
KGCW2024 Challenge Report:
RDFProcessingToolkit
Claus Stadler, Simon Bin

Institute for Applied Informatics (InfAI), Leipzig

Abstract
This is the report of the participation of the RDFProcessingToolkit (RPT) in the KGCW2024 Challenge at
ESWC 2024. The RPT system processes RML specifications by translating them into a series of extended
SPARQL CONSTRUCT queries. The necessary SPARQL extensions are provided as plugins for the
Apache Jena framework. This year’s challenge comprises a performance and conformance track. For the
performance challenge, the same hardware was kindly provided by the workshop organizers in order
to facilitate comparability of measurements. For the performance track, we mainly adapted the setup
from our last year’s participation. W.r.t. the conformance track, we updated our system with support for
the rml-core module of the upcoming RML revision. We also report on the issues and shortcomings we
encountered as a base for future improvements.

Keywords
RML, SPARQL, RDF, Knowledge Graph, Big data, Semantic Query Optimisation, Apache Spark, Challenge

1. Introduction

This is the report of the participation of the RDFProcessingToolkit (RPT) in the KGCW2024
Challenge.1 RPT is command line toolkit that features several sub-commands for SPARQL-based
processing of RDF data. RPT builds upon the Apache Jena Semantic Web framework2 and thus
leverages its SPARQL engines and SPARQL extension systems. RPT supports the translation of
an RML document to a set of extended SPARQL queries which can be subsequently executed on
an appropriate engine. The SPARQL extensions that are necessary to execute RML in SPARQL
are all registered with Jena’s plugin system. The extensions can also be added as a standalone
module to any Jena-based project.3

Our own special purpose SPARQL engine is based on the Sansa framework.4 This engine
leverages Apache Spark5 to read supported sources ad-hoc in parallel and to parallelise SPARQL
operations, such as JOIN and DISTINCT. The Sansa engine is best used for extract-transform-
load (ETL) workloads, such as RML mapping execution. RPT/Sansa [1] refers to the use of RPT

KGCW’24: 5th International Workshop on Knowledge Graph Construction, May 27, 2024, Crete, GRE
$ cstadler@informatik.uni-leipzig.de (C. Stadler); sbin@informatik.uni-leipzig.de (S. Bin)
� 0000-0001-9948-6458 (C. Stadler)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://kg-construct.github.io/workshop/2024/challenge.html
2https://jena.apache.org/
3https://scaseco.github.io/jenax/jenax-arq-parent/jenax-arq-plugins-parent/README.html
4https://github.com/SANSA-Stack/SANSA-Stack
5https://spark.apache.org/

mailto:cstadler@informatik.uni-leipzig.de
mailto:sbin@informatik.uni-leipzig.de
https://orcid.org/0000-0001-9948-6458
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://kg-construct.github.io/workshop/2024/challenge.html
https://jena.apache.org/
https://scaseco.github.io/jenax/jenax-arq-parent/jenax-arq-plugins-parent/README.html
https://github.com/SANSA-Stack/SANSA-Stack
https://spark.apache.org/

with the Sansa engine. The challenge was divided into an Performance and an Conformance part.
The challenge description and output files were published on Zenodo [2].

The remainder of this report is structured as follows: In Section 2 we report on our setup
for participation in the performance challenge. In Section 3 we provide insights into how we
added support for the core module of the upcoming revised RML specification. We conclude
this report in Section 4.

2. Performance Track

In this section we report on our setup and results for the performance track. Overall, since our
last year’s participation, there were no major updates to our system that targeted performance.
However, we had a series of bug fixes and maintenance upgrades, the most significant one
being the upgrade of the code base to Jena 5. The tasks of the performance challenge were
also the same as least year’s. One notable addition was that the RML mapping files were also
provided in the upcoming RML revision but we did not evaluate against those. A significant
improvement over last year’s organization was that uniform hardware (virtual machines) was
kindly provided to all participants by the challenge organizers. This allowed evaluation of all
participating systems on a similar hardware, so that the results are expected to be much more
comparable than the year before. The specifications reported by the VM were: 4 virtual cores
(Intel(R) Xeon(R) Gold 6161 CPU), 136GB VMware virtual disk, 16 GiB RAM.

W.r.t. the benchmark tool we had to create a fork of the runner in order to deal with the
following issues:

• We needed to add support to allow for configuration of the working directory of the
docker container running our RPT tool

• We needed to make it possible to pass Java options to our docker container, especially for
setting the maximum heap memory (-Xmx)

• the benchmark tool failed to extract system information on SUSE Linux systems.

At the time of writing, the changes are tracked in our fork6 and there is an open pull request to
the benchmark tool.

We collected our recent as well as past results for RPT/Sansa in our evaluation results
repository.7 As last year, we converted XML to JSON as part of the benchmark tool’s process
pipeline, such that RPT/Sansa’s parallel JSON reader could be leveraged. Proper parallel ingestion
of XML data in RPT/Sansa is still a matter of future work.

The performance results for RPT/Sansa are consistent with those from last year, albeit the
execution times were generally higher due to the weaker hardware. Also, we incorrectly
allocated only 5 GB of heap memory to our Java process, although 16 GB of RAM would have
been available. However, it also shows that our system effectively leverages Apache Spark
in order to run with limited resources. A noteworthy finding is related to the GTFS Madrid
benchmark[3]: The amount of RAM and disk space were insufficient to process the GTFS1000

6https://github.com/AKSW/kg-construct-challenge-tool/tree/code-on-new
7https://github.com/AKSW/RdfProcessingToolkit-Resources/tree/main/2024-05-27-KGCW-at-ESWC

https://github.com/AKSW/kg-construct-challenge-tool/tree/code-on-new
https://github.com/AKSW/RdfProcessingToolkit-Resources/tree/main/2024-05-27-KGCW-at-ESWC

task without compression. We compared the performance of Spark’s built-in compression vs. a
compressed hard disk volume.

Commands to create and mount a compressed filesystem image
fallocate -l 60G ./filesystem.btrfs
mkfs.btrfs ./filesystem.btrfs
mount -o loop,compress=lzo ./filesystem.btrfs /compressed-fs

Spark's built-in compression enabled via system properties
JAVA_OPTS="-Dspark.hadoop.mapred.output.compress=true \

-Dspark.hadoop.mapred.output.compression.codec=org.apache.hadoop.io.compress.BZip2Codec" \
rpt sansa query converted-rml.rq --out-file data.nt.bz2

Filesystem compression turned out to be significantly faster: 4 155s vs 10 368s. The former
duration was obtained with a 5 GB heap memory limit, whereas the latter was obtained with a
limit of 14 GB.

3. Conformance Track

The challenge of the conformance track is to establish conformance with the upcoming revised
RML specification.8 At the point of writing, the revision did not have a final official name, so
we refer to it as RML2 in the following.

• RML2 is now a model on its own and no longer an extension of R2RML. As a consequence,
most ontology elements now reside in the namespace http://w3id.org/rml/.

• The specification is now modular, with the modules for (a) the core (RML-Core), (b) sources
and targets (RML-IO), (c) containers and collections (RML-CC), (d) RDF-Star generation
(RML-Star), and (e) functions (RML-FNML). A further logical views module is being worked
on.

In this work, we only attempted to establish conformance with RML-Core. We integrated the
conformance test suite as unit tests using JUnit 9 and Testcontainers.10 One issue we encountered
was that the benchmark tool would download version 0.9.0 of the conformance test suite rather
than v1.0.0, which caused issues in running the PostgreSQL tests. As a remedy, we downloaded
the version 1.0.0 manually. This also has been fixed in the meantime. Furthermore, we were
not able to generate the results.zip for the test cases with the benchmark tool because it
would terminate abnormally. The reason has yet to be investigated. Out of the 238 test cases of
rm-core we were able to successfully process 236 of them. The failing tests cases were 9a-mysql
and 9b-mysql. These test cases include a join between an int and varchar column. RPT first
maps the MySQL types of the columns to xsd:int and xsd:string respectively, before executing
the join in SPARQL. Since these types are incompatible in SPARQL, the join fails. While the test
case is arguably not ideal, the solution to mitigate the issue in the future is to push the join to
the database. Interestingly, the comparable PostgreSQL test cases have the column types fixed
as PostgreSQL naturally refuses such an incompatible join also on the database level.

8https://kg-construct.github.io/rml-resources/portal/
9https://junit.org

10https://testcontainers.com/

https://kg-construct.github.io/rml-resources/portal/
https://junit.org
https://testcontainers.com/

In order to add support for RML2, we needed to decide whether to rewrite our engine from
scratch or whether to generalize the interfaces and classes used to capture the RML model. We
decided to take the latter approach. An excerpt of the revised class hierarchy is show in Figure 1.

ITriplesMap

ITriplesMapRml

TriplesMapRml1 TriplesMapRml2

TriplesMapR2ml

IAbstractSource getAbstractSource()
Set<? extends IPredicateObjectMap> getPredicateObjectMaps()

LogicalTable getLogicalTable()
Set<PredicateObjectMapR2rml> getPredicateObjectMaps()

default LogicalTable getAbstractSource() { return getLogicalTable(); }

ILogicalSource getLogicalSource();
Set<? extends IPredicateObjectMapRml> getPredicateObjectMaps()

default ILogicalSource getAbstractSource() { return getLogicalSource(); }

LogicalSourceRml1 getLogicalSource();
Set<PredicateObjectMapRml1> getPredicateObjectMaps()

LogicalSourceRml2 getLogicalSource()
Set<PredicateObjectMapRml2> getPredicateObjectMaps()

IAbstractSource

ILogicalSourceRmlLogicalTableR2rml

LogicalSourceRml1 LogicalSourceRml2

IPredicateObjectMap

IPredicateObjectMapRmlPredicateObjectMapR2rml

PredicateObjectMapRml1 PredicateObjectMapRml2

RDFNode getSource()
String getIterator()
String getReferenceFormulationIri()

BaseTableOrView asBaseTableOrView()
R2rmlView asR2rmlView()

Backbone

R2rml Rml

Rml1 Rml2

Figure 1: UML showing an excerpt of how R2RML, RML1 and RML2 are aligned in our system.

4. Conclusions and Future Work

A significant improvement in this years performance setup was that the participants could
evaluate their systems on the same hardware. While the benchmark tool does a good job at
collecting performance data, support for generating a uniform statistics report is a still missing a
few quality-of-life improvements. The performance results showed that our tool is robust under
limited resources and in the course of our evaluation it turned out that compression on the
filesystem-level clearly outperforms Spark’s built-in one. As future work we aim to add proper
support for parallel ingestion of XML data. We will analyze to which extent the remaining RML2
modules can be translated to SPARQL elements. For example, while support for RML-FNML
should be fairly easy to add, support for RML-IO will require an extra RDF vocabulary for
describing how to transfer the results of SPARQL queries to specified destinations.

Acknowledgments

The authors acknowledge the financial support by the German Federal Ministry for Economic
Affairs and Climate Action in the project Coypu (project number 01MK21007A) and by the
German Federal Ministry for Digital and Transport in the Project Moby Dex (project number
19F2266A).

References

[1] C. Stadler, L. Bühmann, L.-P. Meyer, M. Martin, Scaling RML and SPARQL-based knowledge
graph construction with Apache Spark, in: Proceedings of the 4th International Workshop
on Knowledge Graph Construction, ESWC, 2023.

[2] D. Van Assche, D. Chaves-Fraga, A. Dimou, U. Şimşek, A. Iglesias, KGCW 2024 Challenge
@ ESWC 2024, 2024. doi:10.5281/zenodo.10973433.

[3] D. Chaves-Fraga, F. Priyatna, A. Cimmino, J. Toledo, E. Ruckhaus, O. Corcho, GTFS-Madrid-
Bench: A benchmark for virtual knowledge graph access in the transport domain, Journal
of Web Semantics 65 (2020) 100596.

http://dx.doi.org/10.5281/zenodo.10973433

	1 Introduction
	2 Performance Track
	3 Conformance Track
	4 Conclusions and Future Work

