
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEFT: DECODING WITH FLASH TREE-ATTENTION FOR
EFFICIENT TREE-STRUCTURED LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly employed for complex tasks that
process multiple generation calls in a tree structure with shared prefixes of tokens,
including few-shot prompting, multi-step reasoning, speculative decoding, etc.
However, existing inference systems for tree-based applications are inefficient due
to improper partitioning of queries and KV cache during attention calculation. This
leads to two main issues: (1) a lack of memory access (IO) reuse for KV cache
of shared prefixes, and (2) poor load balancing. As a result, there is redundant
KV cache IO between GPU global memory and shared memory, along with low
GPU utilization. To address these challenges, we propose DEFT1 (Decoding
with Flash Tree-Attention), a hardware-efficient attention algorithm with prefix-
aware and load-balanced KV cache partitions. DEFT reduces the number of
read/write operations of KV cache during attention calculation through KV-Guided
Grouping, a method that avoids repeatedly loading KV cache of shared prefixes
in attention computation. Additionally, we propose Flattened Tree KV Splitting,
a mechanism that ensures even distribution of the KV cache across partitions
with little computation redundancy, enhancing GPU utilization during attention
computations. By reducing 73-99% KV cache IO and nearly 100% IO for partial
results during attention calculation, DEFT achieves up to 2.52/3.82× speedup
in the end-to-end/attention latency across three practical tree-based workloads
compared to state-of-the-art attention algorithms.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al., 2023; Touvron et al., 2023a;b) are extensively
utilized across a range of tasks like chatbot (Roller et al., 2020), code generation (Mark et al., 2021),
reasoning (Yao et al., 2023; Besta et al., 2023; Ning et al., 2023), etc. Traditionally, the interactions
between LLMs and application users are sequential: the user sends a new prompt after completion
result of the previous prompt is received. However, many applications are now designed to process
sequences with an internal tree structure, including self-consistency (Wang et al., 2022), few-shot
prompting (Mann et al., 2020), multi-step reasoning (Yao et al., 2023; Hao et al., 2023; Xie et al.,
2024), and speculative decoding (Miao et al., 2023; Cai et al., 2024), etc, as shown in Figure 1.
Usually, these applications produce substantially more tokens than traditional ones, to provide large
space for tree search (Graves, 2012; Lu et al., 2022; Liu et al., 2023) or selection, as shown in Table 1.
We need a more efficient decoding algorithm in response to this interaction paradigm change
from sequence-based decoding to tree-based decoding.
When requests have shared prefixes in a tree structure, existing inference systems (Hugging Face;
NVIDIA; Kwon et al., 2023) designed for sequence-based decoding introduce redundancy by failing
to be prefix-aware at one or more of the following three levels: (1) computation—for instance, the
redundant recomputation of KV caches for shared prompts across requests in a batch (Hugging Face);
(2) memory storage—for example, the redundant storage of KV caches for shared prefixes (Hugging
Face; Kwon et al., 2023; NVIDIA); (3) memory access (IO)—such as repeatedly loading the KV
cache of a shared system prompt during attention calculations (Hugging Face; Kwon et al., 2023;
NVIDIA). Although some tree-based inference systems (Zheng et al., 2023; Gim et al., 2023; Cai
et al., 2024; Miao et al., 2023) address the first two issues, they largely overlook the third and arguably

1By default, DEFT refs to DEFT-Flatten, which has Flattened Tree KV Splitting before loading KV cache
for attention calculation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

the most crucial aspect: memory access, which is critical in the context of memory-bound LLM
inference (Shazeer, 2019; Cai et al., 2024; Kim et al., 2023).

Table 1: Comparison of efficiency in sequence-based
(CoT (Wei et al., 2022)) and tree-based (ToT (Yao
et al., 2023)) decoding for a reasoning task. The
task is sorting 128 numbers from Besta et al. (2023).
The total generated tokens of CoT is only 525 while
38,315 in ToT, resulting in inefficiency in end-to-end
latency (second) and IO (TB). IO mainly consists of
two parts as follows. (i) KV cache: IO-KV; (ii) Partial
results during attention calculation like QKT and soft-
max: IO-PA; Baselines: (i) Flash-Decoding (Dao et al.,
2023); (ii) Tree Attention: tree attention in Medusa (Cai
et al., 2024).

Metrics
Latency IO-KV IO-PA

Flash-Decoding + CoT 21 0.6 0
Flash-Decoding + ToT 429.65 59.96 0
Tree Attention + ToT 380.87 12.40 3.69

DeFT-Flatten(ours) + ToT 94.61 12.40 0
Speed up over best baseline 4.02× - -

To accelerate the tree-structured LLM infer-
ence, an important question is whether we
can leverage the shared patterns in multi-
cascaded prefixes to design a faster and more
memory-efficient attention algorithm. This
task is challenging due to two key issues as
follows. C1: How to ensure prefix-awareness
in memory access of KV cache? Current
memory-efficient attention algorithms (Dao
et al., 2022; 2023; Hong et al., 2023) are
optimized for sequence-based decoding, which
leads to a lack of prefix-awareness during
memory access. As a result, shared prefixes
in the KV cache are repeatedly loaded. C2:
How to split the tree-structured KV cache
for load balancing and high GPU utilization?
For optimal GPU utilization, the current
KV splitting strategy for sequence-based
decoding—Flash-Decoding (Dao et al., 2023),
which splits sequence KV into chunks—cannot be directly applied to tree-structured KV. Tree-
structured KV caches also need to be effectively partitioned: however, if we naively split them by
nodes, token lengths across different nodes can vary significantly (e.g., in speculative decoding (Cai
et al., 2024), some nodes might only have 1 token while the root node could have thousands), making
it difficult to maintain load balance and efficient computation.

Prompt 1

Sequence-based decoding

Generation 1

P

P1 G1
P1.1 G1.1

P1.2 G1.2

Search
History

P2 G2

Search
History

P2.1 G2.1

P2.2 G2.2

Few-shot
examples

P1

P2

G1

G2
P

G1

G2

1)Self-consistency 2) Few-shot prompting

Prompt

Prompt

P

Step 1(G1）

Prompt 2 Generation 2

Step 2(G2）Step history

Step history Step 3(G3）

t0 t2 t4

t0
t2

t1
t3

t4

Draft models
/heads

1.token tree
generation

2.verify 3.keep
KV cache

Current
Step

4) Multi-model/head coordination
(e.g. Speculative decoding)

Tree-based decoding

Notations

shareable KV cache

non-shareable prompt

non-shareable generation

Prompt

3) Multi-step reasoning (e.g. Tree-of-thoughts)

Figure 1: An illustration of Sequence-based decod-
ing and Tree-based decoding.

To address the above challenges, we propose
DEFT-Flatten, a prefix-aware tree attention algo-
rithm with a flattened tree KV splitting strategy,
based on two key insights. • First, how queries and
KV caches are grouped for attention calculation
significantly impacts memory access. Existing
approaches use a Q-Guided Grouping strategy,
where each request/query is grouped with all cor-
responding KV caches. While this eliminates IO
redundancy for queries, the prefix KV cache still
gets loaded multiple times. To address C1, we pro-
pose KV-Guided Grouping: DEFT-Flatten groups
the prefix’s KV cache with all shared queries, en-
suring the prefix KV cache is only loaded once,
significantly reducing redundant loading with neg-
ligible IO overhead for reloading queries. The IO
overhead for queries (Q) is minimal compared to
the KV cache, as the maximum query length typ-
ically corresponds to the number of root-to-leaf
paths in the tree, making the queries relatively
short (e.g., dozens of tokens) compared to the KV
cache length in each node (e.g., hundreds or thou-
sands of tokens). • Second, since LLM inference
is IO-bound, the attention overhead of each QKV
group is primarily influenced by the IO of the KV
cache. Therefore, it is crucial to ensure that the
KV lengths of different QKV groups are nearly
balanced. To address C2, we propose a Flattened
Tree KV Splitting, which enables balanced parti-
tions by dividing the flattened tree KV into even
chunks, using bit causal masks to capture causal
relationships between queries and KV cache.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We summarize our contributions as follows:
• We propose a hardware-efficient tree attention algorithm—DEFT-Flatten, which is IO-aware

of shared prefixes’ KV cache and load-balanced in computation.
• We implement DEFT-Flatten on OpenAI Triton (Tillet et al., 2019) to gain precise management

over memory access and fuse all attention operations into a single GPU kernel.
• We theoretically justify the superiority of DEFT-Flatten over the existing attention algorithms

(Wolf et al., 2019; Dao et al., 2023; Cai et al., 2024; Miao et al., 2023) in terms of IO complexity.
• We empirically verify its effectiveness on few-shot prompting, multi-step reasoning, and

speculative-decoding tasks. DEFT-Flatten can achieve a walk-clock time speedup of 1.3× for
few-shot prompting, 2.5× for speculative decoding, 1.1× for multi-step reasoning, due to an up
to 3.82× faster attention calculation, with the baseline implementations (Dao et al., 2023; Cai
et al., 2024; Zheng et al., 2023).

• We compare different tree split strategies—DEFT-Node, DEFT-Node-Chunk, and DEFT-Flatten
in ablation studies (see section 4.4), showing the balanced partitioning of QKV groups matters.

2 RELATED WORK

Tree-based Decoding. Tree-based decoding, exemplified by beam search (Graves, 2012), has been
pivotal in NLP, handling lexical and logical constraints (Anderson et al., 2017; Post & Vilar, 2018;
Hokamp & Liu, 2017), mitigating gender bias (Lu et al., 2021), achieving communicative goals
(Holtzman et al., 2018), and improving alignment (Liu et al., 2023). Based on the structure feature
of queries and KV cache, we can classify tree-based decoding into two patterns: (i) Tree-structured
past KV with parallel queries—usually in multi-step reasoning (Yao et al., 2023; Besta et al., 2023;
Ning et al., 2023), using search trees with parallel hypothesis generation and selection based on
scoring functions, either score candidates per token (Dathathri et al., 2019; Lu et al., 2021; 2022)
or per reasoning step (Welleck et al., 2022; Uesato et al., 2022; Xie et al., 2024). (ii) Past KV in
sequence with tree-structured queries—usually in speculative decoding (Cai et al., 2024; Miao et al.,
2023). Further details on these two patterns are discussed in Appendix A.2. Although tree-based
search algorithms like A* (Lu et al., 2022) and Monte-Carlo Tree Search (Liu et al., 2023) have
been applied, the efficiency of tree-based decoding remains largely under-explored.
Memory-efficient Attention Algorithms. Existing memory-efficient attention algorithms target
sequence-based decoding. FlashAttention (Dao et al., 2022) improves self-attention computation in
LLM training via tiling and kernel fusion, reducing IOs. Flash-Decoding (Dao et al., 2023) extends
this, enhancing parallelism by dividing K and V and introducing global reduction to gather partial
attention results, enabling efficient decoding for long sequences. Unfortunately, applying these
memory-efficient algorithms to the tree-based decoding overlooks redundancy in IO of tree-structured
KV cache, which is the focus of DEFT.
Tree Attention. Integrated into LLM inference, tree attention reduces computation, storage, and
kernel launching overheads (Miao et al., 2023). Tree-structured token candidates undergo parallel de-
coding, with SpecInfer (Miao et al., 2023) introducing a topology-aware causal masked tree attention
algorithm, dynamically updating a causal mask to capture relationships among tokens. Medusa (Cai
et al., 2024) uses a similar mechanism with a static causal mask, while other works (Zhao et al., 2023;
Liu et al., 2024) adopt analogous approaches to enhance attention calculation efficiency. However, un-
like DEFT, these existing works utilizing tree attention do not take memory access into consideration.
Storage Optimization of Tree-based Decoding. LLM frameworks optimized for tree-based decoding
(Kwon et al., 2023; Zheng et al., 2023) focus on memory storage efficiency. vLLM (Kwon et al.,
2023) enhances GPU memory utilization, allowing sequences from the same parent to share KV cache
storage. SGLang (Zheng et al., 2023) supports dynamic KV cache management during multi-round
interactions with LLMs, improving memory efficiency.
Discussion on Concurrent Works. Some concurrent works (Ye et al., 2024; Juravsky et al., 2024;
Athiwaratkun et al., 2024) also recognize the importance of IO during LLM inference. However, these
works have at least one of these flaws: i) they (Ye et al., 2024; Juravsky et al., 2024; Athiwaratkun
et al., 2024) cannot be easily extended to situations where the decoding tree has more than two
levels—they target single-context batch sampling scenarios, a special case of general tree-based
decoding with a system prompt as prefix and unique suffixes in the first depth; ii) they (Juravsky et al.,
2024; Athiwaratkun et al., 2024) do not consider the inefficiency caused by the lengths of different
nodes in the decoding tree. See the comparison of DEFT and concurrent works in Appendix A.3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 DEFT

In this section, we first introduce the background knowledge of LLM inference, upon which we
outline the importance of QKV partitions for attention calculation. We then present the overview of
DEFT algorithm and Attention Kernel design, with its system support. Finally, we propose efficient
QKV partitioning method for DEFT, which not only reduces memory access of prefixes’ KV cache
and partial results (e.g., Softmax), but also ensures balanced partitions during attention computation.

3.1 PRELIMINARY

LLM inference and its bottleneck. LLM inference involves two stages: (1) prefill and (2) decoding.
During the prefill stage, a prompt is tokenized to initialize LLM. The output of the prefill stage
becomes the input for the decoding stage. The decoding stage is auto-regressive, with each output
token from the previous step serving as the input token for the next step. Due to the sequential
process of auto-regressive decoding, LLM inference is memory-bound (Shazeer, 2019; Kim et al.,
2023; Cai et al., 2024), wherein every forward pass requires transferring all model parameters and
KV cache from slower but larger High-Bandwidth Memory (HBM) to the faster but much smaller
shared memory of the GPU (Jia & Van Sandt, 2021) 2. Another potential bottleneck is low GPU
utilization (Dao et al., 2023), which happens when the parallelism (usually limited by the batch size
is much smaller than the number of streaming multiprocessors (SMs) on the GPU (108 for an A100),
where the operation will only utilize a small portion of the GPU.

The execution pattern of attention algorithms on GPUs. We can separate the execution of
attention algorithms into two main phases: (1) QKV PREPARATION PHASE: group Query, Key,
and Value (QKV) logically to partitions and map QKV groups to different streaming multiprocessors
(SMs) of GPUs; (2) ATTENTION CALCULATION PHASE: load QKV partitions to different SMs’
shared memory and apply attention algorithms to each group for final attention results.

QKV partitions with segmented attention. In sequence-based decoding, QKV partitioning is
crucial when the parallelism (usually limited by the batch size (Dao et al., 2023)) is much smaller than
the number of streaming multiprocessors (SMs) on the GPU (108 for an A100), where the operation
will only utilize a small portion of the GPU. To enable high GPU utilization, Flash-Decoding (Dao
et al., 2023) partitions the queries and KV cache then calculates the attention in parallel.
Details are as follows: (1) QKV PREPARATION PHASE: for each query in the batch, split its
sequential KV cache into chunks as different QKV partitions. (2) ATTENTION CALCULATION
PHASE: it calculates segmented attention A0, A1, and A2 over three segments, respectively, and
then gets final attention by online Softmax merging (Dao et al., 2022; 2023) based on segmented
attention from different QKV partitions. We elaborate on the procedure below.
• Let’s say we have key tensor K ∈ Rlkv×d, value tensor V ∈ Rlkv×d, and query tensor Q ∈ Rlq×d.

Considering the general case K and V are partitioned across the sequence (row) dimension into
three parts for parallel calculation, respectively: K = K0 ∥ K1 ∥ K2, and V = V0 ∥ V1 ∥ V2,
with “∥” denoting concatenation along the row axis.

• We calculate the attention A0, A1, and A2 over KV chunks in different streaming-multiprocessors
(SMs) of GPU, where A0 = ⟨Q, K0,V0⟩, A1 = ⟨Q,K1,V1⟩, A2 = ⟨Q,K2,V2⟩, and
⟨q,k,v⟩ = Softmax

(
qk⊤

/
√
d
)
v .

• We calculate LogSumExp (LSE) as a weight of merging A0, A1, and A2. We define LSE(q,k) =
log

(∑(
exp

(
qk⊤

/
√
d
)))

.
• We have ⟨Q,K,V ⟩ = SegAttn(A0,A1,A2), which means segmented attention with Online

Softmax (Dao et al., 2022):

SegAttn(A0,A1,A2) =
A0e

LSE(Q,K0)+A1e
LSE(Q,K1)+A2e

LSE(Q,K2)

eLSE(Q,K0)+eLSE(Q,K1)+eLSE(Q,K2) , where e := exp . (1)

3.2 OVERVIEW OF DEFT

The importance of QKV partitions. For tree-based decoding, logically partitioning QKV is
necessary for attention calculation with high parallelism. The branch number of tree-structured
generation requests may be insufficient to fully utilize the GPU when the number of tokens in the
tree-structured KV cache is large, due to memory capacity limitations. For example, a request for

2A100’s HBM has 1.5-2TB/s bandwidth and 40-80GB; its shared memory has 19TB/s bandwidth and 20MB.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Query

Qb

Qa

Input Medata (in HBM)

KV0

KV1

KV2

Query
Tree KV

Tree
Topo

KV
Cache

KV-Guided
Grouping

Flattened
Tree KV
Splitting

Phase 1: QKV
Preparation

Phase 2: Attention Calculation

G0
G1

G2

SM0

QKV
Groups Global

ReductionA0
A1

A2

Partial
Attention

Final
Attention

DeFT Attention Kernel

HBM(2 TB/s) Shared Memory(19 TB/s)

SM1

SM2

SMi Gi

Load QKV group i to SM i
Notations

Figure 2: Overview of DEFT. Input Metadata is prepared in the system elaborated in Appendix A.1. In QKV
Preparation Phase (see Section 3.3), the QKV will be grouped logically to partitions with IO-awareness of
shared prefixes’ KV cache and load-balancing. These partitions will guide the loading of QKV on the Attention
Calculation Phase (see Appendix A.4), where the attention calculation will be executed.

the reasoning task of sorting 128 numbers (Besta et al., 2023), involves around 40K tokens in a
Llama2-7B model, whose KV cache occupies 20GB, which means an 80GB A100 can only process
at most 4 requests with such token numbers.

Motivation of DEFT. DEFT aims to address two potential bottlenecks (i.e., IO and GPU utilization)
of LLM inference when dealing with tree-structured KV sequences. Let’s say we have a simple tree
with two cascades, as shown in the left part of Figure 2: for two queries Qa and Qb, the corresponding
keys satisfy Ka = K0 ∥ K1 and Kb = K0 ∥ K2, respectively, and values obey the same rule.
DEFT is designed to: (1) minimize IO by eliminating redundant memory access of the shared prefix’s
KV cache (K0 and V0) for Qa and Qb; (2) ensure balanced workloads for high GPU utilization, so
that the overhead of computing each segmented attention Ai remains nearly identical. Since the global
reduction in equation 1 requires all partial attention, if the overhead for computing Ai is significantly
larger than Aj , the SM responsible for calculating Aj will experience prolonged idleness.

Technique overview of DEFT. DEFT aims to be a hardware-efficient attention algorithm by
reducing memory access and ensuring load-balancing for tree-based decoding. See details in Figure 2:
➀ In the QKV PREPARATION PHASE, for prefix-aware and load-balanced QKV partitions, we

introduce a KV-Guided Grouping strategy to reuse the KV cache IO of the shared prefixes, and
a Flattened Tree KV Splitting for high GPU-utilization due to balanced and parallel attention
calculation. See details in Section 3.3.

➁ During the ATTENTION CALCULATION PHASE, we design the DEFT ATTENTION KERNEL3 to
load QKV splits in a memory efficient way, which is logically grouped by the QKV PREPARATION
PHASE, then to perform the attention calculation. Key techniques are as follows, with details
deferred in Appendix A.4: 1) Common Kernel Fusion and Tiling strategies avoid significant IO
operations for partial results (i.e.. QK⊤ and Softmax), which Tree Attention-Medusa (Cai et al.,
2024) lacks. 2) Tree-Topology-Aware Global Reduction, which extends the global reduction
mechanism from Flash-Decoding (Dao et al., 2023). This approach efficiently computes the
final attention for each query by aggregating partial attention results from QKV groups while
considering the tree structure.

System frameworks of DEFT. Apart from efficient DEFT ATTENTION KERNEL, our system
for DEFT has other two advantages: 1) efficient memory management of the KV cache in a tree
structure, and 2) flexible control of the tree decoding process with arbitrary user-defined functions
to decide when and how to branch/prune. The details of key components and their coordinations
in the system refer to Appendix A.1.

3.3 PREFIX-AWARE AND BALANCED TREE-STRUCTURED KV CACHE PARTITIONS

This section delves into the details of the QKV PREPARATION PHASE, which is a key design aspect
of DEFT. The discussion of the ATTENTION CALCULATION PHASE is deferred to Appendix A.4.
Let’s begin with a decoding example using the tree-structured KV cache shown in Figure 2. If we
group the entire tree-structured KV cache and queries into G0 without any partitions, we can refer
to the Vanilla Tree Attention method illustrated in the part (a) of Figure 3. This method calculates
attention for all queries simultaneously in a single Streaming Multiprocessor (SM), with the aid of a
dense causal mask (DCM).

3GPUs utilize a vast array of threads to execute operations known as kernels

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Query IO

KV Cache IOKVi

Qi

QKV Group i with its IO

Dense Causal Mask (DCM) IO

Gi

Notations

SMi SM i with its shared memory

Bit Causal Mask (BCM) IO (64 bits)1 0

Tree Attention-MedusaG0

DCM:

Qa

Qb

Vanilla Tree Attention

KV1 KV2KV0

Masked:M

M

M

Qa

Qb

KV0 KV1 KV2

Q-Guided Grouping

KV-
Guided
Grouping

Q-
Guided
Grouping

KV-
Guided
Grouping
(ours)

Phase 1: QKV Preparation

Phase 2: Attention Calculation
SMiLoad Gi

Flash-Attention

KV0

Flash-Decoding/Radix Attention

Qa

Qb

G0

G1
KV0

KV1

KV2
KVbi

Qa

G00

KVb0 Qa

G01

KVb1

Qb

G10

KVb2 Qb

G11

KVb3

KVb0/2 KVb1/3
Sequence
KV Splitting

DeFT-Flatten

KV-BCM1: KV-BCM2:
1 1

1 0

1 1

0 1
for KV from KV0 for KV from KV1

for KV from KV2

for KV from KV2

Qa

Qb

G0

KV-BCM0: 1 1

KVb0

for KV from KV0

Qa

Qb

KVb1

G1 G2 Qa

Qb

KVb1

Flattened Tree KV Splitting (ours)

Two partition strategies
for high parallelism

Bitmask
no mask:1
masked: 0
64 bits in ;
low order bits
omitted are 0s.

1.Depth-first Flatten Tree KV

3.Get Bitmask (KVb1 for example)

KVb1from KV0 from KV1

1 01 1
Qa Qb Qa Qb KV-BCM1

(KV-guided)

KV2KV1

2.Evenly Blockwise KV KVb0 KVb1 KVb2

KV0

（a) Dataflow of a two-cascaded decoding tree and its different partition strategies for QKV preparation.

（b) Q-Guided grouping V.S. KV-Guided grouping. KV splitting is for additional parallelism.

Qb

Qa

Decoding Tree Metadata

KV0

KV1

KV2

Query
Tree KV

Data/Process in HBM

Data/Process in Shared Memory

No
Parition

Low parallelism

DeFT-Node

KV0
Qa

Qb

G0

KV1

KV2

G1

G2

Qa

Qb

Node KV
Splitting

DeFT-Node-Chunk

Qa

Qb

G00
KVb0

Qa

Qb

G01

KVb1

G2

Qa

Qb

G1KVb3

KVb4

KVbi

Q-Guided Grouping: without KV IO awareness KV-Guided Grouping(ours) : with KV IO awareness

(c) Flattened Tree KV Splitting for load-balanced paritions.

Load-
balanced

QKV paritions

IO-aware
for?

Query

KV

Figure 3: Comparison of QKV partitioning strategies during the QKV Preparation Phase between DEFT-
Node/Node-Chunk/Flatten and different attention algorithm baselines. Note that the partitioning is logically
designed without incurring any data movement costs for QKV. The amount of IO between the GPU HBM and
shared memory required by each group is highlighted in red rectangles. Part (a) illustrates the dataflow of a
two-cascaded decoding tree example and three categories of QKV partitioning strategies: no partition(Vanilla
Tree Attention), Q-Guided Grouping and KV-Guided Grouping. The partitioning strategy will guide the loading
of QKV during the subsequent Attention calculation phase, where each QKV group Gi will be loaded into SMi

on the GPU. Part (b) shows the comparison of Q-Guided Grouping and KV-Guided Grouping, where the latter
can be IO-aware of prefix KV cache KV0 and only load it once. DEFT-Node-Chunk is a weak load-balancing
improvement of DEFT-Node by splitting large nodes (e.g., KV0) to chunks. Part (c) illustrates the details
(discussed in Remark 3.1) of Flattened Tree KV Splitting in DEFT-Flatten for load-balanced partitions, including
Depth-first Flatten strategy, Evenly block-wise strategy, and Bit mask. For a summary of baselines and DEFT,
see Table 2. See analysis of tree-attention baselines (Cai et al., 2024; Miao et al., 2023) in Remark 3.2.

However, this approach is inefficient due to low GPU utilization, as discussed in Section 3.2. To
address this inefficiency, effective partitioning of QKV is essential. This process involves two key
considerations: (1) prefix awareness to minimize memory access to the KV cache and (2) load
balancing to ensure even distribution of workloads across GPUs.

Q-Guided vs. KV-Guided Grouping. Most existing memory-efficient attention algorithms (Dao
et al., 2022; 2023; Zheng et al., 2023) adopt Q-Guided Grouping for QKV partitioning, where each
query serves as the indicator for partitioning, grouping with its corresponding KV cache. However,
this method is not prefix-aware, e.g., in Flash-Attention (as shown in Figure 3) KV0 is loaded twice,
namely once for Qa and again for Qb.
We resort to alternative KV-Guided Grouping approach: by grouping each node’s KV cache with
all the queries that share it, the partitioning can be made prefix-aware, therefore reducing memory
access to the KV cache. For example, DEFT-Node (shown in Figure 3) only loads the prefix KV
cache KV0 once for attention computation. The additional IO cost for queries is negligible since
each query only contains a single token, while the KV cache may contain thousands of tokens.

Tree KV Splitting and Load-Balancing. Thanks to KV-Guided Grouping, DEFT-Node is prefix-
aware for KV cache IO. However, it introduces a potential bottleneck: unbalanced workloads across
different SMs. For example, as seen in DEFT-Node of Figure 3, KV0 might contain 1,000 tokens,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Comparison of QKV partitioning strategies for baselines (most of which are shown in Figure 3)
and DEFT. For IO redundancy, significant issues are highlighted in red, while negligible ones are in blue. “Q”
refers to queries, and “KV” refers to the KV cache. “DCM” stands for Dense Causal Mask (a matrix), and “BCM”
refers to Bit Causal Mask (a set of 64-bit integers). “PA” represents partial results during attention calculations,
including QKT , Softmax, etc. More ⋆ symbols indicate better-balanced workloads for QKV partitions. Details
on IO complexity can be found in Appendix A.5.

Attention Algorithm Grouping Indicator KV Split Granularity IO Redundancy Load-balancing Level

Flash-Attention (Dao et al., 2022) Q-guided - KV ⋆
Flash-Decoding (Dao et al., 2023) Q-guided by block KV ⋆ ⋆ ⋆

Radix Attention (Zheng et al., 2023) Q-guided by block KV ⋆ ⋆ ⋆
Tree Attention-S (Miao et al., 2023) Q-guided by block KV and BCM ⋆ ⋆ ⋆
Tree Attention-M (Cai et al., 2024) entire tree by GEMM in PyTorch DCM and PA ⋆ ⋆ ⋆

Vanilla Tree Attention entire tree no split DCM and PA ⋆
DEFT-Node KV-guided by tree node Q ⋆

DEFT-Node-Chunk KV-guided by tree node, then by block Q ⋆⋆
DEFT-Flatten KV-guided by block Q and BCM ⋆ ⋆ ⋆

while KV1 only contains 2 tokens. If G0 and G1 are assigned to SM0 and SM1 respectively, SM1

completes computation much earlier and remains idle, leading to low SM utilization4.
To address this, we need to balance the QKV partitions more evenly. A straightforward approach
is to chunk K0, K1, and K2 at the physical level, while maintaining node-wise partitioning at the
logical level, as shown in DEFT-Node-Chunk from Figure 3. However, this load-balancing strategy
is weak: it only breaks large nodes (e.g., prompts with around 1k tokens) into smaller KV chunks,
and it does not handle cases with many small nodes (e.g., speculative decoding), which could slow
down inference due to more rounds of GPU execution for additional QKV groups.
As KV cache loading is the primary bottleneck for attention computation (Cai et al., 2024; Tang et al.,
2024), it is important to achieve an even token length in each KV cache partition. Therefore, we
propose DEFT-Flatten, elaborated in Remark 3.1.

Remark 3.1 (Techniques of Flattened Tree KV Splitting). As shown in the part (c) of Figure 3, there
are three key components:
• Depth-first Flatten strategy. This approach minimizes redundant query IO and computation by

leveraging the hierarchical relationship between parent and child KV nodes– for instance, queries
for parent KV0 (e.g., Qa and Qb) include those for child KV1 (e.g., Qa). Depth-first flattening
instead of breadth-first, maximizes query overlap across KV cache from different nodes but
allocated to the same chunk, reducing redundant computations like masked portions in QKT .

• Evenly block-wise strategy. It is the core of the splitting, where it ensures equal lengths of KV in
each QKV group for balanced workloads of streaming multiprocessors (SMs) in GPUs.

• Bit mask (Miao et al., 2023). It is a set of 64-bit integers used to record causal information of
tokens in the tree. Therefore, its IO overhead (e.g., two 64-bit integers in KV-BCM1 on part (c) of
Figure 3) is negligible compared to the dense causal mask (Cai et al., 2024).

Remark 3.2 (Discussion on Tree Attention Algorithms). Existing attention algorithms are designed
for speculative decoding, where attention is calculated for the entire tree-structured queries. However,
these methods are not memory-efficient. For partition details, see Figure 11 in Appendix A.5.
• Tree Attention-Medusa (Cai et al., 2024). Based on Vanilla Tree Attention (shown on the left in

Figure 3), this method uses PyTorch’s General Matrix Multiply (GEMM) to partition Q and KV
tensors. It is memory-inefficient for two reasons: (1) it does not utilize Flash-Attention to reduce
memory access during the computation of intermediate results (e.g., Softmax); (2) it introduces a
dense causal mask, whose memory access is significant.

• Tree Attention-SpecInfer (Miao et al., 2023). This algorithm employs Q-Guided Grouping based
on Vanilla Tree Attention and partitions the KV sequence through Flash-Decoding. It is memory-
inefficient in redundantly loading the entire tree-structured KV cache for each query.

IO complexity analysis. We show DEFT-Flatten is better than existing attention algorithms in IO
complexity, including Flash-Decoding (Dao et al., 2023), Tree Attention-Medusa (Cai et al., 2024),
and Tree Attention-SpecInfer (Miao et al., 2023). See Appendix A.5.

4Considering a microbenchmark that DEFT-Node with 64 queries shares a prompt of 4k tokens, the SM
utilization is below 5% for 82.35% time of attention computation, as shown in Table 14.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Comparison of baselines and DEFT. Attention kernels of baselines are implemented to fit its memory
management. Therefore, for a fair comparison with baselines, we implement DEFT-Node and DEFT-Flatten
that fit both paged (Kwon et al., 2023)/unpaged memory management.

Method Flash-Decoding Tree Attention-Medusa Radix Attention(Zheng et al., 2023) DEFT

Memory unpaged unpaged paged unpaged/paged
Implementation Triton PyTorch Triton Triton

Table 4: Workloads generation. ToT-BFS stands for Tree-of-Thoughts (Yao et al., 2023) using breadth-first
search. APPS (Hendrycks et al., 2021) is a competitive programming problem dataset. Medusa (Cai et al., 2024)
is a speculative decoding framework. “GoT” stands for Graph-of-Thoughts (Besta et al., 2023), which contains
iteration records using GPT-3.5 for complex reasoning tasks within ToT-BFS. See more details in Table 13.

Task Prompt Dataset Decoding Tree Source Decoding Tree Collection Method Stopping Criteria

Few-shot prompting APPS - - 400 iterations
Multi-step reasoning 4 tasks in GoT ToT-BFS Reconstruct from interaction records with GPT 3.5 in GoT End of task
Speculative decoding APPS Medusa Record token tree shape and accepted token length per step ∼ 1000 steps(max length=6000)

Implementation details. We implement the DEFT attention kernel by OpenAI Triton (Tillet et al.,
2019), which enables us to control memory access from global memory to shared memory and
attention calculations in a thread block granularity. DEFT-Node and DEFT-Flatten algorithms with
two phases in a Python style can be found in Appendix A.8 and Appendix A.9, respectively.

4 EXPERIMENTS

In this section, to demonstrate the effectiveness of DEFT under different tree topologies, we compre-
hensively conduct experiments on three types of tree-based decoding tasks, including: (1) few-shot
prompting (Mann et al., 2020): a typical case study of tree-structured interactions with two levels–a
prefix and several suffixes; (2) multi-step reasoning (Yao et al., 2023; Xie et al., 2024; Hao et al., 2023):
tasks characterized by tree-structured past KV with parallel queries; (3) speculative decoding (Cai
et al., 2024; Miao et al., 2023): tasks involving past KV in sequence with tree-structured queries.

4.1 EXPERIMENTAL SETUP

Baselines. We evaluate the performance of DEFT in NVIDIA A100 (80GB) in Llama3-8B
model (Touvron et al., 2023b) with the SOTA attention algorithms in sequence-based and tree-
based decoding, as shown in Table 3. Note that we did not include the tree attention operator of
SpecInfer (Miao et al., 2023) to our baselines as its kernel only supports at most 64 tokens in the
token tree (the decoding tree except for the past sequence KV part), which is unsuitable for tree-based
decoding with tree-structured KV (c.f. details in Appendix A.2).

Workloads generation. To ensure fairness for workloads of different baselines, we reconstruct
decoding trees from real multi-step reasoning and speculative decoding tasks, as shown in Table 4.
For multi-step reasoning, we include these four tasks from Besta et al. (2023): (1) Sorting 128
numbers (Sorting in short), (2) Document merging (Document in short), (3) Keyword counting
(Keyword in short), and (4) Set intersection (Set in short). The tree decoding process would be forced
to branch and prune the tree in certain iterations to get the same shape of the decoding tree as the
original decoding tree sources. See workload generation details and analysis in Appendix A.6.

4.2 ANALYSIS OF MEMORY MANAGEMENT AND BOTTLENECK

As shown in Table 3, the kernel implementations of different attention algorithms adapt to different
memory management. To fairly compare their performance of wall-clock time speedup, we need to
analyze the influence of memory management and the bottleneck of the system.

A trade-off between memory storage and memory operation. In tree-based decoding, storing
the KV cache for each branch is simple but lacks shared storage for the prefix’s KV cache. Given
the limited GPU memory, not accounting for the tree structure in KV sharing reduces the number of
tokens the tree can handle. Although storing KV caches by each tree node significantly improves
storage efficiency, most attention kernels are designed for sequence-based decoding (Dao et al., 2022;
Hong et al., 2023; Dao et al., 2023). To use these kernels, KV caches from different nodes must be
concatenated into a single tensor, leading to substantial data movement costs (Kwon et al., 2023).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Comparison of DEFT-Flatten and baselines in average end-to-end latency (in seconds) for
tree-based decoding. Here, b represents the tree width, and t denotes the token tree size (i.e., the number of
tree-structured queries). The fastest method is in bold, and the second fastest is underlined. Speedup over the
best wall-clock time refers to the speedup of DEFT-Flatten compared to the best baseline (Radix Attention)
in terms of end-to-end latency. ⋆ denotes out-of-memory (OOM) errors for the A100 80GB GPU. Speedup
Upper-bound (no attention) refers to the maximum speedup we could achieve for the best wall-clock latency
baseline (Radix Attention) if we exclude the attention computation. Attention Speedup over the best wall-clock
indicates the attention speedup of DEFT-Flatten over the best wall-clock latency baseline (Radix Attention). For
more details on attention speedup, see Table 16.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Unpaged Flash-Decoding 78.96 131.19 191.09 429.65 241.20 32.75 51.76 574.50 1128.45 ⋆ ⋆
Tree Attention-Medusa 52.58 103.90 144.07 380.87 236.86 33.52 50.10 263.40 483.35 924.97 1881.51

Paged
Radix Attention 12.37 14.08 16.54 104.79 69.61 11.25 17.03 64.57 86.12 145.88 263.76
DEFT-Flatten 9.98 10.99 12.48 94.67 66.95 10.90 16.10 44.94 50.48 65.44 104.65

Attention Speedup over the best wall-clock 1.73× 1.63× 1.70× 1.39× 1.15× 1.21× 1.34× 2.57× 3.00× 3.64× 3.82×
Speedup over the best wall-clock 1.24× 1.28× 1.33× 1.10× 1.03× 1.03× 1.05× 1.43× 1.70× 2.22× 2.52×

Upper-bound(no attention) 1.71× 2.08× 2.51× 1.96× 1.82× 1.70× 1.76× 2.01× 2.72× 3.99× 5.12×

The benefits of paged memory for tree-based decoding. For efficient KV cache memory manage-
ment, paged memory (Kwon et al., 2023; Zheng et al., 2023) is the current mainstream technology.
These KV cache tensors are stored in a non-contiguous, paged layout to provide token-level reuse.
Besides higher storage efficiency, we note an additional benefit of paged memory management for
tree-based decoding: non-contiguous storage in a memory pool is addressed by pointers, ensuring no
need to materialize the tree-structured KV into a single tensor before executing the attention kernel.
Instead, we only need to record the memory pool addresses of each token’s KV cache.

Figure 4: Latency breakdown for specula-
tive decoding with a token tree of 32 queries,
whose tree topology is from Medusa (Cai
et al., 2024). U means unpaged memory man-
agement.

Bottlenecks and trade-offs. We provide support for
DEFT and baselines with KV cache in memory manage-
ment (unpaged or paged) according to their designs. We
visualize the latency breakdown for (1) KV cache man-
agement, (2) attention, and (3) other operations (including
MLP calculation) in Figure 4. We observe that with un-
paged KV cache management in tree-based decoding, the
bottleneck (69.1-83.4%) is the data movement required to
materialize the KV cache. However, when we use paged
memory management, attention becomes the new bottle-
neck (51.1-58.3%), especially when the token tree is large.

4.3 END-TO-END BEHAVIORS: LATENCY AND IOS.

We evaluate DEFT’s performance on various tree-based
decoding tasks by measuring end-to-end latency (Table 5).
See attention latency (Table 16), IO (Table 17), and
inference accuracy (Table 15) in Appendix A.7. This
assessment demonstrates DEFT’s optimization of tree
attention and its acceleration of wall-clock time.
For few-shot prompting tasks, we used a prompt with 4k tokens and performed 400 decoding
iterations, achieving a 1.33× end-to-end speedup thanks to 1.70× faster attention calculation and an
approximately 90% reduction in IO.
For speculative decoding tasks, DEFT-Flatten achieved up to a 2.52× wall-clock time speedup due
to up to a 3.82× attention speedup, as the entire token tree (all queries) can share IO of the long prefix.
For multi-step reasoning tasks. While DEFT-Flatten improves attention speed by up to 1.36×, the
end-to-end acceleration is less pronounced due to two reasons:(1) The tree width is relatively small
(only 10), limiting the benefits of KV cache reuse. In our few-shot prompting experiments, increasing
tree width (from 10 to 50) resulted in significant end-to-end speedups (ranging from 1.2× to 1.5×)
over 100 iterations, as shown in Appendix A.7. (2)The total number of tokens in the tree is too low,
causing attention to make up only about 30% of the total end-to-end latency (compared to 50-80% in
speculative decoding). A longer prompt length increases attention computation overhead, leading to
greater speedup, as shown in Table 7.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: [Different KV Splitting Strategies] Comparison of DEFT-Node, DEFT-Node-Chunk and DEFT-
Flatten in average attention latency (second) with NVIDIA A100 (80GB) for Llama3-8B model(GQA).
This table is supplementary to Table 16. The fastest method is in bold, and the second fastest is underlined.
Radix Attention is the best baseline in end-to-end latency. See details of more baselines in Table 16.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Paged
Radix Attention 5.99 7.30 9.96 39.37 24.69 3.11 5.13 32.60 54.57 109.39 212.29

DEFT-Node 10.59 10.62 10.85 42.96 33.29 6.16 9.58 50.82 52.51 53.06 61.82
DEFT-Node-Chunk 8.52 9.69 13.45 49.63 36.37 4.77 7.40 22.45 46.40 77.72 143.65

DEFT-Flatten 3.47 4.07 5.87 28.41 21.45 2.57 3.83 12.68 18.18 29.97 55.58

Table 7: [Different Prompt Lengths]
Comparison of DEFT-Flatten and
Radix Attention in the efficiency of
multi-step reasoning task sorting.
The original prompt length is approx-
imately 1K tokens, and we pad it to
lengths of 5K, 8K, or 10K tokens.

Speedup Prompt length L

L=1k L=5k L=8k L=10k

Attention 1.39× 1.71× 1.97× 1.84×
End-to-end 1.09× 1.37× 1.53× 1.67×

Table 8: [Different Model Sizes] Comparison of wall-clock time
speedup and Attention/FFN latency ratio (in short as A/F-LR)
between DEFT and Radix Attention for Codellama-34B and
Codellama-7B models. Radix Attention is the best baseline in
end-to-end latency. b represents the tree width, and t denotes the
token tree size. For multi-step reasoning, we test the task sorting
whose prompt length is about 1k tokens.

Metric Model Size Few-shot Prompting
b=30

Multi-step Reasoning
Sorting

Speculative Decoding
t=64

Wall Clock Time
Speedup

7B 1.34× 1.09× 1.85×
34B 1.23× 1.03× 1.78×

Radix Attention’s
A/F-LR

7B 1.27 1.12 2.12
34B 0.80 0.48 1.66

DEFT-Flatten’s
A/F-LR

7B 0.68 0.89 0.69
34B 0.45 0.42 0.49

4.4 ABLATION STUDY

We evaluate the influence of different KV splitting strategies, model sizes, and prompt lengths in this
subsection. See more ablations in Appendix A.6, including the influence of different GPUs (Table 19),
chunk sizes during KV splitting (Figure 15), and model architectures (Table 20 and Table 21).

The impact of KV splitting strategy in DEFT. We compared three KV splitting strategies with
the baseline Radix Attention, as shown in Table 6. DEFT-Flatten consistently outperforms the others
across all tree-structured settings. DEFT-Node-Chunk generally performs better than DEFT-Node
because it splits large nodes into smaller chunks for more balanced computations, especially when
b ≤ 30 and t ≤ 64, as well as in reasoning tasks like Keyword and Set. However, it struggles with
many small nodes (e.g., prompts with around 1k tokens), leading to slower inference due to more
GPU execution rounds required for additional QKV groups (see t = 256 for DEFT-Node-Chunk).

The influence of prompt length. See Table 7. With a longer prompt, DEFT-Flatten shows a more
pronounced speedup in the same model, since the attention overhead is proportional to the token
count in the decoding tree, while the FFN overhead remains nearly constant for the same model.

The influence of model size. See Table 8. With the larger model, Codellama-34B, DEFT-Flatten
achieves slightly reduced but significant (up to 1.78×) end-to-end speedup. The performance reduc-
tion is attributed to a lower A/F-LR, as the FFN overhead is greater due to larger hidden dimensions.

5 CONCLUSION

We propose DEFT-Flatten, a hardware-efficient attention algorithm optimized for tree-structured
LLM inference. It effectively addresses memory access and GPU utilization bottlenecks by reusing
shared prefixes’ KV cache and evenly distributing workload across partitions. DEFT-Flatten’s key
strengths lie in its prefix-sharing awareness and load balancing, making it versatile for various
tree-structured tasks. It also scales well with larger search spaces and multiple branches. Our results
show that DEFT-Flatten achieves up to 2.5x/3.82x speedup in end-to-end and attention latency,
outperforming baselines in tasks such as few-shot prompting, multi-step reasoning, and speculative
decoding. Our ablation studies highlight that: (1) balanced partitioning is critical, (2) DEFT-Flatten
delivers significant speedups across various LLM models and GPU architectures, and (3) DEFT-
Flatten provides even greater speedups with larger token sizes (e.g., longer prompts) and more
branches in tree-structured requests.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. Guided open vocabulary
image captioning with constrained beam search. In Martha Palmer, Rebecca Hwa, and Sebastian
Riedel (eds.), Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pp. 936–945, Copenhagen, Denmark, September 2017. Association for Computational
Linguistics. doi: 10.18653/v1/D17-1098. URL https://aclanthology.org/D17-1098.

Ben Athiwaratkun, Sujan Kumar Gonugondla, Sanjay Krishna Gouda, Haifeng Qian, Hantian Ding,
Qing Sun, Jun Wang, Jiacheng Guo, Liangfu Chen, Parminder Bhatia, et al. Bifurcated attention
for single-context large-batch sampling. arXiv preprint arXiv:2403.08845, 2024.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, et al.
Graph of thoughts: Solving elaborate problems with large language models. arXiv preprint
arXiv:2308.09687, 2023.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash-decoding for long-context infer-
ence, 2023. URL https://pytorch.org/blog/flash-decoding/. PyTorch Blog.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason
Yosinski, and Rosanne Liu. Plug and play language models: A simple approach to controlled text
generation. In International Conference on Learning Representations, 2019.

In Gim, Guojun Chen, Seung-seob Lee, Nikhil Sarda, Anurag Khandelwal, and Lin Zhong. Prompt
cache: Modular attention reuse for low-latency inference. arXiv preprint arXiv:2311.04934, 2023.

Alex Graves. Sequence transduction with recurrent neural networks. arXiv preprint arXiv:1211.3711,
2012.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. arXiv preprint arXiv:2105.09938, 2021.

Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using grid beam
search. In Regina Barzilay and Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1535–1546, Vancouver,
Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1141. URL
https://aclanthology.org/P17-1141.

Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learning
to write with cooperative discriminators. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 1638–1649, 2018.

Ke Hong, Guohao Dai, Jiaming Xu, Qiuli Mao, Xiuhong Li, Jun Liu, Kangdi Chen, Hanyu Dong,
and Yu Wang. Flashdecoding++: Faster large language model inference on gpus. arXiv preprint
arXiv:2311.01282, 2023.

11

https://aclanthology.org/D17-1098
https://pytorch.org/blog/flash-decoding/
https://aclanthology.org/P17-1141

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hugging Face. Text Generation Inference. https://github.com/huggingface/
text-generation-inference. Accessed: 2024-05.

Zhe Jia and Peter Van Sandt. Dissecting the ampere gpu architecture via microbenchmarking. In
GPU Technology Conference, 2021.

Jordan Juravsky, Bradley Brown, Ryan Ehrlich, Daniel Y Fu, Christopher Ré, and Azalia Mirhoseini.
Hydragen: High-throughput llm inference with shared prefixes. arXiv preprint arXiv:2402.05099,
2024.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. arXiv preprint arXiv:2309.06180, 2023.

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru, Yejin Choi, Hannaneh Hajishirzi, and Asli
Celikyilmaz. Making ppo even better: Value-guided monte-carlo tree search decoding. arXiv
preprint arXiv:2309.15028, 2023.

Mingdao Liu, Aohan Zeng, Bowen Wang, Peng Zhang, Jie Tang, and Yuxiao Dong. Apar: Llms can
do auto-parallel auto-regressive decoding. arXiv preprint arXiv:2401.06761, 2024.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.
Neurologic decoding:(un) supervised neural text generation with predicate logic constraints. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 4288–4299, 2021.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,
Lianhui Qin, Youngjae Yu, Rowan Zellers, et al. Neurologic a* esque decoding: Constrained text
generation with lookahead heuristics. In Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
780–799, 2022.

Ben Mann, N Ryder, M Subbiah, J Kaplan, P Dhariwal, A Neelakantan, P Shyam, G Sastry, A Askell,
S Agarwal, et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Chen Mark, Tworek Jerry, Jun Heewoo, Yuan Qiming, Pinto Henrique Ponde de Oliveira, Kaplan
Jared, Edwards Harrison, Burda Yuri, Joseph Nicholas, Brockman Greg, et al. Carr andrew n. Leike
Jan, Achiam Joshua, Misra Vedant, Morikawa Evan, Radford Alec, Knight Matthew, Brundage
Miles, Murati Mira, Mayer Katie, Welinder Peter, McGrew Bob, Amodei Dario, McCandlish Sam,
Sutskever Ilya, and Zaremba Wojciech, 2021.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative llm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 2023.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large
language models can do parallel decoding. arXiv preprint arXiv:2307.15337, 2023.

NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM. Accessed:
2024-05.

NVIDIA. Nvidia nsight compute documentation, 2024. URL https://docs.nvidia.com/
nsight-compute/NsightCompute/index.html. Accessed: 2024-09-30.

Matt Post and David Vilar. Fast lexically constrained decoding with dynamic beam allocation for
neural machine translation. In Marilyn Walker, Heng Ji, and Amanda Stent (eds.), Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 1314–1324, New
Orleans, Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/
N18-1119. URL https://aclanthology.org/N18-1119.

12

https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/NVIDIA/TensorRT-LLM
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://aclanthology.org/N18-1119

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle
Ott, Kurt Shuster, Eric M Smith, et al. Recipes for building an open-domain chatbot. arXiv preprint
arXiv:2004.13637, 2020.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference. arXiv preprint arXiv:2406.10774,
2024.

Philippe Tillet, Hsiang-Tsung Kung, and David Cox. Triton: an intermediate language and compiler
for tiled neural network computations. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, pp. 10–19, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover:
Grounded mathematical proof generation with language models. Advances in Neural Information
Processing Systems, 35:4913–4927, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and Michael
Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information Processing
Systems, 36, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint arXiv:2305.10601, 2023.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkattention: Efficient self-attention with prefix-aware
kv cache and two-phase partition. arXiv preprint arXiv:2402.15220, 2024.

Yao Zhao, Zhitian Xie, Chenyi Zhuang, and Jinjie Gu. Lookahead: An inference acceleration frame-
work for large language model with lossless generation accuracy. arXiv preprint arXiv:2312.12728,
2023.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Jeff Huang, Chuyue Sun, Cody Hao Yu, Shiyi Cao,
Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Efficiently programming large language
models using sglang. arXiv preprint arXiv:2312.07104, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS OF APPENDIX

A Appendix 14
A.1 Components of System Support for DEFT . 14
A.2 Discussion of Tree-based Decoding . 15
A.3 Discussion of Concurrent Works . 16
A.4 Discussion of Techniques in Efficient Attention Algorithm Design 17
A.5 Analysis: IO Complexity of DEFT . 20
A.6 Discussion of Workloads Generation . 21
A.7 Additional Results . 23
A.8 DeFT-Node Algorithm . 27
A.9 DEFT-Flatten Algorithm . 28

A APPENDIX

A.1 COMPONENTS OF SYSTEM SUPPORT FOR DEFT

The left part of Figure 5 shows the coordination of different components for efficient and flexible
tree-based decoding. The details of functions for system components of DEFT are as below:
1. Branch Controller: It makes the tree decoding process forced by a user-defined function (e.g.

branch to two children every 3 iterations, as the example shown in the right of Figure 5). Tree-
search-based algorithms can be applied here using the decoding tree’s topology information.

2. Sequence Tree Manager: It maintains the topology of the decoding tree based on the tree
operations and tokens from the Branch Controller. The tree operations like pruning and branching
will be executed by Tree Handler in this component. Branch Result Storage will record token
generation results of all branches in the decoding tree, and output when the decoding stops.

3. KV cache Manager: It will maintain KV cache with a tree structure. A map between sequence IDs
in the decoding tree and KV cache index is kept, which will be updated based on KV operations5

from the Sequence Tree Manager. We provide both paged (Kwon et al., 2023) and unpaged
memory management in this part to fit different attention kernels.

4. Model Interface: pass input metadata to DEFT Attention kernel and MLP module, then return
logits and memory pointers of updated KV cache.

Figure 5: Illustration of DEFT. (Left) System overview. (Right) The data flow of DEFT-Node (DEFT-Flatten
is similar except for QKV partitioning) using a decoding tree example.
The right part of Figure 5 further showcases the key data flow of the system through a decoding tree
example. For simplicity, we present DEFT-Node here and DEFT-Flatten is similar except for QKV

5e.g. when a node is pruned in the decoding tree, its KV space will be evicted using a Remove operation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

partitioning. Input metadata will be extracted by three components we mentioned above, then loaded
from HBM to shared memory in a group manner after the QKV PREPARATION PHASE discussed in
Section 3.3. Then QKV groups will be processed by DEFT ATTENTION KERNEL in ATTENTION
CALCULATION PHASE of DEFT. See details of techniques in these two phases in Appendix A.4.

A.2 DISCUSSION OF TREE-BASED DECODING

(a) (Left) Sequence KV with queries in a tree for parallel decoding (Miao
et al., 2023; Cai et al., 2024), where a causal mask is applied to record the
causal information among queries in a tree of tokens. (Right) Tree KV with
parallel queries for shared prefixes in multi-step reasoning.

(b) Bit Mask in SpecInfer (Miao et al., 2023) to record the causal
information between query tokens in a tree structure. The decoding
tree is in the left part of 6a.

Figure 6: Discussion of tree-based decoding with tree queries (Miao et al., 2023) and tree KV.

Tree-based decoding could have tree-structured KV cache for storage with awareness of shared
prefixes (Zheng et al., 2023), or tree-structured queries in parallel/speculative decoding (Miao et al.,
2023; Cai et al., 2024), as shown in Figure 6. A general decoding could both do with tree KV and
tree queries, which could reduce redundancy (e.g. IO, storage, computation, etc) of shared prefixes,
as well as increase the generated tokens per decoding iteration.
The existing inference frameworks (Zheng et al., 2023; Gim et al., 2023) focused on tree-based
decoding efficiency primarily aim to: (1) reduce memory footprints (Zheng et al., 2023) to enable
larger batch sizes for higher throughput; (2) reuse the prompt cache (Gim et al., 2023) to avoid
recomputation of the KV cache for faster time-to-first-token (TTFT). However, their designs do not
specifically target reducing the wall-clock time of the entire decoding process. We observe that the
tree-structured feature of LLM inference could provide us with some advantages to speed up the
decoding itself.

Analysis of speedup potential in tree-based decoding. In tree-based decoding, KV cache and
queries can be structured in a tree. Not only can we store KV cache in a tree, but also we can load
QKV with awareness of tree topology during attention calculation, to minimize the expensive IO
between HBM and on-chip shared memory of GPUs. We explain it in two case studies of complex
scenarios with tree-structured interactions: (1) multi-step reasoning (Yao et al., 2023; Xie et al.,
2024); (2) speculative decoding (Cai et al., 2024; Miao et al., 2023).

Case study 1: multi-step reasoning. As shown in the left part of Figure 7, we can summarize
process of multi-step reasoning (Hao et al., 2023; Yao et al., 2023; Besta et al., 2023) to three phases:
(1) Thought Generation: generate k candidates for the next thought step based on a generation prompt
Pg and previous steps S; (2) Thought Evaluation: When presented with a frontier of various thoughts,
a LLM as state evaluator measures previous thoughts S based on an evaluation prompt Pe towards
resolving the problem. This assessment acts as a heuristic for the search algorithm, guiding it on

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

P

G1

G1.1

G1.2

G2
G2.1

G2.2

Generation
/Evaluation

Prompt
(Pg/Pe) P Step 2(G2）Step 1(G1）

Step 3(G3）

t0 t2 t4

t0
t2

t1
t3

t4

Draft models
/heads

1.token tree
generation

2.token
verification

3.keep
KV cache

Previous
Steps

(S)

New
Generation

(G)

token tree
(Tt)

Verified tokens
(Vt)

Speculative decoding

Tt

TreeAttention (P, S, Tt) Previous
Steps

(S)

TreeAttention (Pg/Pe, S)

P Step 2(G2）Step 1(G1）

Multi-step reasoning

1.thought
generation

TreeAttention (Pg, S)

2.thought
evaluation

TreeAttention (Pe, S)

3.tree search-based expansion

Shareable past KV Cache

Generated KV Cache

Figure 7: Analysis for two case studies of tree-based decoding. (Left) Multi-step reasoning. (Right) Speculative
decoding. Blue boxes mean shareable past KV cache in storage and memory access during the tree attention
calculation, while yellow boxes mean the KV cache of generated context.

which states to pursue further and the sequence in which to explore them; (3) Tree Search-based
Expansion: play different search algorithms (Lu et al., 2022; Liu et al., 2023; Xie et al., 2024) to
explore search space, which influences the future tree topology. In both (1) and (2), we can share IO
of KV cache for Pg/Pe and S during tree attention calculation.

Case study 2: speculative decoding. As shown in the right part of Figure 7, we can summarize the
process of speculative decoding (Cai et al., 2024; Miao et al., 2023) to tree phases: (1) Token Tree
Generation: multiple small draft models (Miao et al., 2023) or fine-tuned heads (Cai et al., 2024)
generate multiple sequences of tokens based on prompt P , then they are merged to a speculated token
tree Tt, which is very fast (e.g. 1% of time overhead in SpecInfer (Miao et al., 2023)); (2) Token
Verification: based on these tree-structured token candidates Tt, verify the correctness of its tokens
against an LLM’s output, where tree-attention calculation is the bottleneck of the process (Miao et al.,
2023). In (2), we can share IO of KV cache for P and S during tree attention calculation.

Why existing tree-attention algorithms are not enough? The existing tree-attention algorithms
are either in-efficient in memory access (Cai et al., 2024; Miao et al., 2023) or not suitable for general
tree-based decoding (Miao et al., 2023) with more than 64 tokens in the token tree.
• In SpecInfer(Miao et al., 2023), as shown in Figure 6b, a bit mask is utilized to record the causal

information among queries of a token tree. Each token ti in queries will have a 64-bit Int as a bit
mask, where j-th bit means the causal relationship between query of ti and KV cache of tj . The
advantage of this mask design is that it greatly reduces IO, but it results in the maximum number
of tree tokens being only 64, which is not practical for scenarios with tree-structured KV cache.
What’s more, it is not IO-aware for KV cache as it will load KV cache of the entire tree for each
query.

• Medusa (Cai et al., 2024) is suitable for general tree-based decoding, but it is not hardware-efficient
due to significant IOs of a dense causal mask and partial results during attention calculation (e.g.
softmax).

A.3 DISCUSSION OF CONCURRENT WORKS

There are some concurrent works (Athiwaratkun et al., 2024; Ye et al., 2024; Juravsky et al., 2024)
in attention algorithm design for single-context large-batch sampling, where the goal is to generate
multiple sequences from a single context(e.g. system prompt or few-shot examples), which is a
special case of tree-based decoding with a depth of 1. The design of their algorithms are based on

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

this feature, which means they can not suit well in attention calculation of a tree with more than two
levels of prefixes with efficiency.

Insights and techniques in common. Both concurrent works and DEFT have the insight that
memory access is the bottleneck of LLM inference, and decomposing attention across subsequences
to reduce the memory access of the prefix KV: (1) calculate attention Ap, As over prefix and suffixes,
respectively; (2) get finial attention by online softmax merging (Dao et al., 2022; 2023) based on Ap

and As. Here are the details of the correctness proof:
• Let’s say we have key tensor K ∈ R(lkv,d), value tensor V ∈ R(lkv,d), and query tensor Q ∈
R(lq,d). Consider the general case K and V are partitioned across the sequence (row) dimension
into two parts for prefix and suffixes, respectively: K = Kp ∥ Ks, and V = Vp ∥ Vs, with ∥
denoting concatenation along the row axis.

• We calculate the attention Ap, As over prefix and suffixes, where Ap = ⟨Q,Kp, Vp⟩, As =

⟨Q,Ks, Vs⟩, and ⟨q, k, v⟩ = Softmax
(

qkT

√
d

)
v.

• Based on Equation 1, we can have segmented attention ⟨Q,K,V ⟩ = SegAttn(Ap,As).

Table 9: Comparison among DEFT and concurrent works in single-context large-batch sampling scenarios,
including Chunk-Attention (Ye et al., 2024), Hygragen (Juravsky et al., 2024) and Bifurcated-Attention (Athi-
waratkun et al., 2024). More ⋆ means more balanced workloads after tree split, which also shows how insensitive
the acceleration is to the tree topology.

Method Chunk-Attention Hygragen Bifurcated-Attention DEFT-Node DEFT-Node-Chunk DEFT-Flatten

IO-aware levels 2 (depth ≤ 1) 2 (depth ≤ 1) 2 (depth ≤ 1) all (every depth) all (every depth) all (every depth)
Tree KV split granularity by node first, then by block by tree depth by tree depth by tree node by tree node, then by block flatten tree, then by block

Load-balanced level ⋆ ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆
Goal metrics throughput throughput latency latency latency latency

Comparison of differences. The existing works of single-context large-batch sampling are not
hardware-efficient for general tree-based decoding for two reasons, as shown in Table 9:
• They are designed for decoding trees with only two levels—prefixes at the root and suffixes at

depth 1. For decoding trees with multiple levels of prefixes, their algorithm can only reduce the
IO of the prompt at the root of the tree. However, in scenarios such as multi-step reasoning (Yao
et al., 2023; Besta et al., 2023; Hao et al., 2023), the token length of non-root prefixes can also be
very long (e.g., thousands of tokens), and their KV cache’s IO is not reused. DEFT can reuse KV
IO of all non-leaf prefixes in a general decoding tree, providing greater acceleration potential.

• They have not addressed the unbalanced workload problem in tree-based decoding. Nodes in the
decoding tree can vary significantly, making it crucial to split the tree and group QKV in a way
that ensures balanced calculations for each QKV group. Simply dividing based on depth alone is
insufficient. For example, in speculative decoding, the prefix might contain thousands of tokens,
while each layer only processes a few dozen tokens (Cai et al., 2024; Miao et al., 2023).

A.4 DISCUSSION OF TECHNIQUES IN EFFICIENT ATTENTION ALGORITHM DESIGN

Table 10: Technique list of DEFT. What we propose is in red. The details of the first four techniques are in
Section 3.3, while the details of the following techniques are discussed in this chapter.

Technique Goal

KV-Guided Grouping High utilization of GPU and minimal KV cache IO between HBM and shared memory.
Flattened Tree KV Splitting Balanced attention calculation for high computation efficiency.

Bit Causal Mask (Miao et al., 2023) Record causal information of tokens in the decoding tree with little IO cost.

Kernel Fusion (Dao et al., 2022; 2023) Reduce partial results IO (e.g. QKT , Mask M , and Softmax, etc).
Tiling (Dao et al., 2022; 2023) Enable attention calculation within limited size of GPU’s shared memory.

Tree-topology Aware Global Reduction To get the correct tree attention of the entire decoding tree.

In this subsection, we summarize and discuss the common techniques in existing designs of efficient
attention algorithms and kernels : (1) Kernel Fusion with Tiling strategy (Dao et al., 2022; Hong
et al., 2023; Miao et al., 2023); (2) Tree-topology Aware Causal Mask (Miao et al., 2023; Cai et al.,
2024); (3) KV Split with Global Reduction(Hong et al., 2023). Then we explain the details of design
in DEFT Attention Kernel, where the techniques are in Table 10.
Kernel Fusion is a common technique of IO reduction: if multiple operations are performed on the
same input, it is more efficient to load the input once from HBM rather than loading it multiple

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Q1
KV0

KV1

KV2

Tree Topo

Q2

Notes
DCM

DCM= M

M

Q1

Q2

KV1 KV2KV0

Masked:M

SMiLoad Gi

Dense
causal mask

G0

Tree Attention-Medusa kernel
def TreeAttnMedusa (Q,K,V,DCM):

S=Q@K^T

O=P@V

Global
Memory
(HBM)

Compute in
SMs

(with shared
memory)

Load Q, K in
QKV Groups

Write S

Load S, DCM

Write P

Load P,V

Write O

P=Softmax(Ms)

S'=S/Sc

Sc Scale
factor

Load Sc, S

Write S'

Ms=S+DCM

Load Ms

Write Ms

GEMM to
tile Q and

KV
tensor

GmGi... ...

block Q=mxk
block KV=kxn

Figure 8: Operations of Tree Attention-Medusa (Cai et al., 2024). No Kernel Fusion or Tiling strategy is applied,
which introduces significant IO of partial results like QK⊤, DCM, and Softmax between GPU global memory
and on-chip shared memory.

times for each operation; Similarly, the same principle applies when transferring output from shared
memory to HBM. To fuse all the attention operations into one GPU kernel with the limited size of
shared memory, we further utilize the commonly employed Tiling strategy (Dao et al., 2022; 2023):
split queries and KV cache within each QKV group to small blocks to prevent materialization of
attention matrix in HBM by computing attention within the limited size of shared memory, then
incrementally performing the softmax reduction as the formulation in Equation 1 to reconstruct the
attention.
Remark A.1 (Importance of tiling and fused kernel during ATTENTION CALCULATION PHASE).
Methods in this phase can be roughly divided into two categories: (1) without tiling and kernel fusion:
Tree Attention in Medusa (Cai et al., 2024), which introduces significant IO operations for partial
results (i.e.. QK⊤ and Softmax), as shown in Figure 8; (2) with tiling and a fused kernel: Flash
Decoding (Dao et al., 2023), Tree Attention in SpecInfer (Miao et al., 2023) and our DEFT.

KV0

Q1

Q2

=

KV1Q1

Q2

=

= KV2

G0

G1

G2

Stage 1: calculate partial attention
For i=0:2:
1) load QKV Group Gi in SMi;
2) PAi,LSEi=FlashAttn(Gi);
3) Output PAi,LSEiGlobal

Memory
(HBM)

Compute in
SMs

(with shared
memory)

Load PA0-2,LSE0-2，
TreeTopo

Load G0，G1, G2

Q1
KV0

KV1

KV2

Write PAi,LSEi

Stage 2: global reduction
1) load PA0-2,LSE0-2 in SM3 ;
2) Attention =DeFT_reduction

(PA0-2,LSE0-2,TreeTopo)
3) Output Attention

Write Attention

Tree Topo

Q2

Notes
PAm-n={PAm,...PAn}
LSEm-n=
{LSEm,...,LSEn}

Figure 9: Overview of two stages in DEFT Attention Kernel (DEFT-Node for example, and DEFT-Flatten is
similar). Stage 1–calculate partial attentions. Based on the QKV grouping results after KV-Guided Grouping
Strategy with Tree Split as mentioned above, each QKV group (Gi) will be allocated to a thread block for
Flash Attention (Dao et al., 2022) calculation with common Kernel Fusion and Tiling strategy. Similar to
Flash-Decoding (Dao et al., 2023), we not only get partial attention (PAi) but also return “LogSumExp” (LSEi)
as a weight parameter for the next stage’s reduction. Stage 2–global reduction. Upon receiving PAi and LSEi

for each QKV group Gi, DEFT now performs a Tree-Topology-Aware Global Reduction (DeFT_reduction).
Guided by the tree topology among sequence nodes of KV in the decoding tree, DEFT logically remaps the
partial results of attention and LogSumExp to get the correct final attention for each query after reduction. The
decoding tree is the same as the one in the left of Figure 3. SMi means the streaming multiprocessor i in GPU.

The Tree-topology Aware Causal Mask (Causal Mask for short) is introduced in speculative decoding
works (Miao et al., 2023; Cai et al., 2024) to facilitate the calculation of attention for all queries within
a decoding tree using a single GPU kernel. It achieves this by recording the causal relationships among
queries and KV cache in the decoding tree. As depicted in Figure 6, while originally designed for
tree-based decoding with KV cache for a sequence of tokens and tree-structured queries, the Causal
Mask can also be adapted to tree decoding with tree-structured KV cache and parallel queries—a
configuration targeted by DEFT to enhance efficiency.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Remark A.2 (The effects of introducing a causal mask). Causal mask brings two parts of redundancy:
• Memory Access. Medusa (Cai et al., 2024) materializes the dense causal mask (DCM) in HBM

to record the causal information between nq tokens in queries and nkv tokens in the KV cache,
thereby introducing a significant IO cost for loading this nq × nkv-sized mask to shared memory.
SpecInfer (Miao et al., 2023) introduces a 64-bit integer as a bit causal mask (BCM) to record the
causal information among up to 64 tokens, which incurs minimal IO cost from HBM to shared
memory but is not suitable for decoding trees with more than 64 tokens. Details regarding the
design of the bit mask in SpecInfer are discussed in Appendix A.2.

• Computation. In addition to the computational cost of generating the causal mask itself, there is
an additional redundancy in computation: many of the matrix multiplication results of QK⊤ are
masked out and never utilized. Both Medusa and SpecInfer have this issue.

DEFT-Flatten in Appendix A.9 adopts a bit causal mask insipred by SpecInfer (Miao et al., 2023) to
minimize the IO of the causal mask. Details of the bit mask design are on the left of Figure 3.

Splitting is introduced to improve GPU utilization in sequence-based decoding (Hong et al., 2023),
which is necessary when the parallelism is limited by a small batch size for long-context scenarios.
Flash-Decoding splits long KV and group QKV based on Q first, then these groups will be allocated to
different streaming multi-processors (SMs) in the GPU to get partial attention via Flash Attention (Dao
et al., 2022).

(a) Left: Illustration of DEFT Attention Kernel with two stages. Right: Global reduction kernel called in DEFT
stage 2 illustrated in Figure 10b. QKV Groups G0,G1 and G2 are from DEFT QKV groups in Figure 3.

(b) Stage 2 of DEFT: Global Reduction (DEFT-Node for example). Based on tree topology in Figure 3, we
can group LogSumExp and Partial Attention based on Query, then we call the Global reduction kernel in the
right of Figure 10a to get the final attention.

Figure 10: Detailed attention operations of DEFT kernel (DEFT-Node for example, and DEFT-Flatten is
similar). Based on the same decoding tree in Figure 3.

To obtain the accurate final attention, partial attentions from QKV groups with identical queries need
to be grouped for Global Reduction.
Similarly, DEFT also splits the decoding tree to different QKV groups for balanced workloads of
SMs in the GPU, which is the Flattened Tree KV Splitting strategy we propose in Section 3.3, as
illustrated in the bottom right part of Figure 3. To obtain the correct tree attention, DEFT also requires

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

a global reduction. However, the global reduction in Flash-Decoding is for sequence-based decoding,
which cannot aware the tree-topology for global reduction in tree-based decoding. Therefore, we
propose Tree-Topology-Aware Global Reduction, as shown in the Figure 10b.
Based on the techniques mentioned above, we designed the DEFT Attention Kernel with two stages,
as shown in Figure 9, to execute the attention operations after the QKV Preparation Phase of
DEFT, which we elaborated on in Section 3.3. For more details on the DEFT Attention Kernel, see
Figure 10. The attention operations of DEFT-Flatten are omitted because they are very similar to
those of DEFT-Node, except for the usage of the bit causal mask for tree attention calculation.

A.5 ANALYSIS: IO COMPLEXITY OF DEFT

This section analyzes the IO complexity of DEFT, showing a significant reduction in HBM accesses
compared to existing attention algorithms. Note that it is non-trivial to summarize the IO cost of the
entire tree decoding process, thus we only compare IOs based on the decoding tree snapshot in a
single iteration.
Consider a decoding tree with the features outlined in Table 11, and we summarize the corresponding
IO breakdown in Table 12.

Table 11: Notations.

ln Number of leaf nodes in a decoding tree, which means how many queries
are in this decoding iteration.

Ni Total token length from the root node to leaf node i.

Ntree Total token length the entire tree.

#node Total number of nodes in entire tree.

ni The token length of node i.

dhead Head dimension of LLM.

sc Scale factor for scaled dot-product attention, typically denoted as
√
dhead.

Fs Shared factor of reusing prefixes in tree attention, which means to which
extent we can reduce IOs of KV cache: Fs = (

∑ln
i=1 Ni)/Ntree.

It can be observed that due to the lack of tree-topology awareness, sequence-based decoding methods,
such as naive attention and Flash-Decoding, incur Fs times more memory access overheads for KV
cache compared to DEFT-Node/Node-Chunk/Flatten and Tree Attention-Medusa (Cai et al., 2024).
However, Tree Attention-Medusa entails higher IO overheads for partial results like QK⊤ and
Softmax due to the lack of tiling and kernel fusion6. What’s more, a dense mask is introduced to
record the causal information of tokens in the tree, with significant IO costs, as shown in the left of
Figure 11.
When the number of leaf nodes/queries ln is sufficiently large, the IO cost of partial results might
become comparable to that of the KV cache. For instance, in the Llama models (Touvron et al.,
2023a;b), where dhead=128, with ln=29, the total IO cost of QKT , M , QK⊤

sc
, M + QK⊤

sc
, and

Softmax matches that of the KV cache.

Remark A.3 (KV IO in SpecInfer). Though similar to DEFT, SpecInfer (Miao et al., 2023) also
employs a fused kernel for tree attention. As shown in Figure 11, SpecInfer adopts Q-Guided
Grouping. Therefore, no IO is sharing for KV cache among queries in SpecInfer: instead, each query
will load the entire KV cache of the tree independently, bringing significant IOs of the KV cache as in
Table 12.

Remark A.4 (IO in Radix Attention). Radix Attention (Zheng et al., 2023) is essentially an implemen-
tation of Flash-Decoding (Dao et al., 2023) utilizing paged and tree-structured memory management.
As a result, the IO behavior is identical to that of Flash-Decoding, as shown in Table 12.

6Note that QKT , QK⊤

sc
, M + QK⊤

sc
and Softmax will load and write, so the IO cost contains a round-trip

of memory access between HBM and shared memory, as shown in Figure 8.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Tree Attention-MedusaGi

DCM:

Qbi

Tree Attention-Medusa

KVbi
Qa

G0 KV1 KV2

Tree Attention-SpecInfer

Qb

Q-BCM:

KV0

KV1 KV2KV0

1 1 0

1 0 1

for Qa

for Qb

Tree Attention-MedusaG0

DCM:

Qa

Qb

Vanilla Tree Attention

KV1 KV2KV0

Masked:M

GEMM (tile the Q and KV tensor)

M

M

Qa

Qb

KV0 KV1 KV2

Q-Guided Grouping

KV-
Guided
Grouping

Q-Guided Grouping

Q-BCM:

G1

e.g., tile Q to block with size mxk
tile KV to block with size kxn

m

n

n

k

m

k

Figure 11: (Supplementary to Figure 3) QKV partitioning of Tree Attention (Cai et al., 2024; Miao et al.,
2023) and memory access. Tree Attention-Medusa (Cai et al., 2024) partitions QKV by General Matrix
Multiply(GEMM) in PyTorch. Tree Attention-SpecInfer (Miao et al., 2023) adopts Q-Guided Grouping. Q-
BCM is the Q-Guided bit causal mask for SpecInfer, where each bit represents the causal relationship between
a query and a segment of tokens in the KV cache. For example,Q-BCM for Qa is "110" which means the first
two segments of KV cache KV0 and KV1 is valid for Qa’s attention. The Qi and Kj in the figure are the same
as the ones in Figure 3.

Table 12: IO complexity breakdown for various methods. O(1) denotes the IO cost for a single data in the
tensor across all layers and heads, which is equivalent to #heads ∗#layer ∗ dtype_size. The best among all
methods in the table is in red, while the (potential) worst is in blue. Query IO is omitted as it is O(klndhead)
for all methods. Here, k is the number of QKV groups: for DEFT-Node k = #node;for DEFT-Node-Chunk
k =

∑#node
i=1 ceil(ni/bs), which is the node number after chunk wise; for DEFT-Flatten, k = Ntree/bs,

where bs is the block size of KV; for others, k = 1. M in Tree Attention-M is short for Medusa (Cai et al., 2024),
while S in Tree Attention-S is short for SpecInfer (Miao et al., 2023).

Method KV cache QK⊤ QK⊤

sc
Mask(M) M + QK⊤

sc
Softmax

Naive Attention O(2dhead
∑ln

i=1 Ni) O(2
∑ln

i=1 Ni) O(2
∑ln

i=1 Ni) 0 0 O(2
∑ln

i=1 Ni)

Flash-Decoding O(2dhead
∑ln

i=1 Ni) 0 0 0 0 0

Radix-Attention O(2dhead
∑ln

i=1 Ni) 0 0 0 0 0

Tree Attention-M O(2dheadNtree) O(2lnNtree) O(2lnNtree) O(lnNtree) O(2lnNtree) O(2lnNtree)

Tree Attention-S O(2dheadNtreeln) 0 0 O(lnNtree/64) 0 0

DEFT-Node O(2dheadNtree) 0 0 0 0 0

DEFT-Node-Chunk O(2dheadNtree) 0 0 0 0 0

DEFT-Flatten O(2dheadNtree) 0 0 O(Ntree) 0 0

Remark A.5 (Causal mask IO). DEFT-Node splits the decoding tree by nodes without the need
for causal masks. For more balanced calculations among SMs in GPUs, DEFT-Flatten evenly splits
the decoding tree into blocks, with minimal IO cost for masks inspired by SpecInfer. This design
reduces the IO overhead of masks significantly compared to the dense mask design in Medusa, as
shown in Table 12.

A.6 DISCUSSION OF WORKLOADS GENERATION

The rationality of workload settings. To validate DEFT’s acceleration across various decoding
tree topologies, we compiled decoding trees from real tasks, covering the following three aspects:
• Few-shot prompting: This involves a two-level tree with a prompt prefix and multiple branches for

suffix generation. As a case study, we fixed the prompt length at approximately 4000 tokens and
varied the number of branches.

• Multi-step reasoning (Yao et al., 2023; Hao et al., 2023; Besta et al., 2023): We recorded the
tree shapes, prompts, and lengths of all thoughts from real reasoning task interactions (Besta
et al., 2023), using these as guidance for tree decoding to validate DEFT’s acceleration in thought

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 12: The detailed procedure of reconstructing tree templates for multi-step reasoning. (Left)
Reconstructing reasoning trees from practical reasoning records as outlined in (Besta et al., 2023) involves
capturing the following aspects: (1) the structure of trees, characterized by their depth d and width w; (2) the
token length associated with each thought; and (3) the best thought at each depth along with its corresponding
score. For the task of document merging, the tree depth is set to d = 3, with a width of w = 10 at each depth.
For sorting 128 numbers, the depth is reduced to d = 10, while maintaining the same width of w = 10. See
details of tree topology for other multi-step reasoning tasks in Table 13. (Right) Utilizing the extracted thought
information from Left, we can generate tree templates for decoding, encompassing branch records and prune
records. These records are instrumental in guiding the tree decoding process to produce decoding trees that
faithfully replicate the structure of the tree-of-thoughts.

generation of reasoning (the thought evaluation phase follows a similar pattern). See details of
generation in Figure 12.

• Speculative decoding (Cai et al., 2024; Miao et al., 2023): We used the token tree topology from
Medusa (Cai et al., 2024) and recorded real interaction data with APPS (Hendrycks et al., 2021)
as prompt dataset, including the length of accepted tokens at each step. This served as guidance
to simulate the bottleneck of speculative decoding—the attention computation during the token
verification phase.

Table 13: Details of generated workloads. For multi-step reasoning, we include these 4 tasks from Besta et al.
(2023): (1) Sorting 128 numbers (sorting in short); (2) Document merging (document in short); (3) Keyword
counting (keyword in short); (4) Set intersection (set in short). d, and w means depth and width of the tree,
respectively. t means the token tree size for speculative decoding, where the tree topology is from Medusa (Cai
et al., 2024).

Task Tree Shape Decoding Tree Source Records Contents

Multi-step reasoning

sorting: d = 10, w = 10
ToT-BFS in

Besta et al. (2023)

Prompt (Besta et al., 2023),
tree shape, thought size,

branch records,prune records

document: d = 3, w = 10
keyword:d = 5, w = 10

set:d = 8, w = 10

Few-shot prompting d = 1, w = 10, 20, 30 – –

Speculative decoding t = 32, 64, 128, 256 Medusa (Cai et al., 2024)
APPS (Hendrycks et al., 2021)

Prompt, token tree shape,
accepted token length per step

The rationality of our experiment paradigm. Our experimental paradigm involves: first, obtaining
decoding trees from real tree-based decoding tasks, and second, replicating these decoding trees
exactly within the same framework by enforcing LLM inference, to investigate the impact of attention
acceleration on wall clock time performance. This paradigm has two advantages:
• We can utilize decoding trees from real tasks as a benchmark within a unified system, enabling

fair comparison of different attention algorithms in terms of wall-clock time performance. This
comparison is possible despite the algorithms being based on distinct systems, such as variations
in memory management implementations for their kernels.

• We consider both the unique characteristics of tasks with diverse tree structures and the broader
applicability of general tree-based decoding. See details of generated workloads for other multi-
step reasoning tasks in Table 13.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.7 ADDITIONAL RESULTS

Microbench of DEFT-Node for GPU utilization. We test the DEFT-Node and DEFT-Flatten
on a speculative decoding with 64 queries and a prompt with 4k tokens. For DEFT-Node, the QKV
partitioning is unbalanced as the node of the prompt is much longer than others (1 token for each
query). As shown in Table 14, the metrics of GPU utilization are measured by NVIDIA Nsight
Compute (NVIDIA, 2024). We can see DEFT-Flatten is better than DEFT-Node in both memory
utilization (Memory Throughput Ratio) and calculation utilization (Compute Throughput Ratio and
Low Utilization Time Ratio).

Table 14: [GPU Utilization Microbenchmark] Latency of a single layer of Attention (in µs), SM Compute
Throughput Ratio, Memory Throughput Ratio, and Low Utilization Ratio for DEFT on an NVIDIA A100
(80GB) using the LLama3-8B model (GQA). The workload is speculative decoding with 64 queries and a
prompt with 4k tokens. The Compute Throughput Ratio refers to the utilization of the Streaming Multiprocessors
(SMs) in the GPU. The Memory Throughput Ratio represents the ratio between actual memory throughput and
maximum bandwidth. The Low Utilization Time Ratio is defined as the proportion of time when the Compute
Throughput Ratio falls below 5%.

Method Attention Latency Compute Throughout Ratio Memory Throughout Ratio Low Utilization Time Ratio

DEFT-Node 961.38 7.60% 17.39% 82.35%
DEFT-Flatten 226.82 21.19% 51.91% 0.00%

Attention latency and IOs with breakdowns. The details of attention latency and IO comparison
among DEFT and baselines are in Table 5 and Table 17, respectively.

Table 15: Inference accuracy of DEFT in attention score and perplexity (PPL). PPL is calculated after 400
iterations of decoding. Vanilla Attention is the implementation from Huggingface Transformers.

Relative Attention Error (↓) Perplexity (PPL) (↓) Relative PPL Error (↓)

Attention Method Attention Variations

MHA GQA MHA GQA MHA GQA

Vanilla Attention - - 1.000 1.002 - -
Radix Attention 0.545% 0.540% 1.000 1.002 1× 10−6 1× 10−6

DEFT-Node-Chunk 0.403% 0.403% 1.000 1.002 1× 10−6 4× 10−6

DEFT-Flatten 0.407% 0.404% 1.000 1.002 1× 10−6 9× 10−7

Inference accuracy of DEFT-Node-Chunk and DEFT-Flatten. In Section 3.1, equation 1 shows
DEFT (including DEFT-Node, DEFT-Node-Chunk and DEFT-Flatten) and vanilla attention are
mathematically equivalent, which means DEFT is accurate. As demonstrated in Table 15, the DEFT
attention scores may slightly differ (around 0.4% relative error) compared to vanilla attention in
Huggingface Transformers, but the generated tokens will hardly be different as well as PPL (1e-6
relative PPL error in the right part of Table 15). This discrepancy arises because floating-point
operations on GPUs do not adhere to the associative law, even when two calculation processes are
mathematically equivalent. Similar issues occur in other methods like radix attention and Flash-
Decoding that introduce online Softmax and reduction as well, resulting in approximately 0.5%
relative attention score errors.

Dynamic behaviors: per iteration latency. We visualize the per-iteration latency of DEFT-Node
and DEFT-Flatten for a tree in the multi-step reasoning task–sorting in Figure 13, as the size and
topology of the decoding tree change with each iteration. This comparison highlights the sensitivity of
these two split strategies to changes in tree size. We observe a strong positive correlation between the
ratio of per-iteration latency of DEFT-Node and DEFT-Flatten (Speedup Ratio) and the dispersion of
tree node sizes. This correlation arises because the performance of DEFT-Flatten remains relatively
stable, whereas the performance of DEFT-Node is more strongly influenced by the topology of the
tree. DEFT-Flatten provides a stable speedup of approximately 1.75× compared to DEFT-Node.

Ablation: The influence of width in decoding trees. We observe that the effectiveness of attention
speedup varies with different decoding tree topologies. Considering the simplest tree structure, a
prompt with several suffixes—given a prompt that is not very short, one of the most important factors
for speedup is the extent to which we can reuse its KV cache IO. This can be measured by the width
of the tree. More specifically, it is determined by the number of queries per iteration. Therefore, we
fix the prompt length at 4000 and vary the width of the decoding tree in few-shot prompting (which

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 16: Average attention latency (in seconds) for tree-based decoding and its impact on end-to-end
latency. Here, b represents the tree width, and t denotes the token tree size (i.e., the number of tree-structured
queries). Attention Speedup over the best attention refers to the speedup of DEFT-Flatten compared to the
best baseline (typically Tree Attention-Medusa) in attention calculation. Speedup over the best wall-clock time
refers to the speedup of DEFT-Flatten compared to the best best wall-clock-latency baseline (Radix Attention).
Attention Speedup over the best wall-clock indicates the attention speedup of DEFT-Flatten over the best
wall-clock-latency baseline (Radix Attention). ⋆ denotes out-of-memory (OOM) errors for the A100 80GB GPU.
For more details on end-to-end latency, see Table 5.

Memory Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Unpaged Flash-Decoding 43.49 66.10 110.09 160.67 105.80 12.14 19.96 340.09 692.88 ⋆ ⋆
Tree Attention-Medusa 3.93 7.51 9.57 38.64 29.10 2.62 3.96 18.05 26.31 41.10 68.28

Paged
Radix Attention 5.99 7.30 9.96 39.37 24.69 3.11 5.13 32.60 54.57 109.39 212.29
DEFT-Flatten . 3.47 4.07 5.87 28.41 21.45 2.57 3.83 12.68 18.18 29.97 55.58

Attention Speedup over the best attention. 1.13× 1.63× 1.70× 1.36× 1.15× 1.02× 1.03× 1.42× 1.45× 1.37× 1.22×
Attention Speedup over the best wall-clock 1.73× 1.63× 1.70× 1.39× 1.15× 1.21× 1.34× 2.57× 3.00× 3.64× 3.82×

Speedup over the best wall-clock 1.24× 1.28× 1.33× 1.10× 1.03× 1.03× 1.05× 1.43× 1.70× 2.22× 2.52×

Table 17: Average end-to-end IO (TB). Data format is Left/Right: (Left) KV Cache IO; (Right) partial results
IO, including QKT ,QK⊤/sc, Mask M , M + QK⊤/sc and Softmax. b means tree width. t denotes the
token tree size (i.e., the number of tree-structured queries).⋆ means out of memory for A100 80GB.

Method Few-shot Prompting Multi-Step Reasoning Speculative Decoding

b=20 b=30 b=50 Sorting Document Keyword Set t=32 t=64 t=128 t=256

Flash-Decoding 17.62/0.00 26.43/0.00 44.05/0.00 59.96/0.00 39.74/0.00 4.68/0.00 7.01/0.00 128.72/0.00 255.16/0.00 ⋆ ⋆
Tree Attention-Medusa 1.68/1.05 2.10/1.98 2.94/4.61 12.40/3.69 10.57/3.24 0.58/0.18 1.04/0.27 4.02/4.03 4.15/8.33 4.18/16.77 4.32/34.70

Radix Attention 17.62/0.00 26.43/0.00 44.05/0.00 59.96/0.00 39.74/0.00 4.68/0.00 7.01/0.00 131.45/0.00 256.79/0.00 522.05/0.00 1044.10/0.00
DEFT-Flatten 1.68/0.00 2.10/0.00 2.94/0.00 12.40/0.01 10.57/0.01 0.58/0.00 1.04/0.00 4.10/0.00 4.11/0.00 4.16/0.00 4.35/0.00

IO reduction of DEFT-Flatten(%) 90.47/100.00 92.1/100.00 93.33/100.00 79.32/99.73 73.40/99.70 87.61/100.00 85.16/100.00 96.88/100.00 98.40/100.00 99.20100.00 99.58/100.00

Figure 13: Comparison of split strategies DEFT-Node and DEFT-Flatten in sorting task. Speedup ratio refers to
the ratio between the per iteration latency of DEFT-Node and DEFT-Flatten. Tree Node Len std represents the
standard deviation of the tree node lengths for each iteration.

also indicates how many requests share the same prompt). Then, as shown in Figure 14, we evaluate
DEFT-Flatten with the best baseline in attention calculation– Tree Attention-Medusa (Cai et al., 2024)
(Medusa-Attn in the figure), as well as the best baseline in wall-clock time– Radix Attention (Zheng
et al., 2023), for the per-iteration latency over time. We have the following observations:
1. When the tree width is 10, the attention overhead of DEFT-Flatten is nearly the same as Tree

Attention-Medusa because the IO overhead of the dense causal mask (DCM) is small compared to
that of the KV cache, but it is still 2× faster in attention latency than Radix Attention thanks to the
KV IO reuse.

2. As the tree width increases, the attention computation overhead of Tree Attention-Medusa grows
faster because the size of the DCM is directly related to the tree width. A larger tree width means
the IO of the DCM grows rapidly.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

3. Since the tree topology consists of a fixed prefix with several suffixes, a larger tree width allows
the prompt prefix’s KV cache to be reused more frequently during IO. This leads to a more
significant end-to-end speedup—1.24× with a width of w = 20, and 1.33× with a width of
w = 50—compared to Radix Attention.

4. As iterations progress, the length of the suffixes gradually approaches the length of the prefix,
leading to a decrease in the speedup of DEFT-Flatten compared with Radix Attention.

(a) Tree width is 10. (b) Tree width is 20.

(c) Tree width is 30.. (d) Tree width is 50.
Figure 14: Per iteration latency for few-shot prompting tasks with different tree width. e2e means end-to-end
result, while Attn means only the attention overhead.

Ablation: The influence of chunk size in KV splitting. In the implementation of DEFT-Flatten
and DEFT-Node-Chunk, we selected a regular size (128) in General matrix multiply (GEMM) as the
block/chunk size of KV cache during the attention calculation. We added an ablation study of chunk
size influence on speedup, as shown in Figure 15. The chunk size selection is a trade-off between
IO redundancy and threadblock scheduling: a larger chunk size means less redundancy of Query
IO but may cause potential idle SMs of GPUs due to fewer threadblocks during GPU scheduling.
Conclusions of Figure 15: (1) The best chunk size is influenced by both sequence length and query
numbers (batch size); (2) DeFT-Flatten can outperform DeFT-Node-Chunk in all chunk sizes we test.

Figure 15: Ablation study for KV chunk size with DEFT. t is the token tree size in speculative decoding.

Ablation: The influence of both model size and prompt length. In Table 6 and Table 8 of Section
4.4, we show the influence of prompt length and model size, individually. Here, we present the
ablation study of both model size and prompt length for sorting task, as shown in Table 18. With

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

a longer prompt, DeFT shows more pronounced speedup in the same model, since the attention
overhead is proportional to the token count in the decoding tree, while the FFN overhead remains
nearly constant for the same model. For a fixed prompt length, with the larger model—Codellama-
34B, DEFT-Flatten achieves slightly reduced but still significant (up to 1.28x) end-to-end speedup.
The performance reduction is attributed to a lower A/F-LR, as the FFN overhead is greater in larger
models.

Table 18: [Ablation Study of Model Size and Prompt Length] Comparison of wall-clock time speedup
and Attention/FFN latency ratio (A/F-LR) between DEFT and Radix Attention for Codellama-34B and
Codellama-7B across varying prompt lengths in the sorting reasoning task. Radix Attention is the best
baseline in end-to-end latency.

Metric Model Size Prompt Length=1k Prompt Length=5k Prompt Length=8k

Wall Clock Time Speedup 7B 1.09× 1.37× 1.53×
34B 1.03× 1.18× 1.28×

Radix Attention’s A/F-LR 7B 1.12 1.89 2.50
34B 0.48 0.86 1.16

DEFT-Flatten’s A/F-LR 7B 0.89 1.09 1.25
34B 0.42 0.57 0.67

Ablation: Different GPUs. See Table 19. DEFT-Flatten can have obvious speedup in RTX 4090
as well because the memory hierarchy of GPUs is nearly the same— large but slow global memory
and small but fast shared memory.

Table 19: [Different GPUs] Speedup of DEFT in average attention latency (second) with NVIDIA RTX
4090 (24GB) for LLama3-8B model(GQA). Radix Attention is the best baseline in end-to-end latency.

Memory Method Few-shot Prompting-b=30 Multi-Step Reasoning-Sorting Speculative Decoding-t=64

Paged
Radix Attention 4.26 26.36 33.63

DEFT-Node-Chunk 3.07 24.61 15.39
DEFT-Flatten 2.95 23.86 14.04

Attention Speedup over the best wall-clock 1.44× 1.10× 2.40×

Ablation: Different Model Architectures. See Table 20 and Table 21. DEFT-Flatten can both
accelerate the attention computation of LLM models with different architectures (MHA and GQA)
significantly.

Table 20: [Different Model Architectures(GQA)] Speedup of DEFT in average attention latency (second)
with NVIDIA A100(80GB) for Codellama-34B model(GQA). Radix Attention is the best baseline in end-to-
end latency.

Memory Method Few-shot Prompting-b=30 Multi-Step Reasoning-Sorting Speculative Decoding-t=64

Paged
Radix Attention 16.85 95.14 164.33

DEFT-Node-Chunk 16.15 103.15 81.74
DEFT-Flatten 9.62 84.30 48.76

Attention Speedup over the best wall-clock 1.75× 1.13 × 3.37×

Table 21: [Different Model Architectures(MHA)] Speedup of DEFT in average attention latency (second)
with NVIDIA A100(80GB) for Codellama-7B model(MHA). Radix Attention is the best baseline in end-to-end
latency.

Memory Method Few-shot Prompting-b=30 Multi-Step Reasoning-Sorting Speculative Decoding-t=64

Paged
Radix Attention 12.39 53.96 96.55

DEFT-Node-Chunk 10.12 54.20 48.96
DEFT-Flatten 8.24 43.91 36.48

Attention Speedup over the best wall-clock 1.50× 1.23× 2.65×

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A.8 DEFT-NODE ALGORITHM

Algorithm 1 DEFT-Node Algorithm-Phase 1: QKV Preparation.

Input: query Q ∈ R(bq,d), Key cache list KL = (K0, ...KN−1), Value cache list V L =
(V0, ...VN−1) for each sequence node in the tree, where N is the total number of sequences
in a tree, and Tree T with its topology information.
for each q in Q with its global index idx do

/*Get KV indices of all prefixes’ for a query.*/
QMapKV [idx]=GetPrefixKVIndices(q,KL, V L, T)

end for
for each seq’s KV cache Ki, Vi in KL, V L with its KV indice i do

/*Group each sequence’s KV with all queries that share it.*/
Qi= GroupQueryToKV(Q,Ki, Vi, T) ∈ Rbi,d ⊂ Q
KVMapQ[i] = Qi

end for
Return QMapKV, KVMapQ

DEFT-Node has two phases-Phase 1-QKV Preparation and Phase 2-Attention Calculation.
Phase 2-Attention Calculation of DEFT has two stages.
1. Stage 1: Calculate Partial Attentions. We will apply Flash Attention of all QKV groups obtained

after Phase 1-QKV Preparation of DEFT, to get partial attention and LogSumExp.
2. Stage 2: Global Reduction. We will remap partial attention and LogSumExp based on each

query, and get final attention based on global reduction similar to Flash-Decoding (Dao et al.,
2023).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Algorithm 2 DEFT-Node Algorithm-Phase 2: Attention Calculation.

Input: query Q ∈ R(bq,d), Key cache list KL = (K0, ...KN−1), Value cache list V L =
(V0, ...VN−1) for each sequence node in the tree, where N is the total number of sequences in a
tree, and Tree T with its topology information. QKV group information QMapKV , KVMapQ
from QKV Preparation Phase.
for each q in Q with its global index idx do

/*Allocate to store LogSumExp of Q@KT grouped by query.*/
LogSumExp[idx] = {}
/*Allocate to store partial results of SoftMax(Q@KT)V for each query.*/
O[idx] = {}

end for
/*Allocate space for output after reduction.*/
FO = (0)bq×d ∈ R(bq,d)

for each seq’s KV cache Ki, Vi ∈ R(bkv,d), R(bkv,d) in KL, V L with its KV indice i do
Unroll for loop to SMs
Qi= KVMapQ[i] ∈ R(bi,d)

/*Get partial attention oi for each QKV group, LogSumExp lsei of Q@KT in row for
reduction.*/
oi, lsei = FlashAttention(Qi,Ki, Vi)
∈ R(bi,d), Rbi

/*Map the partial results back to each query for reduction.*/
for each query q in Qi with its group index gp_idx and global index idx in Q do

if i ∈ QMapKV [idx] then
LogSumExp[idx].append(lsei[gp_idx])

end if
end for

end for
for each q in Q with its global index idx do

Unroll for loop to SMs
if len(O[idx])==len(QMapKV [idx]) then

/*Global reduction after collecting all partial results from QKV groups that contains
q.*/
LSEcat= CatTensor(LogSumExp[idx])
LSEmax=RowMax(LSEcat)
Mid_L = 0,Mid_O = 0(1,d)

for each lsej in LogSumExp[idx] do
new_exp = elsej−LSEmax

Mid_L = Mid_L+ new_exp
end for
for each lsej , oj in LogSumExp[idx], O[idx] do
new_exp = elsej−LSEmax

Mid_O = Mid_O + new_exp@oj/Mid_L
end for
FO[idx] = Mid_O

end if
end for
Return FO

A.9 DEFT-FLATTEN ALGORITHM

The algorithm (noted as DEFT-Node) in Appendix A.8 adopts a node-granularity split strategy,
which is quite simple. However, when the token lengths of different nodes in a decoding tree are very
unbalanced, it might introduce inefficient calculation due to the unbalanced workload in on-chip SMs
of GPUs.
Therefore, we can split the decoding tree in a more balanced way– in subtree-granularity. We show
the DEFT-Flatten algorithm as follows, which also consists of two stages similar to DEFT-Node.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Algorithm 3 DEFT-Flatten Algorithm-Phase 1: QKV Preparation.

Input: query Q ∈ R(bq,d), Key cache list KL = (K0, ...KN−1), Value cache list V L =
(V0, ...VN−1) for each sequence node in the tree, where N is the total number of sequences
in a tree, and Tree T with its topology information. Subtree size St, which means each subtree
after tiling contains at most St tokens.
/*Evenly slice/blockwise the Tree KV cache (with nT tokens in the tree) to subtrees.*/
SubInfo, KSub, VSub =Slice(KL, VL, St, T)
/*Notes: (1) subtree number m = Ceil(nT /St);
(2) subtrees’ KV cache KSub = (Kb0, ...,Kbm−1), V Sub = (V b0, ..., V bm−1);
(3) subtree information SubInfo = (Sb0, ..., Sbm−1), where each subtree i has Sbi =
(ofs0, ...ofsnbi

−1) to record the offset of each node in the subtree KV cache, with nbi as the
total number of nodes in subtree i. */
for each subtree’s KV cache Kbi, V bi in KSub, V Sub with its subtree ID i do

/*Group each subtree’s KV with all queries that share it.*/
Qi= GroupQueryToKV(Q,Kbi, V bi, T) ∈ Rbi,d ⊂ Q
KVMapQ[i] = Qi

for each query q in Qi with a global index idx in Q do
QMapKV [idx].append(i)

end for
/*Add a causal mask as different nodes in a subtree could be shared by different queries.*/
CausalMask[i] = GetBitMask(Qi,Kbi, V bi, T)=(CM0, ...CMnbi

−1)
where nbi is the total number of nodes in the subtree, and CMi is a 64-bit int bit mask for node
i.
/*E.g, 100....00 with 1 in bit 0, means the Qi[0] does not share KV cache of node i in the
subtree.*/

end for
Return QMapKV, KVMapQ, CausalMask,SubInfo

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Algorithm 4 DEFT-Flatten Algorithm-Phase 2: Attention Calculation.

Input: query Q ∈ R(bq,d), Key cache list in subtree-granularity KSub=(Kb0,...,Kbm−1), Value
cache list in subtree VSub = (V b0,...,V bm−1 for m subtrees after tiling based on Tree T
with its topology information. QKV group information QMapKV , KVMapQ, causal mask
CausalMask and subtree information SubInfo from QKV Preparation Phase.
for each q in Q with its global index idx do

/*Allocate to store LogSumExp of Q@KT grouped by query.*/
LogSumExp[idx] = {}
/*Allocate to store partial results of SoftMax(Q@KT)V for each query.*/
O[idx] = {}

end for
/*Allocate space for output after reduction.*/
FO = (0)bq×d ∈ R(bq,d)

for each subtree’s KV cache Kbi, V bi ∈ R(bkv,d), R(bkv,d) in KSub, V Sub with subtree ID i do
Unroll for loop to SMs
Qi= KVMapQ[i] ∈ R(bi,d)

/*Reconstruct mask for attention calculation based on CausalMask and SubInfo*/
bitmask = CausalMask[i] ∈ Rnbi ,where nbi is the total number of nodes for subtree i.
SubOfst = SubInfo[i] ∈ Rnbi

mask = ReconstructMask(bitmask, SubOfst) ∈ R(bi,bkv)

/*Get partial attention oi for each QKV group, LogSumExp lsei of Q@KT in row for
reduction.*/
oi, lsei = FlashAttention(Qi,Kbi, V bi,mask)
∈ R(bi,d), Rbi

/*Map the partial results back to each query for reduction.*/
for each query q in Qi with its group index gp_idx and global index idx in Q do

if i ∈ QMapKV [idx] then
LogSumExp[idx].append(lsei[gp_idx])

end if
end for

end for
for each q in Q with its global index idx do

Unroll for loop to SMs
if len(O[idx])==len(QMapKV [idx]) then

/*Global reduction after collecting all partial results from QKV groups that contains
q.*/
LSEcat= CatTensor(LogSumExp[idx])
LSEmax=RowMax(LSEcat)
Mid_L = 0,Mid_O = 0(1,d)

for each lsej in LogSumExp[idx] do
new_exp = elsej−LSEmax

Mid_L = Mid_L+ new_exp
end for
for each lsej , oj in LogSumExp[idx], O[idx] do
new_exp = elsej−LSEmax

Mid_O = Mid_O + new_exp@oj/Mid_L
end for
FO[idx] = Mid_O

end if
end for
Return FO

30

	Appendix
	Components of System Support for DeFT
	Discussion of Tree-based Decoding
	Discussion of Concurrent Works
	Discussion of Techniques in Efficient Attention Algorithm Design
	Analysis: IO Complexity of DeFT
	Discussion of Workloads Generation
	Additional Results
	DeFT-Node Algorithm
	DeFT-Flatten Algorithm

