, jh) + 2bmseh,t (sh, ih, jh)

)]
+ 2Eµ̃t,νt

[
H∑

h=1

bmseh,t (sh, ih, jh)

])
(103)

≤ c4dH2

√
log

(
16dT

δ

) T∑
t=1

H∑
h=1

Eµ̃t,νt

[
∥ϕ (sh, ih, jh)∥Σ−1

h,t

]
(104)

≤ c4dH2

√
log

(
16dT

δ

) T∑
t=1

H∑
h=1

Eµ̃t,νt

[
∥ϕ (sh, ih, jh)∥(Σ+

h,t)
−1

]
(105)

≤ 2c4dH
2

√
log

(
16dT

δ

)( T∑
t=1

H∑
h=1

∥∥∥ϕ(s+h,t, i+h,t, j+h,t)∥∥∥(Σ+
h,t)

−1
+ 4H log

(
16

δ

))
(106)
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≤ 2c4dH
2

√
log

(
16dT

δ

) H∑
h=1

√√√√T

T∑
t=1

∥∥∥ϕ(s+h,t, i+h,t, j+h,t)∥∥∥2(Σ+
h,t)

−1
+ 4H log

(
16

δ

)
≤ c′4dH3

√
log

(
16dT

δ

)(√
dT log(T + 1) + 4 log

(
16

δ

))
. (107)

Here we use Corollary F.1 and Lemma F.1 to obtain eq. (103). Eq. (104) can be derived for some
universal constant c4 by substituting the expressions for bmseh,t (sh, ih, jh) and bh,t(sh, ih, jh). Eq.
(105) uses the fact Σh,t ⪰ Σ+

h,t. The bound in (106) follows from event E9. Eq. (107) follows from

the elliptical potential lemma (Lemma D.6). One can similarly bound the term
∑T

t=1

(
T

(t)
7 + T

(t)
8

)
(w.p. 1− δ/4) to obtain

Regret(T ) =
T∑

t=1

DualGap(µt, νt) ≤ O
(
d3/2H3

√
T log

(
dT

δ

))
w.p. (1− δ/2).

F.4 PROOFS OF SUPPORTING LEMMAS

F.4.1 PROOF OF LEMMA F.1

Using Lemma D.8, with the covering number bound in Lemma F.10, B1 = H (from Lemma F.6),
L = 2H

√
2dt/λ (from Lemma F.9), B3 = 0, we have with probability at least 1− δ/16,∥∥∥∥∥∥
∑

τ∈Dt−1

ϕh,t
[
V h+1,t

(
sτh+1

)
− PhV h+1,t(s

τ
h, i

τ
h, j

τ
h)
]∥∥∥∥∥∥

2

Σ−1
h,t

≤ 4H2

[
d

2
log

(
2t+ λ

λ

)
+ d log

(
1 +

8H
√
2dt

ε
√
λ

)
+ log

(
16

δ

)]
+

32t2ε2

λ
.

Choosing λ = 1 and ε =
√
dH/t, we have∥∥∥∥∥∥

∑
τ∈Dt−1

ϕh,t
[
V h+1,t

(
sτh+1

)
− PhV h+1,t(s

τ
h, i

τ
h, j

τ
h)
]∥∥∥∥∥∥

Σ−1
h,t

≤ C1

√
dH

√
log

(
16T

δ

)
(108)

for some universal constant C1 > 0. Since rh(s, i, j) + PhV h+1(s, i, j) ∈ [0, H − h + 1] from
Lemma F.6, and Qh,t(s, i, j) = Πh(⟨θh,t, ϕ(s, i, j)⟩), we have∣∣Qh,t(s, i, j)− rh(s, i, j)− PhV h+1(s, i, j)

∣∣
≤
∣∣⟨θh,t, ϕ(s, i, j)⟩ − rh(s, i, j)− PhV h+1(s, i, j)

∣∣ . (109)

Now let π⋆ = (µ⋆, ν⋆) be the nash equilibrium policy of the true MDP, and θπ
⋆

h be its corresponding
parameter, whose existence is guaranteed by Lemma F.8, we have

θπ
⋆

h = Σ−1
h,t

 ∑
τ∈Dt−1

ϕh,τϕ
⊤
h,τ + λI

 θπ
⋆

h = Σ−1
h,t

 ∑
τ∈Dt−1

ϕh,τ (rh,τ + PhV
π⋆

h+1,t) + λθπ
⋆

h

 .

(110)

Also recall

θh,t = Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ
[
rh,τ + V h+1,t(s

τ
h+1)

]
.

Using the above two equations we have

θh,t − θπ
⋆

h = Σ−1
h,t

 ∑
τ∈Dt−1

ϕh,τ

[
V h+1,t(s

τ
h+1)− PhV

π⋆

h+1(s
τ
h, i

τ
h, j

τ
h)
]
− λθπ

⋆

h


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= −λΣ−1
h,tθ

π⋆

h︸ ︷︷ ︸
p1

+Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ
[
V h+1,t(s

τ
h+1)− PhV h+1,t(s

τ
h, i

τ
h, j

τ
h)
]

︸ ︷︷ ︸
p2

+Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ

[
Ph

(
V h+1,t(s

τ
h, i

τ
h, j

τ
h)− V π⋆

h+1(s
τ
h, i

τ
h, j

τ
h)
)]

︸ ︷︷ ︸
p3

. (111)

Assuming eq. (108) holds (w.p. 1− δ/16), one can bound the terms as follows:

|⟨ϕ(s, i, j), p1⟩| =
∣∣∣⟨ϕ(s, i, j), λΣ−1

h,tθ
π⋆

h ⟩
∣∣∣

≤ λ
∥∥∥θπ⋆

h

∥∥∥
Σ−1

h,t

∥ϕ(s, i, j)∥Σ−1
h,t
≤ 2H

√
dλ ∥ϕ(s, i, j)∥Σ−1

h,t
, (112a)

|⟨ϕ(s, i, j), p2⟩| ≤ C1

√
dH

√
log

(
16T

δ

)
∥ϕ(s, i, j)∥Σ−1

h,t
. (112b)

Here eq. (112a) follows from Lemma F.8. We use the result from eq. (108) to obtain upper bound
in eq. (112b). Lastly we have

⟨ϕ(s, i, j), p3⟩

=

〈
ϕ(s, i, j),Σ−1

h,t

∑
τ∈Dt−1

ϕh,τ

[
Ph

(
V h+1,t(s

τ
h, i

τ
h, j

τ
h)− V π⋆

h+1(s
τ
h, i

τ
h, j

τ
h)
)]〉

=

〈
ϕ(s, i, j),Σ−1

h,t

∑
τ∈Dt−1

ϕh,τ (ϕh,τ )
⊤
[∫ (

V h+1,t(s
′)− V π⋆

h+1(s
′)
)
dψ(s′)

]〉

=

〈
ϕ(s, i, j),

∫ (
V h+1,t(s

′)− V π⋆

h+1(s
′)
)
dψ(s′)

〉
− λ

〈
ϕ(s, i, j),Σ−1

h,t

∫ (
V h+1,t(s

′)− V π⋆

h+1(s
′)
)
dψ(s′)

〉
= Ph

(
V h+1,t − V π⋆

h+1

)
(s, i, j)− λ

〈
ϕ(s, i, j),Σ−1

h,t

∫ (
V h+1,t(s

′)− V π⋆

h+1(s
′)
)
dψ(s′)

〉
.

Thus ∣∣∣⟨ϕ(s, i, j), p3⟩ − Ph

(
V h+1,t − V π⋆

h+1

)
(s, i, j)

∣∣∣
=

∣∣∣∣−λ〈ϕ(s, i, j),Σ−1
h,t

∫ (
V h+1,t(s

′)− V π⋆

h+1(s
′)
)
dψ(s′)

〉∣∣∣∣
≤ 2H

√
dλ ∥ϕ(s, i, j)∥Σ−1

h,t
(112c)

Here eq. (112c) follows from Lemma F.6 and Lemma F.5. Now

⟨θh,t, ϕ(s, i, j)⟩ − rh(s, i, j)− PhV h+1(s, i, j)

= ⟨θh,t, ϕ(s, i, j)⟩ −Qπ⋆

h (s, i, j)− Ph

(
V h+1,t − V π⋆

h+1

)
(s, i, j)

=
〈
ϕ(s, i, j), θh,t − θπ

⋆

h

〉
− Ph

(
V h+1,t − V π⋆

h+1

)
(s, i, j)

(111)
= ⟨ϕ(s, i, j), p1⟩+ ⟨ϕ(s, i, j), p2⟩+ ⟨ϕ(s, i, j), p3⟩ − Ph

(
V h+1,t − V π⋆

h+1

)
(s, i, j). (113)

Using the equations (112a),(112b), (112c), (113) we have

∣∣⟨θh,t, ϕ(s, i, j)⟩ − rh(s, i, j)− PhV h+1(s, i, j)
∣∣ ≤ c1√dH

√
log

(
16T

δ

)
∥ϕ(s, i, j)∥Σ−1

h,t
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for some universal constant c1 > 0. Using eq. (109) completes the proof∣∣Qh,t(s, i, j)− rh(s, i, j)− PhV h+1(s, i, j)
∣∣ ≤ ∣∣⟨θh,t, ϕ(s, i, j)⟩ − rh(s, i, j)− PhV h+1(s, i, j)

∣∣
≤ c1
√
dH

√
log

(
16T

δ

)
∥ϕ(s, i, j)∥Σ−1

h,t
.

F.4.2 PROOF OF LEMMA F.2

Using Lemma D.8 with with the covering number bound in Lemma F.10, B1 = 4H2 (from Lemma
F.7), L = 4H2

√
2dt/λ (from Lemma F.9) and B3 = η2 + 2η1 we have∥∥∥∥∥∥
∑

τ∈Dt−1

ϕh,t

[
V +
h+1,t

(
sτh+1

)
− PhV

+
h+1,t(s

τ
h, i

τ
h, j

τ
h)
]∥∥∥∥∥∥

2

Σ−1
h,t

≤ 64H4

[
d

2
log

(
2t+ λ

λ

)
+ d log

(
1 +

24H2
√
2dt

ε
√
λ

)

+ d2 log

(
1 +

8
√
d(η2 + 2η1)

2

λε2

)
+ log

(
16

δ

)]
+

32t2ε2

λ
.

Setting λ = 1 and η1 = c1
√
dH
√
log
(
16T
δ

)
, ε = dH2/T and η2 = c2dH

2
√
log
(
16dT

δ

)
, we have∥∥∥∥∥∥

∑
τ∈Dt−1

ϕh,t

[
V +
h+1,t

(
sτh+1

)
− PhV

+
h+1,t(s

τ
h, i

τ
h, j

τ
h)
]∥∥∥∥∥∥

Σ−1
h,t

≤ C2dH
2

√
log

(
16((c2 + 2c1) + 1)dT

δ

)
(114)

for some universal constant C2 > 0. Using the same steps as used in the proof of Lemma F.1 we
have

θ+h,t − θ
π⋆

h = −λΣ−1
h,tθ

π⋆

h︸ ︷︷ ︸
p4

+Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ

[
V +
h+1,t(s

τ
h+1)− PhV

+
h+1,t(s

τ
h, i

τ
h, j

τ
h)
]

︸ ︷︷ ︸
p5

+Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ

[
Ph

(
V +
h+1,t(s

τ
h, i

τ
h, j

τ
h)− V π⋆

h+1(s
τ
h, i

τ
h, j

τ
h)
)]

︸ ︷︷ ︸
p6

.

Assuming eq. (114) holds (w.p. 1− δ/16), one can bound the terms as follows

|⟨ϕ(s, i, j), p4⟩| =
∣∣∣ϕ(s, i, j), λΣ−1

h,tθ
π⋆

h

∣∣∣
≤ λ

∥∥∥θπ⋆

h

∥∥∥
Σ−1

h,t

∥ϕ(s, i, j)∥Σ−1
h,t
≤ 2H

√
dλ ∥ϕ(s, i, j)∥Σ−1

h,t
, (115a)

|⟨ϕ(s, i, j), p5⟩| ≤ C2dH
2

√
log

(
16((c2 + 2c1) + 1)dT

δ

)
∥ϕ(s, i, j)∥Σ−1

h,t
. (115b)

Here eq. (115a) follows from Lemma F.8. We use the result from eq. (114) to obtain upper bound
in eq. (115b) Lastly using similar arguments as Lemma (F.1) we have

⟨ϕ(s, i, j), p6⟩

=

〈
ϕ(s, i, j),Σ−1

h,t

∑
τ∈Dt−1

ϕh,τ

[
Ph

(
V +
h+1,t(s

τ
h, i

τ
h, j

τ
h)− V π⋆

h+1(s
τ
h, i

τ
h, j

τ
h)
)]〉
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= Ph

(
V +
h+1,t − V

π⋆

h+1

)
(s, i, j)− λ

〈
ϕ(s, i, j),Σ−1

h,t

∫ (
V +
h+1,t(s

′)− V π⋆

h+1(s
′)
)
dψ(s′)

〉
.

Thus ∣∣∣⟨ϕ(s, i, j), p6⟩ − Ph

(
V +
h+1,t − V

π⋆

h+1

)
(s, i, j)

∣∣∣
=

∣∣∣∣−λ〈ϕ(s, i, j),Σ−1
h,t

∫ (
V +
h+1,t(s

′)− V π⋆

h+1(s
′)
)
dψ(s′)

〉∣∣∣∣
≤ 6H2

√
dλ ∥ϕ(s, i, j)∥Σ−1

h,t
(115c)

Here eq. (115c) follows from Lemma (F.7) and Lemma (F.5). Using the equations (115a),(115b),
(115c), and the fact

〈
ϕ(s, i, j), θ+h,t

〉
−Qπ⋆

h (s, i, j) =
〈
ϕ(s, i, j), θ+h,t − θπ

⋆

h

〉
= ⟨ϕ(s, i, j), p4⟩ +

⟨ϕ(s, i, j), p5⟩+ ⟨ϕ(s, i, j), p6⟩ for λ = 1, using similar arguments to Lemma F.1, we have∣∣∣⟨θ+h,t, ϕ(s, i, j)⟩ − rh(s, i, j)− PhV
+
h+1(s, i, j)

∣∣∣
≤ c′dH2

√
log

(
16dT

δ

)
+ log (1 + c2 + 2c1) ∥ϕ(s, i, j)∥Σ−1

h,t

for some universal constant c′ which is independent of c1, c2. Since dT/δ > 1 and c1 is a fixed
universal constant from Lemma F.1, choosing a large enough c2 > c′ we have∣∣∣⟨θ+h,t, ϕ(s, i, j)⟩ − rh(s, i, j)− PhV

+
h+1(s, i, j)

∣∣∣ ≤ c2dH2

√
log

(
16dT

δ

)
∥ϕ(s, i, j)∥Σ−1

h,t
.

This completes the proof of lemma F.2.

F.4.3 PROOF OF COROLLARY F.1

From the definition of Q+
h,t(s, i, j) = Π+

h

(
⟨θ+h,t, ϕ(s, i, j)⟩+ bsuph,t (s, i, j)

)
, under event E7, we

have ∣∣∣Q+
h,t(s, i, j)− rh(s, i, j)− PhV

+
h+1(s, i, j)

∣∣∣
=
∣∣∣Π+

h

(
⟨θ+h,t, ϕ(s, i, j)⟩+ bsuph,t (s, i, j)

)
− rh(s, i, j)− PhV

+
h+1(s, i, j)

∣∣∣
≤
∣∣∣⟨θ+h,t, ϕ(s, i, j)⟩+ bsuph,t (s, i, j)− rh(s, i, j)− PhV

+
h+1(s, i, j)

∣∣∣ (116)

≤ bsuph,t (s, i, j) + bh,t(s, i, j) = 2bh,t(s, i, j) + 2bmseh,t (s, i, j) (117)

Here eq. (116) follows since rh(s, i, j) + PhV
+
h+1(s, i, j) ∈ [0, 3(H − h + 1)2] (Lemma F.7) and

the projection operator Π+
h whose output Π+

h (·) ∈ [0, 3(H − h+ 1)2] is a non-expansive map. Eq.
(117) follows from Lemma F.2. This concludes the proof.

F.4.4 PROOF OF LEMMA F.3

Firstly we note that whenever Q+
h (sh, ih, jh) = 3(H − h + 1)2 attains the maximum possible

clipped value, the lemma holds trivially since Qµ′

h (sh, ih, jh) ≤ (H − h + 1)2 (from Lemma F.7)
and Qh(sh, ih, jh) ≤ H − h+ 1 (from the design of the projection operator (19a)). By convention,
we know eq. (74a) holds trivially when h = H + 1 Assume the statement is true for h + 1, then
under E6 ∩ E7,

Q+
h (sh, ih, jh)−Qh(sh, ih, jh)

(21)
= ⟨θ+h , ϕ(sh, ih, jh)⟩ − rh(sh, ih, jh)− PhV

+
h+1(sh, ih, jh) + bh(sh, ih, jh)

+ 2bmseh (sh, ih, jh) + Ph

(
V +
h+1(sh, ih, jh)− V h+1(sh, ih, jh)

)
− eh(sh, ih, jh)

≥ bmseh (sh, ih, jh) + Ph

(
V +
h+1(sh, ih, jh)− V h+1(sh, ih, jh)

)
(118)
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= bmseh (sh, ih, jh) + E
sh+1|sh,ih,jh

(
E

ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)
]

− βKL(µ̃h+1(·|sh+1)∥µref,h+1(·|sh+1))

)

− E
sh+1|sh,ih,jh

(
E

ih+1∼µh+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Qh+1(sh+1, ih+1, jh+1)

]

− βKL(µh+1(·|sh+1)∥µref,h+1(·|sh+1))

)
(119)

≥ bmseh (sh, ih, jh)

+ E
sh+1|sh,ih,jh

 E
ih+1∼µh+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)−Qh+1(sh+1, ih+1, jh+1)
] ≥ 0,

(120)

where eh is defined in (72), eq. (118) follows from Lemma F.1 and Lemma F.2, we omit the KL
terms corresponding to the min player policy (νh+1(·|sh+1)) since it is the same for both V +

h+1 and
V h+1 in eq. (119), and we swap µ̃h+1(·|sh+1) by µh+1(·|sh+1) in the first term of eq. (120) and the
inequality follows from the optimality of the superoptimistic best response policy µ̃h+1(·|sh+1) un-
der Q+

h+1(sh+1, ·, ·) and νh+1, and the induction hypothesis gives the last inequality. Using similar
arguments, we have

Q+
h (sh, ih, jh)−Q

µ′

h (sh, ih, jh)

= ⟨θ+h , ϕ(sh, ih, jh)⟩ − rh(sh, ih, jh)− PhV
+
h+1(sh, ih, jh) + bh(sh, ih, jh)

+ 2bmseh (sh, ih, jh) + Ph

(
V +
h+1(sh, ih, jh)− V

µ′

h+1(sh, ih, jh)
)

≥ 2bmseh (sh, ih, jh) + E
sh+1|sh,ih,jh

(
E

ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)
]

− βKL(µ̃h+1(·|sh+1)∥µref,h+1(·|sh+1))

)

− E
sh+1|sh,ih,jh

(
E

ih+1∼µ′
h+1(·|sh+1)

jh+1∼νh+1(·|sh+1)

[
Qµ′

h+1(sh+1, ih+1, jh+1)
]

− βKL(µ′
h+1(·|sh+1)∥µref,h+1(·|sh+1))

)
(121)

≥ 2bmseh (sh, ih, jh)

+ E
sh+1|sh,ih,jh

 E
ih+1∼µ′

h+1(·|sh+1)

jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)−Qµ′

h+1(sh+1, ih+1, jh+1)
] ≥ 0.

(122)

Here eq. (121) follows from Lemma F.2, Eq. (122) follows from the optimality of the super-
optimistic best response policy µ̃h+1(·|sh+1) under Q+

h+1(sh+1, ·, ·) and νh+1 and the induction
hypothesis implies the penultimate expression is positive.
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F.4.5 PROOF OF LEMMA F.4

From Lemma F.3 we have Q+
h (sh, ih, jh) ≥ Qh(sh, ih, jh) and Q+

h (sh, ih, jh) ≥ Qµ
h(sh, ih, jh).

Note that whenever we have an underestimate of Qµ, i.e, Qµ
h(sh, ih, jh) ≥ Qh(sh, ih, jh) we have

eq. (75) hold automatically even without the 2x multiplier hence we will only concern ourselves
with the case where we overestimate Qµ, i.e., Qµ

h(sh, ih, jh) ≤ Qh(sh, ih, jh). We also note that
when Q+

h (sh, ih, jh) = 3(H − h + 1)2 attains the maximum possible clipped value the statement
holds trivially again since Qh(sh, ih, jh) ≤ (H −h+1) (from the design of the projection operator
(19a)) and Qµ

h(sh, ih, jh) ≥ −(H − h + 1)2 ∀ (sh, ih, jh) (from Lemma F.7). Since (by Lemma
F.2)

⟨θ+h , ϕ(sh, ih, jh)⟩+b
sup
h (sh, ih, jh) ≥ rh(sh, ih, jh)+PhV

+
h+1(sh, ih, jh)+2bmseh (sh, ih, jh) ≥ 0,

we only need to prove the equation in the overestimation case where

0 < Q+
h (sh, ih, jh) = ⟨θ

+
h,t, ϕ(s, i, j)⟩+ b+h,t(s, i, j) < 3(H − h+ 1)2,

where eq. (75) (by Lemma F.3) is equivalent to

Q+
h (sh, ih, jh)−Qh(sh, ih, jh) ≥ Qh(sh, ih, jh)−Q

µ
h(sh, ih, jh),

which we do via an induction argument. We know that eq. (75) holds trivially for h = H + 1.
Assume it holds for h+ 1. We will show that it also holds for h.

Q+
h (sh, ih, jh)−Qh(sh, ih, jh)

= ⟨θ+h , ϕ(sh, ih, jh)⟩ − rh(sh, ih, jh)− PhV
+
h+1(sh, ih, jh) + bh(sh, ih, jh) + 2bmseh (sh, ih, jh)

+ Ph

(
V +
h+1(sh, ih, jh)− V h+1(sh, ih, jh)

)
− eh(sh, ih, jh)

≥ bmseh (sh, ih, jh) + Ph

(
V +
h+1(sh, ih, jh)− V h+1(sh, ih, jh)

)
(123)

= bmseh (sh, ih, jh) + E
sh+1|sh,ih,jh

(
E

ih+1∼µ̃h+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)
]

− βKL(µ̃h+1(·|sh+1)∥µref,h+1(·|sh+1))

)

− E
sh+1|sh,ih,jh

(
E

ih+1∼µh+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Qh+1(sh+1, ih+1, jh+1)

]

− βKL(µh+1(·|sh+1)∥µref,h+1(·|sh+1))

)
≥ bmseh (sh, ih, jh)+

E
sh+1|sh,ih,jh

 E
ih+1∼µh+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Q+

h+1(sh+1, ih+1, jh+1)−Qh+1(sh+1, ih+1, jh+1)
]

(124)
≥ bmseh (sh, ih, jh)+

E
sh+1|sh,ih,jh

 E
ih+1∼µh+1(·|sh+1)
jh+1∼νh+1(·|sh+1)

[
Qh+1(sh+1, ih+1, jh+1)−Qµ

h+1(sh+1, ih+1, jh+1)
]

(125)

= bmseh (sh, ih, jh) + E
sh+1|sh,ih,jh

(V h+1(sh+1)− V µ
h+1(sh+1))

= bmseh (sh, ih, jh) +Qh(sh, ih, jh)−Q
µ
h(sh, ih, jh)− e(sh, ih, jh)

≥ Qh(sh, ih, jh)−Q
µ
h(sh, ih, jh). (126)
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Here eq. (123) follows from Lemma F.1 and Lemma F.2. Eq. (124) swaps µ̃h+1(·|sh+1)
by µh+1(·|sh+1) in the first term and the inequality follows since the optimality of pol-
icy µ̃(·|sh+1) under Q+(sh+1, ·, ·) and eq. (125) follows from the induction hypothe-
sis
(
2
∣∣(Q+

h+1(s, i, j)−Qh+1(s, i, j)
)∣∣ ≥ ∣∣Q+

h+1(s, i, j)−Q
µ
h+1(s, i, j)

∣∣) alongside the optimism
lemma (Lemma F.3) implies Q+

h+1(s, i, j) − Qh+1(s, i, j) ≥ Qh+1(s, i, j) − Qµ
h+1(s, i, j). Eq.

(126) follows from Lemma F.1.

F.5 AUXILIARY LEMMAS

Lemma F.5. If (µ′, ν′) := (µ′
h, ν

′
h)

H
h=1 is the Nash Equilibrium of a KL reg-

ularized Markov Game where 0 ≤ r′h(sh, ih, jh) ≤ 1. Let V µ′,ν′

h (s) :=

Eµ′,ν′
[∑H

k=h r
′
k(sk, i, j)− β log

µ′
k(i|sk)

µref,k(i|sk) + β log
ν′
k(j|sk)

νref,k(j|sk)

∣∣∣sh = s
]

and Qµ′,ν′

h (s, i, j) :=

r′h(s, i, j) + E
s′∼Ph(·|s,i,j)

[
V µ′,ν′

h+1 (s′)
]

be the value and Q functions under this game. Then

∀(s, i, j) ∈ S × U × V, h ∈ [H], β > 0 we have

Qµ′,ν′

h (sh, i, j) ∈ [0, H − h+ 1],

V µ′,ν′

h (sh) ∈ [0, H − h+ 1],

βKL (µ′
h(·|sh)∥µref,h(·|sh)) ∈ [0, H − h+ 1],

βKL (ν′h(·|sh)∥νref,h(·|sh)) ∈ [0, H − h+ 1].

Proof. We prove the proposition using induction. The statement is true trivially for h = H + 1.
Assume the statement is true for h+ 1 then we have

Qµ′,ν′

h (sh, i, j) = r′h(sh, i, j) + E
s′∼Ph(·|sh,i,j)

[
V µ′,ν′

h+1 (s′)
]
.

Since V µ′,ν′

h+1 (s′) ∈ [0, H − h] and r′h(sh, i, j) ∈ [0, 1], we have Qµ′,ν′

h (sh, i, j) ∈ [0, H − h + 1].
In addition,

V µ′,ν′

h (sh) =

Ei∼µ′
h(·|sh)

j∼ν′
h(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]
− βKL (µ′

h(·|sh)∥µref(·|sh)) + βKL (ν′h(·|sh)∥νref(·|sh)) .

Using the closed form expression for µ′
h(· | sh) (see eq. (13)) we have

V µ′,ν′

h (sh) = β log

(∑
i

µref,h(i|sh) exp
(

E
j∼ν′(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]
/β

))
+ βKL (ν′h(·|sh)∥νref,h(·|sh))

≥ E
i∼µref,h(·|sh)
j∼ν′

h(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]
+ βKL (ν′h(·|sh)∥νref,h(·|sh))

≥ 0.

Here the second line uses log (E[X]) ≥ E [log(X)] (Jensen’s inequality). Similarly, using the closed
form expression for ν′h(· | sh) we have

V µ′,ν′

h (sh) = −β log

∑
j

νref,h(i|sh) exp

(
− E

i∼µ′
h(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]
/β

)
− βKL (µ′

h(·|sh)∥µref,h(·|sh))

≤ E
i∼µ′(·|sh)

j∼νref,h(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]
− βKL (µ′

h(·|sh)∥µref,h(·|sh))

≤ H − h+ 1.
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Lastly, note that since µ′
h(·|sh) is the Nash equilibrium point, for a fixed ν′h we have

Ei∼µ′
h(·|sh)

j∼ν′
h(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]
− βKL(µ′

h(·|sh)∥µref,h(·|sh)) ≥ Ei∼µref,h(·|sh)
j∼ν′

h(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]
,

which gives

βKL(µ′
h(·|sh)∥µref,h(·|sh)) ≤ Ei∼µ′

h(·|sh)
j∼ν′

h(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]
− Ei∼µref,h(·|sh)

j∼ν′
h(·|sh)

[
Qµ′,ν′

h (sh, i, j)
]

≤ H − h+ 1.

Similar argument using the min player can be used to obtain βKL (ν′h(·|sh)∥νref,h(·|sh)) ∈ [0, H −
h+ 1].
Lemma F.6. Let (µt, νt) := (µh,t, νh,t)

H
h=1 be the estimated stagewise Nash Equilibrium poli-

cies of a KL regularized Matrix Game as defined in eq. (16) of Algorithm 2. Then ∀(s, i, j) ∈
S × U × V, h ∈ [H], β > 0, we have

Qh,t(sh, i, j) ∈ [0, H − h+ 1], (127a)

V h,t(sh) ∈ [0, H − h+ 1], (127b)
βKL (µh,t(·|sh)∥µref,h(·|sh)) ∈ [0, H − h+ 1], (127c)
βKL (νh,t(·|sh)∥νref,h(·|sh)) ∈ [0, H − h+ 1]. (127d)

Proof. We know Qh,t(sh, i, j) ∈ [0, H − h + 1] by the design of the projection operator Πh. And
since

(µh,t(·|s), νh,t(·|s))← KL reg Nash Zero-sum(Qh,t(s, ·, ·)),
using the same arguments as Lemma F.5 one can prove equations (127b)-(127d).

The next lemma provides upper and lower bounds on the functions Q and V , which will be used in
our analysis. We provide loose bounds on some of these terms for simplicity.
Lemma F.7 (Range of Q, V functions). Under the setting in Algorithm 2, for any t ∈ [T ],
we have the following ranges for the Bellman target, value and Q functions for all ∀(s, i, j) ∈
S × U × V, h ∈ [H] and β > 0:

V +
h+1,t(s) ∈ [0, 3(H − h)2 + (H − h)],

rh(s, i, j) + PhV
+
h+1,t(s, i, j) ∈ [0, 3(H − h+ 1)2],

Qµt,νt

h (s, i, j) ∈ [−(H − h+ 1)2, (H − h+ 1)2],

V µt,νt

h (s) ∈ [−(H − h+ 1)2, (H − h+ 1)2 + (H − h+ 1)].

We also have for any policy µ′:

Qµ′,νt

h (s, i, j) ≤ (H − h+ 1)2,

V µ′,νt

h (s) ≤ (H − h+ 1)2 + (H − h+ 1).

Proof. Here we omit the subscript t for notational simplicity while proving the first two statements.
We have Q+

h+1(s, i, j) ∈ [0, 3(H − h)2], ∀(s, i, j) ∈ S × U × V, h ∈ [H] by definition of the
projection operator Π+

h (see eq. (19b)). We have

V +
h+1(s) =

E
i∼µ̃h+1(·|s)
j∼νh+1(·|s)

[
Q+

h+1(s, i, j)
]
− βKL(µ̃h+1(·|s)||µref,h+1(·|s)) + βKL(νh+1(·|s)||νref,h+1(·|s))

≤ E
i∼µ̃h+1(·|s)
j∼νh+1(·|s)

[
Q+

h+1(s, i, j)
]
+ βKL(νh+1(·|s)||νref,h+1(·|s)) ≤ 3(H − h)2 + (H − h), (128)

where the last inequality follows from Lemma F.6 and (19). Thus ∀(s, i, j) ∈ S × U × V, h ∈ [H]
we also have the target for the Bellman update

rh(s, i, j) + PhV
+
h+1,t(s, i, j) ≤ 1 + 3(H − h)2 + (H − h) ≤ 3(H − h+ 1)2,
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and

V +
h+1(s) =

E
i∼µ̃h+1(·|s)
j∼νh+1(·|s)

[
Q+

h+1(s, i, j)
]
− βKL(µ̃h+1(·|s)||µref,h+1(·|s)) + βKL(νh+1(·|s)||νref,h+1(·|s))

≥ E
i∼µref,h+1(·|s)
j∼νh+1(·|s)

[
Q+

h+1(s, i, j)
]
+ βKL(νh+1(·|s)||νref,h+1(·|s)) ≥ 0.

Therefore, ∀(s, i, j) ∈ S × U × V, h ∈ [H], we have

rh(s, i, j) + PhV
+
h+1,t(s, i, j) ≥ 0.

One can rewrite eq. (9) at step h+ 1 as

V µ′,νt

h+1 (s) =

Eµ′,νt

[
H∑

k=h+1

rk(sk, i, j)− βKL (µ′
k(·|sk)∥µref,k(·|sk)) + βKL (νk,t(·|sk)∥νref,k(·|sk))

∣∣∣∣∣sh = s

]

≤ Eµ′,νt

[
H∑

k=h+1

rk(sk, i, j) + βKL (νk,t(·|sk)∥νref,k(·|sk))

∣∣∣∣∣sh = s

]
≤ (H − h)2 + (H − h),

(129a)

where the last inequality is due to Lemma F.6. Thus for any policy µ′ we have

Qµ′,νt

h (s, i, j) = rh(s, i, j) + PhV
µ′,νt

h+1 (s, i, j) ≤ (H − h+ 1)2.

Similarly, we have for any s ∈ S, h ∈ [H]:

V µt,νt

h+1 (s) =

Eµt,νt

[
H∑

k=h+1

rk(sk, i, j)− βKL (µk,t(·|sk)∥µref,k(·|sk)) + βKL (νk,t(·|sk)∥νref,k(·|sk))

∣∣∣∣∣sh = s

]

≥ Eµt,νt

[
H∑

k=h+1

−βKL (µk,t(·|sk)∥µref,k(·|sk))

∣∣∣∣∣sh = s

]
≥ −(H − h)2. (129b)

Since
Qµt,νt

h (s, i, j) = rh(s, i, j) + PhV
µt,νt

h+1 (s, i, j)

and rh(s, i, j) ∈ [0, 1], using (129a) and (129b), we have

Qµt,νt

h (s, i, j) ∈ [−(H − h+ 1)2, (H − h+ 1)2].

This following lemma is a consequence of the linear MDP, similar results can be found in Jin et al.
(2020) (Lemma B.1) and Xie et al. (2023) (Lemma 7).

Lemma F.8 (Linearity of the Q function). Let (µt, νt) := (µh,t, νh,t)
H
h=1 be the estimated stage-

wise Nash Equilibrium policies as defined in eq. (16) of Algorithm 2, then under the linear MDP
(Assumption 3) there exist weights {θµt,νt

h }Hh=1 such that ∀(s, i, j) ∈ S × U × V, h ∈ [H]

Qµt,νt

h (s, i, j) = ⟨ϕ(s, i, j), θµt,νt

h ⟩ and ∥θµt,νt

h ∥ ≤ 3H2
√
d.

Similarly for the Nash equilibrium policy (µ⋆, ν⋆) = (µ⋆
h, ν

⋆
h)

H
h=1 then there exist weights

{θµ
⋆,ν⋆

h }Hh=1 such that ∀(s, i, j) ∈ S × U × V, h ∈ [H]

Qµ⋆,ν⋆

h (s, i, j) =
〈
ϕ(s, i, j), θµ

⋆,ν⋆

h

〉
and

∥∥∥θµ⋆,ν⋆

h

∥∥∥ ≤ 2H
√
d.
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Proof. From the Bellman eq. (10) we have

Qµt,νt

h (s, i, j) := rh(s, i, j) + E
s′∼Ph(·|sh,i,j)

[
V µt,νt

h+1 (s′)
]
.

From the definition of linear MDP (c.f. Assumption 3) we know that can set

θµt,νt

h = ωh +

∫
V µt,νt

h+1 (s′)dψ(s′) ≤ 3H2
√
d.

since ∥ωh∥ ≤
√
d and

∥∥∫ V µt,νt

h+1 (s′)dψ(s′)
∥∥ ≤ 2H2

√
d (from Lemma F.7). Similarly, we have

θµ
⋆,ν⋆

h = ωh +

∫
V µ⋆,ν⋆

h+1 (s′)dψ(s′). (130)

Using
∥∥∥∫ V µ⋆,ν⋆

h+1 (s′)dψ(s′)
∥∥∥ ≤ H√d (from Lemma F.5) we have ∥θµ

⋆,ν⋆

h ∥ ≤ 2H
√
d.

The following lemma bounds the L2 norms of the estimated parameters (θh,t and θ+h,t) and is similar
to Jin et al. (2020) (Lemma B.2) and Xie et al. (2023) (Lemma 8)
Lemma F.9 (L2 norm bounds). For all h ∈ [H], t ∈ [T ], we have the following bounds on the L2

norms:

∥θh,t∥ ≤ 2H
√
2dt/λ and ∥θ+h,t∥ ≤ 4H2

√
2dt/λ.

Proof. We have

max
∥x∥=1

∣∣x⊤θh,t
∣∣ =

∣∣∣∣∣∣x⊤Σ−1
h,t

∑
τ∈Dt−1

ϕh,τ
[
rh,τ + V h+1,t(s

τ
h+1)

]∣∣∣∣∣∣
≤ 2H

∑
τ∈Dt−1

∣∣∣x⊤Σ−1
h,tϕh,τ

∣∣∣ ≤ 2H
∑

τ∈Dt−1

|x|Σ−1
h,t
|ϕh,τ |Σ−1

h,t

≤ 2H

√√√√√
 ∑
τ∈Dt−1

x⊤Σ−1
h,tx

 ∑
τ∈Dt−1

ϕ⊤h,τΣ
−1
h,tϕh,τ

 ≤ 2H
√
2dt/λ.

where the first inequality follows from Lemma F.6 and the last inequality follows from Lemma D.7.
Similarly, we have

max
∥x∥=1

∣∣∣x⊤θ+h,t

∣∣∣ =
∣∣∣∣∣∣x⊤Σ−1

h,t

∑
τ∈Dt−1

ϕh,τ

[
rh,τ + V +

h+1,t(s
τ
h+1)

]∣∣∣∣∣∣
≤ 4H2

√√√√√
 ∑
τ∈Dt−1

x⊤Σ−1
h,tx

 ∑
τ∈Dt−1

ϕ⊤h,τΣ
−1
h,tϕh,τ

 ≤ 4H2
√
2dt/λ.

here the first inequality follows from Lemma F.7 and the last inequality follows from Lemma D.7.

The following lemma provides an upper bound on the covering number of the value functions in-
duced by the Q-function estimates in Algorithm 2 when β > 0. The original result for the unregu-
larized setting appears in Jin et al. (2020) (Lemma D.6).
Lemma F.10 (Covering number of induced Value function class in Algorithm 2). For some β > 0,
let V denote the function class on the state space S with the parametric form

V (s) := β log

(∑
i

µref(i|s) exp
(

E
j∼ν

[Q(s, i, j)] /β

))
+ βKL (ν(·|s)∥νref(·|s))

for fixed policies ν, νref, µref, where Q(s, i, j) ∈ Q(s, i, j) and Q is a function class on the space
S × U × V with the parametric form

Q(s, i, j) = Π(b2,B2)

(
θ⊤ϕ(s, i, j) + η

√
ϕ(s, i, j)⊤Σ−1ϕ(s, i, j)

)

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

with function parameters ∥θ∥ ≤ L, λmin(Σ) ≥ λ and 0 ≤ η ≤ B3, and we define Π(b2,B2)(·) =
min{max{·, b2}, B2} where b2 ≤ B2 are function class parameters. Then the covering number of
the class V w.r.t the L∞-norm dist(V1, V2) = sups |V1(s)− V2(s)| can be upper bounded as

logNε ≤ d log(1 + 4L/ε) + d2 log
[
1 + 8d1/2B2

3/(λε
2)
]
. (131)

Note that the bound in (131) is independent of (b2, B2) which are fixed parameters of theQ function
class.

Proof. We can reparameterize any function Q ∈ Q as follows:

Q(s, i, j) = Π(b2,B2)

(
θ⊤ϕ(s, i, j) +

√
ϕ(s, i, j)⊤Aϕ(s, i, j)

)
,

for the positive semi-definite matrix A = η2Σ−1 with the spectral norm ∥A∥ ≤ B2
3/λ (which

implies ∥A∥F ≤ d1/2B2
3/λ ) Let V1(·) and V2(·) be the value functions induced by Q1(·, ·, ·)

(parameterized by θ1, A1) and Q2(·, ·, ·) (parameterized by θ2, A2) respectively, then we have

dist(V1, V2) = sup
s
|V1(s)− V2(s)|

= sup
s

∣∣∣∣∣β log
(∑

i

µref(i|s) exp
(

E
j∼ν

[Q1(s, i, j)] /β

))

− β log

(∑
i

µref(i|s) exp
(

E
j∼ν

[Q2(s, i, j)] /β

)) ∣∣∣∣∣
≤ sup

s,i

∣∣∣∣ E
j∼ν

[Q1(s, i, j)]− E
j∼ν

[Q2(s, i, j)]

∣∣∣∣ ≤ sup
s,i,j
|Q1(s, i, j)−Q2(s, i, j)| (132)

≤ sup
∥ϕ∥≤1

∣∣∣(θ⊤
1 ϕ+

√
ϕ⊤A1ϕ

)
−
(
θ⊤
2 ϕ+

√
ϕ⊤A2ϕ

)∣∣∣ (133)

≤ ∥θ1 − θ2∥+
√
∥A1 − A2∥

≤ ∥θ1 − θ2∥+
√
∥A1 − A2∥F ,

where eq. (132) follows since log-sum-exp (log(
∑

i e
xi)) is 1-Lipschitz in the ∥ · ∥∞ norm (Boyd

& Vandenberghe, 2004) and eq. (133) follows since Π(b2,B2)(·) = min{max{·, b2}, B2} is non-
expansive, the penultimate line uses the fact

|
√
x−√y| ≤

√
|x− y|,

giving us

sup
∥ϕ∥≤1

∣∣∣√ϕ⊤A1ϕ−
√
ϕ⊤A2ϕ

∣∣∣ ≤ sup
∥ϕ∥≤1

√
|ϕ⊤(A1 −A2)ϕ| ≤

√
∥A1 −A2∥.

Applying Lemma D.1 to upper bound the cardinality of the Cθ : the ε/2 cover of
{
θ ∈ Rd|∥θ∥ ≤ L

}
and CA : the ε2/4 cover of {A ∈ Rd×d | ∥A∥F ≤ d1/2B2

3λ
−1} with respect to the Frobenius norm,

we obtain

logNε ≤ log |Cθ|+ log |CA| ≤ d log(1 + 4L/ε) + d2 log
[
1 + 8d1/2B2

3/(λε
2)
]
.

F.6 TIGHTER GUARANTEE FOR UNREGULARIZED SETTING

In this section, we show how SOMG can achieve a tighter dependence on H in the unregularized
setting (β = 0). The key difference here will be the fact that projection ceilings and bonus functions
for the β = 0 case can be chosen to have a linear dependence onH rather than quadratic dependence
when β > 0 (see (19) and (22)).
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We begin by explaining some of the design choices in Algorithm 2 starting with the projection
operator

Πh(x) = max{0,min{x,H − h+ 1}}, (134a)

Π+
h (x) = max {0,min{x, 2(H − h+ 1)}} , (134b)

Π−
h (x) = min {−2(H − h+ 1),max{x,H − h+ 1}} . (134c)

and the bonus function is chosen as

bsuph,t (s, i, j) := bh,t(s, i, j) + 2bmseh,t (s, i, j)

with

bmseh,t (s, i, j) = η3∥ϕ(s, i, j)∥Σ−1
h,t

and bh,t(s, i, j) = η4∥ϕ(s, i, j)∥Σ−1
h,t
. (135)

with η3 = c3
√
dH
√
log
(
16T
δ

)
and η4 = c4dH

√
log
(
16dT

δ

)
for some determinable universal con-

stants c3, c4 > 0.

Using these new design choices in 2 we have the following result.
Theorem F.3. Under assumption 3, for any fixed δ ∈ [0, 1] and any β = 0, reference policies
(µref, νref) = ({µref,h(·|·)}Hh=1 , {νref,h(·|·)}Hh=1), choosing λ = 1 and bsuph,t (s, i, j) as per eq. (135)
in algorithm 2, we have

∀ T ∈ N+ : Regret(T ) ≤ O
(
d3/2H2

√
T log

(
dT

δ

))
w.p. 1− δ/2.

F.6.1 PROOF OF THEOREM F.3

The overall structure of the proof is similar to the regularized case (β > 0); In this subsection we
outline the differences that are essential to the argument and obtaining anH2 dependence as opposed
to the H3 dependence in regularized case.
Proposition F.2. For any policy pair (µ, ν) under the unregularized game where 0 ≤
rh(sh, ih, jh) ≤ 1 with V µ,ν

h (s) := Eµ,ν
[∑H

k=h rk(sk, i, j)
∣∣∣sh = s

]
and Qµ,ν

h (s, i, j) :=

rh(s, i, j) + E
s′∼Ph(·|s,i,j)

[
V µ,ν
h+1(s

′)
]

as the corresponding value and Q functions. We have

Qµ,ν
h (sh, i, j) ∈ [0, H − h+ 1] and V µ,ν

h (sh) ∈ [0, H − h+ 1].

Let (µt, νt) := (µh,t, νh,t)
H
h=1 be the stagewise Nash Equilibrium policies of an unregularized

Matrix Game (β = 0) as defined in eq. (16) of Algorithm 2 then ∀(s, i, j) ∈ S × U × V, h ∈ [H],
β = 0 we have

Qh,t(sh, i, j) ∈ [0, H − h+ 1] and V h,t(sh) ∈ [0, H − h+ 1].

Proof. The proof follows trivially from Bellman equations and definitions of projection operator Πh

Lemma F.11 (Range of Q, V functions (β = 0)). Under the setting in algorithm 2 ∀t ∈ [T ]
we have the following ranges for the Bellman target, value and Q functions for all ∀(s, i, j) ∈
S × U × V, h ∈ [H] and β = 0

V +
h+1,t(s) ∈ [0, 2(H − h)] and rh(s, i, j) + PhV

+
h+1,t(s, i, j) ∈ [0, 2(H − h+ 1)].

Proof. The proof follows from induction, the statement holds trivially for h = H . assume it is true
for h+1. we also have Q+

h+1(s, i, j) ∈ [0, 2(H−h)] ∀(s, i, j) ∈ S × U × V, h ∈ [H] by definition
of the projection operator (see eq. (134b)). V +

h+1(s) = Ei∼µ̃h+1(·|s)
j∼νh+1(·|s)

[
Q+

h+1(s, i, j)
]
∈ [0, 2(H −h)]

and thus rh(s, i, j) + PhV
+
h+1,t(s, i, j) ∈ [0, 2(H − h+ 1)].
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Lemma F.12 (Linearity of the Q function (β = 0)). For any policy (µ′
t, ν

′
t) := (µ′

h,t, ν
′
h,t)

H
h=1,

under the linear MDP (Assumption 3) there exist weights {θµ
′
t,ν

′
t

h }Hh=1 such that ∀(s, i, j) ∈ S×U×
V, h ∈ [H]

Q
µ′
t,ν

′
t

h (s, i, j) = ⟨ϕ(s, i, j), θµ
′
t,ν

′
t

h ⟩ and
∥∥∥θµ′

t,ν
′
t

h

∥∥∥ ≤ 2H
√
d.

Proof. The proof follows the same steps as Lemma F.8 replacing Lemma F.7 with the result from
Proposition F.2
Lemma F.13 (L2 norm bounds (β = 0)). For all h ∈ [H], t ∈ [T ], we have the following bounds
on the L2 norms

∥θh,t∥ ≤ 2H
√
2dt/λ and ∥θ+h,t∥ ≤ 3H

√
2dt/λ.

Proof. The proof follows the same steps as Lemma F.9 replacing results from Lemma F.6 and
Lemma F.7 with results from results from Proposition F.2 and Lemma F.11 respectively.

The following result is an adapted version of Lemma D.6 in Jin et al. (2020)
Lemma F.14 (Covering number of induced Value function class in Algorithm 2 (β = 0)). Let V
denote the functions class on the state space S with the parametric form

V (s) = max
i∈U

E
j∼ν

[Q(s, i, j)]. (136)

for fixed policies ν, where Q(s, i, j) ∈ Q(s, i, j) and Q is a function class on the space S × U × V
with the parametric form

Q(s, i, j) = Π(b2,B2)

(
θ⊤ϕ(s, i, j) + η

√
ϕ(s, i, j)Σ−1ϕ(s, i, j)

)
.

with function parameters θ ≤ L, λmin(Σ) ≥ λ and 0 ≤ η ≤ B3. Also Π(b2,B2)(·) =
min{max{·, b2}, B2} where b2 ≤ B2 are function class parameters. Then the covering number
of the class V w.r.t the L∞ norm dist(V1, V2) = sups |V1(s)− V2(s)| can be upper bounded as

logNε ≤ d log(1 + 4L/ε) + d2 log
[
1 + 8d1/2B2

3/(λε
2)
]
.

Note that the bound is independent of (b2, B2) which here are fixed parameters of the Q function
class.

Proof. Note the eq. (136) is the form value functions take when β = 0. The proof
majorly follows Lemma F.10. Reparameterizing the function Q class as Q(s, i, j) =

Π(b2,B2)

(
θ⊤ϕ(s, i, j) +

√
ϕ(s, i, j)Aϕ(s, i, j)

)
for the positive semi-definite matrix A = η2Σ−1

with the spectral norm ∥A∥ ≤ B2
3/λ.Let V1(·) and V2(·) be the value functions induced byQ1(·, ·, ·)

(parameterized by θ1, A1) and Q2(·, ·, ·) (parameterized by θ2, A2) respectively, then we have
dist(V1, V2) = sup

s
|V1(s)− V2(s)|

= sup
s

∣∣∣∣max
i∈U

E
j∼ν

[Q1(s, i, j)]−max
i∈U

E
j∼ν

[Q2(s, i, j)]

∣∣∣∣
≤ sup

s,i

∣∣∣∣ E
j∼ν

[Q1(s, i, j)]− E
j∼ν

[Q2(s, i, j)]

∣∣∣∣ .
The first inequality follows since the maxi∈U operator is a non-expansive map and the remaining
proof follows the same steps as Lemma F.10
Lemma F.15 (Concentration of MSE Bellman errors (β = 0)). Define the Bellman error of the MSE
Q function as

eh,t(s, i, j) := Qh,t(s, i, j)− rh(s, i, j)− PhV h+1(s, i, j).

Then under the setting in algorithm 2, choosing λ = 1, ∀(s, i, j) ∈ S × U × V, h ∈ [H], the event

E10 :=
{
|eh,t(s, i, j)| ≤ η1∥ϕ(s, i, j)∥Σ−1

h,t
:= bmseh,t (s, i, j)

}
(137)

occurs with probability at least 1−δ/16. Here η1 := c3
√
dH
√

log
(
16T
δ

)
and c3 > 0 is a universal

constant.
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Proof. The proof follows the same steps as Lemma F.1 replacing results from lemmas used with
appropriate lemmas from subsection F.6
Lemma F.16 (Concentration of superoptimistic Bellman errors (β = 0)). Under the setting in
algorithm 2 ∀(s, i, j) ∈ S × U × V, h ∈ [H], the event

E11 :=
{∣∣∣〈θ+h,t, ϕ(s, i, j)〉− rh(s, i, j)− PhV

+
h+1(s, i, j)

∣∣∣ ≤ η2∥ϕ(s, i, j)∥Σ−1
h,t

= bh,t(s, i, j)
}

occurs with probability 1− δ/16. Here η2 = c4dH
2
√
log
(
16dT

δ

)
and c4 is a universal constant.

Proof. The proof follows the same steps as Lemma F.2 replacing results from lemmas used with
appropriate lemmas from subsection F.6

Note that we have an H dependence here instead of H2 for the β > 0 case.
Corollary F.2 (Bounds on Optimistic Bellman error w.r.t. the Q+ function (β = 0)). Let

e+h,t(s, i, j) := Q+
h,t(s, i, j)− rh(s, i, j)− PhV

+
h+1(s, i, j),

then under the event E11 for bsuph,t (s, i, j) := bh,t(s, i, j) + 2bmseh,t (s, i, j), we have∣∣∣e+h,t(s, i, j)∣∣∣ ≤ 2bh,t(s, i, j) + 2bmseh,t (s, i, j) = bsuph,t (s, i, j) + bh,t(s, i, j).

Proof. The proof follows the same steps as Corollary F.1.
Lemma F.17 (Optimism (β = 0)). For the setting in Algorithm 2, under the event E10 ∩ E11,
∀(sh, ih, jh) ∈ S × U × V, h ∈ [H+1] and policy µ′ ∈

{
µ†, µ̃, µ

}
we have the following equations

hold

Q+
h (sh, ih, jh) ≥ Qh(sh, ih, jh) and Q+

h (sh, ih, jh) ≥ Q
µ′

h (sh, ih, jh). (138)

Proof. Firstly we note that whenever Q+
h (sh, ih, jh) = 2(H − h+1) attains the maximum possible

clipped value, the lemma holds trivially since Qµ′

h (sh, ih, jh) ≤ (H −h+1) (from Proposition F.2)
and Qh(sh, ih, jh) ≤ (H − h + 1) (from the design of the projection operator (134a)). Since (by
Lemma F.16)

⟨θ+h , ϕ(sh, ih, jh)⟩+b
sup
h (sh, ih, jh) ≥ rh(sh, ih, jh)+PhV

+
h+1(sh, ih, jh)+2bmseh (sh, ih, jh) ≥ 0,

we only need to prove eq. (138) for the case where 0 < Q+
h (sh, ih, jh) = ⟨θ+h , ϕ(sh, ih, jh)⟩ +

bsuph (sh, ih, jh) < 2(H − h+ 1) which follows the same steps as Lemma F.3
Lemma F.18 (Super-optimistic gap (β = 0)). For the setting in Algorithm 2 under the event E10 ∩
E11, ∀(sh, ih, jh) ∈ S × U × V, h ∈ [H + 1], we have the following equation holds

2
∣∣(Q+

h (sh, ih, jh)−Qh(sh, ih, jh)
)∣∣ ≥ ∣∣Q+

h (sh, ih, jh)−Q
µ
h(sh, ih, jh)

∣∣ . (139)

Proof. From Lemma F.17 we have Q+
h (sh, ih, jh) ≥ Qh(sh, ih, jh) and Q+

h (sh, ih, jh) ≥
Qµ

h(sh, ih, jh). Note that whenever we have an underestimate of Qµ, i.e, Qµ
h(sh, ih, jh) ≥

Qh(sh, ih, jh) we have eq. (139) hold automatically even without the 2x multiplier, hence we
will only concern ourselves with the case where we overestimate Qµ, i.e., Qµ

h(sh, ih, jh) ≤
Qh(sh, ih, jh). We also note that when Q+

h (sh, ih, jh) = 2(H − h + 1) attains the maximum
possible clipped value the statement holds trivially again since Qh(sh, ih, jh) ≤ (H − h+1) (from
the design of the projection operator (134a)) andQµ

h(sh, ih, jh) ≥ 0 ∀ (sh, ih, jh) (from Proposition
(F.2)). Since (by Lemma F.16)

⟨θ+h , ϕ(sh, ih, jh)⟩+b
sup
h (sh, ih, jh) ≥ rh(sh, ih, jh)+PhV

+
h+1(sh, ih, jh)+2bmseh (sh, ih, jh) ≥ 0,

we only need to prove the equation in the overestimation case where 0 < Q+
h (sh, ih, jh) =

⟨θ+h,t, ϕ(s, i, j)⟩ + bsuph,t (s, i, j) < 2(H − h + 1), where we need to effectively prove that
Q+

h (sh, ih, jh) − Qh(sh, ih, jh) ≥ Qh(sh, ih, jh) − Qµ
h(sh, ih, jh) (by Lemma F.17) which fol-

lows the same steps as Lemma F.4.
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The proof of Theorem F.2 for β = 0 follows the same steps as the β > 0 setting from subsection
F.3.1 using lemmas from subsection F.6 (Lemma F.15 and Lemma F.16) to bound Bellman errors
instead of Lemma F.1 and Lemma F.2, and we finally obtain

Regret(T ) =
T∑

t=1

DualGap(µt, νt) ≤ O
(
d3/2H2

√
T log

(
dT

δ

))
w.p. (1− δ/2).

G ADDITIONAL DISCUSSION

G.1 SINGLE AGENT SETTINGS

Both OMG and SOMG can be used in the single agent setting for Bandits and RL respectively by
setting the action set (and hence even the reference policy) of the min player to a singleton. For
Matrix games this results in the same bound as Theorem 2.1.

However, in the RL setting we can obtain a tighter dependence onH . Using the same argument from
Section F.6, which applies a smaller bonus term and a projection operator with linear dependence
on H , we achieve improved regret guarantees. When specialized to the single-agent RL setting, this
gives a regret bound of min

{
Õ
(
d3/2H2

√
T
)
, O
(
β−1d3H5 log2(T/δ)

)}
.

The value function in game theoretic setting is given by

V µ,ν
h (s) := E

[
H∑

k=h

rk(sk, i, j)− βKL(µk(·|sk)∥µref,k(·|sk)) + βKL(νk(·|sk)∥νref,k(·|sk))

∣∣∣∣∣sh = s

]
,

This design of bonus terms and projection operators is possible due to the fact that when the min
player action set is restricted to singleton the positive KL terms disappear and the value function (and
hence the Q functions) will now be bounded between (−∞, H] instead of (−∞,∞). Specifically
for a policy π the value function in KL regularized RL is given by

V π
h (s) := E

[
H∑

k=h

rk(sk, i, j)− βKL(πk(·|sk)∥πref,k(·|sk))

∣∣∣∣∣sh = s

]
,

Thus the projection for best response Q function can now use O(H) ceiling in equation (19b). We
donot need a Q− ((14c),(15c)) in SOMG since the min player makes no decisions (action set is
singleton) as shown Algorithm. As a result of this the we get a H dependence in bonus term and
hence a min

{
Õ
(
d3/2H2

√
T
)
, O
(
β−1d3H5 log2(T/δ)

)}
regret. This matches the best known

regret bound obtained by Zhao et al. (2025b)5 in single agent KL regularized RL

G.2 EXTENSION TO GENERAL FUNCTION APPROXIMATION

SOMG can be extended beyond the linear MDPs to RKHS/General function approximation for the
Q dunction class with local (state-action wise) optimism using standard arguments from the liter-
ature. For example to extend SOMG to general function approximation we additionally need a
standard realizability assumption (Zhao et al., 2025b; Ye et al., 2023) on the value functions class
induced by SOMG in equation 18 which we get for free in Linear MDP (From Assumption 3 and
lemma F.8) and a bounded log covering number assumption.

Beyond this the only parts of the SOMG proof that are specific to linear MDP are lemmas F.1, F.2
which define bonuses bmseh,t , bh,t respectively and the bounding of sum of squares of bonuses in equa-
tions (93) and (107) using elliptical potential lemma D.6. Replacing these components with bonuses
used general function approximation, as done in Zhao et al. (2025b;c), extends our results to general

5The bound is adopted for linear MDP where the log covering number log(N ) grows as d2 log(T ) (lemma
F.10), we use

∑H
h=1 rh ∈ [0, H] while Zhao et al. (2025b) use

∑H
h=1 rh ∈ [0, 1], translating this to our

setting gives an additional H2 factor due to dependency on the square of the bonus term. d(F , λ, T ) =∑H
h=1 d(Fh, λ, T ) scales at dH
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function approximation settings.

Specifically the width of the uncertainty set at step h, time t for (s, i, j) in linear function approxi-
mation is specified using the covariance matrix U lin

h,t(s, i, j;Dt−1) := ∥ϕ(s, i, j)∥Σ−1
h,t

and the bonus

is of the form η ·min
{
1,U lin

h,t(s, i, j;Dt−1)
}

which is equal to η · U lin
h,t(s, i, j;Dt−1) when regular-

ization λ > 1 (both bmseh,t and bh,t take this form) with η being a constant that depends on problem
parameters. Under general function approximation (with a function class F) the width of the uncer-
tainty set is given by (Agarwal et al., 2023; Ye et al., 2023; Zhao et al., 2025b)

Ugen
h,t (s, i, j;Dt−1) := sup

f,f ′∈F

|f(s, i, j)− f ′(s, i, j)|√
λ+

∑
sh,ih,jh∈Dt−1

(f(sh, ih, jh)− f ′(sh, ih, jh))2

where λ is the regularization parameter. To obtain bounds for general function approximation we use
Ugen
h,t instead of U lin

h,t to create confidence intervals in lemmas F.1 and F.2 and use eluder dimension
(Agarwal et al., 2023; Zhao et al., 2025b)

d(F , T ) := sup
s1:T , i1:T , j1:T

T∑
t=1

min
(
1, [Ugen

h,t (st, it, jt;Dt−1)]
2
)
.

instead of elliptical potential lemma to bound the sum of squares of bonus terms. Similar arguments
extend OMG to General function approximation.

G.3 DISCUSSION ABOUT LOWER BOUNDS

There are no known lower bounds for sample complexity/Regret in KL regularized games. However,
for the bandits setting, a sample complexity lower bound was presented in Zhao et al. (2025a)
(Theorem 3.6) which we restate here
Theorem G.1 (Zhao et al. (2025a)). For any ϵ ∈ (0, 1/256), β < 1

4 , and any algorithmA, there ex-
ists a KL-regularized contextual bandit problem with reward function classR with covering number
O(NR(ϵ)) and such that A requires at least Ω

(
min

(
β−1 logNR(ϵ)

ϵ , logNR(ϵ)
ϵ2

))
rounds to achieve

a suboptimality ϵ.

For linear function approximation logNR(ϵ) scales proportional to d (lemma D.1). Since bandits is
a single agent special case of both Matrix games (by setting the min player action set to singleton)
and Markov games (H = 1 gives matrix games), the lower bound also applies to our setting and we
note that our upper bounds obtains the optimal structure min{O(β−1/ε),O(1/ε2)} and dependency
on β.

The best known regularization dependent regret upper bounds for KL regularized RL is
Õ(β−1H5d3 log2(T )) presented in Zhao et al. (2025b) which gives a sample complexity of
Õ
(

β−1H5d3

ε

)
6 (Zhao et al., 2025b; Tiapkin et al., 2024) match the rates obtained by SOMG when

specialized to the single agent setting. However we remark the dependence on H and d here is not
tight. These can be potentially improved in future works using Bernstein based bonuses/reference
advantage decomposition which is commonly used to obtain sharp rates in bonus based methods for
both offline (Shi et al., 2022) and online (Chen et al., 2022) RLand games.

6
∥∥∥Λ̂T

h

∥∥∥
2

in (Tiapkin et al. (2024) Thm. 6 Page 53) should be d(2 + (T − 1)) (minor typo) and hence the

dependency will be d3 instead of d2.
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