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ABSTRACT

Learning with noisy labels is a fundamental problem in machine learning. Much
work has been done in designing loss functions that are theoretically robust against
label noise. However, it remains unclear why robust loss functions can underfit
and why loss functions deviating from theoretical robustness conditions can ap-
pear robust. To elucidate these questions, we show that most robust loss func-
tions differ only in the sample-weighting curriculums they implicitly define. The
curriculum perspective enables straightforward analysis of the training dynamics
with each loss function, which has not been considered in existing theoretical ap-
proaches. We show that underfitting can be attributed to marginal sample weights
during training, and noise robustness can be attributed to larger weights for clean
samples than noisy samples. With a simple fix to the curriculums, robust loss
functions that severely underfit can become competitive with the state-of-the-art.1

1 INTRODUCTION

Labeling errors are non-negligible from automatic annotation (Liu et al., 2021; Khayrallah & Koehn,
2018), crowd-sourcing (Russakovsky et al., 2015) and expert annotation (Kato & Matsubara, 2010;
Bridge et al., 2016). The resulting noisy labels may hamper generalization since over-parameterized
neural networks can memorize the training set (Zhang et al., 2017). To combat the adverse impact
of noisy labels in classification tasks, a large body of research (Song et al., 2020) aims to design loss
functions robust against label noise. Most existing approaches derive sufficient conditions (Ghosh
et al., 2017; Zhou et al., 2021b) for noise robustness. Despite the theoretical appeal being agnostic
to models and training dynamics2, they may fail to comprehensively characterize the performance
of robust loss functions. Specifically, it has been shown that (1) robust loss functions can underfit
difficult tasks (Zhang & Sabuncu, 2018; Wang et al., 2019c; Ma et al., 2020), while (2) loss functions
violating existing robustness conditions (Zhang & Sabuncu, 2018; Wang et al., 2019c;b) can exhibit
robustness. For (1), existing explanations (Ma et al., 2020; Wang et al., 2019a) can be limited as
discussed in §2.2. For (2), to our knowledge, there has been no work directly addressing it.
We analyze training dynamics with various loss functions to elucidate the above observations, which
complements existing theoretical approaches. Specifically, we rewrite a broad array of loss functions
into a standard form with the same implicit loss function and varied sample-weighting functions
(§3), each implicitly defining a sample-weighting curriculum. The interaction between the sample-
weighting function and the distribution of implicit losses of samples thus reveals aspects of the train-
ing dynamics with each loss function. Here a curriculum by definition (Wang et al., 2020) specifies
a sequence of re-weighting for the distribution of training samples, e.g., sample weighting (Chang
et al., 2017) or sample selection (Zhou et al., 2021a), based on a metric for sample difficulty. No-
tably, our novel curriculum perspective first connects robust loss functions to the seemingly distinct
curriculum learning approaches (Song et al., 2020) for noise-robust training.
With our curriculum perspective, we first attribute the underfitting issue of robust loss functions to
marginal sample weights during training (§4.1). In particular, for classification tasks with numerous
classes, the initial sample weights under the curriculum of some robust loss functions can become
marginal. When modifying the curriculums accordingly, robust loss functions that severely underfit
can become competitive with the state-of-the-art. We then attribute noise robustness of loss functions
to larger sample weights for clean samples than for noisy ones during training (§4.2). By examining

1Our code will be available at github.
2Changes of model states during training except for trivial metrics like evaluation metrics and loss functions.
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the changes of implicit losses during training, we find that dynamics of SGD suppress the learning of
noisy samples. Curriculums of robust loss functions further suppress the learning of noisy samples
by magnifying the difference in learning pace between clean and noisy samples while neglecting
unlearned noisy samples. Based on our analysis, we present two unexpected phenomenons when
viewed from existing theoretical results. By simply changing the learning rate schedule, (1) robust
loss functions can become vulnerable to label noise, while (2) cross entropy can appear robust.

2 BACKGROUND

Classification k-ary classification with input x ∈ Rd can be solved by classifier argmaxi si, where
si is the score for the i-th class in the class scoring function s : Rd → Rk parameterized by θ. Class
scores s(x;θ) can be turned into class probabilities with the softmax function pi = esi/(

∑k
j=1 e

sj ),
where pi is the probability of class i. Given a loss function L(s(x;θ), y) and data (x, y) with y ∈
{1..k} the ground truth label, θ can be estimated by risk minimization argminθ Ex,yL(s(x;θ), y),
whose solutions are called risk minimizers. We use s in place of s(x;θ) for notation simplicity.
Noise robustness Mistakes in the labeling process can corrupt the clean label y into a noisy label

ỹ =

{
y, with probability P (ỹ = y|x, y)
i, i ̸= y with probability P (ỹ = i|x, y)

Label noise is symmetric (or uniform) if P (ỹ = i|x, y) = η/(k−1),∀i ̸= y, with η = P (ỹ ̸= y) the
noise rate constant. Label noise is asymmetric (or class-conditional) if P (ỹ = i|x, y) = P (ỹ = i|y).
Given data (x, ỹ) with noisy label ỹ, a loss function L is robust against label noise if

argminθ Ex,ỹL(s(x;θ), ỹ) = argminθ Ex,yL(s(x;θ), y) (1)

Conditions for noise robustness Most existing approaches on robust loss function (Ghosh et al.,
2017; Ma et al., 2020; Liu & Guo, 2020; Feng et al., 2020; Zhou et al., 2021b) focus on bounding
the difference between risk minimizers obtained with noisy and clean data, i.e., ensuring that Eq. (1)
approximately holds. These bounds only depend on the loss functions and mild assumptions about
the dataset. To contrast our curriculum perspective with these approaches, we review two typical
sufficient conditions for noise robustness. Loss function L is symmetric (Ghosh et al., 2017) if∑k

i=1
L(s, i) = C, ∀s ∈ Rk, (2)

where C is a constant. It is robust against symmetric label noise with η < (k − 1)/k. This stringent
condition was later relaxed to the asymmetric condition. To rephrase, a loss function as a function
of the softmax probability pi, i.e., L(s, i) = l(pi), is asymmetric (Zhou et al., 2021b) if

max
i ̸=y

P (ỹ = i|x, y)
P (ỹ = y|x, y)

= r̃ ≤ r = inf
0≤pi,∆p≤1
pi+∆p≤1

l(pi)− l(pi +∆p)

l(0)− l(∆p)
, (3)

where ∆p is a valid increment of pi. When clean labels dominate the data, i.e., r̃ < 1, an asymmetric
loss is robust against generic label noise.
The active-passive dichotomy Ma et al. (2020) draw a distinction between active and passive loss
functions. By rewriting loss function L into a sum of basic functions, L(s, y) =

∑k
i=1 l(s, i), active

loss functions can be defined with ∀i ̸= y, l(s, i) = 0, which emphasizes learning the target label.
In contrast, passive loss functions defined with ∃i ̸= y, l(s, i) ̸= 0 can be improved by unlearning
the non-target labels. However, since there is no canonical guideline to specify l(s, i), different
specifications can lead to ambiguities in the active-passive dichotomy as discussed in §2.2.
In summary, the above research fails to address open questions in §2.2. Since many loss functions
degrade less in performance than cross entropy under label noise, exhibiting various degrees of noise
robustness, as a slight abuse of terminology, we refer to them as robust loss functions hereafter.

2.1 TYPICAL ROBUST LOSS FUNCTIONS

We review typical robust loss functions for our analysis besides cross entropy (CE) that is vulnerable
to label noise (Ghosh et al., 2017). Differences in constant scaling factors and additive biases are
ignored, as they are either equivalent to learning rate scaling in SGD or irrelevant in the gradient
computation. See Table 1 for the formulas and Appendix A for an extended review of loss functions.
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Symmetric The mean absolute error (MAE; Ghosh et al., 2017) and the equivalent reverse cross
entropy (RCE; Wang et al., 2019c) are both symmetric as they satisfy Eq. (2). Ma et al. (2020) make
loss functions satisfying L(s, i) > 0,∀i ∈ {1..k} symmetric by normalizing them with LN(s, y) =

L(s, y)/(
∑k

i=1 L(s, i)). We include normalized cross entropy (NCE; Ma et al. 2020) as an example.
Asymmetric We include asymmetric generalized cross entropy (AGCE) and asymmetric unhinged
loss (AUL) proposed by Zhou et al. (2021b) as typical asymmetric loss functions. Notably, AGCE
with q ≥ 1 and AUL with q ≤ 1 are completely asymmetric, i.e., Eq. (3) always holds when r̃ < 1.
Combined Loss functions can be combined for both robustness and sufficient learning. For exam-
ple, generalized cross entropy (GCE; Zhang & Sabuncu, 2018) is a smooth interpolation between CE
and MAE. Alternatively, symmetric cross entropy (SCE; Wang et al., 2019c) is a weighted average
of CE and RCE (MAE). Ma et al. (2020) argue that robust and sufficient training requires a balanced
combination of active and passive loss functions. Accordingly to their active-passive dichotomy, CE
and NCE are active while MAE (RCE) is passive. We include NCE+MAE as an example.

2.2 OPEN QUESTIONS

Why do robust loss functions underfit? Ma et al. (2020) attribute underfitting to failure in balanc-
ing active-passive components. However, the active-passive dichotomy can be ambiguous. Given

LMAE(s, y) ∝
∑k

i=1
|I(i = y)− pi| ∝

∑k

i=1
I(i = y)(1− pi)

where I(·) is the indicator function, MAE is passive with l(s, i) = |I(i = y) − pi| but active with
l(s, i) = I(i = y)(1− pi). Wang et al. (2019a) view ∥∇sL(s, y)∥1 as weights for sample gradients
and attribute underfitting to their low variance, making clean and noisy samples less distinguishable.
However, as we show in §4.1, MAE also underfits data with clean labels. In summary, neither Ma
et al. (2020) nor Wang et al. (2019a) fully explain the underfitting issue.
What affects the robustness of a loss function? Although combined loss functions such as GCE
and SCE fail to satisfy Eq. (2) and (3), it is unclear why they exhibit robustness against label noise
(Zhang & Sabuncu, 2018; Wang et al., 2019c). Furthermore, it is unclear how training dynamics with
loss functions, which are irrelevant in theoretical robustness guarantees (Ghosh et al., 2017; Zhou
et al., 2021b; Ma et al., 2020; Liu & Guo, 2020; Feng et al., 2020), affect their noise robustness.

3 IMPLICIT CURRICULUMS OF LOSS FUNCTIONS

Loss functions in Table 1 except NCE and NCE+MAE can be written as a function of the target
softmax probability py , i.e., L(s, y) = l(py). A close examination of py gives

py =
esy∑k
i=1 e

si
=

1

elog
∑

i̸=y esi−sy + 1
=

1

e−∆y + 1
= sigmoid(∆y), (4)

where
∆y = sy − log

∑
i ̸=y

esi ≤ sy −maxi ̸=y si (5)

indicates how well a sample is learned, as ∆y ≥ 0 ensures successful classification y = argmaxi si.
Loss functions with the form L(s, y) = l(py) can thus be rewritten into a standard form with
equivalent gradients, i.e.,

L(s, y) = l(py) =

∫
s

∇sl(py)ds =

∫
s

l′(py)p
′
y(∆y) · ∇s∆yds = −w(∆y) ·∆y, (6)

where w(∆y) = |l′(py)p′y(∆y)| is a scalar weight wrapped with the stop-gradient operator, and ∆y

is an implicit loss function embedded in L(s, y). Loss functions following Eq. (6) thus implicitly
define different sample-weighting curriculums, with w(∆y) the sample-weighting function and ∆y

the metric for sample difficulty. Notably, ∆y factors out the preference from w(∆y), making it a
more direct metric for sample difficulty than those based on losses (Kumar et al., 2010) or gradient
magnitudes (Gopal, 2016). In addition, the interaction between w(∆y) and ∆y distributions reveals
aspects of the training dynamics with each loss function. See Table 1 for a summary of w(∆y) for
the reviewed loss functions, and Appendix A for how hyperparameters affect w(∆y).
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Type Name Function Sample Weight w Constraints

/ CE − log py 1− py /

Sym.
MAE/RCE 1− py py(1− py) /

NCE − log py/
(∑k

i=1 − log pi
)

/ /

Asym.
AUL [(a− py)

q − (a− 1)q]/q py(1− py)(a− py)
q−1 a > 1, q > 0

AGCE [(a+ 1)− (a+ py)
q]/q py(a+ py)

q−1(1− py) a > 0, q > 0

Comb.

GCE (1− pqy)/q pqy(1− py) 0 < q ≤ 1

SCE (1− q) · LCE + q · LMAE (1− q + q · py)(1− py) 0 < q < 1

NCE+MAE (1− q) · LNCE + q · LMAE / 0 < q < 1

Table 1: Expressions, constraints and sample-weighting functions (§3) for loss functions in §2.1.

3.1 THE ADDITIONAL REGULARIZER OF NCE

NCE does not follow Eq. (6) as it additionally depends on pi, i ̸= y. Yet it can be rewritten into

LNCE(s, y) = γNCE · LCE(s, y) + γNCE · ϵNCE ·RNCE(s), (7)

where γNCE = 1/(
∑k

i=1 − log pi) and ϵNCE = k(− log py)/(
∑k

i=1 − log pi) are scalar weights
wrapped with the stop-gradient operator. In Eq. (7), the first term is a primary loss function defining
a sample-weighting curriculum similar to CE. The second is a regularizer

RNCE(s) =
∑k

i=1

1

k
log pi

reducing the entropy of the softmax output. Although the training dynamics of NCE are complicated
by the additional regularizer, we can use the upperbound for the L1 norm of gradient ∇sLNCE(s, y),

ŵNCE = 2γNCE · wCE (1 + ϵNCE) ≥ ∥∇sLNCE(s, y)∥1, (8)

as the weight of each sample in parameter updates. Examining how ŵNCE changes during training
helps understand why NCE underfits in §4.1. We leave derivations of Eq. (7) and (8) and discussions
on similar loss functions with an additional regularizer to Appendix A.5.

4 ROBUST LOSS FUNCTIONS FROM THE CURRICULUM PERSPECTIVE

We examine the interaction between w(∆y) and ∆y distributions to address questions in §2.2. Re-
sults are reported on MNIST (Lecun et al., 1998) and CIFAR10/100 (Krizhevsky, 2009) with syn-
thetic symmetric and asymmetric label noise following Ma et al. (2020); Zhou et al. (2021b). For
real-world scenarios, we include CIFAR10/100 with human label noise (Wei et al., 2022) and the
large-scale noisy dataset WebVision (Li et al., 2017), which exhibit more complex noise patterns
than symmetric and asymmetric label noise. Unlike standard settings, we scale w(∆y) to unit maxi-
mum to avoid complications, since hyperparameters of loss functions can change the scale of w(∆y),
essentially adjusting the learning rate of SGD. See Appendix B for more experimental details.

4.1 UNDERSTANDING UNDERFITTING OF ROBUST LOSS FUNCTIONS

Robust loss functions can underfit We confirm that on difficult tasks like CIFAR100 (Song et al.,
2020), underfitting can result from robust loss functions themselves rather than inferior hyperpa-
rameters. As shown in Table 2, CE outperforms NCE, AGCE and AUL by a nontrivial margin on
CIFAR100. In particular, MAE performs much worse than CE, similar to AGCE† and AUL† with
inferior hyperparameters. See Table 9 for similar results with learning rate α = 0.01.
Marginal3 sample weights explains underfitting The effective scale of parameter update at step
t during SGD can be approximated by α∗

t = αt · w̄t, where w̄t is the average sample weight of the

3Very small or too small to be important.
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CIFAR100 CIFAR10
Underfitting Loss Acc. ᾱ∗

t Acc. ᾱ∗
t

/ CE 71.33 ± 0.23 8.183 92.76 ± 0.30 5.541

No
SCE 71.36 ± 0.39 9.541 93.17 ± 0.06 7.018
GCE 69.95 ± 0.40 8.861 92.96 ± 0.13 6.151

NCE+MAE 68.89 ± 0.23 / 92.37 ± 0.33 /

Moderate
AUL 58.75 ± 1.07 5.278 92.43 ± 0.19 5.171

AGCE 49.27 ± 1.03 4.537 92.61 ± 0.18 5.225
NCE 43.18 ± 1.55 / 91.28 ± 0.22 /

Severe
MAE 3.69 ± 0.59 0.035 91.56 ± 0.11 2.492
AUL† 3.13 ± 0.43 0.033 91.13 ± 0.06 2.308

AGCE† 1.62 ± 0.69 0.009 87.14 ± 4.96 1.701

Table 2: Without label noise, robust loss functions can underfit CIFAR100 but CIFAR10. Hyperpa-
rameters of loss functions are tuned on CIFAR100 and listed in Table 8. We report test accuracy and
ᾱ∗
t (scaled by 103) at the final training step from 3 different runs with learning rate α = 0.1. Loss

functions with inferior hyperparameters (denoted with †) are included as references. See Table 9 for
similar results with learning rate α = 0.01.

(a) Severe underfitting (b) Moderate underfitting (c) No underfitting

Figure 1: Sample-weighting functions w(∆y) of loss functions in Table 2 with hyperparameters in
Table 8. We include the initial ∆y distributions of CIFAR10 and CIFAR100 for reference, which
are obtained by computing ∆y with a randomly initialized model for all training samples.

batch and αt the learning rate. The overall α∗
t up to step t can be ᾱ∗

t =
∑t

i=1 α
∗
i /t. In Table 2, for

loss functions that heavily underfit on CIFAR100, ᾱ∗
t at the final step is marginal compared to CE,

suggesting a marginal overall sample weight during training given the same learning rate schedule.
Underfitting from fast diminishing sample weights Similar to CE, in Fig. 2a, ᾱ∗

t of NCE based on
ŵNCE peaks at initialization. However, it decreases much faster than CE since both γNCE and wCE

decrease with improved ∆y . In addition, the regularizer RNCE(s) further reduces the entropy of
softmax output and thus γNCE. The resulting fast decreasing ŵNCE hampers the learning of training
samples, which can lead to underfitting.
Underfitting from marginal initial sample weights In Fig. 1a, unlike NCE, loss functions that
severely underfit in Table 2 assign marginal weights to samples in CIFAR100 at initialization, which
leads to marginal initial ᾱ∗

t . ∆y of these samples can barely improve before the learning rate van-
ishes, thus leading to underfitting. In contrast, loss functions with non-trivial initial sample weights
(Fig. 1b and 1c) result in moderate or no underfitting. As further corroboration, we plot ᾱ∗

t of AUL
with superior and inferior hyperparameters (AUL and AUL† in Table 2) in Fig. 2b. ᾱ∗

t stays marginal
with AUL†, but quickly increases to a non-negligible value before gradually decreasing with AUL.
Loss combination can mitigate underfitting. As ŵNCE peaks at initialization but quickly dimin-
ishes while wMAE is marginal at initialization but peaks later during training, combining NCE with
MAE can mitigate the underfitting issue of each other. In Table 2, combining NCE and MAE suffers
less from underfitting compared to both individuals.
Increased number of classes leads to marginal initial sample weights. Unlike CIFAR100, all
loss functions in Table 2 perform equally well on CIFAR10. Such a difference has been vaguely
attributed to the increased task difficulty of CIFAR100 (Zhang & Sabuncu, 2018; Song et al., 2020).
Intuitively, the more classes, the more subtle differences to be distinguished. In addition, the number
of classes k determines the initial distribution of ∆y . Assume that class scores si at initialization are
i.i.d. normal variables si ∼ N (µ, σ). In particular, µ = 0 and σ = 1 for most neural networks with
standard initializations (Glorot & Bengio, 2010; He et al., 2015) and normalization layers (Ioffe &
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(a) NCE with estimated weight upperbound. (b) AUL with inferior/superior hyperparameters.

Figure 2: Different explanations for underfitting: (a) fast diminishing sample weights; (b) marginal
initial sample weights. We plot the variation of ᾱ∗

t with training step t on CIFAR100 without label
noise for each loss function. ᾱ∗

t of NCE is estimated with ŵNCE. Since ŵNCE is not comparable to
wCE, we normalize ᾱ∗

t with its maximum in (a) to emphasize its variation during training.

Clean Symmetric Asymmetric Human
Loss η = 0 η = 0.4 η = 0.8 η = 0.4 η = 0.4

CE‡ 71.33 ± 0.43 39.92 ± 0.10 7.59 ± 0.20 40.17 ± 1.31 /

GCE‡ 63.09 ± 1.39 56.11 ± 1.35 17.42 ± 0.06 40.91 ± 0.57 /
NCE‡ 29.96 ± 0.73 19.54 ± 0.52 8.55 ± 0.37 20.64 ± 0.40 /
NCE+AUL‡ 68.96 ± 0.16 59.25 ± 0.23 23.03 ± 0.64 38.59 ± 0.48 /

AGCE 49.27 ± 1.03 47.76 ± 1.75 16.03 ± 0.59 33.40 ± 1.57 30.45 ± 1.50
AGCE shift 69.39 ± 0.84 48.21 ± 1.06 14.49 ± 0.17 40.76 ± 0.74 48.71 ± 0.45
AGCE scale 70.57 ± 0.62 56.69 ± 0.33 14.64 ± 0.79 39.71 ± 0.17 50.85 ± 0.11

MAE 3.69 ± 0.59 1.29 ± 0.50 1.00 ± 0.00 2.53 ± 1.34 2.09 ± 0.55
MAE shift 68.57 ± 0.54 49.95 ± 0.16 13.10 ± 0.41 39.83 ± 0.18 47.91 ± 0.36
MAE scale 70.97 ± 0.41 60.57 ± 1.04 24.44 ± 0.73 44.48 ± 1.05 54.70 ± 0.48

Table 3: Shifting or scaling w(∆y) mitigates underfitting on CIFAR100 under different label noise.
We report test accuracies with 3 different runs. Results from Zhou et al. (2021b) are included as
context (denoted with ‡). See Table 10 for hyperparameter τ of each setting, and Tables 11 and 12
for results with more noise rates.
Szegedy, 2015; Ba et al., 2016). The expected ∆y can be approximated with

E[∆y] ≈ − log(k − 1)− σ2/2 +
eσ

2 − 1

2(k − 1)
(9)

We leave derivations and comparisons between our assumptions and real settings to Appendix C.1.
A large k results in small initial ∆y; with sample-weighting functions in Fig. 1a it further leads to
marginal initial sample weights, which results in underfitting on CIFAR100 as discussed previously.

4.1.1 ADDRESSING UNDERFITTING FROM MARGINAL INITIAL SAMPLE WEIGHTS

Our analysis suggests that the fixed sample-weighting function w(∆y) is to blame for underfitting.
To make the initial sample weights agnostic to the number of classes, we can simply scale

w∗(∆y) = w(∆∗
y) = w(∆y/|E[∆y]| · τ)

or shift
w+(∆y) = w(∆+

y ) = w(∆y + |E[∆y]| − τ)

the sample-weighting functions, where τ is a hyperparameter. Intuitively, |E[∆y]| in w∗(∆y) and
w+(∆y) cancels the effect of k on the weight of the expected initial ∆y . A small τ thus leads to high
initial sample weights regardless of k. In Appendix C.1.1 we visualize w∗

MAE(∆y) and w+
MAE(∆y)

in Fig. 7 and discuss the robustness of the loss functions they induce.
Results on CIFAR100 with different label noise are reported in Table 3. See Tables 11 and 12 in
Appendix C.1.1 for results with additional noise rates. We also report results on the large-scale We-
bVision dataset with different numbers of classes in Table 4. In summary, shifting and scaling allevi-
ate underfitting, making MAE and AGCE comparable to the previous state-of-the-art (NCE+AUL;
Zhou et al. 2021b). Notably, w∗(∆y) leads to dramatic improvements for MAE under all settings.
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k = 50 k = 200 k = 400
Settings τ = 2.0 τ = 1.8 τ = 1.6

CE 66.40 70.26 70.16

MAE 3.68 0.50 0.25
MAE shift 60.76 59.31 47.32
MAE scale 66.72 71.92 71.87

Table 4: Shifting or scaling w(∆y) mitigates underfitting on WebVision subsampled with different
numbers of classes. k = 50 is the standard “mini” setting in previous work (Ma et al., 2020; Zhou
et al., 2021b). We report test accuracy with a single run due to a limited computation budget.

Clean Asymmetric Symmetric Human

η = 0.2 η = 0.2 η = 0.4 η = 0.8 η = 0.4
Loss Acc diff snr diff snr diff snr diff snr diff snr

CE 90.64 -7.06 0.32 -15.47 0.39 -31.95 0.57 -50.87 0.77 -28.51 0.53

SCE 89.87 -5.39 0.51 -3.84 0.99 -10.47 1.27 -27.25 1.51 -15.84 0.86
GCE 90.44 -7.42 0.36 -6.80 0.96 -23.23 0.89 -45.32 1.04 -21.94 0.72

AUL 89.90 -2.51 0.81 -2.07 3.10 -5.87 2.96 -13.90 2.83 -12.08 1.11
MAE 89.29 -2.21 1.00 -1.92 3.56 -4.36 3.33 -11.53 3.22 -10.35 1.32
AGCE 82.62 -9.42 0.92 -1.55 3.02 -19.90 2.16 -41.11 1.83 -21.73 1.28

Table 5: Robust loss functions assign larger weights to clean samples. We report snr and diff from
the best of 5 runs on CIFAR10 under each noise setting, as inferior initialization can heavily degrade
the performance. Hyperparameters listed in Table 13 are selected to cover more variants of sample-
weighting functions (plotted in Fig. 8), which are not necessarily optimal.

Although w∗(∆y) and w+(∆y) are agnostic to the number of classes at initialization, their perfor-
mances differ significantly. Intuitively, w+(∆y) diminishes much faster than w∗(∆y) with increased
∆y , which can lead to insufficient training of clean samples and thus inferior performance.

4.2 UNDERSTANDING NOISE ROBUSTNESS OF LOSS FUNCTIONS

We show that robust loss functions following Eq. (6) implicitly assign larger weights to clean sam-
ples. The underlying reasons are explored by examining how ∆y distributions change during train-
ing. Notably, similar sample-weighting rules are explicitly adopted by curriculums for noise robust
training (Ren et al., 2018). We leave NCE to future work as it involves an additional regularizer.
Robust loss functions assign larger weights to clean samples. We use the ratio between the aver-
age weights of clean (w̄clean) and noisy (w̄noise) samples, snr = w̄clean/w̄noise, to characterize their
relative contribution during training. See Appendix C.2 for the exact formulas. Noise robustness is
characterized by differences in test accuracy compared to results with clean labels (diff). We report
diff and snr under different label noise on CIFAR10 in Table 5. Loss functions with higher snr have
less performance drop with label noise in general, thus being more robust.
To explain what leads to a large snr, we plot changes of ∆y distributions during training on CIFAR10
with symmetric label noise in Fig. 3. See Fig. 9 and 10 for similar results with additional types of
label noise and loss functions. When trained with loss functions that are more robust against label
noise (Fig. 3b and 3c), ∆y distributions of noisy and clean samples spread wider and get better
separated. In addition, the consistent decrease of ∆y for noisy samples suggests that they can be
unlearned. In contrast, training with CE (Fig. 3a) results in more compact and less separated ∆y

distributions. Furthermore, ∆y of noisy samples consistently increases.
Dynamics of SGD suppress learning of noisy samples. As shown in Fig. 3a, noisy samples are
learned slower than clean samples as measured by improvements of ∆y , which can be explained
by more coherent gradients among clean samples (Chatterjee & Zielinski, 2022). Similar results
have been reported (Zhang et al., 2017; Arpit et al., 2017) and utilized in curriculum-based robust
training (Yao et al., 2019; Han et al., 2018). In addition, noisy samples can be unlearned as shown
in Fig. 3b and 3c, which can stem from generalization with clean samples. Both dynamics suppress
the learning of noisy samples but clean ones, thus leading to robustness against label noise.
Robust w(∆y) synergizes with SGD dynamics for noise robustness. In Fig. 1, the bell-shaped
w(∆y) of robust loss functions only assigns large weights to samples with moderate ∆y . Since ∆y

distributions initially concentrate at the monotonically increasing interval of w(∆y), (1) samples
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(a) CE: 57.74 (b) SCE: 79.56 (c) MAE: 83.88

Figure 3: How ∆y distributions of noisy (green, left) and clean (orange, right) samples change on
CIFAR10 during training with symmetric label noise and η = 0.4. Vertical axes denoting probability
density are scaled to the peak of histograms for readability, with epoch number (axis scaling factor)
denoted on the right of each subplot. We plot w(∆y) and report the test accuracy of each setting for
reference. See Appendix C.2 for results with additional types of label noise and loss functions.

(a) α = 0.01 with different (η, loss). (b) CE with different (η, α).

Figure 4: Learning curves with fixed learning rate and extended training epochs on MNIST under
symmetric label noise, where α is the learning rate and η the noise rate.

with faster improving ∆y , due to either larger initial weights or faster learning as clean samples,
are weighted more during early training and learned faster. The magnified learning pace difference
explains the widely spread distributions in Fig. 3b and 3c. In addition, (2) the unlearned samples with
small ∆y receive diminishing weights from w(∆y), which hampers their pace of learning. Noisy
samples in Fig. 3b and 3c are consistently unlearned and ignored with marginal sample weights,
leading to a consistent decrease in ∆y . In addition to the SGD dynamics, (1) and (2) further suppress
the learning of noisy samples and enhance that of clean samples, thus leading to increased robustness
against label noise. In contrast, the monotonically decreasing wCE(∆y) emphasizes samples with
smaller ∆y , essentially acting against the SGD dynamics for noise robustness. Thus training with
CE results in increased vulnerability to label noise as shown in Table 5.

4.2.1 TRAINING SCHEDULES AFFECT NOISE ROBUSTNESS

Although the learning pace of noisy samples gets initially suppressed, the expected gradient will
eventually be dominated by noisy samples, since well-learned clean samples receive marginal sam-
ple weights thanks to the monotonically decreasing interval of w(∆y). Models with extended train-
ing4 thus risk overfitting noisy samples during the late training stage. Adjusting the training sched-
ules to enable or avoid such overfitting can therefore affect the noise robustness of models. Based
on this intuition, we present two phenomenons on noise robustness as examples that follow our
curriculum perspective but deviate from existing theoretical results:
Extended training can make robust loss functions vulnerable to label noise. The learning curves
of CE and MAE with constant learning rates on MNIST are shown in Fig. 4a. Despite the theoreti-

4Enough training steps without early stopping or diminishing learning rates for a small training loss.
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cally guaranteed noise robustness (Ghosh et al., 2017), similar to CE, with extended training, MAE
eventually overfits noisy samples, resulting in vulnerability to label noise.
CE can become robust by adjusting the learning rate schedule. To avoid overfitting noisy sam-
ples, we can avoid learning when noisy samples dominate the expected gradient. It can be achieved
with either early stopping (Song et al., 2019), or a constrained learning pace that prevents sufficient
learning of clean samples, which avoids diminishing weights for them. We show the learning curve
of CE using fixed learning rates under symmetric label noise on MNIST in Fig. 4b. By simply in-
creasing or decreasing the learning rate, which strengthens the implicit regularization of SGD (Smith
et al., 2021) or directly slows down the learning pace, CE can become robust against label noise.

5 RELATED WORK

Our work closely relates to robust loss functions against label noise (Song et al., 2020). Most ex-
isting studies (Ghosh et al., 2017; Zhang & Sabuncu, 2018; Wang et al., 2019c; Ma et al., 2020;
Liu & Guo, 2020; Cheng et al., 2021; Feng et al., 2020; Zhou et al., 2021b) focus on bounding the
difference between risk minimizers obtained with noisy and clean data, which are agnostic to train-
ing dynamics. In contrast, with our novel curriculum perspective, we analyze the training dynamics
with robust loss functions for reasons behind their underfitting issue and noise robustness. The un-
derfitting problem has been heuristically mitigated with loss combination (Zhang & Sabuncu, 2018;
Wang et al., 2019c; Ma et al., 2020). We identify the cause and provide effective solutions.
Curriculum-based approaches combat label noise with either sample selection (Chen et al., 2019;
Zhou et al., 2021a) or sample weighting (Chang et al., 2017; Jiang et al., 2018; Ren et al., 2018).
In particular, sample weights are explicitly designed (Wang et al., 2019a;b; Chang et al., 2017) or
predicted by a model trained on a different dataset (Jiang et al., 2018; Ren et al., 2018). In contrast,
the sample weights in this work are implicitly defined by robust loss functions. Notably, the implicit
loss function we identified is a more direct metric for sample difficulty compared to common metrics
based on loss functions (Kumar et al., 2010; Loshchilov & Hutter, 2015) and gradient magnitudes
(Gopal, 2016), which are implicitly affected by the preference from the sample-weighting functions
of loss functions. Our work is also related to the ongoing debate (Hacohen & Weinshall, 2019; Wang
et al., 2020) on strategies for selecting or weighting samples in curriculum learning: either easier
first (Bengio et al., 2009; Kumar et al., 2010) or harder first (Loshchilov & Hutter, 2015; Zhang
et al., 2018). The implicit curriculums of robust loss functions can be viewed as a combination of
both strategies, emphasizing samples with moderate difficulty.
Most related to our work, Wang et al. (2019b) identify gradient norms as weights for sample gra-
dients and propose heuristic designs of weighting functions for noise-robust training. In contrast,
we explicitly identify the implicit loss function, which connects robust loss functions to curriculum
learning, facilitates our analysis of the training dynamics and helps elucidate the robustness of loss
functions from a curriculum perspective.
Altering noise robustness by adjusting the learning rate is reminiscent of (Huang et al., 2019). They
use a cyclic learning rate to make models change back and forth between overfitting and underfitting
to collect statistics for noisy label detection. To achieve noise robustness, they discard samples with
detected noisy labels and retrain the model from scratch. In contrast, our results show that simply
changing the learning rate can achieve noise robustness.

6 CONCLUSION AND DISCUSSION

We identified the implicit sample-weighting curriculums of a broad array of loss functions. Our
novel curriculum perspective enables examining the training dynamics with loss functions through
the interaction between the sample-weighting function and distributions of implicit losses. It con-
nects robust loss functions to the seemingly distinct curriculum learning. Notably, the implicit loss
function we identified is a direct metric for sample difficulty in curriculum learning as it factors
out the preference of sample-weighting functions. We elucidate the reasons behind underfitting and
robustness against label noise and propose a simple approach to address the underfitting issue.
As with previous work on robust loss functions, our empirical results are based on image classifica-
tion using convolutional neural networks with and without residual connections. We have extended
our experiments to cover larger-scale classification tasks, human label noise and a broader array of
robust loss functions. Although our derivation does not depend on the models and task specifica-
tions, additional experiments should be performed in future work to extend our conclusions to more
models and tasks.
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A EXTENDED REVIEW OF LOSS FUNCTIONS

Due to limited space, we only briefly describe typical robust loss functions in §2.1. As a general
reference, here we provide a comprehensive review of loss functions related to the standard form
Eq. (6). Similar to §2.1, we ignore the differences in constant scaling factors and additive bias.
Loss functions and their sample-weighting functions are summarized in Table 6. We examine how
hyperparameters affect their sample-weighting functions in Fig. 5.

A.1 LOSS FUNCTIONS WITHOUT ROBUSTNESS GUARANTEES

Cross Entropy (CE)
LCE(s, y) = − log py

is the standard loss function for classification.
Focal Loss (FL; Lin et al. 2017)

LFL(s, y) = −(1− py)
q log py

aims to address label imbalance when training object detection models. Both CE and FL are neither
symmetric (Ma et al., 2020) nor asymmetric (Zhou et al., 2021b).

A.2 SYMMETRIC LOSS FUNCTIONS

Mean Absolute Error (MAE; Ghosh et al. 2017)

LMAE(s, y) =

k∑
i=1

|I(i = y)− pi| = 2− 2py ∝ 1− py

is a classic symmetric loss function, where I(i = y) is the indicator function.
Reverse Cross Entropy (RCE; Wang et al. 2019c)

LRCE(s, y) =

k∑
i=1

pi log 1(i = y) =
∑
i̸=y

piA = (1− py)A ∝ 1− py = LMAE(s, y)

is equivalent to MAE in implementation, where log 0 is truncated to a negative constant A to avoid
numerical overflow.
Ma et al. (2020) argued that any generic loss functions with L(s, i) > 0,∀i ∈ {1..k} can become
symmetric by simply normalizing them. As an example,
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Name Function Sample Weight w Constraints

CE − log py 1− py

FL −(1− py)
q log py (1− py)

q(1− py − qpy log py) q > 0

MAE/RCE 1− py py(1− py)

AUL (a+1)−(a+py)
q

q
py(1− py)(a− py)

q−1 a > 1, q > 0

AGCE (a−py)
q−(a−1)q

q
py(a+ py)

q−1(1− py) a > 0, q > 0

AEL e−py/q 1
q
py(1− py)e

−py/q q > 0

GCE (1− pqy)/q pqy(1− py) 0 < q ≤ 1

SCE −(1− q) log py + q(1− py) (1− q + q · py)(1− py) 0 < q < 1

TCE
∑q

i=1(1− py)
i/i py

∑q
i=1(1− py)

i q ≥ 1

Table 6: Expressions, constraints of hyperparameters and sample-weighting functions of loss func-
tions reviewed in Appendix A that follow the standard form Eq. (6).

Normalized Cross Entropy (NCE; Ma et al. 2020)

LNCE(s, y) =
LCE(s, y)∑k
i=1 LCE(s, i)

=
− log py∑k
i=1 − log pi

is a symmetric loss function. However, NCE does not follow the standard form of Eq. (6) as it
additionally depends on pi, i ̸= y. It involves an additional regularizer, thus being more relevant to
discussions in Appendix A.5.

A.3 ASYMMETRIC LOSS FUNCTIONS

Zhou et al. (2021b) derived the asymmetric condition for noise robustness and propose numerous
asymmetric loss functions:
Asymmetric Generalized Cross Entropy (AGCE)

LAGCE(s, y) =
(a+ 1)− (a+ py)

q

q

where a > 0 and q > 0. It is asymmetric when I(q ≤ 1)(a+1
a )1−q + I(q > 1) ≤ 1/r̃.

Asymmetric Unhinged Loss (AUL)

LAUL(s, y) =
(a− py)

q − (a− 1)q

q

where a > 1 and q > 0. It is asymmetric when I(q ≤ 1)( a
a−1 )

q−1 + I(q ≤ 1) ≤ 1/r̃.
Asymmetric Exponential Loss (AEL)

LAEL(s, y) = e−py/q

where q > 0. It is asymmetric when e1/q ≤ 1/r̃.

A.4 COMBINED LOSS FUNCTIONS

Generalized Cross Entropy (GCE; Zhang & Sabuncu 2018)

LGCE(s, y) =
1− pqy

q

can be viewed as a smooth interpolation between CE and MAE, where 0 < q ≤ 1. CE or MAE can
be recovered by setting q → 0 or q = 1.
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(a) FL (b) AUL, a = 2.0 (c) AUL, q = 0.1

(d) AGCE, a = 1.0 (e) AGCE, q = 0.5 (f) AEL

(g) GCE (h) SCE (i) TCE

Figure 5: How hyperparameters affect the sample-weighting functions in Table 6. The initial ∆y

distributions of CIFAR100 extracted with a randomly initialized model are included as reference.

Symmetric Cross Entropy (SCE; Wang et al. 2019c)

LSCE(s, y) = a · LCE(s, y) + b · LRCE(s, y)

∝ (1− q) · (− log pi) + q · (1− pi)

is a weighted average of CE and RCE (MAE), where a > 0, b > 0, and 0 < q < 1.
Taylor Cross Entropy (TCE; Feng et al. 2020)

LTCE(s, y) =

q∑
i=1

(1− py)
i

i

is derived from Taylor series of the log function. It reduces to MAE when q = 1. Interestingly, the
summand of TCE (1− py)

i/i with i > 2 is proportional to AUL with a = 1 and q = i. Thus TCE
can be viewed as a combination of symmetric and asymmetric loss functions.
Active-Passive Loss (APL; Ma et al. 2020)
Ma et al. (2020) propose weighted combinations of active and passive loss functions. We include
NCE+MAE as an example:

LNCE+MAE(s, y) = a · LNCE(s, y) + b · LMAE(s, y)

∝ (1− q) · − log py∑k
i=1 − log pi

+ q · (1− py)

where a > 0, b > 0, and 0 < q < 1.

A.5 LOSS FUNCTIONS WITH ADDITIONAL REGULARIZERS

We additionally review loss functions that implicitly involve a regularizer and a primary loss function
following the standard form Eq. (6). See Table 7 for a summary. In addition to the sample-weighting
curriculums implicitly defined by the primary loss function, the additional regularizer complicates
the analysis of the training dynamics. We leave investigations on how these regularizers affect noise
robustness for future work.
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Name Original Primary Loss Regularizer

MSE 1− 2py +
∑k

i=1 p
2
i 1− py

∑k
i=1 p

2
i

PL(CR) − log py + log pyn|xm − log py
∑k

i=1 P (ỹ = i) log pi

CE+GLS −
∑k

i=1[I(i = y)(1− α) + α
k
] log pi − log py ±

∑k
i=1

1
k
log pi

NCE − log py/(
∑k

i=1 − log pi) −γNCE · log pi
∑k

i=1
1
k
log pi

Table 7: Original expressions, primary loss functions in the standard form Eq. (6) and regularizers
for loss functions reviewed in Appendix A.5. We view PL in its expectation to derive its regularizer.
pyn|xm

is the softmax probability of a random label yn with a random input xm sampled from the
noisy data. γNCE = 1/(

∑k
i=1 − log pi) is a scalar wrapped with the stop-gradient operator.

Mean Square Error (MSE; Ghosh et al. 2017)

LMSE(s, y) =

k∑
i=1

(I(i = y)− pi)
2 = 1− 2py +

k∑
i=1

p2i

∝ 1− py +
1

2
·

k∑
i=1

p2i = LMAE(s, y) + α ·RMSE(s)

is more robust than CE (Ghosh et al., 2017), where α = 0.5 and the regularizer

RMSE(s) =

k∑
i=1

p2i (10)

increases the entropy of the softmax output. We can generalize α to a hyperparamter, making MSE
a combination of MAE and an entropy regularizer RMSE.
Peer Loss (PL; Liu & Guo 2020)

LPL(s, y) = L(s, y)− L(sn, ym)

makes a generic loss function L(s, y) robust against label noise, where sn denotes the score of
an input xn and ym a label, both randomly sampled from the noisy data. Its noise robustness is
theoretically established for binary classification and extended to multi-class setting (Liu & Guo,
2020).
Confidence Regularizer (CR; Cheng et al. 2021)

RCR(s) = −Eỹ[L(s, ỹ)]

is shown (Cheng et al., 2021) to be the regularizer induced by PL in expectation. Substituting L with
cross entropy leads to

RCR(s) = −Eỹ[− log pỹ] =

k∑
i=1

P (ỹ = i) log pi (11)

Minimizing RCR(s) thus makes the softmax output distribution p deviate from the prior label dis-
tribution of the noisy dataset P (ỹ = i), reducing the entropy of the softmax output.
Generalized Label Smoothing (GLS; Wei et al. 2021)
Lukasik et al. (2020) show that label smoothing (LS; Szegedy et al. 2016) can mitigate overfitting
with label noise, which is later extended to GSL. Cross entropy with GLS is

LCE+GLS(s, y) =

k∑
i=1

−[I(i = y)(1− α) +
α

k
] log pi

= −(1− α) log py − α · 1
k

k∑
i=1

log pi

∝ − log py −
α

1− α
· 1
k

k∑
i=1

log pi = LCE(s, y) + α′ ·RGLS(s)
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where α′ = α/(1− α), has regularizer RGLS

RGLS(s) = −
k∑

i=1

1

k
log pi (12)

With α′ > 0, RGLS corresponds to the original label smoothing, which increases the entropy of
softmax outputs. In contrast, α′ < 0 corresponding to negative label smoothing (Wei et al., 2021),
which decreases the output entropy similar to RCR.

A.5.1 DERIVATIONS FOR NCE

Deriving Eq. (7) With equivalent derivatives, since

∇sLNCE(s, y) =
∇sLCE(s, y) ·

[∑k
i=1 LCE(s, i)

]
−∇s

[∑k
i=1 LCE(s, i)

]
· LCE(s, y)[∑k

i=1 LCE(s, i)
]2

=
1∑k

i=1 LCE(s, i)

{
∇sLCE(s, y) +

kLCE(s, y)∑k
i=1 LCE(s, i)

· ∇s

[
k∑

i=1

−1

k
LCE(s, i)

]}
= γNCE · [∇sLCE(s, y) + ϵNCE · ∇sRNCE(s)] ,

NCE can be rewritten as

LNCE(s, y) = γNCE · LCE(s, y) + γNCE · ϵNCE ·RNCE(s)

where γNCE = 1/(
∑k

i=1 − log pi) and ϵNCE = k(− log py)/(
∑k

i=1 − log pi) are scalar weights
wrapped with the stop-gradient operator as discussed in §3.1. The regularizer

RNCE(s) =

k∑
i=1

1

k
log pi

has a form similar to RGLS.
Deriving ŵNCE of Eq. (8) Here we derive the upperbound of ∥∇sLNCE(s, y)∥1 discussed in §3.1:

∥∇sLNCE(s, y)∥1 ≤ γNCE · (∥∇sLCE(s, y)∥1 + ϵNCE · ∥∇sRNCE(s)∥1)

≤ γNCE ·

(
∥∇sLCE(s, y)∥1 + ϵNCE · 1

k

k∑
i=1

∥∇sLCE(s, i)∥1

)

= γNCE ·

(
wCE · ∥∇s∆y∥1 + ϵNCE · 1

k

k∑
i=1

wCE · ∥∇s∆i∥1

)
= 2γNCE · wCE (1 + ϵNCE)

= ŵNCE

The derivation is based on the inequality |x ± y| ≤ |x| + |y| and the fact that ∥∇s∆i∥1 = 2. The
latter can be proved by straightforward calculations. Given

∂∆i

∂sj
=

{
1, j = i

− esj∑
k ̸=i e

sk
= − pj

1−pi
, j ̸= i

we then have
∥∇s∆i∥1 =

∑
j

|∂∆i

∂sj
| = 1 +

∑
j ̸=i

pj
1− pi

= 1 + 1 = 2

B DETAILED EXPERIMENTAL SETTINGS

Label noise The synthetic noisy labels are generated following (Ma et al., 2020; Zhou et al., 2021b;
Patrini et al., 2017). For symmetric label noise, the training labels are randomly flipped to a different
class with probabilities η ∈ {0.2, 0.4, 0.6, 0.8}. Asymmetric label noise is generated from a class-
dependent flipping pattern. On CIFAR100, the 100 classes are grouped into 20 super-classes, each
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SCE GCE NCE+MAE AUL AGCE AUL† AGCE†

a / / / 1.1 0.1 3.0 1.6
q 0.7 0.3 0.3 5.0 0.1 0.7 2.0

Table 8: Hyperparameters of different loss functions for results in §4.1 and Appendix C.1. They are
tuned on CIFAR100 without label noise. Settings with inferior hyperparameters are denoted with †.

CIFAR100 CIFAR10
Underfitting Loss Acc. ᾱ∗

t Acc. ᾱ∗
t

/ CE 68.76 ± 0.21 0.962 90.24 ± 0.14 0.624

No
SCE 68.89 ± 0.05 1.165 91.07 ± 0.09 0.726
GCE 69.00 ± 0.24 0.956 90.83 ± 0.20 0.644

NCE+MAE 68.21 ± 0.51 / 90.14 ± 0.09 /

Moderate
AUL 47.98 ± 3.48 0.485 88.94 ± 0.29 0.604

AGCE 43.51 ± 2.58 0.406 90.71 ± 0.19 0.549
NCE 57.95 ± 0.26 / 85.96 ± 0.21 /

Severe
MAE 9.11 ± 0.83 0.025 90.65 ± 0.10 0.355
AUL† 10.04 ± 2.33 0.023 90.77 ± 0.04 0.337

AGCE† 5.34 ± 0.67 0.008 81.59 ± 8.55 0.243

Table 9: Similar results as Table 2 with learning rate α = 0.01. Hyperparameters for loss functions
are listed in Table 8.

having 5 sub-classes. Each class is flipped within the same super-class into the next in a circular
fashion. The flip probabilities are η ∈ {0.1, 0.2, 0.3, 0.4}. Human label noise for CIFAR10/100 are
adopted from Wei et al. (2022). We use the “worst” labels of CIFAR10-N and the “fine” labels of
CIFAR100-N, both leading to η = 0.4.
Models and hyperparameters We use a 4-layer CNN for MNIST, an 8-layer CNN for CIFAR10, a
ResNet-34 (He et al., 2016) for CIFAR100, and a ResNet-50 (He et al., 2016) for WebVision, all with
batch normalization (Ioffe & Szegedy, 2015). Data augmentation on CIFAR10/100 include random
width/height shift and horizontal flip. On WebVision, we additionally include random cropping and
color jittering. Without further specifications, all models are trained using SGD with momentum
0.9 and batch size 128 for 50, 120, 200 and 250 epochs on MNIST, CIFAR10, CIFAR100 and
WebVision, respectively. Learning rates with cosine annealing are 0.01 on MNIST and CIFAR10,
0.1 on CIFAR100, and 0.2 on WebVision. Weight decays are 10−3 on MNIST, 10−4 on CIFAR10,
10−5 on CIFAR100 and 3 × 10−5 on WebVision. All loss functions are normalized to have unit
maximum in sample weights, which is different from (Ma et al., 2020). Hyperparameters of loss
functions are listed in Tables 8 and 13 for different experiments.

C ADDITIONAL RESULTS TO UNDERSTAND ROBUST LOSS FUNCTIONS

We complement §4 in the main text with detailed derivations and additional results. Appendix C.1
extends discussions in §4.1 while Appendix C.2 extends §4.2

C.1 UNDERSTANDING UNDERFITTING OF ROBUST LOSS FUNCTIONS

Hyperparameters We list the hyperparameters tuned on CIFAR100 without label noise in Table 8
for experiments in §4.1 and Appendix C.1.
Robust loss functions can underfit. In Table 9 we report results similar to Table 2 with learning
rate α = 0.01. Although settings that severe underfit slightly improve, they still perform much worse
than CE, which further confirms that underfitting results from robust loss functions themselves.
Simulated ∆y approximate real settings. We compare the simulated ∆y distributions based on
our assumptions in §4.1 to distributions of real datasets at initialization in Fig. 6. The expectations
of simulated ∆y follow real settings, which supports the analysis in §4.1.
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(a) MNIST (b) CIFAR10 (c) CIFAR100

(d) WebVision50 (e) WebVision200 (f) WebVision400

Figure 6: Comparisons between simulated and real ∆y distributions at initialization. The simu-
lations are based on the assumption that class scores follow normal distribution si ∼ N (0, 1) at
initialization and plotted as curves. Real distributions are extracted with randomly initialized mod-
els and plotted as histograms. The vertical axis denotes probability density f(∆y).

Clean Symmetric Asymmetric Human
Settings 0.0 0.2 0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.4

MAE shift 2.0 2.6 3.0 4.0 4.0 2.6 2.6 3.0 3.0 2.6
MAE scale 2.0 2.6 2.6 3.0 4.0 2.6 2.6 3.0 3.0 2.6

AGCE shift 4.0 4.0 4.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0
AGCE scale 2.6 3.0 4.0 5.0 5.0 3.0 3.0 3.0 3.0 4.0

Table 10: Hyperparameter τ of w∗(∆y) and w+(∆y) for different noise settings on CIFAR100. For
reference, E[∆y] = 5.097 on CIFAR100 and E[∆y] = 2.717 on CIFAR10. Better performance can
be achieved with a more thorough hyperparameter search.

Derivation of E(∆y) at initialization in Eq. (9):

E(∆y) = E[sy − log
∑
i ̸=y

esi ] = µ− E[log
∑
i ̸=y

esi ]

≈1 µ− logE[
∑
i̸=y

esi ] +
V[
∑

i ̸=y e
si ]

2E[
∑

i ̸=y e
si ]2

=2 µ− log{(k − 1)E[esy ]}+ (k − 1)V[esy ]
2{(k − 1)E[esy ]}2

=3 µ− log[(k − 1)eµ+σ2/2] +
(k − 1)(eσ

2 − 1)e2µ+σ2

2[(k − 1)eµ+σ2/2]2

= − log(k − 1)− σ2/2 +
eσ

2 − 1

2(k − 1)

where ≈1 follows the approximation with Taylor expansion E[logX] ≈ logE[X]−V[X]/(2E[X]2)
(Teh et al., 2006), =2 utilizes properties of sum of log-normal variables (Cobb et al., 2012), and =3

substitutes E[esy ] and V[esy ] with expressions for log-normal distributions.

C.1.1 ADDRESSING UNDERFITTING FROM MARGINAL INITIAL SAMPLE WEIGHTS

Hyperparamter τ for different settings The hyperparameter τ controlling the shape of modified
sample-weighting functions w+(∆y) and w∗(∆y) can affect the noise robustness. Thus we tune τ
for the best performance under different noise types and noise rates, which are listed in Table 10.
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Clean Symmetric Noise (Noise Rate η)
Loss η = 0 η = 0.2 η = 0.4 η = 0.6 η = 0.8

CE‡ 71.33 ± 0.43 56.51 ± 0.39 39.92 ± 0.10 21.39 ± 1.17 7.59 ± 0.20

GCE‡ 63.09 ± 1.39 61.57 ± 1.06 56.11 ± 1.35 45.28 ± 0.61 17.42 ± 0.06
NCE‡ 29.96 ± 0.73 25.27 ± 0.32 19.54 ± 0.52 13.51 ± 0.65 8.55 ± 0.37
NCE+AUL‡ 68.96 ± 0.16 65.36 ± 0.20 59.25 ± 0.23 46.34 ± 0.21 23.03 ± 0.64

AGCE 49.27 ± 1.03 49.17 ± 2.15 47.76 ± 1.75 38.17 ± 1.43 16.03 ± 0.59
AGCE shift 69.39 ± 0.84 62.81 ± 0.42 48.21 ± 1.06 36.70 ± 2.89 14.49 ± 0.17
AGCE scale 70.57 ± 0.62 64.73 ± 0.98 56.69 ± 0.33 39.02 ± 1.20 14.64 ± 0.79

MAE 3.69 ± 0.59 2.92 ± 0.46 1.29 ± 0.50 2.27 ± 1.24 1.00 ± 0.00
MAE shift 69.02 ± 0.78 59.75 ± 0.84 44.60 ± 0.24 24.27 ± 0.26 8.08 ± 0.26
MAE scale 70.97 ± 0.41 66.83 ± 0.84 60.57 ± 1.04 49.23 ± 1.22 24.44 ± 0.73

Table 11: Addition results to Table 3 with more symmetric label noise rates on CIFAR100.

Clean Asymmetric Noise (Noise Rate η)
Loss η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.4

CE‡ 71.33 ± 0.43 64.85 ± 0.37 58.11 ± 0.32 50.68 ± 0.55 40.17 ± 1.31

GCE‡ 63.09 ± 1.39 63.01 ± 1.01 59.35 ± 1.10 53.83 ± 0.64 40.91 ± 0.57
NCE‡ 29.96 ± 0.73 27.59 ± 0.54 25.75 ± 0.50 24.28 ± 0.80 20.64 ± 0.40
NCE+AUL‡ 68.96 ± 0.16 66.62 ± 0.09 63.86 ± 0.18 50.38 ± 0.32 38.59 ± 0.48

AGCE 49.27 ± 1.03 47.53 ± 0.73 46.77 ± 2.37 39.82 ± 2.70 33.40 ± 1.57
AGCE shift 69.39 ± 0.84 63.03 ± 0.42 55.84 ± 0.78 49.05 ± 0.81 40.76 ± 0.74
AGCE scale 70.57 ± 0.62 67.13 ± 0.60 59.71 ± 0.10 48.23 ± 0.29 39.71 ± 0.17

MAE 3.69 ± 0.59 3.59 ± 0.56 3.19 ± 0.98 2.11 ± 1.93 2.53 ± 1.34
MAE shift 68.57 ± 0.54 63.44 ± 0.32 56.47 ± 0.48 48.79 ± 1.22 39.83 ± 0.18
MAE scale 70.97 ± 0.41 69.50 ± 0.24 64.80 ± 0.49 59.04 ± 1.52 44.48 ± 1.05

Table 12: Addition results to Table 3 with more asymmetric label noise rates on CIFAR100.

Additional results with w∗(∆y) and w+(∆y). We report additional results under symmetric and
asymmetric label noise with diverse noise rates η in Table 11 and Table 12, respectively. Perfor-
mance of MAE and AGCE gets substantially improved with w∗(∆y) and w+(∆y).
Visualization of w∗(∆y) and w+(∆y). In Fig. 7 we visualize the shifted and scaled sample-
weighting functions of MAE on CIFAR100. Although both achieve the same initial sample weights
at |E[∆y]| of CIFAR100, w+(∆y) diminishes much faster as ∆y increases, leading to insufficient
learning of training samples, which can explain its inferior performance in Tables 3, 4, 11 and 12.
Robustness of loss functions from w∗(∆y) and w+(∆y). Our proposed w∗(∆y) and w+(∆y) aim
to address the underfitting issue of robust loss functions with marginal initial sample weights. They
modify py into

p∗y =
1

e−(∆y/|E[∆y ]|·τ) + 1
=

1

e−(∆y·α) + 1

and

p∗y =
1

e−(∆y+|E[∆y ]|−τ) + 1
=

1

e−(∆y+β) + 1
,

where α = τ/|E[∆y]| and β = |E[∆y]|−τ , which induces new loss functions L∗(s, y) = l(p∗y) and
L+(s, y) = l(p+y ), respectively. Commonly α < 1 and β > 0 since a small τ leads to large initial
sample weights and underfitting results from small E[∆y]. Notably, τ can determine the robustness
of the induced loss functions. As shown in Table 10, a larger noise rate η requires a larger τ for better
performance, which assigns less weights to samples with small ∆y in general. However, our prelim-
inary exploration find no straightforward derivation from L(s, y) being symmetric/asymmetric to
L∗(s, y) and L+(s, y) being symmetric/asymmetric. We leave the theoretical discussions to future
work.
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Figure 7: Shifted, scaled and the vanilla sample-weighting functions of MAE on CIFAR100. τ
equals |E[∆y]| on CIFAR10. We include the initial ∆y distributions of CIFAR10/100 extracted with
a randomly initialized model as reference.

AUL AGCE GCE SCE

a 2.0 3.0 / /
q 2.0 4.0 0.4 0.95

Table 13: Hyperparameters of different loss functions for results in §4.2 and Appendix C.2. They are
selected for broad coverage of shapes, scales and horizontal locations of sample-weighting functions
instead of optimal performance on CIFAR10.

C.2 NOISE ROBUSTNESS OF LOSS FUNCTIONS

Computation of w̄clean and w̄noise for snr in Table 5 The average weight for clean samples,
adjusted by the learning rate at each step αt, can be

w̄clean =

∑
i,t αt · I(ỹi,t = yi,t)wi,t∑

i,t αt · I(ỹi,t = yi,t)

where wi,t denotes the weight of i-th sample of the batch at step t, ỹi,t is the potentially corrupted
noisy label and yi,t the uncorrupted label. Similarly, for noisy samples,

w̄noise =

∑
i,t αt · I(ỹi,t ̸= yi,t)wi,t∑

i,t αt · I(ỹi,t ̸= yi,t)

Hyperparameters We list the hyperparameters for different loss functions in Table 13 for results in
§4.2 and Appendix C.2. In Fig. 8, we plot the sample-weighting functions of different loss functions.
Changes of ∆y distributions with different label noise and loss functions Complementing
Fig. 3, in Fig. 9 we plot how distributions of ∆y change during training on CIFAR10 with additional
types of label noise using hyperparameters in Table 13. They follow similar trends as in Fig. 3,
thus supporting analysis in §4.2. As MAE is not robust against asymmetric label noise with high
η (Ghosh et al., 2017), it results in inferior performance. We also include results with additional
loss functions in Fig. 10. Since optimal hyperparameters will result in similar sample-weighting
functions, we choose hyperparameters for broad coverage of w(∆y) to better understand how they
affect robustness.
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Figure 8: Plots of sample-weighting functions of loss functions used in Table 5 with hyperparameters
in Table 8.
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(a) CE, Sym., 0.2: 74.49 (b) SCE, Sym., 0.2: 85.31 (c) MAE, Sym., 0.2: 86.71

(d) CE, Human, 0.4: 61.12 (e) SCE, Human, 0.4: 72.56 (f) MAE, Human, 0.4: 78.99

(g) CE, Asym., 0.4: 73.75 (h) SCE, Asym., 0.4: 72.44 (i) MAE, Asym., 0.4: 61.11

Figure 9: Additional results to Fig. 3 with different label noise: (a-c) symmetric label noise with
η = 0.2; (d-f) human label noise with η = 0.4; (g-i) asymmetric label noise with η = 0.4. Noisy
samples are colored green (on the left) and clean samples are orange (on the right). Test accuracies
are included in the caption for reference.
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(a) AGCE, Sym., 0.4: 44.52 (b) GCE, Sym., 0.4: 66.60 (c) AUL, Sym., 0.4: 84.12

(d) AGCE, Human, 0.4: 35.73 (e) GCE, Human, 0.4: 68.22 (f) AUL, Human, 0.4: 77.22

(g) AGCE, Asym., 0.4: 46.75 (h) GCE, Asym., 0.4: 73.23 (i) AUL, Asym., 0.4: 67.72

Figure 10: Additional results to Fig. 3 with more robust loss functions under different label noise:
(a-c) symmetric label noise with η = 0.4; (d-f) human label noise with η = 0.4; (g-i) asymmetric
label noise with η = 0.4. Test accuracies are included in the caption for reference. Noisy samples
are colored green (on the left) and clean samples are orange (on the right). Hyperparameters of these
loss functions are selected for broad coverage rather than optimal performance.
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