
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FINE-GRAINED ATTENTION I/O COMPLEXITY: COM-
PREHENSIVE ANALYSIS FOR BACKWARD PASSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
processing long-context information. However, the quadratic complexity of atten-
tion computation with respect to sequence length poses significant computational
challenges, and I/O aware algorithms have been proposed. This paper presents a
comprehensive analysis of the I/O complexity for attention mechanisms, focusing
on backward passes by categorizing into small and large cache scenarios. Using
the red-blue pebble game framework, we establish tight bounds on I/O complex-
ity across all cache sizes. We confirm that the de facto standard I/O aware algo-
rithm FlashAttention is optimal for both forward and backward passes for the large
cache size scenario. For small cache sizes, we provide an algorithm that improves
over existing methods and achieves the tight bounds. Additionally, we extend our
analysis to sparse attention, a mainstream speeding-up approach, deriving fine-
grained lower bounds for both forward and backward passes and both small and
large caches. Our findings complete the theoretical foundation for I/O complex-
ity in attention mechanisms, offering insights for designing efficient algorithms of
LLM training and inference.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4 (Achiam et al., 2023), Claude (Anthropic, 2024),
Llama (Llama Team, 2024), and more recently o1 (OpenAI, 2024) from OpenAI, have demon-
strated immense potential to enhance various aspects of our daily lives, including conversational
AI (Liu et al., 2024), AI agents (Xi et al., 2023; Chen et al., 2024b), search AI (OpenAI, 2024),
AI assistants (Kuo et al., 2024; Feng et al., 2024b), and many others. One of the most emergent
abilities of LLMs is dealing with long-context information, which is crucial for processing materials
such as academic papers, official reports, and legal documents. LLMs have proven adept at tack-
ling long-context tasks, such as zero-shot summarization (Chhabra et al., 2024; Zhao et al., 2024)
and maintaining very long-term conversations (Xu et al., 2022; Maharana et al., 2024). OpenAI’s
o1 model (OpenAI, 2024) serves as a significant advancement in this area. It leverages Chain-of-
Thought (CoT) reasoning (Wei et al., 2022; Kojima et al., 2022) and employs Retrieval Augmented
Generation (RAG) (Lewis et al., 2020; Gao et al., 2023) to exhibit PhD-level abilities, where both
techniques require long context inputs for generation. This proficiency underscores the necessity for
developing long-context modeling capabilities within LLMs.

LLMs are primarily based on the Transformer architecture (Vaswani et al., 2017), whose core com-
ponent is the self-attention mechanism. However, the quadratic complexity of attention computation
with respect to sequence length dominates the computational FLOPs during long-context training
and inference. To address this issue, FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024)
accelerates attention computation and has become the de facto standard in the industry of LLM
training and inference deployment. The success of FlashAttention lies in its I/O awareness (Ag-
garwal & Vitter, 1988), accounting for reads and writes to different levels of fast cache (e.g., GPU
on-chip SRAM) and slow memory (e.g., GPU high-bandwidth memory) within the hardware hierar-
chy. Leveraging modern hardware design in GPUs, e.g., NVIDIA A100 and H100, efficiently allows
FlashAttention to be integrated as a go-to method for LLM training and inference.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

For the I/O complexity of exact attention1 forward computation, the theoretical analysis of FlashAt-
tention in Dao et al. (2022) only provides upper and lower bounds when the cache size M ∈ [d, nd].
Their bounds are only tight in the range of M = Θ(nd), where n is the input sequence length and d
is the hidden dimension. By fine-grained analysis, a recent work (Saha & Ye, 2024) provides match-
ing upper and lower I/O complexity bounds of the attention forward passes for any cache size M .
For the I/O complexity of attention backward passes, existing work only provides an upper bound
for FlashAttention for the cache size M ∈ [d, nd] (Dao et al., 2022), without known lower bounds.
Thus, the tight bounds for the I/O complexity of attention backward passes are lacking. This raises
a natural question:

What is the optimal I/O complexity of attention backward computations for any cache size?

In this paper, we address this question and provide matching upper and lower I/O complexity bounds
for backward passes of exact attention computation for all cache sizes, completing the picture of I/O
complexity for the attention mechanism.

1.1 OUR CONTRIBUTIONS

Cache Size M

I/O
 C

om
pl

ex
ity

d2

Attention Backward I/O Complexity
Our Theorem 1.1
FlashAttention I/O Complexity

Figure 1: Attention backward I/O complexity com-
parison. The x-axis is the cache size, and the y-
axis is the I/O complexity. The red line represents
our tight upper/lower bound (Theorem 1.1), and the
blue dash denotes the upper bound for FlashAtten-
tion (Dao et al., 2022). The cross point is M =
Θ(d2), the dividing point of large cache and small
cache settings. The results show that FlashAttention
is optimal when M = Ω(d2).

In this work, we analyze the I/O complexity
in the same setting as the existing work of
FlashAttention (Dao et al., 2022) and Saha &
Ye (2024). We consider a two-level memory
hierarchy consisting of a small but fast layer
called the cache and a large but slower layer
referred to as memory. The I/O complexity
quantifies the data transfer between these two
layers, which can be formally defined as a
red-blue pebble game (Hong & Kung, 1981)
as in Definition 3.4. We study the exact atten-
tion computation using standard matrix mul-
tiplication as the existing work2 and focus
on backward gradient computation. We es-
tablish matching I/O complexity upper and
lower bounds for attention backward compu-
tation (formalized in Theorem 1.1 and illus-
trated in Fig. 1). Combined with the attention
forward results from Saha & Ye (2024), this
completes the theory of I/O complexity in the
attention mechanism.

Our main result is stated as follows:
Theorem 1.1 (Main result). Let n be the sequence length, d the head dimension, and M the cache
size. The I/O complexity of attention backward computation under standard matrix multiplication is

Θ

(
min

{
n2d2 + nd3

M
,
n2d+ nd2√

M

})
.

To interpret our main result, we categorize the cache size M into two cases: the small cache case
where M = o(d2) and the large cache case where M = Ω(d2) (see Fig. 1 for illustration).

In the small cache scenario, M = o(d2), by computation graph Fig. 2 and Algorithm 6, we show that
the upper bound of the I/O complexity is O(n

2d+nd2
√
M

). In detail, Algorithm 6 explicitly read/write
the n× n attention matrix and other n× d intermediate matrices from/to memory. Note that, when
M = o(d2), our Algorithm 6 has a better upper bound than FlashAttention, whose upper bound
is O(n

2d2+nd3

M). Furthermore, to establish a lower bound on the I/O complexity, we show that the

1In this work, we only consider exact attention computation without any approximation.
2Note that there are many fast matrix multiplication methods. We do not study them, as they are hard to be

parallelized. Standard matrix multiplication is still the most popular implementation on GPU, e.g., PyTorch.
We refer readers to Section 3 for more details.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Summary of our contributions. We categorize the cache size M into two cases: (1) Large
cache M = Ω(d2); (2) Small cache M = o(d2). Assume n ≥ d. We list our contributions for
general and sparse attention below. Zinput and ZQK denote the number of nonzero entries of the
input matrix and the key-query matrix, respectively.

Attention Algorithm Large Cache Reference Small Cache Reference

General

Forward Upper O(n2d2/M) Dao et al. (2022) O(n2d/
√
M) Saha & Ye (2024)

Forward Lower Ω(n2d2/M) Saha & Ye (2024) Ω(n2d/
√
M) Saha & Ye (2024)

Backward Upper O(n2d2/M) Dao et al. (2022) O(n2d/
√
M) Theorem 4.3

Backward Lower Ω(n2d2/M) Theorem 4.2 Ω(n2d/
√
M) Theorem 4.4

Sparse Forward Lower Ω(Z2
input/M) Theorem 4.5 Ω(Zinput

√
ZQK/

√
M) Theorem 4.5

Backward Lower Ω(Z2
input/M) Theorem 4.5 Ω(Zinput

√
ZQK/

√
M) Theorem 4.5

I/O complexity of attention backward computation is equivalent to the I/O complexity of matrix
multiplication when M = o(d2), which matches the upper bound of Algorithm 6.

In the more practical large cache case, M = Ω(d2), we prove an upper bound O(n
2d2+nd3

M) on
the I/O complexity for the attention backward algorithms (Algorithm 9), which matches that of
FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024). We prove that this upper bound is
tight by providing a matching lower bound for the I/O complexity of attention backward using the
red-blue pebble game analysis framework from Hong & Kung (1981).

Therefore, we provide the optimal bounds and algorithms for backward passes for all cache sizes.
This fully characterizes the I/O complexity of attention forward/backward when combined with
existing results on forward passes (Saha & Ye, 2024). Notably, we confirm that FlashAttention is
optimal for both the forward and backward passes when the cache size is large enough M = Ω(d2).

Moreover, in recent years, sparse attention has become another mainstream method for speeding up
the training process of transformer-based models (Child et al., 2019; Zaheer et al., 2020; Beltagy
et al., 2020). These approaches mainly focus on techniques for sparsifying the attention matrix,
thereby reducing the quadratic bottleneck in running time. However, it remains unknown whether
this method can be integrated with I/O-aware algorithms like FlashAttention. Consequently, we
further analyze the I/O complexity of sparse attention to provide theoretical guarantees, offering
fine-grained lower bounds.

Theorem 1.2 (Lower bound for sparse attention forward and backward, informal version of Theo-
rem 4.5). Let Zinput and ZQK be the number of nonzero entries of the input matrix and the key-query
matrix, respectively. Then any algorithm for both attention forward and backward computation us-
ing sparse semi-ring matrix multiplication has I/O complexity

Ω

(
min

{
Z2
input

M
,
Zinput

√
ZQK√

M

})
.

Our I/O complexity lower bound for sparse attention recovers the lower bound for both attention
forward and backward passes when matrices involved in attention computation are dense, i.e.,
Zinput = Ω(nd), ZQK = Ω(n2). In such case, our lower bound reads as Ω(min{n

2d2

M , n2d√
M
}),

matching Theorem 1.1. The dividing point between small and large cache for sparse attention is
M = Z2

input/ZQK, which also matches the dense case.

We summarize our contributions in Table 1 and also conclude as follows:

• For small cache sizes M = o(d2) in the backward pass, we present optimal upper and
lower bounds and propose an algorithm achieving the optimal (Algorithm 6). Notably,
FlashAttention is not optimal in this setting, and our algorithm outperforms it.

• For large cache sizes M = Ω(d2) in the backward pass, we establish an optimal lower
bound that matches the existing upper bound. We also prove the optimal upper bound and
introduce an optimal algorithm (Algorithm 9), matching the existing results for FlashAt-
tention but providing a different analysis.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

• For sparse attention, we offer fine-grained lower bounds for both forward and backward
passes and across all cache sizes (Theorem 4.5).

Roadmap. In Section 2, we review related literature. In Section 3, we introduce the definitions
and background necessary for our study. We present our main results in Section 4 and discuss the
techniques we employed in Section 5. Section 6 concludes our paper.

2 RELATED WORK

Attention Computation Acceleration. The quadratic time complexity of attention computation
with respect to the length of the input sequence (Vaswani et al., 2017) poses significant computa-
tional challenges, especially for long sequences. Consequently, accelerating attention computation
has become a crucial research area. From a theoretical standpoint, numerous works focus on ap-
proximating the attention matrix to accelerate computation (Han et al., 2024; Alman & Song, 2023;
2024a; Liang et al., 2024c; Alman & Song, 2024b; Liang et al., 2024f). Experimental approaches in-
volve modifying model architectures and optimizing implementations to accelerate inference. Meth-
ods such as Mamba (Gu & Dao, 2023; Dao & Gu, 2024), Linearizing Transformers (Zhang et al.,
2024b; Mercat et al., 2024), Hopfield Models (Hu et al., 2023; Wu et al., 2024b; Hu et al., 2024c;
Xu et al., 2024a; Wu et al., 2024a; Hu et al., 2024a;b) and PolySketchFormer (Zandieh et al., 2023;
Kacham et al., 2023) aim to improve model performance and inference speed. System-level opti-
mizations, such as FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) and block-wise
parallel decoding (Stern et al., 2018), address bottlenecks in attention mechanisms and enhance
inference speed through efficient implementation strategies. Collectively, these advancements con-
tribute to making attention mechanisms more scalable and efficient, facilitating the deployment of
large-scale language models. Shi et al. (2024a) accelerates inference by compressing the input text.

Learning with Bounded Memory and I/O Complexity. A common memory model in compu-
tational systems is the two-level memory hierarchy. In this model, there are two layers of memory:
a small but fast layer called the cache, and a large but slower layer called the memory. The I/O
(input/output) complexity of an algorithm measures its efficiency based on the number of data trans-
fer operations it performs between the cache and the memory. The early work of Hong & Kung
(1981) formulated the I/O complexity mathematically using the language of graph theory. Learn-
ing with bounded memory has been studied in various fields in machine learning such as online
learning (Srinivas et al., 2022; Peng & Rubinstein, 2023; Peng & Zhang, 2023), convex optimiza-
tion (Marsden et al., 2022; Chen & Peng, 2023), active learning (Hopkins et al., 2021), attention
computation (Addanki et al., 2023), and continual learning (Chen et al., 2022; Ermis et al., 2022).

Sparse Attention. Over the past few years, there has been extensive research on sparse Trans-
former/Attention models with weights pruning and inputs pruning, aimed at accelerating computa-
tion and training (Ye et al., 2019; Sukhbaatar et al., 2019; Beltagy et al., 2020; Tay et al., 2020; Guo
et al., 2023; Shirzad et al., 2023; Sun et al., 2024; Li et al., 2024; Deng et al., 2024; Chen et al.,
2024a). In practice, the attention matrix is sparse, significantly reducing computational costs. Theo-
retical studies, such as Yun et al. (2020), have demonstrated that sparse transformers are expressive
enough and can achieve universal approximation properties.

3 PRELIMINARY

In this work, we consider using a standard algorithm for matrix multiplication, which means that
for any two matrices A ∈ Rn1×d, B ∈ Rd×n2 , each entry of AB is computed by (AB)i,j =∑d

k=1 Ai,kBk,j for i ∈ [n1], j ∈ [n2]. Note that this setting is also used in FlashAttetnion (Dao
et al., 2022) and Saha & Ye (2024). Then, we introduce some key concepts needed for this paper.

3.1 KEY CONCEPT OF ATTENTION

Before formally stating our results, we begin by precisely defining the problems we study. We define
the following computation of the general Softmax attention forward layer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝐴!

𝑋

𝐴"

𝐴 = exp	(𝐴!𝑋𝐴"#)

𝐷 = diag 𝐴 · 𝟏$𝑓 = 𝐷%!𝐴

d𝑂

𝐴&

𝑌 ℎ = 𝐴& 	𝑌

𝑞 = d𝑂	ℎ# 𝑝! = 𝑓 ∘ 𝑞 𝑝" = diag 𝑝! · 𝟏$ · 𝑓

𝑝 = 𝑝! − 𝑝" 𝑔 = 𝐴!#𝑝𝐴"

𝑂 = 𝑓ℎ

Figure 2: The computational graph for attention forward and backward. The blue boxes are input
matrices, the gray boxes are intermediate matrices, the green box is the forward output, and the
orange box is the final gradient matrix. Here, A1, A2, A3 denote the previous inputs, dO denotes
the upstream gradient, and X,Y denote the attention weights. More detailed definitions of each
variables can be found in Section 3 and B.

Definition 3.1 (Attention forward computation). Let n be the input length and d be the head dimen-
sion. Let A1, A2, A3 ∈ Rn×d be the inputs of previous layer. Given query, key and value weights
matrix WQ,WK ,WV ∈ Rd×d, we have the Softmax attention forward computation being

Attn(A1, A2, A3) := D−1 exp(A1WQW
⊤
KA⊤

2)A3WV ,

where (1) D := diag(exp(A1WQW
⊤
KA⊤

2) · 1n), (2) exp denotes the exponential function and is
applied entry-wisely, (3) diag() operation takes a vector and outputs a diagonal matrix with the
entries of that vector, and (4) 1n denotes the length-n all ones vector.

To simplify and focus more clearly on the core computational aspects of the problem, we set X =
WQW

⊤
K ∈ Rd×d and Y = WV ∈ Rd×d.

Note that, we have Softmax(A1XA⊤
2) = D−1 exp(A1XA⊤

2) ∈ Rn×n, and usually we call it the
attention matrix. The above definition is general and encompasses both self-attention and cross-
attention mechanisms in Transformer architectures. Specifically, self-attention occurs when A1 =
A2 = A3, meaning that the queries, keys, and values are all derived from the same source. In
contrast, cross-attention happens when A2 = A3, indicating that the keys and values come from one
source while the queries come from the other.

Notably, FlashAttention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) and Saha & Ye (2024)
consider Q,K, V ∈ Rn×d after applying the linear layer to the previous inputs, while we consider
a more detailed structure as Q = A1WQ,K = A2WK , V = A3WV (Definition 3.1) explicitly
calculating module-wise gradients on attention weights. This explains why our I/O complexity
bound Θ(min{n

2d2+nd3

M , n2d+nd2
√
M
}) in Theorem 1.1 has an additional term nd2 in the small cache

case and nd3 in the large cache case. When n ≥ d, the additional term will disappear.

Mathematically, optimizing the attention computation involves adjusting the attention weight matri-
ces X , and Y . Using the previous results on attention gradients from Alman & Song (2024a) and
Liang et al. (2024c), we have the following definition of attention gradient:

Definition 3.2 (Attention backward gradient). Let A1, A2 ∈ Rn×d. Let p(X) ∈ Rn×n be defined
in Definition B.9 (see Fig. 2 for an illustration). Let L(X) be some loss function. The attention
backward gradient for X ∈ Rd×d is:

dL(X)

dX
= A⊤

1 p(X)A2.

Remark 3.3. Since the attention module depends only linearly on Y , it is straightforward to incor-
porate it into an algorithm, and it is not a complexity bottleneck. Thus, we focus on the case where
X is variable and Y is a fixed input.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(𝐴1)𝑖,1 (𝐴1)𝑖,2 𝑋1,𝑗 𝑋2,𝑗 (𝐴1𝑋)𝑖,1 (𝐴1𝑋)𝑖,2 (𝐴2
⊤)1,𝑗 (𝐴2

⊤)2,𝑗

(𝐴1)𝑖,1 𝑋1,𝑗 (𝐴1𝑋)𝑖,1(𝐴2
⊤)1,𝑗(𝐴1)𝑖,2 𝑋2,𝑗 (𝐴1𝑋)𝑖,2(𝐴2

⊤)2,𝑗

(𝐴1𝑋)𝑖,𝑗 (𝐴1𝑋𝐴2
⊤)𝑖,𝑗

level-1
nodes

level-2
nodes

Figure 3: This diagram shows a summation tree with d = 2 in the computational graph for the
backward passes of attention using standard matrix multiplication. The orange and green nodes
represent the input nodes of the level-1 summation tree. The brown nodes, along with the blue
nodes (output from the level-1 summation tree), serve as inputs for the level-2 summation tree. The
purple nodes represent the target output. When d gets larger, the summation tree will expand with
additional layers, where each new layer introduces intermediate nodes that represent the sums of
pairs of nodes from the previous layer, i.e., there will be total 1 + log2 d layer in total.

3.2 SUMMATION TREE

In this subsection, we need to introduce the computational graph of the attention backward gradient,
which is the key concept in our I/O complexity analysis.

In the computational graph shown in Fig. 2, we can first compute A1X and then compute (A1X)A⊤
2 ,

or first compute XA⊤
2 and then compute A1(XA⊤

2). In either case, we perform two matrix multi-
plications: one between an n× d matrix and a d× d matrix, and the other between an n× d matrix
and a d×n matrix. Without loss of generality for illustration, we consider the first case. To compute
A1X , we need to calculate the products {(A1)i,kXk,j} for all i ∈ [n], k ∈ [d], j ∈ [d]. Each en-
try (A1X)i,j is then obtained by summing these products over k: (A1X)i,j =

∑d
k=1(A1)i,kXk,j .

In the computational graph, this summation is represented by a summation tree that connects the
product nodes (A1)i,kXk,j to the sum node (A1X)i,j . We define the product nodes (A1)i,kXk,j ,
the nodes corresponding to the sums (A1X)i,j , and all intermediate nodes in the summation trees
as level-1 nodes. Similarly, we define level-2 nodes as these nodes in the summation trees involved
in computing (A1X)A⊤

2 . We give an example of the summation tree with d = 2 in Fig. 3.

3.3 I/O COMPLEXITY

There are various ways to define the two-level memory hierarchy and the I/O complexity. We state
the definition in Hong & Kung (1981), which formulates the two-level memory hierarchy as a red-
blue pebble game played on a computational graph. Very recently, Saha & Ye (2024) proved that
the I/O complexity of forward computation of FlashAttention is optimal by analyzing the red-blue
pebble game on an attention forward computational graph.

Definition 3.4 (Red-blue pebble game (Hong & Kung, 1981)). Consider a game played on a di-
rected acyclic graph that has a limited number of red pebbles and an unlimited number of blue
pebbles. Initially, each input node (a node with no parents) is marked with a blue pebble, while all
other nodes have no pebbles. The player is allowed to perform the following operations:

• Input: Replace a blue pebble on a node with a red pebble.

• Output: Replace a red pebble on a node with a blue pebble.

• Compute: Place a red pebble on a node if all its parent nodes have red pebbles.

• Delete: Remove a pebble from a node.

The objective of the game is to place blue pebbles on all output nodes (i.e., nodes with no children)
while minimizing the total number of input and output operations used throughout the process.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In the red-blue pebble game, each node represents a computational task. A red pebble denotes a
unit in the small but fast layer known as cache, while a blue pebble represents a unit in the large but
slower layer called memory. A task can only be computed once all its dependent tasks are completed.
All computations are assumed to occur within the cache. Hence, efficient use of cache plays a critical
role in reducing the I/O operations of an algorithm to minimize the cost associated with data transfer
between memory and cache. We can define the I/O complexity by using the red-blue pebble game.

Definition 3.5 (I/O complexity (Hong & Kung, 1981)). Consider the red-blue pebble game played
on a directed acyclic graph G. Let M be a positive integer. The I/O complexity, denoted as
Q(G,M), is the minimum number of input and output operations to complete the objective of the
game with the restriction that no more than M red pebbles are present on the graph at any time. We
omit G when it is clear in the context.

The red-blue pebble game provides insight into cache management by modeling the limited cache
size through the number of red pebbles. The maximum number of red pebbles corresponds to the
size of the cache, which means that there can be at most M items in the cache at any given time.

4 MAIN RESULTS

In Theorem 1.1, we provide matching upper and lower bounds for the I/O complexity of attention
gradient computation in the backward passes. In detail, Theorem 1.1 states that the I/O complexity
of the attention gradient computation is Θ(min{n

2d2+nd3

M , n2d+nd2
√
M
}), which splits the cache size

into two cases: (1) small cache M = o(d2); (2) large cache M = Ω(d2). At the cross point M = d2,
we have n2d2+nd3

M = n2d+nd2
√
M

= n2 + nd. An intuitive figure of the asymptotic I/O complexity is
shown in Fig. 1.

Here we discuss two implications of Theorem 1.1. First, through the fine-grained analysis, our
result identifies a critical point at M = d2, where the I/O complexity changes its behavior. For
M = o(d2), we establish better upper and lower bounds compared to existing results, demonstrating
that FlashAttention is not optimal in this regime. Second, when M = Ω(d2), Theorem 1.1 provides a
tighter lower bound than existing work using red-blue pebble game (Definition 3.4), offering insights
of algorithm design.

Moreover, by combining the results of Saha & Ye (2024) with our findings, we provide a more
general and tighter I/O complexity characterization of FlashAttention 1/2 (Dao et al., 2022; Dao,
2023). In the large cache scenario where M = Ω(d2), the attention forward I/O complexity is
Θ(n

2d2

M), as discussed in Theorem 5.1 of Saha & Ye (2024). Combining this result with our attention
backward I/O complexity Θ(n

2d2+nd3

M) (Theorem 1.1), we conclude that the overall complexity is
Θ(n

2d2+nd3

M). Thus, given the cache size is sufficiently large, i.e. M = Ω(d2), the I/O complexity
of the forward and backward computation for FlashAttention 1/2 is optimal.

Our main result Theorem 1.1 is a summary of our results for different cache sizes (Theorem 4.1, 4.2,
4.3, and 4.4), which will be discussed in the later subsections.

4.1 LARGE CACHE

The large cache scenario is more interesting and practical. We now prove an upper bound below.

Theorem 4.1 (Large cache upper bound, informal version of Theorem D.5). Suppose n is the input
length, d is the head dimension, and M = Ω(d2) is the cache size. There is an algorithm (see
Algorithm 9) outputs a d× d matrix g = dL(X)

dX (Definition 3.2) with I/O complexity O(n
2d2+nd3

M).

We then demonstrate that this upper bound is tight by providing a matching lower bound for the I/O
complexity of the attention backward passes. To achieve this, we employ the framework developed
in Hong & Kung (1981), which shows that executing an algorithm on a machine with a two-level
memory hierarchy can be modeled by a red-blue pebble game (Definition 3.4) on a directed acyclic
graph. We present the large cache lower bound below, which shows as long as the cache size
M = Ω(d2), the I/O complexity is at least Ω(n

2d2+nd3

M).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 4.2 (Large cache lower bound, informal version of Theorem E.9). Suppose n is the input
length and d is the head dimension. Suppose the cache size M = Ω(d2). Then the I/O complexity
of attention gradient computation using standard matrix multiplication is always Ω(n

2d2+nd3

M).

4.2 SMALL CACHE

In the small cache case, we provide an upper bound below. Notice that this is better than the I/O
complexity of FlashAttention which is O(n

2d2+nd3

M) > O(n
2d+nd2
√
M

) when M = o(d2).

Theorem 4.3 (Small cache upper bound, informal version of Theorem C.12). Suppose n is the
input length, d is the head dimension, and M = o(d2) is the cache size. There is an algorithm (see
Algorithm 6) outputs a d × d matrix g = dL(X)

dX (Definition 3.2) with I/O complexity O(n
2d+nd2
√
M

),
time complexity O(n2d+ nd2), and space complexity O(n2 + d2).

Furthermore, we show that attention gradient computation can be reduced to matrix multiplication,
establishing a matching lower bound.

Theorem 4.4 (Small cache lower bound, informal version of Theorem E.10). Suppose n is the input
length and d is the head dimension. Suppose the cache size M = o(d2). Then the I/O complexity of
attention gradient computation using standard matrix multiplication is always Ω(n

2d+nd2
√
M

).

4.3 LOWER BOUND OF SPARSE ATTENTION FORWARD AND BACKWARD PASSES

Sparse attention is a generalization of standard attention and has been popular in practical applica-
tions. We refer readers to Section 2 for more discussion. To state our results, we first introduce
some notations. For any matrix A, we use nnz(A) to denote the number of non-zero entries in the
matrix A. We assume that sparse matrices are stored by listing only their non-zero entries along with
their coordinates. We assume sparse semi-ring matrix multiplication, which restricts operations to
addition and multiplication of these entries. Each output entry (AB)i,j can only be computed as the
sum of products given by

∑
k Ai,kBk,j .

Theorem 4.5 (Lower bound for sparse attention forward and backward, formal version of Theo-
rem 1.2). Suppose n is the input length, d is the head dimension, and M is the cache size. Let ZA :=
min{nnz(A1),nnz(A2)}, ZX := nnz(X), ZAX = min{nnz(A1X),nnz(XA⊤

2)}, ZAXA :=
nnz(A1XA⊤

2). Then any algorithm for both attention forward and backward computation using
sparse semi-ring matrix multiplication has I/O complexity

Ω

(
min

{
Z2
A + ZAZX

M
,
ZA

√
ZAXA +

√
ZAZXZAX√

M

})
.

Remark 4.6. When matrices involved in attention computation are dense, i.e., ZA = Ω(nd), ZX =
Ω(d2), ZAX = Ω(nd), and ZAXA = Ω(n2). In such case, our lower bound reads as
Ω(min{n

2d2+nd3

M , n2d+nd2
√
M
}). Hence, it matches the result of lower bounds in the dense case.

The dividing point for sparse attention. The dividing point of small cache and large cache can be
computed by equaling two lower bounds, i.e.,Z

2
A+ZAZX

M = ZA

√
ZAXA+

√
ZAZXZAX√

M
. Rearranging

the equation gives
√
M =

Z2
A+ZAZX

ZA

√
ZAXA+

√
ZAZXZAX

. Note that when matrices are dense, we have
√
M = n2d2+nd3

n2d+nd2 = d+d2/n
1+d/n . Since we assume that n ≫ d, this is exactly

√
M = d, i.e., M = d2,

which matches the dividing point of the dense case dicussed in the beginning of Section 4.

5 TECHNICAL OVERVIEW

Upper Bound of Small Cache. In Section C, we present algorithms for the backward passes of
attention in the small cache case, where M = o(d2). We observe that when M = o(d2), we have
n2d2+nd3

M > n2d+nd2
√
M

> n2 + nd. Then we can exploit this to design a better algorithm with I/O

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

complexity better than n2d2+nd3

M , by reading/writing the n× n attention matrix and other n× d in-
termediate matrices from/to memory. In detail, our small cache algorithm (Algorithm 6) follows the
computational graph in Figure 2 and is divided into four phases. In Phase 1 (Algorithm 2), we com-
pute the attention matrix f (Definition B.5) and write it to memory. In Phase 2 (Algorithm 3), we
compute q (Definition B.8), incorporating the information from the upstream gradient dO. Phase
3 (Algorithm 4) computes the gradient component matrix p (Definition B.9). Finally, in Phase 4
(Algorithm 5), we compute the final gradient g = A⊤

1 pA2 (Definition 3.2). At a high level, our
algorithm splits the input and output matrices into blocks of size

√
M ×

√
M . On the other hand,

FlashAttention divides the n×d input matrices into multiple k×d matrices, where k < n. Compared
to our upper bound, we can see that FlashAttention is not optimal in this case. Following the com-
putational graph in Figure 2, we perform the backward passes of attention using each

√
M ×

√
M

block as basic elements in standard matrix multiplication. Compared to forward passes, the com-
putational graph of backward passes is more complicated and requires more fine-grained analysis,
e.g., the four phases mentioned above. Through a detailed analysis of Algorithm 6, we establish
Theorem 4.3.

Upper Bound of Large Cache. In Section D, we present algorithms for attention backward in the
large cache case, where M = Ω(d2). Similar to FlashAttention, the n× n attention matrix f (Defi-
nition B.5) cannot be directly loaded into cache, even though it has been computed and can be stored
in memory. The overall algorithm (Algorithm 9) consists of two phases. In Phase 1 (Algorithm 7),
we compute S = A1X and h = A3Y , and these two matrices are then passed to Phase 2. In Phase
2 (Algorithm 8), the inputs are matrices A1, A2, S, h,O,dO ∈ Rn×d (Definitions 3.1, B.6, B.7, and
B.8), and vector l ∈ Rn (Definition B.4). We vertically divide the inputs into row block matrices of
size Br × d or Bc × d, where Br = min{⌈M/4d⌉, d} and Bc = ⌈M/4d⌉. Using these row block
matrices as computation units, we follow the computational graph (Fig. 2) and FlashAttention’s pro-
cedure. After accounting for the reads and writes of the overall algorithm (Algorithm 9), we prove
Theorem 4.1. Furthermore, when the cache size is as large as Θ(nd), the I/O complexity can be
reduced to O(nd+ d2), which corresponds to the size of the input and output of the algorithm.

Lower Bound of Large Cache and Small Cache. In Section E, we establish the lower bounds for
the I/O complexity of attention gradient computation in both large and small cache cases. Following
Definitions 3.4 and 3.5, we analyze the red-blue pebble game on the computational graph of any
attention backward algorithm using standard matrix multiplication. More specifically, the key con-
cept is the M -partition, which decomposes the graph into subgraphs, ensuring that each subgraph
satisfies conditions related to dominator and minimum sets (Definitions E.1, E.2, E.3, E.4, and E.5).
Our proofs for the lower bound of backward passes builds upon the lemmas (Lemmas E.7 and E.8),
which provide the foundation for relating the number of subgraphs to the I/O operations required.
For the large cache scenario, M = Ω(d2), we demonstrate that the I/O complexity scales with the
need to compute matrix products efficiently. In the small cache case, M = o(d2), we show that
higher I/O complexity is unavoidable due to the data transfers between cache and memory by re-
ducing to the standard matrix multiplication. These analyses are formally established in the proofs
of Theorems E.9 and E.10. In particular, our Theorems E.10, the small cache lower bound case,
requires a new analysis deviation.

Remark 5.1. The Softmax in Definition 3.1 can be changed to other non-linear activation functions
and our lower bound still holds. It is because we must compute matrix multiplication of size n × d
and d×n in non-linear attention. However, for linear attention, i.e., A1XA⊤

2 A3Y , our lower bound
is loose, since we can compute A⊤

2︸︷︷︸
d×n

A3︸︷︷︸
n×d

first, and then we have A1︸︷︷︸
n×d

X︸︷︷︸
d×d

A⊤
2 A3︸ ︷︷ ︸
d×d

Y︸︷︷︸
d×d

.

Lower Bound of Sparse Attention Forward and Backward Passes. In Section F, we establish
lower bounds on the I/O complexity of sparse attention computation for both forward and back-
ward passes. Sparse matrix multiplication is considered, where only non-zero entries are stored
and used in computations. We derive I/O complexity bounds based on the non-zero counts of input
matrices and the I/O operations required for sparse matrix multiplication (Lemma F.1). We fur-
ther extend these bounds to the matrix products involved in the attention mechanism (Lemma F.2),
which requires multiple sparse matrix multiplication analysis. We analyze scenarios where matrices
are stored in cache or require intermediate I/Os during computation to obtain the I/O complexity
bounds for both forward and backward passes (Theorems F.3 and Theorem F.4), and Theorem 4.5
directly holds as a consequence.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

This work provided a comprehensive analysis of the I/O complexity for attention mechanisms, fo-
cusing on backward passes. We established tight bounds on I/O complexity for both small and large
caches. Our results confirm that FlashAttention is optimal for both forward and backward on large
cache sizes. For small cache sizes, we provided improved upper and lower bounds compared to
existing methods. Additionally, we derived lower bounds for sparse attention for both forward and
backward and across cache sizes. Our findings complete the theoretical foundation for I/O com-
plexity in attention mechanisms, offering insights for efficient LLM training and inference. We
leave exploring practical implementations leveraging these theoretical insights and investigating I/O
complexity for other emerging attention variants as our future work.

REFERENCES

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical re-
port: A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219,
2024.

Jayadev Acharya, Sourbh Bhadane, Piotr Indyk, and Ziteng Sun. Estimating entropy of distributions
in constant space. Advances in Neural Information Processing Systems, 32, 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Raghav Addanki, Chenyang Li, Zhao Song, and Chiwun Yang. One pass streaming algorithm for
super long token attention approximation in sublinear space. arXiv preprint arXiv:2311.14652,
2023.

Alok Aggarwal and S Vitter, Jeffrey. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

Amol Aggarwal and Josh Alman. Optimal-degree polynomial approximations for exponentials and
gaussian kernel density estimation. In Proceedings of the 37th Computational Complexity Con-
ference, pp. 1–23, 2022.

Maryam Aliakbarpour, Andrew McGregor, Jelani Nelson, and Erik Waingarten. Estimation of en-
tropy in constant space with improved sample complexity. Advances in Neural Information Pro-
cessing Systems, 35:32474–32486, 2022.

Josh Alman and Zhao Song. Fast attention requires bounded entries. Advances in Neural Information
Processing Systems, 36, 2023.

Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. arXiv preprint arXiv:2402.04497, 2024a.

Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix soft-
max attention to kronecker computation. In The Twelfth International Conference on Learning
Representations, 2024b.

Anthropic. The claude 3 model family: Opus, sonnet, haiku, 2024. https://www-cdn.
anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_
Card_Claude_3.pdf.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Michael A Bender, Rezaul Chowdhury, Alexander Conway, Martin Farach-Colton, Pramod Ganap-
athi, Rob Johnson, Samuel McCauley, Bertrand Simon, and Shikha Singh. The i/o complexity of
computing prime tables. In LATIN 2016: Theoretical Informatics: 12th Latin American Sympo-
sium, Ensenada, Mexico, April 11-15, 2016, Proceedings 12, pp. 192–206. Springer, 2016.

10

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Gianfranco Bilardi and Lorenzo De Stefani. The i/o complexity of toom-cook integer multiplication.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2034–
2052. SIAM, 2019.

Gavin Brown, Mark Bun, and Adam Smith. Strong memory lower bounds for learning natural
models. In Conference on Learning Theory, pp. 4989–5029. PMLR, 2022.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Bo Chen, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, and Zhao Song. Hsr-enhanced sparse attention
acceleration, 2024a.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence. arXiv preprint arXiv:2407.07061, 2024b.

Xi Chen and Binghui Peng. Memory-query tradeoffs for randomized convex optimization. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1400–1413.
IEEE, 2023.

Xi Chen, Christos Papadimitriou, and Binghui Peng. Memory bounds for continual learning. In
2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 519–530.
IEEE, 2022.

Anshuman Chhabra, Hadi Askari, and Prasant Mohapatra. Revisiting zero-shot abstractive summa-
rization in the era of large language models from the perspective of position bias. arXiv preprint
arXiv:2401.01989, 2024.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Yi Cui, Di Xiao, Daren BH Cline, and Dmitri Loguinov. Improving i/o complexity of triangle
enumeration. IEEE Transactions on Knowledge and Data Engineering, 34(4):1815–1828, 2020.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Lorenzo De Stefani. The i/o complexity of hybrid algorithms for square matrix multiplication. arXiv
preprint arXiv:1904.12804, 2019a.

Lorenzo De Stefani. On the i/o complexity of hybrid algorithms for integer multiplication. arXiv
preprint arXiv:1912.08045, 2019b.

Erik D Demaine and Quanquan C Liu. Red-blue pebble game: Complexity of computing the trade-
off between cache size and memory transfers. In Proceedings of the 30th on Symposium on
Parallelism in Algorithms and Architectures, pp. 195–204, 2018.

Erik D Demaine, Andrea Lincoln, Quanquan C Liu, Jayson Lynch, and Virginia Vassilevska
Williams. Fine-grained i/o complexity via reductions: New lower bounds, faster algorithms,
and a time hierarchy. arXiv preprint arXiv:1711.07960, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shiyuan Deng and Yufei Tao. Subgraph enumeration in optimal i/o complexity. In 27th Inter-
national Conference on Database Theory (ICDT 2024). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2024.

Yichuan Deng, Zhao Song, Zifan Wang, and Han Zhang. Streaming kernel pca algorithm with small
space. arXiv preprint arXiv:2303.04555, 2023.

Yichuan Deng, Zhao Song, and Chiwun Yang. Attention is naturally sparse with gaussian distributed
input. arXiv preprint arXiv:2404.02690, 2024.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Beyza Ermis, Giovanni Zappella, Martin Wistuba, Aditya Rawal, and Cedric Archambeau. Mem-
ory efficient continual learning with transformers. Advances in Neural Information Processing
Systems, 35:10629–10642, 2022.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Mohamed Osama Ahmed, Yoshua Bengio, and
Greg Mori. Attention as an rnn. arXiv preprint arXiv:2405.13956, 2024a.

Tao Feng, Chuanyang Jin, Jingyu Liu, Kunlun Zhu, Haoqin Tu, Zirui Cheng, Guanyu Lin, and
Jiaxuan You. How far are we from agi. arXiv preprint arXiv:2405.10313, 2024b.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and
Haofen Wang. Retrieval-augmented generation for large language models: A survey. arXiv
preprint arXiv:2312.10997, 2023.

Sumegha Garg, Ran Raz, and Avishay Tal. Extractor-based time-space lower bounds for learning.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 990–
1002, 2018.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801,
2023.

Alon Gonen, Shachar Lovett, and Michal Moshkovitz. Towards a combinatorial characterization of
bounded-memory learning. Advances in Neural Information Processing Systems, 33:9028–9038,
2020.

William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. Using advanced MPI: Modern
features of the message-passing interface. MIT Press, 2014.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. In The Twelfth International Confer-
ence on Learning Representations, 2024.

Weihua He, Yongyun Wu, and Xiaohua Li. Attention mechanism for neural machine translation:
a survey. In 2021 IEEE 5th Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), volume 5, pp. 1485–1489. IEEE, 2021.

Jia-Wei Hong and Hsiang-Tsung Kung. I/o complexity: The red-blue pebble game. In Proceedings
of the thirteenth annual ACM symposium on Theory of computing, pp. 326–333, 1981.

Max Hopkins, Daniel Kane, Shachar Lovett, and Michal Moshkovitz. Bounded memory active
learning through enriched queries. In Conference on Learning Theory, pp. 2358–2387. PMLR,
2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022.

Jerry Yao-Chieh Hu, Donglin Yang, Dennis Wu, Chenwei Xu, Bo-Yu Chen, and Han Liu. On sparse
modern hopfield model. In Thirty-seventh Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Jerry Yao-Chieh Hu, Pei-Hsuan Chang, Haozheng Luo, Hong-Yu Chen, Weijian Li, Wei-Po Wang,
and Han Liu. Outlier-efficient hopfield layers for large transformer-based models. In Forty-first
International Conference on Machine Learning (ICML), 2024a.

Jerry Yao-Chieh Hu, Bo-Yu Chen, Dennis Wu, Feng Ruan, and Han Liu. Nonparametric modern
hopfield models. arXiv preprint arXiv:2404.03900, 2024b.

Jerry Yao-Chieh Hu, Thomas Lin, Zhao Song, and Han Liu. On computational limits of modern
hopfield models: A fine-grained complexity analysis. In Forty-first International Conference on
Machine Learning (ICML), 2024c.

Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits
of low-rank adaptation (lora) for transformer-based models. arXiv preprint arXiv:2406.03136,
2024d.

Saachi Jain and Matei Zaharia. Spectral lower bounds on the i/o complexity of computation graphs.
In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, pp.
329–338, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Yuli Jiang, Xin Huang, and Hong Cheng. I/o efficient k-truss community search in massive graphs.
The VLDB Journal, 30(5):713–738, 2021.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong. Polysketchformer: Fast transformers via
sketches for polynomial kernels. arXiv preprint arXiv:2310.01655, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Tzu-Sheng Kuo, Aaron Lee Halfaker, Zirui Cheng, Jiwoo Kim, Meng-Hsin Wu, Tongshuang Wu,
Kenneth Holstein, and Haiyi Zhu. Wikibench: Community-driven data curation for ai evaluation
on wikipedia. In Proceedings of the CHI Conference on Human Factors in Computing Systems,
pp. 1–24, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xiaoyu Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. A tighter complexity analysis of sparsegpt.
arXiv preprint arXiv:2408.12151, 2024.

Yingyu Liang, Heshan Liu, Zhenmei Shi, Zhao Song, Zhuoyan Xu, and Junze Yin. Conv-basis: A
new paradigm for efficient attention inference and gradient computation in transformers. arXiv
preprint arXiv:2405.05219, 2024a.

Yingyu Liang, Jiangxuan Long, Zhenmei Shi, Zhao Song, and Yufa Zhou. Beyond linear approxi-
mations: A novel pruning approach for attention matrix, 2024b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song, and Yufa Zhou. Multi-layer transformers
gradient can be approximated in almost linear time. arXiv preprint arXiv:2408.13233, 2024c.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Chiwun Yang. Toward infinite-long prefix in trans-
former. arXiv preprint arXiv:2406.14036, 2024d.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Differential privacy of cross-attention with
provable guarantee. arXiv preprint arXiv:2407.14717, 2024e.

Yingyu Liang, Zhenmei Shi, Zhao Song, and Yufa Zhou. Tensor attention training: Provably effi-
cient learning of higher-order transformers. arXiv preprint arXiv:2405.16411, 2024f.

Na Liu, Liangyu Chen, Xiaoyu Tian, Wei Zou, Kaijiang Chen, and Ming Cui. From llm to conversa-
tional agent: A memory enhanced architecture with fine-tuning of large language models. arXiv
preprint arXiv:2401.02777, 2024.

S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient interior
point method, with applications to linear programming and maximum weight bipartite matching.
arXiv preprint arXiv:2009.06106, 2020.

AI @ Meta Llama Team. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and
Yuwei Fang. Evaluating very long-term conversational memory of llm agents. arXiv preprint
arXiv:2402.17753, 2024.

Arnab Maiti, Vishakha Patil, and Arindam Khan. Multi-armed bandits with bounded arm-memory:
Near-optimal guarantees for best-arm identification and regret minimization. Advances in Neural
Information Processing Systems, 34:19553–19565, 2021.

Annie Marsden, Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Efficient convex optimization
requires superlinear memory. In Conference on Learning Theory, pp. 2390–2430. PMLR, 2022.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary,
Éric Villemonte de La Clergerie, Djamé Seddah, and Benoit Sagot. Camembert: a tasty french
language model. arXiv preprint arXiv:1911.03894, 2019.

Jean Mercat, Igor Vasiljevic, Sedrick Keh, Kushal Arora, Achal Dave, Adrien Gaidon, and Thomas
Kollar. Linearizing large language models. arXiv preprint arXiv:2405.06640, 2024.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv
preprint arXiv:2202.12837, 2022.

Michal Moshkovitz and Naftali Tishby. A general memory-bounded learning algorithm. arXiv
preprint arXiv:1712.03524, 2017.

Roy Nissim and Oded Schwartz. Revisiting the i/o-complexity of fast matrix multiplication with
recomputations. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 482–490. IEEE, 2019.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

OpenAI. Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/, 2024. Accessed: September 12.

Rasmus Pagh and Morten Stöckel. The input/output complexity of sparse matrix multiplication. In
European Symposium on Algorithms, pp. 750–761. Springer, 2014.

Binghui Peng and Aviad Rubinstein. Near optimal memory-regret tradeoff for online learning. In
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pp. 1171–
1194. IEEE, 2023.

14

 https://openai.com/index/introducing-openai-o1-preview/
 https://openai.com/index/introducing-openai-o1-preview/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Binghui Peng and Fred Zhang. Online prediction in sub-linear space. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1611–1634. SIAM, 2023.

Ran Raz. A time-space lower bound for a large class of learning problems. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pp. 732–742. IEEE, 2017.

Ran Raz. Fast learning requires good memory: A time-space lower bound for parity learning.
Journal of the ACM (JACM), 66(1):1–18, 2018.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Barna Saha and Christopher Ye. I/o complexity of attention, or how optimal is flashattention? In
Forty-first International Conference on Machine Learning, 2024.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

Vatsal Sharan, Aaron Sidford, and Gregory Valiant. Memory-sample tradeoffs for linear regression
with small error. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pp. 890–901, 2019.

Zhenmei Shi, Yifei Ming, Xuan-Phi Nguyen, Yingyu Liang, and Shafiq Joty. Discovering the gems
in early layers: Accelerating long-context llms with 1000x input token reduction. arXiv preprint
arXiv:2409.17422, 2024a.

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context
learning differently? In Forty-first International Conference on Machine Learning, 2024b.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal
Sinop. Exphormer: Sparse transformers for graphs. In International Conference on Machine
Learning, pp. 31613–31632. PMLR, 2023.

Tanmay Singh, Harshvardhan Aditya, Vijay K Madisetti, and Arshdeep Bahga. Whispered tuning:
Data privacy preservation in fine-tuning llms through differential privacy. Journal of Software
Engineering and Applications, 17(1):1–22, 2024.

Zhao Song, Mingquan Ye, and Lichen Zhang. Streaming semidefinite programs: o(
√
n) passes,

small space and fast runtime. arXiv preprint arXiv:2309.05135, 2023.

Vaidehi Srinivas, David P Woodruff, Ziyu Xu, and Samson Zhou. Memory bounds for the experts
problem. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pp. 1158–1171, 2022.

Jacob Steinhardt and John Duchi. Minimax rates for memory-bounded sparse linear regression. In
Conference on Learning Theory, pp. 1564–1587. PMLR, 2015.

Jacob Steinhardt, Gregory Valiant, and Stefan Wager. Memory, communication, and statistical
queries. In Conference on Learning Theory, pp. 1490–1516. PMLR, 2016.

Mitchell Stern, Noam Shazeer, and Jakob Uszkoreit. Blockwise parallel decoding for deep autore-
gressive models. Advances in Neural Information Processing Systems, 31, 2018.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and Armand Joulin. Adaptive attention
span in transformers. arXiv preprint arXiv:1905.07799, 2019.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Yael Tauman Kalai, Ran Raz, and Oded Regev. On the space complexity of linear programming
with preprocessing. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pp. 293–300, 2016.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention. In
International Conference on Machine Learning, pp. 9438–9447. PMLR, 2020.

Mohd Usama, Belal Ahmad, Enmin Song, M Shamim Hossain, Mubarak Alrashoud, and Ghulam
Muhammad. Attention-based sentiment analysis using convolutional and recurrent neural net-
work. Future Generation Computer Systems, 113:571–578, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jeffrey Scott Vitter. External memory algorithms and data structures: Dealing with massive data.
ACM Computing surveys (CsUR), 33(2):209–271, 2001.

Jiayu Wang, Yifei Ming, Zhenmei Shi, Vibhav Vineet, Xin Wang, and Neel Joshi. Is a picture worth
a thousand words? delving into spatial reasoning for vision language models. arXiv preprint
arXiv:2406.14852, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, and
Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models. Advances
in neural information processing systems, 35:24824–24837, 2022.

Blake Woodworth and Nathan Srebro. Open problem: The oracle complexity of convex optimization
with limited memory. In Conference on Learning Theory, pp. 3202–3210. PMLR, 2019.

Dennis Wu, Jerry Yao-Chieh Hu, Teng-Yun Hsiao, and Han Liu. Uniform memory retrieval with
larger capacity for modern hopfield models. In Forty-first International Conference on Machine
Learning (ICML), 2024a.

Dennis Wu, Jerry Yao-Chieh Hu, Weijian Li, Bo-Yu Chen, and Han Liu. STanhop: Sparse tan-
dem hopfield model for memory-enhanced time series prediction. In The Twelfth International
Conference on Learning Representations (ICLR), 2024b.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Chenwei Xu, Yu-Chao Huang, Jerry Yao-Chieh Hu, Weijian Li, Ammar Gilani, Hsi-Sheng Goan,
and Han Liu. Bishop: Bi-directional cellular learning for tabular data with generalized sparse
modern hopfield model. In Forty-first International Conference on Machine Learning (ICML),
2024a.

Xinchao Xu, Zhibin Gou, Wenquan Wu, Zheng-Yu Niu, Hua Wu, Haifeng Wang, and Shihang
Wang. Long time no see! open-domain conversation with long-term persona memory. arXiv
preprint arXiv:2203.05797, 2022.

Zhuoyan Xu, Zhenmei Shi, and Yingyu Liang. Do large language models have compositional abil-
ity? an investigation into limitations and scalability. In First Conference on Language Modeling,
2024b.

Zihao Ye, Qipeng Guo, Quan Gan, Xipeng Qiu, and Zheng Zhang. Bp-transformer: Modelling
long-range context via binary partitioning. arXiv preprint arXiv:1911.04070, 2019.

Chulhee Yun, Yin-Wen Chang, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and San-
jiv Kumar. O (n) connections are expressive enough: Universal approximability of sparse trans-
formers. Advances in Neural Information Processing Systems, 33:13783–13794, 2020.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in neural information processing systems, 33:17283–17297, 2020.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers
via kernel density estimation. In ICML. arXiv preprint arXiv:2302.02451, 2023.

Yuchen Zeng and Kangwook Lee. The expressive power of low-rank adaptation. In The Twelfth
International Conference on Learning Representations, 2024.

Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. In-memory big data
management and processing: A survey. IEEE Transactions on Knowledge and Data Engineering,
27(7):1920–1948, 2015.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024a.

Michael Zhang, Kush Bhatia, Hermann Kumbong, and Christopher Ré. The hedgehog & the por-
cupine: Expressive linear attentions with softmax mimicry. arXiv preprint arXiv:2402.04347,
2024b.

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Self-
guide: Better task-specific instruction following via self-synthetic finetuning. arXiv preprint
arXiv:2407.12874, 2024.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Appendix
Roadmap. In Section A, we present a more comprehensive overview of related work pertinent to
our study. In Section B, we introduce additional preliminaries, including notations and definitions
of intermediate variables. Section C provides algorithms and establishes an upper bound theorem
for the attention backward pass in small cache case M = o(d2). In Section D, we offer algorithms
and an upper bound theorem for the attention backward pass in large cache case M = Ω(d2). In
Section E, we provide proofs for our attention backward I/O complexity lower bound results. In
Section F, we prove the I/O complexity lower bounds for sparse attention.

A MORE RELATED WORK

Large Language Models. The exceptional success of generative large language models (LLMs),
such as GPT-4 (Achiam et al., 2023), Claude 3 (Anthropic, 2024), Gemini 1.5 (Reid et al., 2024),
Llama 3.1 (Llama Team, 2024), Mistral Nemo (Jiang et al., 2023), Phi 3.5 (Abdin et al., 2024), is
fundamentally attributed to the transformer architecture introduced by Vaswani et al. (2017) and all
support at least 128k input token length. The transformer architecture and its self-attention mech-
anism have become indispensable in leading natural language processing (NLP) models (Chang
et al., 2024), demonstrating remarkable capabilities across a diverse array of applications, including
language translation (He et al., 2021), sentiment analysis (Usama et al., 2020), language model-
ing (Martin et al., 2019), the integration of differential privacy (Singh et al., 2024; Liang et al.,
2024e), and multi-modal tasks (Zhang et al., 2024a; Liang et al., 2024f; Wang et al., 2024). Trans-
formers’ emergent compositional abilities (Dziri et al., 2024; Xu et al., 2024b) and proficiency in
in-context learning (Olsson et al., 2022; Min et al., 2022; Shi et al., 2024b) have led some to consider
them as early indicators of Artificial General Intelligence (AGI) (Bubeck et al., 2023). As such, the
transformer architecture continues to play a pivotal role in advancing the field of AI.

More about Attention Computation Acceleration. The quadratic time complexity of attention
computation with respect to the length of the input sequence (Vaswani et al., 2017) poses significant
computational challenges, especially for long sequences. Consequently, accelerating attention com-
putation has become a crucial research area, with approaches broadly divided into two categories:
(1) theoretical optimization of computational complexity (Alman & Song, 2023; 2024a), and (2)
experimental improvements to model performance (Dao et al., 2022; Dao, 2023; Shah et al., 2024;
Ge et al., 2023; Feng et al., 2024a).

From a theoretical standpoint, numerous works focus on approximating the attention matrix to ac-
celerate computation. For example, Alman & Song (2023; 2024a) utilize polynomial kernel approx-
imation techniques (Aggarwal & Alman, 2022) to speed up both training and inference of a single
attention layer, achieving almost linear time complexity, and extend this approach to multi-layer
transformer (Liang et al., 2024c) and tensor attention (Alman & Song, 2024b; Liang et al., 2024f).
Other theoretical contributions include the conv-basis method introduced by Liang et al. (2024a)
and a near-linear time algorithm proposed by Han et al. (2024) under the assumptions of uniform
softmax column norms and sparsity.

Experimental approaches involve modifying model architectures and optimizing implementations
to accelerate inference. Methods such as Mamba (Gu & Dao, 2023; Dao & Gu, 2024), Linearizing
Transformers (Zhang et al., 2024b; Mercat et al., 2024), PolySketchFormer (Zandieh et al., 2023;
Kacham et al., 2023), and various implementations of the Hopfield Model (Hu et al., 2024b;a; Wu
et al., 2024a; Xu et al., 2024a; Hu et al., 2024c; Wu et al., 2024b; Hu et al., 2023) aim to improve
model performance and inference speed. Additionally, specific techniques like weight pruning Liang
et al. (2024b); Li et al. (2024) have been developed to accelerate LLM generation. Some other tech-
niques are introduced for efficient adaptation, such as LoRA (Hu et al., 2022; Zeng & Lee, 2024;
Hu et al., 2024d) and prefix turning (Li & Liang, 2021; Liang et al., 2024d). System-level optimiza-
tions, such as Flash Attention (Dao et al., 2022; Dao, 2023; Shah et al., 2024) and block-wise parallel
decoding (Stern et al., 2018), address bottlenecks in attention mechanisms and enhance inference
speed through efficient implementation strategies. Collectively, these advancements contribute to
making attention mechanisms more scalable and efficient, facilitating the deployment of large-scale
language models.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

More about Learning with Bounded Memory and I/O Complexity. Learning with bounded
memory has been studied in various fields in machine learning such as online learning (Maiti et al.,
2021; Srinivas et al., 2022; Peng & Rubinstein, 2023; Peng & Zhang, 2023), parity learning (Stein-
hardt et al., 2016; Raz, 2017; 2018; Garg et al., 2018), convex optimization (Woodworth & Srebro,
2019; Marsden et al., 2022; Chen & Peng, 2023), active learning (Hopkins et al., 2021), learning
linear classifiers (Brown et al., 2022), attention computation (Addanki et al., 2023), linear regres-
sion (Steinhardt & Duchi, 2015; Sharan et al., 2019; Brown et al., 2022), linear programming (Tau-
man Kalai et al., 2016; Liu et al., 2020), semi-definite programming (Song et al., 2023), principal
component analysis (Deng et al., 2023), continual learning (Chen et al., 2022; Ermis et al., 2022), en-
tropy estimation (Acharya et al., 2019; Aliakbarpour et al., 2022) and others (Moshkovitz & Tishby,
2017; Gonen et al., 2020).

A common memory model in computational systems is the two-level memory hierarchy. In this
model, there are two layers of memory: a small but fast layer called the cache, and a large but slower
layer called the memory. The I/O (input/output) complexity of an algorithm measures its efficiency
based on the number of data transfer operations it performs between the cache and the memory.
In domains such as big data analytics and database management, these data transfers can become
significant performance bottlenecks because massive datasets cannot be entirely accommodated in
the cache, and thus optimizing I/O is essential for fast data retrieval and storage, directly impacting
query performance and system scalability (Gropp et al., 2014; Zhang et al., 2015). The early work
of Hong & Kung (1981) formulated the I/O complexity mathematically using the language of graph
theory. Vitter (2001) provides a comprehensive survey of the I/O complexity of various batched
and online problems. There exists a substantial body of work on the I/O complexity of numerous
problems, including sorting (Aggarwal & Vitter, 1988), graph algorithms (Cui et al., 2020; Jain
& Zaharia, 2020; Jiang et al., 2021; Deng & Tao, 2024), fine-grained I/O complexity (Demaine
et al., 2017), computational trade-off in data transfers (Demaine & Liu, 2018), computing prime
tables (Bender et al., 2016), attention computation (Saha & Ye, 2024), integer multiplication (Bilardi
& De Stefani, 2019; De Stefani, 2019b), and matrix multiplication (De Stefani, 2019a; Nissim &
Schwartz, 2019).

B PRELIMINARY

In Section B.1, we define some basic notation we will use. In Section B.2, we introduce the memory
hierarchy we consider. In Section B.3, we state important facts related to fast matrix multiplication.
In Section B.4, we define several intermediate functions which will arise in our algorithms.

B.1 NOTATIONS

For any positive integer n, we define [n] := {1, 2, . . . , n}. For two same length vector x and y,
we use ⟨x, y⟩ to denote the inner product between x and y, i.e., ⟨x, y⟩ =

∑n
i=1 xiyi. We use ◦

to denote the Hadamard product i.e. the (i, j)-entry of A ◦ B is Ai,jBi,j . We use x ◦ y to denote
vector that i-th entry is xiyi. Let 1n denote the length-n all ones vector. It is not hard to see that
⟨x ◦ y,1n⟩ = ⟨x, y⟩. For a vector x, we use x⊤ to denote the transpose of x. For a matrix A, we use
A⊤ to denote the transpose of matrix A. For a matrix A, we use exp(A) to denote the matrix that
(i, j)-th coordinate is exp(Ai,j).

Given a matrix A ∈ Rn×m, we index an individual entry as A[i, j]. The i-th row is denoted A[i]
while the j-th column is denoted A[∗, j]. A[i1 : i2, j1 : j2] denotes a block of A consisting of
entries (i, j) where i ∈ [i1, i2] and j ∈ [j1, j2]. Given a block size B, the block A[(i− 1) · B + 1 :
i ·B, (j − 1) ·B + 1 : j ·B] is denoted A(B)[i, j].

For a vector v ∈ Rn, we similarly denote entries v[i], a contiguous block of entries as v[i1 : i2], and
the i-th block of size B as v(B)[i]. Let diag(v) denote the matrix D ∈ Rn×n with D[i, i] = v[i].

B.2 MEMORY HIERARCHY

In this study, we consider a two-level memory hierarchy composed of a small but fast layer called
the cache and a large, slower layer referred to as the memory. We assume that the memory has

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

unlimited capacity, while the cache is constrained by a finite size M . Moreover, all computations
are performed exclusively within the cache.

B.3 MATRIX MULTIPLICATION

We define matrix multiplication notation and state some well-known facts here.
Definition B.1. Let n1, n2, n3, denote any three positive integers. We use Tmat(n1, n2, n3) to denote
the time of multiplying an n1 × n2 matrix with another n2 × n3.

Then, we introduce a well-known fact.
Fact B.2. Let n1, n2, n3, denote any three positive integers. Tmat(n1, n2, n3) =
O(Tmat(n1, n3, n2)) = O(Tmat(n2, n1, n3)) = O(Tmat(n2, n3, n1)) = O(Tmat(n3, n1, n2)) =
O(Tmat(n3, n2, n1)).

B.4 DEFINITIONS OF INTERMEDIATE VARIABLES

We start by some definitions about X ∈ Rd×d.
Definition B.3 (Definition 3.4 in Alman & Song (2024a)). Let A1, A2 ∈ Rn×d be two matrices. Let
X ∈ Rd×d.

Let us define function A(X) to be:

A(X) := exp(A1XA⊤
2)︸ ︷︷ ︸

n×n

.

Definition B.4 (Definition 3.5 in Alman & Song (2024a)). For A(X) ∈ Rn×n defined in Defini-
tion B.3, we define the softmax normalizing vector l(X) ∈ Rn to be

l(X) := A(X)︸ ︷︷ ︸
n×n

· 1n︸︷︷︸
n×1

.

Definition B.5 (Definition 3.6 in Alman & Song (2024a)). Suppose that l(X) ∈ Rn is defined as
in Definition B.4. Let A(X) ∈ Rn×n be defined as in Definition B.3. For a fixed j0 ∈ [n], let us
consider f(X)j0

f(X)j0 := l(X)−1
j0︸ ︷︷ ︸

scalar

A(X)j0︸ ︷︷ ︸
n×1

.

Let f(X) ∈ Rn×n denote the matrix where j0-th row is (f(X)j0)
⊤.

Furthermore, the matrix form of f(X) is

f(X) = diag(l(X))A(X)

We then define h(Y) related to Y ∈ Rd×d.
Definition B.6 (Definition 3.7 in Alman & Song (2024a)). For A3 ∈ Rn×d and Y ∈ Rd×d, we
define h(Y) ∈ Rn×d as:

h(Y) := A3︸︷︷︸
n×d

Y︸︷︷︸
d×d

.

Let us define the forward output matrix O.
Definition B.7. Let f(X), h(Y) be defined in Definition B.5 and B.6. We define the output of
attention as:

O := f(X)︸ ︷︷ ︸
n×n

h(Y)︸ ︷︷ ︸
n×d

where O ∈ Rn×d is the output matrix of attention forward computation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Now, we define q, which incorporates the information from upstream gradient.
Definition B.8 (Definition C.10 in Liang et al. (2024c)). Let dO ∈ Rn×d be the upstream gradient,
the matrix resulting from the application of the chain rule. Define h(Y) ∈ Rn×d as in Definition B.6.

We define q(Y) ∈ Rn×n as

q(Y) := dO︸︷︷︸
n×d

h(Y)⊤︸ ︷︷ ︸
d×n

Then we use q(Y)⊤j0 to denote the j0-th row of q(Y) ∈ Rn×n.

Finally, we define the gradient component matrix p.
Definition B.9 (Definition C.5 in Alman & Song (2024a)). For every index j0 ∈ [n], we define
p(X)j0 ∈ Rn as

p(X)j0 := (diag(f(X)j0)− f(X)j0f(X)⊤j0)q(Y)j0 .

We define p(X) ∈ Rn×n in the sense that p(X)⊤j0 is the j0-th row of p(X). Additionally, p(X) has
matrix form as

p(X) = f(X) ◦ q(Y)− diag((f(X) ◦ q(Y)) · 1n)f(X)

= f(X) ◦ q(Y)− diag((O ◦ dO) · 1n)f(X)

where f(X), O are defined in Definition B.5 and B.7, and q(Y),dO are defined in Definition B.8.

C I/O COMPLEXITY UPPER BOUND FOR SMALL CACHE

In this section, we prove the I/O complexity upper bound (Theorem C.12) for small cache case M =
o(d2). Specifically, in Section C.1, we introduce an algorithm of attention gradient computation
without cache to guide our algorithm design. Section C.2 presents algorithms and analyses for
attention gradient computation in the small cache setting. Finally, Section C.3 provides the upper
bound theorem for the small cache case.

C.1 ALGORITHM FOR ATTENTION BACKWARD WITHOUT CACHE

Using results from Alman & Song (2024a), we can compute the gradient in Tmat(n, d, n) +
Tmat(n, d, d) time.
Lemma C.1 (Attention gradient computation, Lemma C.8 in Alman & Song (2024a)). If it holds
that

• Define A1, A2, A3,dO ∈ Rn×d. Define X,Y ∈ Rd×d to be several input fixed matrices.

• Let X,Y ∈ Rd×d denote matrix variables (we will compute gradient with respect to X).

• Let g = dL(X)
dX ∈ Rd×d (Definition 3.2).

Then, gradient g ∈ Rd×d can be computed in Tmat(n, d, n) + Tmat(n, d, d) time.

We first give a naive algorithm that have not utilized cache to compute the gradient (Algorithm 1).
Lemma C.2 (Correctness). The ATTENTIONGRADIENTNOCACHE (Algorithm 1) outputs a d × d

matrix dL(X)
dX defined in Definition 3.2.

Proof. From Lemma C.1, we know this holds.

Lemma C.3 (Time/space complexity). There exists an algorithm (see Algorithm 1) that can compute
the exact gradient in Definition 3.2 in Tmat(n, d, n) + Tmat(n, d, d) time and O(n2 + d2) space.

Proof. From Lemma C.1, we can prove the time complexity. Since the stored matrices have three
sizes, namely n× d, n× n, d× d, the space complexity is O(n2 + nd+ d2) = O(n2 + d2).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Algorithm 1 Attention gradient computation without cache. See more details in Section B and C of
Alman & Song (2024a) and Section F of Liang et al. (2024c).

1: procedure ATTENTIONGRADIENTNOCACHE(A1, A2, A3,dO ∈ Rn×d, X,Y ∈ Rd×d) ▷
Lemma C.2, Lemma C.3

2: Read A1, A2, X , initialize A← 0n×n, compute A← A+A1XA⊤
2 , and delete X

3: Compute A← exp(A), initialize l← 0n, and compute l← l +A · 1
4: Initialize f ← 0n×n, compute f ← f + diag(l)−1A, and delete A, d
5: Read A3, Y , initialize h← 0n×d, compute h← h+A3Y , and delete A3, Y
6: Read dO, initialize q ← 0n×n, compute q ← q + dOh⊤, and delete dO, h
7: Initialize p← 0n×n, compute p← p+ f ◦ q − diag((f ◦ q) · 1)f , and delete f, q
8: Initialize g ← 0n×n, compute g ← g +A⊤

1 pA2, and delete A1, A2, p

9: return g ▷ g = dL(X)
dX ∈ Rd×d, see Definition 3.2

10: end procedure

C.2 ALGORITHMS FOR ATTENTION BACKWARD IN SMALL CACHE

We now give algorithms to compute the upper bound of small cache case M = o(d2) in attention
backward computation.

First, we give the algorithm and analysis for Phase 1 (see Algorithm 2) to compute f defined in
Definition B.5.

Lemma C.4 (Correctness of Phase 1). The ATTENTIONGRADIENTCACHEPHASE1 (Algorithm 2)
outputs a n× n matrix f defined in Definition B.5.

Proof. The algorithm first computes S = A1X . Then it computes A = SA⊤
2 , A = exp(A), and

l = A · 1. Finally, it outputs f = diag(l)−1A which is f defined in Definition B.5.

Lemma C.5 (I/O complexity of Phase 1). The I/O complexity of ATTENTIONGRADIENTCACHEP-
HASE1 (Algorithm 2) is O(n

2d+nd2
√
M

).

Proof. In Phase 1 (Algorithm 2) the number of items in cache is at most 3B2+B ≤ 4B2 ≤M . For
each iteration in computing S = A1X and A = SA⊤

2 , the algorithm reads O(B2) from memory
into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus, the I/O
complexity of Phase 1 is O(n

2d
B3 B

2) +O(nd
2

B3 B
2) = O(n

2d+nd2

B) = O(n
2d+nd2
√
M

).

Second, we give the algorithm and analysis for Phase 2 (see Algorithm 3) to compute q defined in
Definition B.8.

Lemma C.6 (Correctness of Phase 2). The ATTENTIONGRADIENTCACHEPHASE2 (Algorithm 3)
outputs a n× n matrix q defined in Definition B.8.

Proof. The algorithm first computes h = A3Y . Then, it outputs q = dOh⊤ which is exactly the
same as q defined in Definition B.8.

Lemma C.7 (I/O complexity of Phase 2). The I/O complexity of ATTENTIONGRADIENTCACHEP-
HASE2 (Algorithm 3) is O(n

2d+nd2
√
M

).

Proof. In Phase 2 (Algorithm 3) the number of items in cache is at most 3B2 ≤ 4B2 ≤ M . For
each iteration in computing h = A3Y and q = dOh⊤, the algorithm reads O(B2) from memory
into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus, the I/O
complexity of Phase 2 is O(n

2d
B3 B

2) +O(nd
2

B3 B
2) = O(n

2d+nd2

B) = O(n
2d+nd2
√
M

).

Then, we give the algorithm and analysis for Phase 3 (see Algorithm 4) to compute p defined in
Definition B.9.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Algorithm 2 Attention gradient computation with cache phase 1. Compute f .

1: procedure ATTENTIONGRADIENTCACHEPHASE1(A1, A2 ∈ Rn×d, X ∈ Rd×d, M ∈ N+) ▷
Lemma C.4, Lemma C.5

2: B ← ⌊
√
M/4⌋

3: /*Phase 1: Compute f*/
4: for 1 ≤ i ≤ ⌈n/B⌉ do
5: for 1 ≤ j ≤ ⌈d/B⌉ do
6: Initialize S(B)[i, j]← 0B×B in cache
7: for 1 ≤ k ≤ ⌈d/B⌉ do
8: Read A

(B)
1 [i, k] and X(B)[k, j] into cache

9: Compute S(B)[i, j]← S(B)[i, j] +A
(B)
1 [i, k]X(B)[k, j] in cache ▷ S = A1X

10: Delete A
(B)
1 [i, k] and X(B)[k, j] from cache

11: end for
12: Write S(B)[i, j] in to memory, and delete S(B)[i, j] from cache
13: end for
14: end for
15: for 1 ≤ i ≤ ⌈n/B⌉ do
16: Initialize l(B)[i]← 0B in cache
17: for 1 ≤ j ≤ ⌈n/B⌉ do
18: Initialize A(B)[i, j]← 0B×B in cache
19: for 1 ≤ k ≤ ⌈d/B⌉ do
20: Read S(B)[i, k] and (A⊤

2)
(B)[k, j] into cache

21: Compute A(B)[i, j]← A(B)[i, j] + S(B)[i, k](A⊤
2)

(B)[k, j] in cache ▷
A = SA⊤

2

22: Delete S(B)[i, k] and (A⊤
2)

(B)[k, j] from cache
23: end for
24: Compute A(B)[i, j]← exp(A(B)[i, j]) in cache, and write A(B)[i, j] into memory
25: Compute l(B)[i]← l(B)[i] +A(B)[i, j] · 1 in cache ▷ l = A · 1
26: Delete A(B)[i, j] from cache
27: end for
28: for 1 ≤ j ≤ ⌈n/B⌉ do
29: Initialize f (B)[i, j]← 0B×B in cache
30: Read A(B)[i, j] into cache
31: Compute f (B)[i, j]← f (B)[i, j] + diag(l(B)[i])−1A(B)[i, j]
32: Write f (B)[i, j] into memory, and delete A(B)[i, j] and f (B)[i, j] from cache
33: end for
34: Delete l(B)[i] from cache
35: end for
36: return f ▷ f ∈ Rn×n, where f is defined in Definition B.5
37: end procedure

Lemma C.8 (Correctness of Phase 3). The ATTENTIONGRADIENTCACHEPHASE3 (Algorithm 4)
outputs a n× n matrix p defined in Definition B.9.

Proof. The algorithm first computes v = (f ◦ q) · 1. Then it outputs p = f ◦ q − diag(v)f .

Lemma C.9 (I/O complexity of Phase 3). The I/O complexity of ATTENTIONGRADIENTCACHEP-
HASE3 (Algorithm 4) is O(n2

√
M
).

Proof. In Phase 3 (Algorithm 4) the number of items in cache is at most 3B2+B ≤ 4B2 ≤M . For
each iteration in computing v = (f ◦ q) · 1 and p = f ◦ q − diag(v)f . The algorithm reads O(B2)
from memory into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus,
the I/O complexity of Phase 2 is O(n2

B3B
2) = O(n

2

B) = O(n2
√
M
).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 3 Attention gradient computation with cache phase 2. Compute q.

1: procedure ATTENTIONGRADIENTCACHEPHASE2(A3,dO ∈ Rn×d, f ∈ Rn×n Y ∈ Rd×d,
M ∈ N+) ▷ Lemma C.6, Lemma C.7

2: B ← ⌊
√

M/4⌋
3: /* Phase 2: Compute q */
4: for 1 ≤ i ≤ ⌈n/B⌉ do
5: for 1 ≤ j ≤ ⌈d/B⌉ do
6: Initialize h(B)[i, j]← 0B×B in cache
7: for 1 ≤ k ≤ ⌈d/B⌉ do
8: Read A

(B)
3 [i, k] and Y (B)[k, j] into cache

9: Compute h(B)[i, j]← h(B)[i, j] +A
(B)
3 [i, k]Y (B)[k, j] in cache

10: Delete A
(B)
3 [i, k] and Y (B)[k, j] from cache

11: end for
12: Write h(B)[i, j] in to memory, and delete h(B)[i, j] from cache
13: end for
14: end for
15: for 1 ≤ i ≤ ⌈n/B⌉ do
16: for 1 ≤ j ≤ ⌈n/B⌉ do
17: Initialize q(B)[i, j]← 0B×B in cache
18: for 1 ≤ k ≤ ⌈d/B⌉ do
19: Read dO(B)[i, k] and (h⊤)(B)[k, j] into cache
20: Compute q(B)[i, j]← q(B)[i, j] + dO(B)[i, k](h⊤)(B)[k, j] in cache
21: Delete dO(B)[i, k] and (h⊤)(B)[k, j] from cache
22: end for
23: Write q(B)[i, j] in to memory, and delete q(B)[i, j] from cache
24: end for
25: end for
26: return q ▷ q ∈ Rn×n, where q is defined in Definiton B.8
27: end procedure

Lastly, we give the algorithm and analysis for Phase 4 (see Algorithm 5) to compute dL(X)
dX .

Lemma C.10 (Correctness of Phase 4). The ATTENTIONGRADIENTCACHEPHASE4 (Algorithm 5)
outputs a d× d matrix g = dL(X)

dX (Definition 3.2).

Proof. The algorithm first computes T = A⊤
1 p. Then it outputs g = TA2.

Lemma C.11 (I/O complexity of Phase 4). The I/O complexity of ATTENTIONGRADIENTCACHEP-
HASE4 (Algorithm 5) is O(n

2d+nd2
√
M

).

Proof. In Phase 4 (Algorithm 5) the number of items in cache is at most 3B2 ≤ 4B2 ≤ M . For
each iteration in computing T = A⊤

1 p and g = TA2. The algorithm reads O(B2) from memory
into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus, the I/O
complexity of Phase 2 is O(n

2d
B3 B

2) +O(nd
2

B3 B
2) = O(n

2d+nd2

B) = O(n
2d+nd2
√
M

).

C.3 UPPER BOUND FOR ATTENTION BACKWARD IN SMALL CACHE M = o(d2)

When cache size is not so big, i.e. M = o(d2), the attention backward is equivalent to matrix
multiplication, thus having O(n

2d+nd2
√
M

) bound on the I/O complexity.

We show the upper bound theorem below for the overall algorithm (see Algorithm 6) to solve the
attention backward in small cache case.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 4 Attention gradient computation with cache phase 3. Compute p.

1: procedure ATTENTIONGRADIENTCACHEPHASE3(q ∈ Rn×n, f ∈ Rn×n, M ∈ N+) ▷
Lemma C.8, Lemma C.9

2: B ← ⌊
√
M/4⌋

3: /* Phase 3: Compute p */
4: for 1 ≤ i ≤ ⌈n/B⌉ do
5: Initialize v(B)[i]← 0B in cache
6: for 1 ≤ j ≤ ⌈n/B⌉ do
7: Read f (B)[i, j] and q(B)[i, j] into cache
8: Compute v(B)[i]← v(B)[i] + (f (B)[i, j] ◦ q(B)[i, j]) · 1 ▷ v = (f ◦ q) · 1
9: Delete f (B)[i, j] and q(B)[i, j] from cache

10: end for
11: for 1 ≤ j ≤ ⌈n/B⌉ do
12: Initialize p(B)[i, j]← 0B×B in cache
13: Read f (B)[i, j] and q(B)[i, j] into cache
14: Compute p(B)[i, j]← p(B)[i, j] + f (B)[i, j] ◦ q(B)[i, j]− diag(v(B)[i])f (B)[i, j]
15: Delete f (B)[i, j] and q(B)[i, j] from cache
16: Write p(B)[i, j] in to memory, and delete p(B)[i, j] from cache
17: end for
18: Delete v(B)[i] from cache
19: end for
20: return p ▷ p ∈ Rn×n, where p is defined in Definiton B.9
21: end procedure

Theorem C.12 (Small cache upper bound, formal version of Theorem 4.3). Suppose n is the input
length, d is the head dimension, and M is the cache size. There is an algorithm (see Algorithm 6)
outputs a d×d matrix g = dL(X)

dX (Definition 3.2) with I/O complexity O(n
2d+nd2
√
M

), time complexity
Tmat(n, d, n) + Tmat(n, d, d), and space complexity O(n2 + d2).

Proof. Time/space complexity.

First, we notice that Algorithm 6 calculates the same gradients as the Algorithm 1 except that the
former utilize cache to speed up the computation and specify the standard matrix multiplication
computations in cache. Thus, the overall time complexity Tmat(n, d, n) + Tmat(n, d, d), and space
complexity O(n2 + d2) should be the same as Lemma C.3.

I/O complexity.

From Lemma C.5, C.7, C.9, and C.11, we know the overall I/O complexity is O(n
2d+nd2
√
M

) +

O(n2
√
M
) = O(n

2d+nd2
√
M

).

Correctness.

From Lemma C.4, C.6, C.8, and C.10, the algorithm computes the correct dL(X)
dX .

D I/O COMPLEXITY UPPER BOUND FOR LARGE CACHE

In this section, we establish the upper bound (Theorem D.5) for the I/O complexity in the case where
the cache size is large, specifically when M = Ω(d2). Section D.1 presents algorithms and analyses
for attention gradient computation in the large cache setting. Section D.2 provides the upper bound
theorem for the large cache case.

Since our goal is to compute the backward pass of the attention mechanism, and the forward pass has
already been performed, it is natural to assume that we have access to the softmax normalizing vector
l := A · 1 ∈ Rn (Definition B.4) and the final attention forward output O = diag(l)−1AV ∈ Rn×d

(Definition B.7) where A = exp(A1XA⊤
2) (Definition B.3).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Algorithm 5 Attention gradient computation with cache phase 4. Compute dL(X)
dX .

1: procedure ATTENTIONGRADIENTCACHEPHASE4(A1, A2 ∈ Rn×d, p ∈ Rn×n, M ∈ N+) ▷
Lemma C.10, Lemma C.11

2: B ← ⌊
√

M/4⌋
3: /* Phase 4: Compute dL(X)

dX */
4: for 1 ≤ i ≤ ⌈d/B⌉ do
5: for 1 ≤ j ≤ ⌈n/B⌉ do
6: Initialize T (B)[i, j]← 0B×B in cache
7: for 1 ≤ k ≤ ⌈n/B⌉ do
8: Read (A⊤

1)
(B)[i, k] and p(B)[k, j] into cache

9: Compute T (B)[i, j]← T (B)[i, j] + (A⊤
1)

(B)[i, k]p(B)[k, j] in cache ▷ T = A⊤
1 p

10: Delete (A⊤
1)

(B)[i, k] and p(B)[k, j] from cache
11: end for
12: Write T (B)[i, j] in to memory, and delete T (B)[i, j] from cache
13: end for
14: end for
15: for 1 ≤ i ≤ ⌈d/B⌉ do
16: for 1 ≤ j ≤ ⌈d/B⌉ do
17: Initialize g(B)[i, j]← 0B×B in cache
18: for 1 ≤ k ≤ ⌈n/B⌉ do
19: Read T (B)[i, k] and A

(B)
2 [k, j] into cache

20: Compute g(B)[i, j]← g(B)[i, j] + T (B)[i, k]A
(B)
2 [k, j] in cache ▷ g = TA2

21: Delete T (B)[i, k] and A
(B)
2 [k, j] from cache

22: end for
23: Write g(B)[i, j] in to memory, and delete g(B)[i, j] from cache
24: end for
25: end for
26: return g ▷ g = dL(X)

dX ∈ Rd×d, see Definition 3.2
27: end procedure

Algorithm 6 Attention gradient computation with small cache.

1: procedure ATTENTIONGRADIENTCACHE(A1, A2, A3,dO ∈ Rn×d, X,Y ∈ Rd×d, M ∈ N+)
▷ Theorem C.12

2: f ← ATTENTIONGRADIENTCACHEPHASE1(A1, A2, X,M) ▷ see Algorithm 2
3: q ← ATTENTIONGRADIENTCACHEPHASE2(A3,dO, f, Y,M) ▷ see Algorithm 3
4: p← ATTENTIONGRADIENTCACHEPHASE3(q, f,M) ▷ see Algorithm 4
5: g ← ATTENTIONGRADIENTCACHEPHASE4(A1, A2, p,M) ▷ see Algorithm 5
6: return g ▷ g = dL(X)

dX ∈ Rd×d, see Definition 3.2
7: end procedure

By utilizing these precomputed quantities from the forward pass, we can efficiently proceed with
the backward computation while optimizing the I/O operations required.

D.1 ALGORITHMS FOR ATTENTION BACKWARD IN LARGE CACHE

We first give Algorithm 7 and its analysis in large cache case for computing intermediate variables
S, h.

Lemma D.1 (Correctness of Phase 1). The ATTENTIONGRADIENTLARGECACHEPHASE1 (Algo-
rithm 7) outputs two n× d matrices S = A1X (Definition 3.1) and h = A3Y (Definition B.6).

Proof. The algorithm first divide A1, A3, X, Y into row/column blocks of size Br × d or d × Bc.
Then it reads the row/column block matrices to compute the corresponding small blocks of S, h by
standard matrix multiplication. Thus, it computes the exact value for S, h.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 7 Attention gradient computation large cache phase 1. Compute S, h.

1: procedure ATTENTIONGRADIENTLARGECACHEPHASE1(A1, A3 ∈ Rn×d, X,Y ∈ Rd×d,
M ∈ N+) ▷ Lemma D.1, Lemma D.2

2: Br ← min{⌈M4d⌉, d} and Bc ← ⌈M4d⌉
3: Vertically divide A1 into Tr = ⌈ n

Br
⌉ blocks A1,1, . . . , A1,Tr of size Br × d each, and

horizontally divide X into Tc = ⌈ d
Bc
⌉ blocks X∗,1, . . . , X∗,Tc

of size d×Bc each
4: Vertically divide A3 into Tr = ⌈ n

Br
⌉ blocks A3,1, . . . , A3,Tr

of size Br × d each, and
horizontally divide Y into Tc = ⌈ d

Bc
⌉ blocks Y∗,1, . . . , Y∗,Tc

of size d×Bc each
5: ▷ Here A1,i, A3,i ∈ RBr×d means the i-th row block of A1, A3 for i ∈ [Tr], and

X∗,j , Y∗,j ∈ Rd×Bc means j-th column block of X,Y for j ∈ [Tc]
6: for 1 ≤ i ≤ Tr do
7: Read A1,i, A3,i ∈ RBr×d into cache
8: for 1 ≤ j ≤ Tc do
9: Read X∗,j ∈ Rd×Bc into cache, and initialize Si,j ← 0Br×Bc in cache

10: Compute Si,j ← Si,j +A1,iX∗,j in cache ▷ S = A1X
11: Write Si,j to memory, and delete Si,j , X∗,j from cache
12: Read Y∗,j ∈ Rd×Bc into cache, and initialize hi,j ← 0Br×Bc in cache
13: Compute hi,j ← hi,j +A3,iY∗,j in cache ▷ h = A3Y
14: Write hi,j to memory, and delete hi,j , Y∗,j from cache
15: end for
16: Delete A1,i, A3,i from cache
17: end for
18: return S, h ▷ S, h ∈ Rn×d

19: end procedure

Lemma D.2 (I/O complexity of Phase 1). Suppose the cache size satisfy nd ≥ M ≥ d. The I/O
complexity of ATTENTIONGRADIENTLARGECACHEPHASE1 (Algorithm 7) is O(n

2d2

M + nd3

M).

Proof. Why such conditions for Br, Bc.

The cache size has three constraints, because we need matrices A1,i, A3,i ∈ RBr×d, X∗,j , Y∗,j ∈
Rd×Bc , and Si,j , hi,j ∈ RBr×Bc to fit into cache. Thus, we have

Brd = O(M)

Bcd = O(M)

BrBc = O(M)

Then, we need

Br = O(M/d)

Bc = O(M/d)

By setting Bc = Θ(M/d), we have

Br = Θ(min{M/d,M/Bc})
= Θ(min{M/d, d})

I/O complexity. We know Br ← min{⌈M4d⌉, d} and Bc ← ⌈M4d⌉, also Tr = ⌈ n
Br
⌉ and Tc = ⌈ d

Br
⌉.

Substituting Br into Tr, we get Tr = O(ndM). Observe that TrBr = O(n) and TcBc = O(d).

The I/O complexity can be computed by:

Tr(Brd+ Tc(dBc)) = O(nd) + Trd
2

= O(nd) +O(
nd

M
d2)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

= O(nd+
nd3

M
)

where the first step follows from TrBr = O(n) and TcBc = O(d), the second step follows from
Tr = O(ndM), and the last step follows from simple algebra.

Because M ≤ nd, we have

O(nd+
nd3

M
) = O(

ndM

M
+

nd3

M
)

= O(
n2d2

M
+

nd3

M
)

Thus, the total I/O complexity is O(n
2d2

M + nd3

M)

Algorithm 8 Attention gradient computation large cache phase 2. Compute g.

1: procedure ATTENTIONGRADIENTLARGECACHEPHASE2(A1, A2, S, h,O,dO ∈ Rn×d, l ∈
Rn, M ∈ N+) ▷ Lemma D.3, Lemma D.4

2: Br ← min{⌈M4d⌉, d} and Bc ← ⌈M4d⌉
3: Vertically divide S into Tr = ⌈ n

Br
⌉ blocks S1, . . . , STr

of size Br × d each, vertically
divide A2 into Tc = ⌈ n

Bc
⌉ blocks A2,1, . . . , A2,Tc

of size Bc × d each, and vertically divide l

into Tr = ⌈ n
Br
⌉ blocks l1, . . . , lTr

of size Br each
4: Vertically divide O into Tr = ⌈ n

Br
⌉ blocks O1, . . . , OTr

of size Br × d each, vertically
divide dO into Tr = ⌈ n

Br
⌉ blocks dO1, . . . ,dOTr

of size Br × d each, vertically divide h into
Tc = ⌈ n

Bc
⌉ blocks h1, . . . , hTc

of size Bc × d each, and vertically divide A1 into Tr = ⌈ n
Br
⌉

blocks A1,1, . . . , A1,Tr
of size Br × d each

5: Initialize g ← 0d×d in cache
6: for 1 ≤ i ≤ Tr do
7: Read Si, Oi,dOi, A1,i ∈ RBr×d and li ∈ RBr into cache
8: Initialize vi ← 0Br and compute vi ← vi + (dOi ◦Oi) · 1 in cache ▷ v = (dO ◦O) · 1
9: Delete Oi from cache

10: for 1 ≤ j ≤ Tc do
11: Read hj ∈ RBc×d and initialize qi,j ← 0Br×Bc in cache
12: Compute qi,j ← dOih

⊤
j in cache ▷ q = dOh⊤

13: Read A2,j ∈ RBc×d into cache, and initialize Ai,j ← 0Br×Bc in cache
14: Compute Ai,j ← Ai,j + SiA

⊤
2,j in cache ▷ A = SA⊤

2

15: Compute Ai,j ← exp(Ai,j) in cache, and initialize fi,j ← 0Br×Bc in cache
16: Compute fi,j ← fi,j + diag(li)

−1Ai,j in cache ▷ f = diag(l)A
17: Delete Ai,j from cache, and initialize pi,j ← 0Br×Bc in cache
18: Compute pi,j ← pi,j + fi,j ◦ qi,j − diag(vi)fi,j in cache ▷ p = f ◦ q − diag(v)f
19: Delete fi,j , qi,j in cache, and initialize T∗,j ← 0d×Bc in cache
20: Compute T∗,j ← T∗,j +A⊤

1,ipi,j in cache ▷ T = A⊤
1 p

21: Compute g ← g + T∗,jA2,j ▷ g = TA2

22: Delete T∗,j , A2,j from cache
23: end for
24: Delete Si, A1,i,dOi, li, vi from cache
25: end for
26: Write g into memory
27: return g ▷ g = dL(X)

dX ∈ Rd×d, see Definition 3.2
28: end procedure

We then give Algorithm 8 along with its analysis for computing the gradient g.

Lemma D.3 (Correctness of Phase 2). The ATTENTIONGRADIENTLARGECACHEPHASE2 (Algo-
rithm 8) outputs a d× d matrix g (Definition 3.2).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Proof. The algorithm first vertically divides the matrices S, A2, l, O, dO, h, and A1 into row blocks
of size Br × d or Bc × d. Following the computational graph (Fig. 2) and the no-cache algorithm
(Algorithm 1), we compute the gradient g exactly. It is important to note that, in algorithm design,
we need to avoid reading the attention matrix f ∈ Rn×n directly—even though it has been computed
during the forward pass—or any matrices of size Br × n or Bc × n. Doing so would result in an
O(n2) I/O complexity, which cannot be improved through caching.

Lemma D.4 (I/O complexity of Phase 2). Suppose the cache size satisfy nd ≥ M ≥ d2. The I/O
complexity of ATTENTIONGRADIENTLARGECACHEPHASE2 (Algorithm 8) is O(n

2d2

M + nd3

M).

Proof. The reason for conditions of Br, Bc is the same as the proof of Lemma D.2. However, it
is important to note that updating the gradient g in the cache requires assuming a cache size of
M ≥ d2. This is necessary because we fuse the key and query weight matrices into a single matrix
X ∈ Rd×d. The update to the corresponding gradient g in the cache is driven by the outer product
representation of the matrix, as shown in Line 21 of Algorithm 8.

Next we show the I/O complexity. Since Br ← min{⌈M4d⌉, d} and Bc ← ⌈M4d⌉, also Tr = ⌈ n
Br
⌉ and

Tc = ⌈ n
Br
⌉, we get Tr = O(ndM). Also, we observe that TrBr = O(n) and TcBc = O(n).

The I/O complexity can be computed by:

Tr(Brd+ TcBcd) + d2 = O(nd) + Trnd+ d2

= O(Trnd) + d2

= O(
n2d2

M
) + d2

where the first step follows from TrBr = O(n) and TcBc = O(n), the second step follows from
Tr ≥ 1, and the last step follows from Tr = O(ndM).

Then, because M ≤ nd, we can show

O(d2 +
n2d2

M
) = O(

d2M

M
+

n2d2

M
)

= O(
nd3

M
+

n2d2

M
)

Thus, the total I/O complexity is O(n
2d2

M + nd3

M)

D.2 UPPER BOUND FOR ATTENTION BACKWARD IN LARGE CACHE M = Ω(d2)

In the large cache scenario, while it is feasible to precompute and store the n × n attention matrix,
reading it will result in an unavoidable O(n2) I/O complexity. Inspired by FlashAttention Dao et al.
(2022); Dao (2023); Shah et al. (2024), we present the following theorem, which provides an upper
bound O(n

2d2+nd3

M) on the I/O complexity of the attention gradient algorithm in the large cache
(Algorithm 9).

Theorem D.5 (Large cache upper bound, formal version of Theorem 4.1). Suppose n is the input
length, d is the head dimension, and nd ≥ M ≥ d2 is the cache size. There is an algorithm (see
Algorithm 9) outputs a d× d matrix g = dL(X)

dX (Definition 3.2) with I/O complexity O(n
2d2+nd3

M).

Proof. Correctness. Combining Lemma D.1 and D.3, we finish the proof.

I/O complexity. Combining Lemma D.2 and D.4, we finish the proof.

E LOWER BOUND FOR ATTENTION BACKWARD COMPUTATION

In this section, we prove the lower bound of the attention gradient computation. In Section E.1,
we state some definition in graph theory that will be used to establish the framework of Hong &

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Algorithm 9 Attention gradient computation with large cache.

1: procedure ATTENTIONGRADIENTLARGECACHE(A1, A2, A3, O, dO ∈ Rn×d, X,Y ∈ Rd×d,
l ∈ Rn, M ∈ N+) ▷ Theorem D.5

2: S, h← ATTENTIONGRADIENTLARGECACHEPHASE1(A1, A3, X, Y,M) ▷ see
Algorithm 7

3: g ← ATTENTIONGRADIENTLARGECACHEPHASE4(A1, A2, h, S,O,dO, l,M) ▷ see
Algorithm 8

4: return g ▷ g = dL(X)
dX ∈ Rd×d, see Definition 3.2

5: end procedure

Kung (1981) that will be used to analyze the I/O complexity. In Section E.2, we state some tools
from previous works from I/O compleixty of standard matrix multiplication and attention forward
computation. In Section E.3, we will establish our lower bounds of I/O complexity for attention
backward passes in both large cache case and small cache case.

E.1 BASIC DEFINITION IN GRAPH THEORY

Hong & Kung (1981) introduces a method for analyzing I/O complexity using the concept of an
M -partition on a graph. Before we define it, we first provide some definitions from graph theory.
Definition E.1 (Dominator set). Let G = (V,E) be a directed acyclic graph and S ⊆ V . We define
a set D ⊆ V as a dominator set of S if, for every path in G from a input node to any node in S,
there exists at least one node in D on that path.
Definition E.2 (Minimum set). Let G = (V,E) be a directed acyclic graph and S ⊆ V . We say
that a set M ⊆ S is a minimum set of S if M contains all nodes in S that have no children in S.
Definition E.3 (Vertex subset dependence). Let G = (V,E) be a directed acyclic graph. Let
V1, V2 ⊆ V be two disjoint subsets. We say that V2 depends on V1 if there is a directed edge from a
node in V1 to a node in V2.
Definition E.4 (Cyclic dependence). Let G = (V,E) be a directed acyclic graph. Let V1, . . . , Vh ⊆
V be h disjoint subsets of V . We say that there is a cyclic dependence among {V1, . . . , Vh} if there
exists a permutation (i1, . . . , ih) of [h] such that Vi1 depends on Vih , and for every j ∈ {2, . . . , h},
Vij depends on Vij−1 .

Now, we are ready to define M -partitons. In fact, the minimum number of sets in any M -partition
provides a lower bound on the I/O complexity.
Definition E.5 (M -partition (Hong & Kung, 1981)). Let G = (V,E) be a directed acyclic graph.
Let V1, . . . , Vh ⊆ V be h disjoint subsets of V . We say that {V1, . . . , Vh} is a M -partition of G if
the following conditions are satisfied

• {V1, . . . , Vh} is a partition of V , i.e., V1, . . . , Vh are disjoint and V =
⋃h

i=1 Vi.

• For each Vi, there exists a dominator set Di of Vi such that Di has at most M nodes.

• For each Vi, there exists a minimum set Mi of Vi such that Mi has at most M nodes.

• There is no cyclic dependence among {V1, . . . , Vh}.

We use P (G,M) to denote the minimum number of sets in any M -partition of G.

E.2 PREVIOUS TOOLS FOR I/O COMPLEXITY

Now, we are ready to introduce some tools for I/O Complexity from Hong & Kung (1981) by using
an M -partition on a graph.
Lemma E.6 (Lemma 3.1 of Hong & Kung (1981)). For any directed acyclic graph G and any
positive integer M , we have

Q(G,M) ≥M · (P (G, 2M)− 1).

We omit G when it is clear in the context.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

We state two useful lemmas from previous works as follows.
Lemma E.7 (Lemma 3.3 of Saha & Ye (2024)). Suppose that M = Ω(d2) and A ∈ Rn1×d, B ∈
Rd×n2 . Let P be an M -partition of the computational graph of any algorithm that computes AB

using standard matrix multiplication. Then for each V ′ ∈ P , V ′ contains at most O(M
2

d) product
nodes Ai,kBk,j , sum nodes (AB)i,j , and all intermediate nodes in the summation trees.

In Saha & Ye (2024), the matrices A and B in the above lemma are of sizes n × d and d × n,
respectively. We note that with slight modifications to the proofs, the result also holds when A and
B have different sizes, specifically n1 × d and d× n2.

The next lemma gives the lower bound of I/O compleixty of standard matrix multiplication.
Lemma E.8 (Corollary 6.2 of Hong & Kung (1981)). Let A ∈ Rn1×d, B ∈ Rd×n2 . The standard
matrix multiplication algorithm computing AB has I/O complexity Q(M) = Ω(n1dn2√

M
).

E.3 PROOF OF OUR LOWER BOUND

We establish the lower bounds of I/O complexity of attention gradient computation in both large
cache case and small cache case. We first give the lower bound in the large cache case, i.e., the
cache size M = Ω(d2).
Theorem E.9 (Large cache lower bound, formal version of Theorem 4.2). Suppose n is the input
length and d is the head dimension. Suppose the cache size M = Ω(d2). Then the I/O complexity
of attention gradient computation using standard matrix multiplication is Ω(n

2d2+nd3

M).

Proof. Any algorithm that computes the attention gradient needs to compute the matrix product
A1XA⊤

2 using standard matrix multiplication. Note that we compute A1XA⊤
2 using standard matrix

multiplication, so we either first compute A1X and then compute (A1X)A⊤
2 , or first compute XA⊤

2
and then compute A1(XA⊤

2). In either case, we perform two matrix multiplications: one between
an n×d matrix and a d×d matrix, and another between an n×d matrix and a d×n matrix. Without
loss of generality, we assume the first case where we first compute A1X .

Recall that the level-1 nodes are the product nodes (A1)i,kXk,j , the sum nodes (A1X)i,j , and all
intermediate nodes in the summation trees. For every V ′ in an M -partition P , by Lemma E.7, there
are at most O(M

2

d) level-1 nodes in V ′. Since the number of sum nodes (A1X)i,j is nd2, the number
of parts in the M -partition P is at least Ω(nd

3

M2). By Lemma E.6, the I/O complexity for computing
A1X is Ω(n

2d
M).

Similarly, we recall that level-2 nodes are the product nodes (A1X)i,k(A
⊤
2)k,j , the sum nodes

((A1X)A⊤
2)i,j , and all intermediate nodes in the summation trees. For every V ′ in an M -partition

P , by Lemma E.7, there are at most O(M
2

d) level-2 nodes in V ′. Since the number of sum nodes
((A1X)A⊤

2)i,j is n2d, the number of parts in the M -partition P is at least Ω(n
2d2

M2). By Lemma E.6,
the I/O complexity for computing (A1X)A⊤

2 is Ω(n
2d2

M).

Therefore, the I/O complexity of attention gradient computation is at least Ω(nd
3+n2d2

M).

Next, we give the lower bound in the small cache case, i.e., the cache size M = o(d2).
Theorem E.10 (Small cache lower bound, formal version of Theorem 4.4). Suppose n is the input
length and d is the head dimension. Suppose the cache size M = o(d2). Then the I/O complexity of
attention gradient computation using standard matrix multiplication is Ω(n

2d+nd2
√
M

).

Proof. We show that when M = o(d2), the attention gradient computation can be reduced to com-
puting the matrix product A1XA⊤

2 . Note that we compute A1XA⊤
2 using standard matrix multi-

plication, so we either compute A1X first and then compute (A1X)A⊤
2 , or we first compute XA⊤

2
and then A1(XA⊤

2). However, both cases require performing one matrix multiplication between an
n× d matrix and a d× d matrix, and one matrix multiplication between an n× d matrix and a d×n
matrix. Hence, without loss of generality, we assume that A1X is computed first. By Lemma E.8,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

the I/O complexity of computing A1X is Ω(nd2
√
M
), and the I/O complexity of computing (A1X)A⊤

2

is Ω(n2d√
M
). Hence, the total I/O complexity of computing A1XA⊤

2 is Ω(n
2d+nd2
√
M

).

Suppose that there is an algorithm A for attention gradient computation which has I/O complexity
o(n

2d+nd2
√
M

). We construct an algorithm B that computes the matrix product A1XA⊤
2 with I/O

complexity o(n
2d+nd2
√
M

). Since M < o(d2), we have n2d+nd2
√
M

> ω(n2+nd) > ω(n2), so algorithm
A is able to transfer the all entries of matrix product (A1X)A⊤

2 from cache to memory. In the
language of the red-blue pebble game, algorithm B works as follows: whenever algorithm A delete
a blue pebble from a node in (A1X)A⊤

2 , do not delete it; whenever algorithm A place a red pebble
on a node in (A1X)A⊤

2 , also place a blue pebble on it. Since the I/O complexity of algorithm A is
o(n

2d+nd2
√
M

) and we need an additional n2 I/O operations to transfer the entries of the matrix product

(A1X)A⊤
2 from cache to memory. Since n2 < o(n2d√

M
), the overall I/O complexity of B is still

o(n
2d+nd2
√
M

). However, this contradicts the fact that the I/O complexity of computing A1XA⊤
2 is

Ω(n
2d+nd2
√
M

). Therefore, the I/O complexity of attention gradient computation using standard matrix

multiplication is Ω(n
2d+nd2
√
M

).

F SPARSE ATTENTION COMPUTATION

In this section, we provide the lower bounds of sparse attention computation for both forward and
backward passes. In Section F.1, we state previous tools of sparse matrix multiplication. In Sec-
tion F.2, we provide the proofs of the lower bounds of sparse attention.

F.1 PREVIOUS TOOLS FOR I/O COMPLEXITY OF SPARSE MATRIX MULTIPLICATION

We assume that sparse matrices are stored by listing only their non-zero entries along with their co-
ordinates. Sparse semi-ring matrix multiplication restricts operations to addition and multiplication
of these entries, which means that each output entry (AB)i,j can only be computed as the sum of
products given by

∑
k Ai,kBk,j .

Lemma F.1 (Theorem 2 of Pagh & Stöckel (2014)). Let A ∈ Rn1×d and B ∈ Rd×n2 be two
matrices such that R1 := nnz(A) + nnz(B) and R2 := nnz(AB). The sparse semi-ring matrix
multiplication that computes AB has I/O complexity Ω(min{R

2
1

M , R1

√
R2√

M
}).

Note that in this statement, the I/O complexity also separates into the large cache case and the small
cache case, but the dividing point may not be d2. It depends on whether all the necessary values for
computing each output entry can be stored in the cache during the computation.

F.2 OUR LOWER BOUNDS FOR SPARSE ATTENTION COMPUTATION

We first prove a useful lemma which state the lower bound of I/O complexity of computing the
attention matrix.
Lemma F.2. Let A1 ∈ Rn×d, X ∈ Rd×d, A2 ∈ Rd×n be three matrices. Let ZA :=
min{nnz(A1),nnz(A2)}, ZX := nnz(X), ZAX = min{nnz(A1X),nnz(XA⊤

2)}, ZAXA :=
nnz(A1XA⊤

2). Then the sparse semi-ring matrix multiplication that computes A1XA⊤
2 has I/O

complexity Ω(min{Z
2
A+ZAZX

M , ZA

√
ZAXA+

√
ZAZXZAX√

M
}).

Proof. We first consider the case where all the necessary values for computing each output entry can
be stored in the cache during the computation. Suppose that A1X is computed first, by Lemma F.1,
computing A1X has I/O compleixty

Ω(
(nnz(A1) + nnz(X))2

M
) = Ω(

nnz(A1)
2 + 2nnz(A1) nnz(X) + nnz(X)2

M
)

≥ Ω(
Z2
A + 2ZAZX + Z2

X

M
)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

≥ Ω(
Z2
A + 2ZAZX

M
)

where the first step follows by the basic algebra, the second step uses the definition of ZA, ZX ,
and the last step follows from the basic algebra. Then we compute the product (A1X)A⊤

2 , by
Lemma F.1, computing A1X has I/O compleixty

Ω(
(nnz(A1X) + nnz(A2))

2

M
) = Ω(

nnz(A1X)2 + 2nnz(A1X) nnz(A2) + nnz(A2)
2

M
)

≥ Ω(
nnz(A2)

2

M
)

= Ω(
Z2
A

M
)

where the first and second steps follow by the basic algebra, and the last step uses the defini-
tion of ZA. Therefore, computing A1XA⊤

2 in this way has I/O complexity Ω(
2Z2

1+2Z1Z2

M) =

Ω(
Z2

1+Z1Z2

M). Similary, suppose that XA⊤
2 is computed first. Then we can also get the I/O com-

plexity Ω(
Z2

1+Z1Z2

M).

Next, we consider the case where some elementary products of matrix multiplication needs to be
written in the memory during the computation. Suppose that A1X is computed first, and then
(A1X)A⊤

2 is computed. By Lemma F.1, computing (A1X) has I/O compleixty

Ω(
(nnz(A1) + nnz(X))

√
nnz(A1X))√

M
) ≥ Ω(

2
√
nnz(A1) nnz(X)

√
nnz(A1X)√

M
)

≥ Ω(
2
√
ZAZXZAX√

M
)

where the first step uses Cauchy-Schwarz inequality, the second step uses the definition of ZA, ZX

and ZAXA.

By Lemma F.1, computing (A1X)A⊤
2 has I/O compleixty

Ω(
(nnz(A1X) + nnz(A2))

√
nnz(A1XA⊤

2)√
M

) ≥ Ω(
nnz(A2)

√
nnz(A1XA⊤

2)√
M

)

≥ Ω(
ZA

√
ZAXA√
M

).

where the first step follows by the basic algebra, the second step uses the definition of ZA and
ZAXA. Therefore, computing A1XA⊤

2 in this way has I/O complexity Ω(ZA

√
ZAXA+

√
ZAZXZAX√

M
).

Similary, suppose that XA⊤
2 is computed first. Then we can also get the I/O complexity

Ω(ZA

√
ZAXA+

√
ZAZXZAX√

M
).

Therefore, the sparse semi-ring matrix multiplication that computes A1XA⊤
2 has I/O complexity

Ω(min{Z
2
A+ZAZX√

M
, ZA

√
ZAXA+

√
ZAZXZAX√√
M

}).

Next, we can apply Lemma F.2 to get the lower bound of sparse attention forward and backward
passes.

Theorem F.3 (Lower bound for sparse attention forward). Suppose n is the input length, d is
the head dimension, and M is the cache size. Let ZA := min{nnz(A1),nnz(A2)}, ZX :=
nnz(X), ZAX = min{nnz(A1X),nnz(XA⊤

2)}, ZAXA := nnz(A1XA⊤
2). Then any algorithm

for attention forward computation using sparse semi-ring matrix multiplication has I/O complexity
Ω(min{Z

2
A+ZAZX

M , ZA

√
ZAXA+

√
ZAZXZAX√

M
}).

Proof. Any algorithm for attention forward computation needs to compute the matrix product
A1XA⊤

2 to obtain the attention matrix. Thus by applying Lemma F.2, we complete the proof.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Theorem F.4 (Lower bound for sparse attention backward). Suppose n is the input length, d
is the head dimension, and M is the cache size. Let ZA := min{nnz(A1),nnz(A2)}, ZX :=
nnz(X), ZAX = min{nnz(A1X),nnz(XA⊤

2)}, ZAXA := nnz(A1XA⊤
2). Then any algorithm for

attention backward computation using sparse semi-ring matrix multiplication has I/O complexity
Ω(min{Z

2
A+ZAZX

M , ZA

√
ZAXA+

√
ZAZXZAX√

M
}).

Proof. Any algorithm for attention backward computation needs to compute the matrix product
A1XA⊤

2 to obtain the attention matrix. Thus by applying Lemma F.2, we complete the proof.

34

	Introduction
	Our Contributions

	Related Work
	Preliminary
	Key Concept of Attention
	Summation Tree
	I/O Complexity

	Main Results
	Large Cache
	Small Cache
	Lower Bound of Sparse Attention Forward and Backward Passes

	Technical Overview
	Conclusion
	More Related Work
	Preliminary
	Notations
	Memory Hierarchy
	Matrix Multiplication
	Definitions of Intermediate Variables

	I/O Complexity Upper Bound for Small Cache
	Algorithm for Attention Backward Without Cache
	Algorithms for Attention Backward in Small Cache
	Upper Bound for Attention Backward in Small Cache

	I/O Complexity Upper Bound for Large Cache
	Algorithms for Attention Backward in Large Cache
	Upper Bound for Attention Backward in Large Cache

	Lower Bound for Attention Backward Computation
	Basic Definition in Graph Theory
	Previous Tools for I/O Complexity
	Proof of Our Lower Bound

	Sparse Attention Computation
	Previous Tools For I/O complexity of Sparse Matrix Multiplication
	Our Lower Bounds for Sparse Attention Computation

