
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Unveiling Discrete Clues: Superior Healthcare Predictions for
Rare Diseases
Anonymous Author(s)

Abstract
Accurate healthcare prediction is essential for improving patient
outcomes. Existing work primarily leverages advanced frameworks
like attention or graph networks to capture the intricate collabora-
tive (CO) signals in electronic health records. However, prediction
for rare diseases remains challenging due to limited co-occurrence
and inadequately tailored approaches. To address this issue, this
paper proposes UDC, a novel method that unveils discrete clues
to bridge consistent textual knowledge and CO signals within a
unified semantic space, thereby enriching the representation seman-
tics of rare diseases. Specifically, we focus on addressing two key
sub-problems: (1) acquiring distinguishable discrete encodings for
precise disease representation and (2) achieving semantic alignment
between textual knowledge and the CO signals at the code level.
For the first sub-problem, we refine the standard vector quantized
process to include condition awareness. Additionally, we develop
an advanced contrastive approach in the decoding stage, leveraging
synthetic and mixed domain targets as hard negatives to enrich the
perceptibility of the reconstructed representation for downstream
tasks. For the second sub-problem, we introduce a novel codebook
update strategy using co-teacher distillation. This approach facil-
itates bidirectional supervision between textual knowledge and
CO signals, thereby aligning semantically equivalent information
in a shared discrete latent space. Extensive experiments on three
datasets showcase that the proposed UDC notably improves health-
care prediction performance for both rare and common diseases.

Keywords
Discrete modeling, Healthcare prediction, Rare disease
Relevance: It uses web data for better patient modeling (user model-
ing), enhancing the Web’s technical and socio-economic systems.

1 Introduction
Healthcare predictions, such as medication recommendations, are
critically important as they directly influence the efficacy of medi-
cal treatments [13, 30]. Accurate medication recommendations can
enhance patient recovery rates by up to 30% and reduce adverse
drug reactions by 25%, demonstrating their significant positive im-
pact [37, 41]. However, erroneous predictions present a dual-edged
sword: they can lead to ineffective treatments in approximately
20% of cases [7, 58]. This highlights the imperative to enhance the
performance of healthcare predictions.
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Figure 1: (a) Disease occurrences across three datasets. (b)
Medication recommendation for commonest / rarest diseases.

Current research in healthcare prediction can be broadly cate-
gorized into three genres [1, 32, 49]: rule-based, graph-based, and
sequence-based approaches. Rule-based systems [9, 38] typically
rely on expert-defined rules to guide predictions, offering effective
solutions but often facing limitations in scalability and potential con-
flicts among rules. In contrast, graph-based methods [3, 5] leverage
graph neural networks to model electronic health records (EHRs)
as homogeneous or heterogeneous graphs, enhancing predictive
performance through the exploration of intricate collaborative (CO)
signals within the data. Sequence-based methods [50, 56] represent
a shift from static approaches by focusing on the sequential patterns
inherent in longitudinal EHRs, capturing temporal dependencies
that static models might overlook. While these methods are effec-
tive, they tend to emphasize maximizing overall accuracy [48, 58],
which can lead to performance degradation for specific diseases.
This issue arises from the highly skewed data distribution in EHRs.
As depicted in Figure 1(a), datasets such as MIMIC-III [17], MIMIC-
IV [16], and eICU [34] exhibit a pronounced imbalance in data
distribution. In MIMIC-IV dataset, the commonest diseases (top
20%) account for approximately 95% of interactions in EHRs, while
the rarest diseases (tail 20%) represent only about 0.2%. Meanwhile,
as shown in Figure 1(b), we observe that existing advanced methods
demonstrate superior performance in diagnosing common diseases.
However, their effectiveness diminishes significantly when applied
to rare diseases. This disparity is a key factor contributing to over-
all predictive shortcomings and may lead to health inequalities in
diagnosis [58]. It underscores the need for more effective strategies.

Recently, several studies have demonstrated distinct distribu-
tions of long-tail and head objects [55]. This observation motivates
us to treat rare diseases and common diseases as different feature
domains and find a way to align rare diseases (CO space) with com-
mon diseases (CO space) to leverage the established knowledge,
e.g., disease-medication relationships derived from rich EHRs as-
sociated with common diseases. However, as depicted in Figure 1,
limited data impedes the establishment of a robust CO space for rare
diseases. Textual knowledge (Text), shared across all diseases and
recognized as a consistent and reliable semantic resource [18, 48],
serves as a bridge to facilitate alignment between these two spaces.
Consequently, our aim is to align CO signals with textual knowledge
within a unified discrete space, followed by executing a high-quality

1
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Text→CO mapping for rare diseases to enrich representation se-
mantics. The discrete space, derived from VQ-VAE [36], employs
a vector quantized (VQ) process to facilitate code-level mappings
between textual knowledge and CO signals. This aligns with the
multi-symptom nature of the disease and demands fewer compu-
tations compared to continuous modeling [10, 21]. To develop our
approach, we highlight two key aspects.
• How to acquire distinguishable discrete encodings for

precise disease representation? 1) In clinical documentation,
even minor variations in symptoms can necessitate different
medical codes, despite similar text descriptions. For instance,
Type 1 and Type 2 diabetes, though bothmay present as "diabetes
without complications," diverge significantly in their pathophysi-
ology and management, with Type 1 typically requiring lifelong
insulin therapy and Type 2 often managed through lifestyle
modifications and oral medications. This necessitates that the
model be adept at discerning subtle yet significant differences
in clinical context, despite relatively similar text descriptions.
2) While VQ-VAE is effective at reconstructing data and learn-
ing broad patterns, its approach to feature extraction and re-
construction may not always align with the specific, detailed
requirements of downstream predictive tasks, resulting in po-
tential limitations in predictive accuracy. For example, while the
reconstructed text representation provides a coherent overview,
it might lack critical details like specific symptom patterns or
treatment adherence levels. Similarly, reconstructed CO signals
might miss key interactions or subtle patterns that are crucial
for precise medication recommendation or diagnosis prediction.

• How to perform effective semantic alignment between
CO signals and textual knowledge? Text and CO signals
typically reside in distinct semantic spaces, with text represented
in natural languages and CO signals in interaction embeddings.
This domain gap is an obstacle that hinders the Text→CO signal
mapping. Furthermore, as both representations of disease are
mapped into a discrete space—where each code embodies unique
symptom semantics—aligning at the code level is crucial for
mitigating the domain gap and facilitating knowledge transfer.
To tackle these challenges, we introduce UDC, a tailored VQ-VAE

framework for healthcare that utilizes textual knowledge and CO
signals for alignment and reconstruction, enhancing the representa-
tion semantics of rare diseases during discrete representation learn-
ing (DRL). To ensure the distinguishability of disease encodings,
we upgrade the original VQ process to incorporate condition-aware
calibration. We specifically include medical entities that co-occur
during the same visit for a particular disease as contextual condi-
tions. This adjustment allows the model to produce distinct recon-
structions based on varying contexts, even when the text appears
similar. For instance, in a medical scenario, the distinction between
Type 1 and Type 2 diabetes could be identified by examining com-
plications such as diabetic ketoacidosis (more common in Type 1)
or by specific laboratory findings in EHRs, thereby enhancing the
granularity of representations. Furthermore, to guarantee task rele-
vance in the reconstructed representations, we devise a contrastive
task-aware calibration. Leveraging mixed-domain and synthetic
target representations as hard negatives, we boost the model’s abil-
ity to discern distinct features and facilitate the reciprocal transfer
of knowledge between CO signals and textual information. This

empowers the reconstructed representations to react adaptively
in accordance with the particular downstream tasks at hand. To
achieve better semantic alignment of Text-CO signals, we intro-
duce a novel codebook update strategy using co-teacher distillation.
In this approach, the text and the CO signal, both featuring en-
coded diseases, act as mutual reconstruction labels, facilitating the
aggregation of quantized vectors encoded from two signals with
equivalent semantics into a unified latent space.

To sum up, our key contributions are as follows.
• To our knowledge, UDC has significantly enriched the seman-

tics of rare diseases, thereby improving healthcare prediction
performance. Our framework can be seamlessly integrated into
various advanced healthcare prediction models.

• We tailor the VQ process for healthcare, incorporate condition-
aware and task-aware calibration, and devise a novel codebook
update mechanism. These enhancements notably improve re-
construction performance and adaptability to downstream tasks.

• Our algorithm demonstrates superior performance across two
healthcare prediction tasks on three datasets, effectively han-
dling both common and rare diseases. We have made the code
available on Github 1 to ensure reproducibility.

2 Related Work
We review related work, emphasizing connections and distinctions.

2.1 Healthcare Prediction
Healthcare prediction employs advanced data-driven models to
forecast clinical outcomes and disease progression [49]. This prac-
tice significantly impacts personalized treatment by facilitating
early intervention and optimizing clinical decisions.

The primary genres in healthcare prediction include rule-based,
graph-based, and sequence-basedmodels. Rule-basedmodels [9, 38],
stemming from clinical expertise, offer interpretability and ease
of implementation. However, their limitations lie in adapting to
dynamic patient data and conflict rules, hindering their efficacy.
In contrast, graph-based models diverge as they are entirely data-
driven. They intricately map relationships among clinical entities
as nodes and edges within a graph framework [3, 5], excelling in
modeling relational data and uncovering hidden patterns. However,
they can be computationally intensive and encounter scalability
challenges when applied to extensive datasets. On the other hand,
sequence-based models [11, 26], leveraging temporal data like lon-
gitudinal EHRs, dynamically capture temporal dependencies. This
paradigm is typically constructed using architectures such as RNNs
and Transformers. When combined with medical prior knowledge,
it effectively captures the patient’s condition. Recently, hybrid mod-
els [14, 48] have been introduced, combining these genres to harness
their respective strengths. A common approach involves represent-
ing visit-level data as subgraphs or introducing external knowledge,
followed by information extraction to incorporate both temporal
and high-order CO signals. While effective, most methods primarily
aim to enhance overall accuracy, with limited focus on the unique
challenges associated with the sparse rare diseases.

Our approach operates within this hybrid genre, specifically target-
ing the enhancement of rare disease prediction through the integration
1https://anonymous.4open.science/r/UDCHealth/README.md
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of textual knowledge. Leveraging discrete learning, our method ef-
fectively bridges textual knowledge with CO signals, bolstering the
representation semantics tailored to rare diseases.

2.2 Generative Retrieval
Generative retrieval is a key technique in modern systems, enabling
the direct generation of candidate items rather than selecting from
a fixed set, as in discriminative genres [20]. This is critical for
delivering context-aware retrievals in domains with limited data.

Generative retrieval [22, 39] can be broadly categorized into
three genres: autoregressive-based [24, 47], GAN-based [4, 15],
and autoencoder-based models [2, 46, 59]. Autoregressive mod-
els [24], such as those utilizing Transformer architectures, generate
sequences by predicting the next item based on previous context,
making them well-suited for tasks requiring a sequential under-
standing. However, they are often computationally intensive and
may suffer from exposure bias. GAN-based models [4] generate re-
alistic candidate items through a generator that creates samples and
a discriminator that evaluates their authenticity. While GANs [15]
excel in producing high-quality outputs, they are challenging to
train and may experience instability issues. Autoencoder-based
models, including approaches like VAE [35, 54], use an encoder to
map inputs to a latent space and a decoder to reconstruct them.
These models effectively capture complex data distributions and
facilitate structured, interpretable generation. VQ-VAE [36], in par-
ticular, leverages discrete latent variables, balancing the strengths
of both autoregressive and autoencoder-based approaches while
offering robustness in handling diverse distributions.

Our method aligns with the last genre, specifically extending VQ-
VAE to healthcare. We focus on enhancing the representation of rare
diseases by introducing condition-aware and task-aware calibration.
Furthermore, we devise a novel co-teacher distillation to achieve code-
level semantic alignment. These tailored advancements enhance the
accuracy and relevance of the rare disease representations generated,
thereby boosting the performance of VQ-VAE within healthcare tasks.

3 Proposed Method
Preliminary. Each patient’s medical history is recorded as a se-
quence of visits, represented by U (𝑘 ) = (u(𝑘 )1 , u(𝑘 )2 , . . . , u(𝑘 )T𝑘 ),
where 𝑘 identifies the patient within the patient set N , and T𝑘
is the total number of visits. Each visit u(𝑘 )𝑡 is defined as a triplet
u(𝑘 )𝑡 = (d(𝑘 )𝑡 , p(𝑘 )𝑡 ,m(𝑘 )

𝑡 ), corresponding to the diagnoses (𝑑), pro-
cedures (𝑝), and medications (𝑚) associated with that visit, re-
spectively. These components are encoded as multi-hot vectors:
d(𝑘 )𝑡 ∈ {0, 1} |D | , p(𝑘 )𝑡 ∈ {0, 1} | P | , and m(𝑘 )

𝑡 ∈ {0, 1} |M | , where D,
P, andM represent the sets of all possible diagnoses, procedures,
and medications, and | · | denotes the cardinality of these sets. For
instance, the vector d = [1, 0, 1, 0] suggests that the patient has
diseases 1 and 3, assuming |D| = 4. Additionally, each medical
entity ∗ is associated with a corresponding text description denoted
as T(∗). For clarity, 𝑘 is omitted in the following content.
Task formulation. Following [52, 53, 56], we outline the defini-
tions of the two common healthcare prediction tasks.
• Diagnosis Prediction (Diag Pred) entails a multi-label classifi-

cation challenge that centers on anticipating forthcoming risks.

This task revolves around scrutinizing [u1, ..., u𝑡 ] to forecast the
diagnosis set d𝑡+1 at time 𝑡 + 1, where target y[u𝑡+1] ∈ R1×|D | .

• Medication Recommendation (Med Rec) involves a multi-
label classification task dedicated to pinpointing the most suit-
able medications for the patient’s present state. This process
entails scrutinizing [u1, ..., u𝑡 ], alongside (d𝑡+1, p𝑡+1), to antici-
pate m𝑡+1 at time 𝑡 + 1, where target y[u𝑡+1] ∈ R1×|M| .

Notations for important symbols could be found in Appendix A.
Solution Overview. Our solution for enhancing healthcare pre-
diction, particularly for rare diseases, unfolds through a structured
three-step process. First, we develop a robust healthcare prediction
model Fco (·) by training on the entire dataset, which acts as the
pre-trained collaborative model (PCM). However, this alone proves
insufficient, as the resulting representations ED often fail to capture
the nuances of rare diseases due to sparse co-occurrence. To address
this, we choose a pre-trained language model (PLM), i.e. Fte (·), and
introduce a discrete representation learning (DRL) framework in the
second stage, where we reconstruct these representations to ensure
Text-CO signals alignment. Our key innovations lie in this phase,
where we employ condition injection, contrastive learning, and co-
teacher distillation to ensure that the discretized representations,
incorporating both textual and collaborative signals, are distinct,
task-aware, and aligned at the code level. Finally, in the fine-tuning
& inference stage, we freeze DRL to produce ÊD that substitute the
original embeddings ED and fine-tune Fco (·), thereby significantly
improving the model’s capability to handle the challenging rare
cases. The comprehensive framework is illustrated in Figure 2.

3.1 Discrete Disease Representation
We employ discrete modeling to map disease representations onto
discretized code vectors for reconstruction. Contrasted with VAEs,
VQ [21] process excels in compression and offers interpretability.
Pre-trained PCM& PLM. Initially, we train a conventional health-
care prediction model optimized with commonly used binary cross-
entropy (BCE) [14, 43], employing EHRs to construct collaborative
representations for each medical entity. Formally,

e𝑑 = ED (𝑑), e𝑝 = EP (𝑝), e𝑚 = EM (𝑚), (1)

Ltask = BCE(y, Fco (e𝑑 , e𝑝 , e𝑚,T𝑘 ;𝜃 )), (2)

whereFco (·) can denote any PCM.Here, we opt for Transformer [40]
as the backbone. As evidenced in [1, 44, 57], Fco (·) extracts interac-
tion patterns, whereas embedding E encompasses rich CO similari-
ties. Likewise, we choose a popular clinical pre-trained language
model Fte (·), i.e. Sap-BERT [25], to serve as the PLM. Formally,

ẽ𝑑 = ẼD (T(𝑑)), ẽ𝑝 = ẼP (T(𝑝)), ẽ𝑚 = ẼM (T(𝑚)), (3)
where Ẽ signifies the embedding table of Fte (·). We contrast the
variations among various PCM and PLM backbones in Section 4.3.4.
Discrete Representation. Next, we consider mapping the disease
encoding e𝑑 and ẽ𝑑 to a set of discrete codes using RQ-VAE [21], a
widely adopted VQ-VAE framework. In RQ-VAE, L-level codebooks
are defined. For each code-level 𝑙 ∈ {1, · · · , 𝐿}, there exists a code-
book C𝑙 = {c𝑖 } | C𝑙 | . Subsequently, for disease 𝑑 , the associated set
of discrete codes is derived through the residual method. Formally,{

𝑐𝑙 = argmin
𝑖

∥r𝑙−1 − c𝑖 ∥2, c𝑖 ∈ C𝑙 ,

r𝑙 = r𝑙−1 − c𝑙 ,
(4)
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Figure 2: Overview of UDC. We pre-train the PCM to establish a robust CO space and then obtain CO and text representations
for diseases using PCM and a selected PLM. Next, we train the DRL to align the text and CO signals, followed by fine-tuning the
PCM for downstream tasks while keeping the DRL frozen. Q, K, V denotes the parameters for multi-head attention.

where 𝑐𝑙 denotes the assigned code index from the 𝑙-th level code-
book and | | · | |2 is 2-Norm. r𝑙−1 is the semantic residual from the last
level and we set r0 = 𝜙co (e𝑑 ) or r̃0 = 𝜙te (ẽ𝑑 ), where 𝜙 is an MLP
encoder layer. Finally, for each medical entity, we have the discrete
PCM codes and discrete PLM codes, i.e., e𝑑 → {c1, c2, · · · , c𝐿},
ẽ𝑑 → {c̃1, c̃2, · · · , c̃𝐿}. For efficiency, we utilize a shared codebook
for both text and CO signals, i.e., c̃𝑙 ∈ C𝑙 . Then we get the encoded
disease representation using the sum operation. Formally,

z𝑑 =

𝐿∑︁
𝑙=1

c𝑙 , z̃𝑑 =

𝐿∑︁
𝑙=1

c̃𝑙 , (5)

where z𝑑 and z̃𝑑 denote the discrete representation for a disease.
In other words, we discretize the disease into the sum of various
symptom codes, offering a more intuitive approach.

3.2 Condition-aware Calibration
Traditional RQ-VAE typically proceeds to decode once the latent
vector z𝑑 is obtained. However, their efficacy in reconstructing
samples with similar descriptions is limited. This constraint signif-
icantly hampers their utility in healthcare scenes, where medical
entities frequently share analogous descriptions yet possess dis-
tinct semantic nuances. To address this deficiency, we propose
integrating external conditions, specifically diverse types of med-
ical entities within the same visit, to modulate the quantization
vector via normalization. This strategy aims to embed condition
variations into the index map, thereby stimulating the decoder to
produce a broader array of reconstructed representations. Formally,

f𝑑 = MHAP (e𝑑𝑝 , e𝑑𝑝 , e𝑑𝑝 ) +MHAM (e𝑑𝑚, e𝑑𝑚, e𝑑𝑚), (6)
where MHA(·) denotes multi-head attention and f𝑑 refers to the
condition representation. e𝑑𝑝 ∈ EP and e𝑑𝑚 ∈ EM refer to the
entities corresponding to disease 𝑑 at the same visit. Then, we
incorporate it in normalized form. Formally, for the CO branch,

z𝑑 = 𝜑𝛾 (zold𝑑 ) f𝑑 − 𝜇 (f𝑑 )
𝜎 (f𝑑 )

+ 𝜑𝛽 (zold𝑑 ), (7)

where zold
𝑑

, as defined in Eq. 5, is labeled as "old" for clarity. 𝜇 and
𝜎 denotes the mean and variation. 𝜑𝛾 and 𝜑𝛽 signify the transfor-
mation matrix. This normalizing ensures that f ’s values fall within

a similar range, which helps maintain consistency in the scale of
the input features, thereby aiding in training stability and con-
vergence without escalating the model’s complexity. Likewise, we
could obtain z̃𝑑 using ẽ𝑑𝑝 and ẽ𝑑𝑚 .

3.3 Task-aware Calibration
While incorporating conditions can enhance the semantics of z𝑑 for
decoding, there remains a crucial gap: the model lacks awareness
of downstream tasks. This awareness can help optimize model per-
formance by guiding the learning process towards features that are
most relevant to the healthcare task, leading to improved accuracy.
In other words, we necessitate that the reconstructed representa-
tion not only mirrors the original one but also closely aligns with
the target S𝑑 in the subsequent visit (S𝑑 ∈ D for Diag Pred and
S𝑑 ∈ M for Med Rec); otherwise, it remains distant. To achieve
this objective, beyond conventional intra-domain (Text/CO signal)
contrastive learning [27], we devise two distinct hard negative sam-
pling to augment the contrastive training approach. Formally, using
CO signal z𝑑 as an example,

Lintra = − 1
|D|

|D |∑︁
𝑑=1

log[ exp(s𝑑𝑊 z𝑑 )
exp(s𝑑 ′𝑊 z𝑑 )︸          ︷︷          ︸

synthetic

+∑𝑗≠𝑑 exp(s𝑗𝑊 z𝑑 )︸         ︷︷         ︸
intra-domain

], (8)

Linter = − 1
|D|

|D |∑︁
𝑑=1

log[ exp(s̃𝑑𝑊 z𝑑 )
exp(s̃𝑑 ′𝑊 z𝑑 )︸          ︷︷          ︸

synthetic

+∑𝑗≠𝑑 exp(s̃𝑗𝑊 z𝑑 )︸         ︷︷         ︸
mixed domain

], (9)

where s𝑑 denotes 𝑑’s next-visit target representation, i.e., s𝑑 =∑
𝑑∈S𝑑

𝜙co (e𝑑 ). s𝑑 ′ denotes the synthetic disease representation
acquired by randomly substituting the medical entities associated
with the target S𝑑 . Likewise, we define s̃𝑑 =

∑
𝑑∈S𝑑

𝜙te (ẽ𝑑 ). For-
mally, we advance from both collaborative and textual standpoints,

Lcon = Lintra + Linter + L̃intra + L̃inter, (10)
where L̃ signifies the contrastive learning using z̃𝑑 . This bidirec-
tional learning ensures that the representations reconstructed by
PCM and PLM not only encapsulate the relevance within the do-
main but also encompass the similarity of entities across domains.
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3.4 Co-teacher Distillation
In the preceding sections, we transform both the CO and textual
signals into discrete representations. However, this pipeline does
not ensure semantic alignment between the two at the code level,
leading to a domain gap that significantly impedes the subsequent
Text→CO mapping. To address this constraint, we introduce a
co-teacher distillation that iteratively refines the same code by
leveraging both text and CO signals. Specifically, for each code c𝑖 ,
we first retrieve the related diseases set 𝑁 𝑙

𝑖
and �̃� 𝑙

𝑖
in the collabora-

tive and textual domain at the 𝑙-th level codebook. Subsequently,
we combine their representations to obtain a holistic view o𝑙 . For
clarity, we omit the superscript 𝑙 . Formally, for 𝑡-th iteration,

o(𝑡 )
𝑖

= 𝜅o(𝑡−1)
𝑖

+ (1 − 𝜅) [
∑︁

𝑑∈𝑁 (𝑡 )
𝑖

z(𝑡 )
𝑑

+ b̃(𝑡 )
𝑑

2
+

∑︁
𝑑∈�̃� (𝑡 )

𝑖

z̃(𝑡 )
𝑑

+ b(𝑡 )
𝑑

2
],

b(𝑡 )
𝑑

= MHA(z𝑑 , z̃𝑑 , z̃𝑑 ), b̃(𝑡 )
𝑑

= MHA(z̃𝑑 , z𝑑 , z𝑑 ),
(11)

where 𝜅 refers to the decay rate and b extract the relationship be-
tween two views. Then, we employ an exponential moving average
method to update c𝑖 . Formally,

c(𝑡 )
𝑖

= o(𝑡 )
𝑖

/n(𝑡 )
𝑖
,

n(𝑡 )
𝑖

= 𝜅n(𝑡−1)
𝑖

+ (1 − 𝜅) [
∑︁

𝑑∈𝑁 (𝑡 )
𝑖

z(𝑡 )
𝑑

+
∑︁

𝑑∈�̃� (𝑡 )
𝑖

z̃(𝑡 )
𝑑

], (12)

where n𝑖 are used for normalization. We also modify the commit-
ment loss in RQ-VAE by utilizing the code vector z̃𝑑 as a teacher to
guide the encoder 𝜙co. This modification aims for 𝜙co (e𝑑 ) to not
only approximate z𝑑 but also to converge towards z̃𝑑 at a ratio of
50% in our setting, with 𝛼 is the commitment weight. Formally,

Lcom =𝛼 ∥𝜙co (e𝑑 ) − sg[z𝑑 ] ∥22︸                      ︷︷                      ︸
origin

+ 𝛼
2
∥𝜙co (e𝑑 ) − sg[z̃𝑑 ] ∥22︸                       ︷︷                       ︸

new

+

𝛼 ∥𝜙te (ẽ𝑑 ) − sg[z̃𝑖 ] ∥22︸                     ︷︷                     ︸
origin

+ 𝛼
2
∥𝜙te (ẽ𝑑 ) − sg[z𝑑 ] ∥22︸                       ︷︷                       ︸

new

, (13)

where sg denotes the stop gradient. This alignment compels the CO
signal and the textual space to converge on the same symptom code
at each discrete level and maintain the consistent code semantics,
thereby facilitating subsequent representation substitution.

3.5 Training & Fine-tuning Strategy
We outline the training objectives of the DRL and fine-tuning stages.
Training Strategy. Our final optimization objective for DRL com-
prises reconstruction loss and the two preceding parts. Formally,
Ltotal = ∥e𝑑 −𝜓co (z𝑑 )∥22 + ∥ẽ𝑑 −𝜓te (z̃𝑑 )∥22︸                                        ︷︷                                        ︸

reconstruction loss Lr

+Lcon + Lcom, (14)

where𝜓 denotes the MLP decoder for reconstruction. Once DRL is
trained, it can be used as a mapping function to transform textual
space into collaborative space. At this stage, we exclusively leverage
data related to common diseasesDcom, as collaborative signals from
rare diseases Drar are considered unreliable. Dcom and Drar are
splited according to Section 4.1.
Fine-tuning & Inference. Upon DRL alignment training comple-
tion, DRL can transform textual signals into collaborative signals.

This enables us to utilize the textual description of rare diseases to
supplant their original inferior collaborative signals. Formally,

ê𝑑 =

{
𝜓co [𝜑 (𝜙te (ẽ𝑑 ); e𝑑𝑝 , e𝑑𝑚)], if 𝑑 ∈ Drar

𝜓co [𝜑 (𝜙co (e𝑑 ); e𝑑𝑝 , e𝑑𝑚)], if 𝑑 ∈ Dcom
. (15)

Following this, we freeze DRL and ED , and fine-tune Fco (·) to
capture updated interaction patterns using Eq. 2. This step is crucial,
as evidenced in Appendix B, since the prior Fco (·) may not fully
grasp interaction patterns with other medical entities owing to
the data scarcity on rare diseases. For a new representation, it
necessitates re-learning to enhance its effectiveness. Finally, we can
integrate Fco (·) and DRL for the estimation ŷ. Formally,

ŷ = Fco (ê𝑑 , e𝑝 , e𝑚,T𝑘 ;𝜃 ) . (16)
Overall, through the three-step process, we can effectively map rare
diseases onto the feature space of common diseases using textual
knowledge as a bridge, thereby enhancing their semantic richness.
A concise algorithm flow can be seen in Appendix C.

4 Experiments
We first outline the necessary setup and then present the analysis.
4.1 Experimental Setup
Datasets & Baselines. Our experiments are conducted on three
popular healthcare datasets: MIMIC-III [17], MIMIC-IV [16], and
eICU [34]. Detailed statistics for these datasets are summarized
in Appendix D. Textual knowledge is extracted by parsing EHR
entities according to the internationally recognized ICD and ATC
systems [12] to obtain corresponding textual descriptions.We retain
patients with more than one visit in MIMIC-III and eICU, while for
MIMIC-IV, we include patients with two or more visits.

We select advanced baselines for comparison. Specifically, for
both tasks, we include Transformer [40], MICRON [45], RETAIN [6],
GRAM [5], StageNet [11], SHAPE [26], StratMed [23], HAR [43],
GraphCare [14], and RAREMed [58]. For Diag Pred, we further in-
corporate HITANet [28], Deepr [33], Dipole [31], MedPath [53], Se-
qCare [48] as specialized baselines. In Med Rec, additional baselines
such as SafeDrug [51], GAMENet [38], COGNet [50], VITA [19],
MoleRec [52], and DEPOT [56], are included, given their distinctive
designs and strong performance. Transformer, RETAIN, HITANet,
Deepr, StageNet, RAREMed, and SHAPE are sequence-based ap-
proaches, while GRAM, GAMENet, MoleRec, MICRON, DEPOT,
StratMed, COGNet, and VITA further integrate EHR graphs to en-
hance representation. MedPath, HAR, SeqCare, and GraphCare
leverage external knowledge to improve performance. RAREMed
and SeqCare incorporate tailored reconstruction tasks and denois-
ing techniques specifically designed for rare diseases.
Implementation Details & Evaluations. To ensure fairness, all
algorithms use an embedding dimension of 128. We employ the
AdamW optimizer with a learning rate of 1e-3 for Diag Pred and
2e-4 for Med Rec. The batch size is set to 16. The epochs for the DRL
and fine-tuning stages are set at 50 and 50, respectively. Following
RQ-VAE, we configure the code layer 𝐿 = 4, meaning each disease is
represented by four codes. The codebook size |C𝑙 | and commitment
weight 𝛼 , which are crucial hyperparameters, are set to 64 and 0.25,
respectively. Their effects are evaluated in Appendix F. Following
the Pareto principle and previous research [55], we classify diseases
appearing in 20% or more cases as common Dcom, with all others
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Table 1: Performance comparison: Diagnosis Prediction. K=20.
Dataset MIMIC-III MIMIC-IV eICU
Method Acc@K Pres@K AUPRC AUROC Acc@K Pres@K AUPRC AUROC Acc@K Pres@K AUPRC AUROC

Transformer 0.2841 0.3144 0.2289 0.9174 0.3047 0.3420 0.2476 0.9591 0.6431 0.7716 0.6777 0.9667
MICRON 0.2735 0.3025 0.2130 0.9147 0.3081 0.3434 0.2098 0.9545 0.6308 0.7748 0.6781 0.9698
Deepr 0.2834 0.3132 0.2277 0.9113 0.2615 0.2904 0.1998 0.9396 0.6304 0.7620 0.6430 0.9584

HITANet 0.2917 0.3228 0.2309 0.9180 0.2996 0.3368 0.2432 0.9574 0.6517 0.7767 0.6773 0.9644
RETAIN 0.2920 0.3284 0.2509 0.9175 0.3078 0.3314 0.2337 0.9427 0.6576 0.7805 0.6879 0.9613
GRAM 0.3190 0.3559 0.2631 0.9182 0.3024 0.3513 0.2318 0.9591 0.6452 0.7891 0.6993 0.9711
Dipole 0.3183 0.3587 0.2631 0.9158 0.2968 0.3336 0.2395 0.9593 0.6585 0.7864 0.6677 0.9643
StageNet 0.3011 0.3375 0.2408 0.9188 0.3153 0.3440 0.2489 0.9593 0.6599 0.7936 0.6645 0.9702
SHAPE 0.3214 0.3531 0.2593 0.9226 0.3170 0.3540 0.2407 0.9564 0.6510 0.7779 0.6850 0.9676
StratMed 0.3076 0.3425 0.2434 0.9225 0.3137 0.3602 0.2595 0.9531 0.6449 0.7663 0.6710 0.9653
MedPath 0.3189 0.3490 0.2560 0.9224 0.3203 0.3616 0.2589 0.9620 0.6600 0.7947 0.7000 0.9714
HAR 0.3204 0.3532 0.2599 0.9193 0.3224 0.3642 0.2605 0.9628 0.6540 0.7910 0.6995 0.9720

GraphCare 0.3213 0.3529 0.2595 0.9203 0.3220 0.3635 0.2593 0.9620 0.6569 0.7788 0.6795 0.9694
SeqCare 0.3245 0.3547 0.2616 0.9213 0.3233 0.3668 0.2669 0.9632 0.6639 0.7996 0.7043 0.9727
RAREMed 0.3208 0.3521 0.2596 0.9192 0.3153 0.3527 0.2390 0.9557 0.6572 0.7792 0.6768 0.9692

UDC 0.3377 0.3713 0.2737 0.9256 0.3324 0.3707 0.2735 0.9657 0.6724 0.8070 0.7140 0.9736

Table 2: Performance comparison: Medication Recommendation.
Dataset MIMIC-III MIMIC-IV eICU
Method Jaccard F1-score AUPRC AUROC Jaccard F1-score AUPRC AUROC Jaccard F1-score AUPRC AUROC

Transformer 0.5012 0.6556 0.7671 0.9440 0.4635 0.6203 0.7305 0.9402 0.1159 0.3504 0.3138 0.9147
MICRON 0.4937 0.6501 0.7651 0.9307 0.4608 0.6123 0.7283 0.9362 0.0703 0.2349 0.2561 0.9017
SafeDrug 0.4859 0.6403 0.7367 0.9331 0.4569 0.6086 0.7293 0.9378 0.1061 0.4274 0.3036 0.9181
RETAIN 0.5049 0.6601 0.7680 0.9448 0.4646 0.6174 0.7364 0.9414 0.1181 0.4736 0.2835 0.9064
GRAM 0.4994 0.6537 0.7607 0.9435 0.4624 0.6155 0.7385 0.9424 0.0983 0.3166 0.2908 0.9168

GAMENet 0.5074 0.6612 0.7724 0.9456 0.4655 0.6181 0.7399 0.9425 0.1093 0.4165 0.2936 0.9103
COGNet 0.5114 0.6614 0.7774 0.9470 0.4612 0.6125 0.7271 0.9356 0.1166 0.3528 0.3237 0.9147
StageNet 0.5013 0.6494 0.7519 0.9358 0.4679 0.6201 0.7404 0.9424 0.1337 0.2303 0.3075 0.9201
VITA 0.5146 0.6671 0.7781 0.9469 0.4715 0.6219 0.7486 0.9424 0.1218 0.3640 0.3223 0.9157

MoleRec 0.5080 0.6624 0.7719 0.9451 0.4720 0.6254 0.7473 0.9411 0.1123 0.3609 0.3280 0.9219
DEPOT 0.5135 0.6697 0.7745 0.9466 0.4780 0.6298 0.7534 0.9465 0.1367 0.3875 0.3276 0.9134
SHAPE 0.5155 0.6678 0.7788 0.9469 0.4830 0.6347 0.7486 0.9475 0.1338 0.4056 0.3123 0.9154
StratMed 0.5070 0.6612 0.7724 0.9456 0.4719 0.6249 0.7446 0.9446 0.1223 0.3791 0.3031 0.9138
HAR 0.5126 0.6652 0.7758 0.9465 0.4805 0.6311 0.7539 0.9475 0.1257 0.4595 0.3153 0.9140

GraphCare 0.5167 0.6700 0.7805 0.9471 0.4816 0.6363 0.7576 0.9486 0.1252 0.4534 0.3107 0.9162
RAREMed 0.5134 0.6653 0.7786 0.9453 0.4794 0.6317 0.7496 0.9443 0.1304 0.4315 0.3119 0.9156

UDC 0.5261 0.6761 0.7833 0.9483 0.4912 0.6404 0.7580 0.9486 0.1443 0.4986 0.3296 0.9227

considered rare Drar. The impact of varying thresholds 𝜂 is further
explored in Appendix F.

For data partitioning, we follow established practices [43, 48, 56]
by dividing the datasets into training, validation, and test sets in
a 6:2:2 ratio. For Diag Pred, we use Acc@K, Pres@K, AUPRC, and
AUROC for evaluation. Here K=20, different values are discussed
in Section 4.3.2. For Med Rec, we assess using Jaccard, F1-score,
PRAUC, andAUROC. Thesemetrics are selected for their significant
clinical relevance and comprehensive assessment [1, 14]. Their
mathematical definitions are outlined in Appendix E.

Table 3: Ablation study. UDC-NCO does not incorporate
condition-aware calibration. UDC-NT removes task-aware
calibration. UDC-NM only leverages synthetic negative sam-
pling. UDC-NS only utilizes mixed-domain negative sam-
pling. UDC-NCD performs updates similar to RQ-VAE with-
out using co-teacher distillation.
Algorithms Metric -NCO -NT -NM -NS -NCD UDC

Diag Pred Acc@K 0.3276 0.3297 0.3301 0.3318 0.3288 0.3377
Pres@K 0.3606 0.3600 0.3608 0.3620 0.3591 0.3713

Med Rec Jaccard 0.5176 0.5179 0.5205 0.5183 0.5171 0.5261
F1-score 0.6703 0.6705 0.6709 0.6706 0.6689 0.6761

4.2 Overall Performance
As depicted in Tables 1-2, our proposed UDC achieves the best
performance across all scenarios, despite only utilizing the rela-
tively weak Transformer as the PCM. Regarding the baselines, we
observe that the sequence-based methods, such as SHAPE and DE-
POT significantly outperform GRAM, underscoring the importance
of capturing temporal patterns. COGNet and VITA are Transformer
variants that leverage medical priors, like EHR graphs, resulting
in notable enhancements over pure Transformer. GraphCare, Med-
Path, and SeqCare distinguish themselves by leveraging external
knowledge graphs to enrich the inherent entity semantics. Never-
theless, the absence of adequate denoising measures hinders their
effectiveness. While RAREMed introduces pre-trained tasks to ad-
dress the cold-start issue, its overall predictive capacity remains
relatively modest. Observations suggest a potential decline for com-
mon disease prediction, as detailed in Section 4.3.3.

Concerning the tasks, Diag Pred is more challenging than Med
Rec, as the former requires recalling and ranking a broader range
of medical entities. UDC, GraphCare, and SeqCare demonstrate
greater robustness, as they not only rely on CO signals but also
leverage semantic associations between items from the external
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knowledge. The broader Diag Pred benefits more from the external
knowledge effects in the sampling process, leading to a 3% Acc@K
improvement in MIMIC-IV. Our observations indicate that eICU
demonstrates enhanced performance in Diag Pred, likely due to
the smaller disease size, which results in greater similarity among
diseases across consecutive periods. MICRON’s performance on
MIMIC-III and eICU is constrained in both tasks due to its require-
ment for at least two visit lengths, which limits the available data.
StratMed does not reproduce its success from Med Rec on Diag
Pred. This disparity could stem from the drug interaction graph it
introduced not being suitable for the Diag Pred.

Considering the datasets, MIMIC-IV is the most challenging,
as it exhibits more complex entity interactions, reflected in the
larger data volume and higher sparsity. Additionally, the MIMIC-IV
data presents a more imbalanced distribution, as shown in Figure 1.
Most algorithms, such as StratMed, Dipole, and DEPOT, experience
noticeable performance degradation on this dataset. Despite incor-
porating external knowledge, as seen in GraphCare and HAR, their
approaches overlook the domain gap between this knowledge and
the CO signal, potentially leading to negative transfer. Meanwhile,
the lack of standard EHR coding in the eICU dataset leads to sig-
nificant gaps in external knowledge, diminishing the advantages
of these baselines. Conversely, UDC directly leverages the text of
eICU records and aligns CO signals with textual knowledge without
requiring additional indexing, effectively alleviating this issue.

4.3 Model Analysis and Robust Testings
We conduct various robustness experiments on MIMIC-III to vali-
date our efficacy. For Diag Pred, we choose SHAPE, RAREMed, and
SeqCare, while for Med Rec, we additionally select GraphCare.
4.3.1 Ablation Study. We conduct ablation experiments to vali-
date the efficacy of sub-modules. As shown in Table 3, UDC-CO,
which lacks the condition-aware modeling between the disease and
visit components, is the limited-effective configuration, with a sub-
stantial 3% drop in Diag Pred. This absence causes disease, akin to
textual descriptions, to be challenging for the model to differentiate,
thereby leading to a blurred decision boundary. While UDC-NT has
little impact on the reconstruction ability, it fails to impose effec-
tive constraints on the representation space. Directly applying this
representation to downstream tasks proves challenging, necessitat-
ing additional training during the fine-tuning phase, yet achieving
equivalent performance remains elusive. When contrasted with
UDC-NT, both UDC-NM and UDC-NS exhibit enhanced perfor-
mance, attributed to their capability to enhance the model’s individ-
ual discernment by integrating hard negative instances. UDC-NCD,
akin to RQ-VAE in codebook update, experiences a 2% degradation
due to domain gaps between text and CO spaces. This disparity
could result in a significant negative transfer. Overall, the results
validate the essential contributions of the key sub-modules.

4.3.2 Examination of Top-K. Top-K evaluation is crucial as it strikes
a balance between precise diagnosis and broad screening in Diag
Pred [43, 48]. As shown in Figure 3, all algorithms’ Acc@K improve
with increasing K, as a larger Top-K captures more relevant medical
entities, aiding in the challenging Diag Pred. Notably, regardless of
the specific K value setting, our UDC consistently outperforms the
strongest baseline. Moreover, when 𝐾 = 10, UDC demonstrates 4%
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Figure 3: Top-K examination. We test 𝐾 = [5, 10, 20, 40].
improvement over the best competing SeqCare. This highlights the
effectiveness of our approach in challenging scenarios. This further
demonstrates its broad applicability, a crucial trait for clinical deci-
sion support systems, which often require flexibility in the number
of diagnoses or treatment options presented.
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Figure 4: Group Analysis.
4.3.3 Group Analysis. To examine themodel’s performance on rare
diseases, we conduct a group-level analysis. Specifically, in Diag
Pred, diseases are categorized into five prevalence groups: 0-20%
(G1), 20-40%(G2), 40-60%(G3), 60-80%(G4), and 80-100%(G5), where
G1 is the rarest disease group. As shown in Figure 4(a), the model’s
efficacy in Diag Pred generally exhibits a positive correlation with
the sparsity of the disease groups, with G2-G5 significantly outper-
forming G1. However, the performance of the G5 is not optimal,
likely due to the low clinical significance of high-frequency diseases
in Diag Pred; for instance, fever can indicate multiple underlying
health risks. While RAREMed surpasses other baselines in G1 and
G3, it compromises accuracy for common diseases. UDC exhibits
the most notable boost in G1-G4, showcasing that our innovations
excel at enhancing performance for rare diseases.

For the Med Rec, we further analyze the predictive performance
for patient groups with various rare diseases. More precisely, we
identify the rarest disease for each patient and allocate them to
the corresponding group based on that rarity. Figure 4(b) indicates
that recommendation performance for G1-G3 is limited, as fewer
medications co-occur with their disease entities, leading to weaker
disease-medication CO signals. Both SHAPE and RAREMed suffer
from this issue. While GraphCare attempts to mitigate this problem
by leveraging external knowledge, it fails to fully bridge the domain
gap during the knowledge fusion and suffers from the potential
knowledge noise. In contrast, UDC explicitly optimizes code-level
alignment in DRL, facilitating bidirectional alignment of CO signals
and textual knowledge, which leads to remarkable improvements.

In general, group-level analyses confirm that UDC significantly
outperforms other baselines in managing rare diseases, essential
for effective clinical decision support.
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Figure 7: Code Semantics.
4.3.4 Plug-in Application. We examine the extensibility of UDC.
Diverse PCM. For the PCM,we select threemodernmethods—GRU,
Transformer, and Multi-head Attention—due to their widespread
use in sequence-based healthcare baselines [31, 38, 52]. As shown
in Figure 5, RAREMed has larger fluctuations, likely due to its ex-
plorations of three CO signals, maximizing its advantage from PCM.
UDC demonstrates robust performance with various sophisticated
PCM. The improvement in Multi-head Attention variants results
from their significant CO advancements and convergence toward a
more precise subspace during DRL alignment. This superior con-
vergence contributes to an overall boost in model performance.
Diverse PLM. Similarly, for the PLM, we evaluate the integration
of both BioGPT [29] and Clinical-BERT [42]. Understanding the
textual semantics encoded in clinical notes is another crucial aspect
of the DRL, as it can capture similarities between entities that
may not be evident from the EHRs alone. Compared to the Sap-
BERT and Clinical-BERT, the BioGPT, which is fine-tuned on larger

medical-domain corpora, possesses more semantic representations.
Furthermore, the larger parameter capacity of BioGPT enables it to
obtain an even more robust alignment of the DRL module, leading
to notable performance gains when integrated into UDC.

4.3.5 Case Study. We visualize disease representations before and
after DRL. As shown in Figure 7, the rare disease prior to DRL
exhibits a more random distribution with high entropy, indicating
the PCM’s struggle to capture their inherent similarities. Because
limited EHRs for rare diseases hinder the development of effective
CO representations. In stark contrast, after DRL mapping, rare dis-
ease clusters are tightly grouped. This indicates that DRL effectively
leverages text knowledge to capture underlying similarities, yield-
ing more meaningful and clinically relevant representations of rare
diseases. Another notable observation is that the distribution dif-
ference between rare and common diseases is more pronounced in
Diag Pred than in Med Rec. This is because Diag Pred involves more
complex relationships due to a higher number of targets, requiring
greater changes in DRL. In contrast, Med Rec, with fewer targets,
relies more on clearer existing models. This is intuitive, as medica-
tions are typically tailored for specific diseases and are relatively
straightforward, whereas disease risks are often unpredictable.

5 Conclusion
In this paper, we introduce UDC, an innovative framework aimed at
enhancing the representation semantics of rare diseases. UDC uti-
lizes discrete representation learning to connect textual knowledge
and CO signals, enabling both signals to be in the same seman-
tic space. The framework incorporates condition-aware and task-
aware calibration, along with co-teacher distillation tailored for
healthcare applications. These advancements significantly enhance
the distinguishability and task awareness of encoded representa-
tions, as well as the code-level alignment between textual and CO
signals. Extensive experiments validate the efficacy of our approach.
However, our model has limitations, including the need to integrate
modalities beyond text, which will be explored in future work.
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Table 4: Mathematical Notations.

Notations Descriptions
U any ehr dataset
N patient set

D, P, M diag, proc, and medication set
d, p, m multi-hot code of diag, proc, and medication
𝑡 𝑡 -th visit
T length of visit
T text description

Fco, Fte pcm model, plm model
E, Ẽ collaborative embedding, text embedding
C𝑙 l-th level codebook
𝑐𝑖 , c𝑖 𝑖 code index, 𝑖-th code
𝜙co, 𝜙te mlp encoder
z, z̃ disease representation (CO, text)
f condition representation

𝜑𝛾 , 𝜑𝛽 transformation matrix
s next-visit target representation
o holistic view of disease representation
b relation representation from another view
𝜅 decay rate
n norm vector
sg stop gradient
𝛼 commitment weight

𝜓co,𝜓te mlp decoder
L loss function
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Figure 8: Different trainingmethods (MIMIC-III). Please note
that UDC refers to the strategy utilized in the manuscript.

A Mathmatical Notations
Annotations for essential symbols are shown in Table 4.

B Diverse Training Methods
We also experiment with various training methods, such as joint
training (𝜃 , Θ) and inference without fine-tuning, as depicted in
Figure 8. Formally, UDC-JT trains PCM and DRL simultaneously,
and we observe that this model initially focuses on learning col-
laborative signals, leading to DRL training collapse. In contrast,
UDC-IF skips fine-tuning and directly performs inference. How-
ever, since Fco (·) does not fully capture the interaction patterns
between rare and common diseases, improvements stem primarily
from the integration of textual semantic information. From UDC, it

is evident that learning these interaction patterns plays a critical
role in enhancing the model’s overall performance.

C Algorithm
The algorithm flow is shown in Algorithm 1.

Algorithm 1 The Algorithm of UDC
Input: EHR U, Textual Knowledge T( ·) , Rare threshold 𝜂;
Output: PCM parameters 𝜃 , DRL parameter Θ;
1: Stage 1: Backbone Training ⊲ Tuning 𝜃
2: PCM training e𝑑 ∈ ED , e𝑝 ∈ EP , e𝑚 ∈ EM ;
3: PLM Initialization ẽ𝑑 ∈ ẼD , ẽ𝑝 ∈ ẼP , ẽ𝑚 ∈ ẼM ;
4: Stage 2: DRL Training ⊲ Frozen E & Ẽ, Tuning Θ
5: Split disease into Dcom, Drar using 𝜂;
6: while not converged do
7: Sample disease 𝑑 from 𝐷com;
8: Extract PCM & PLM embedding e𝑑 , ẽ𝑑 in Eq. 1-3;
9: Obtain discrete representation z𝑑 and z̃𝑑 in Eq. 5;
10: Condition-aware calibration in Eq. 7;
11: Task-aware calibration in Eq. 10;
12: Co-teacher distillation for codebook in Eq. 12-13;
13: Optimization in Eq. 14;
14: Update the parameters;
15: end while
16: Stage 3: Fine-tuning ⊲ Frozen Θ, Tuning 𝜃
17: Obtain enhanced disease representation ê𝑑 in Eq. 15;
18: Fine-tuning 𝜃 using Eq. 2;
19: return Parameters 𝜃 & Θ;

D Dataset Statistics
MIMIC-III is a widely utilized dataset containing EHRs from over
40,000 patients in critical care. MIMIC-IV, the successor to MIMIC-
III, expands on this with data from over 70,000 admissions, reflecting
more recent practices and broader patient demographics. eICU
comprises health data from over 200,000 patients across various
ICU settings in the United States, offering extensive coverage of
diverse clinical environments and treatment modalities. We present
the dataset statistics after pre-processing [49, 56] in Table 5.

E Metric Definitions
The evaluation metrics outlined in the paper are defined as follows,

Jaccard =
|ypred ∩ ytrue |
|ypred ∪ ytrue |

, (17)

where ypred is the predicted set and ytrue is the true set.

F1-score =
2 × precision × recall
precision + recall

, (18)

where precision and recall are defined as: precision =
tp

tp+fp and

recall = tp
tp+fn , where tp is the number of true positives, fp is the

number of false positives, and fn is the number of false negatives.

AUROC =

∫ 1

0
tpr(fpr) 𝑑 (fpr), (19)

where tpr (True Positive Rate) and fpr (False Positive Rate) are
calculated at different thresholds.
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Table 5: Data Statistics across all datasets (Diag Pred || Med Rec). Due to task-specific preprocessing variations, we present data
statistics for all tasks. # means the number of.
Items MIMIC-III MIMIC-IV eICU MIMIC-III MIMIC-IV eICU
# of patients / # of visits 6,164 / 9,693 26,697 / 99,668 8,853 / 10,188 35,707 / 44,399 46,187 / 154,962 114,473 / 124,564
diag. / prod. / med. set size 4,017 / 1,274 / 192 16,906 / 9,026 / 199 1,326 / 422 /1,411 6,662 / 1,978 / 197 19,438 / 10,790 / 200 1,670 / 461 / 1,411
avg. # of visits 1.5725 3.7333 1.1508 1.2434 3.3551 1.0882
avg. # of diag per visit 27.7807 58.2390 10.1569 17.7373 48.9516 7.6574
avg. # of prod per visit 7.7473 9.7644 32.6515 6.1718 8.7626 27.9025
avg. # of drug per visit 29.6780 24.6252 15.7981 27.1113 23.8334 17.2664

AUPRC =

∫ 1

0
precision(recall) 𝑑 (recall), (20)

where precision and recall are evaluated at different thresholds.

Pres@K =

∑𝐾
𝑖=1 relevant𝑖

𝐾
, (21)

where relevant𝑖 is 1 if the 𝑖-th predicted item is relevant (i.e., a true
positive), and 0 otherwise.

Acc@K =

∑𝑘
𝑖=1 1(𝑦pred,𝑖 = 𝑦true,𝑖 )

𝐾
, (22)

where 1 is the indicator function, equal to 1 if 𝑦pred,𝑖 = 𝑦true,𝑖 , and
0 otherwise. Pres@K measures performance at the visit level, while
Acc@K evaluates performance at the code level [43]. For all metrics,
higher values are preferable.

F Further Analysis
We further discuss several key hyperparameters.
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Figure 9: Performance under different ratios. (MIMIC-III)
Rare Ratio 𝜂. Our results, as shown in Figure 9, indicate that
UDC achieves the best performance when 𝜂 = 20%. When 𝜂 is too
low, the DRL may not be well-trained from a limited CO-Text pair,
making it difficult to obtain semantic alignment between CO and
textual spaces. Conversely, with a very high value for 𝜂, UDC does
not yield significant improvement. The restricted absolute quantity
results in fewer rare disease entity adjustments, exerting minimal
influence on the comprehensive sequence representation.
Codebook Size |C𝑙 |. The codebook size is a critical hyperparameter
in the VQ-VAE architecture [21]. A larger codebook size allows the
VQ-VAE to capture a richer set of discrete latent features, enabling
more detailed and expressive reconstructions of the disease symp-
toms. However, this comes at the cost of increased computational
complexity and potential overfitting, especially when working with
limited training data. In contrast, a smaller codebook size can lead
to more robust and generalized representations but may struggle
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Figure 10: (a) Performance under different codebook sizes.
(b) Performance under different commitment weights. We
show the results on MIMIC-III (Diag Pred).
to represent the full complexity of the input distribution. Experi-
mentally, we set |C𝑙 | = 64.
Commitment Weight 𝛼 . 𝛼 is a crucial parameter influencing the
quality of absolute code representation and alignment. A larger
value enhances the similarity between the encoded representation
and the discrete representation, thereby improving cross-domain
alignment. However, increasing 𝛼 may reduce the emphasis on
the reconstruction target, potentially leading to negative effects.
Experimentally, we set 𝛼 = 0.25.

G Case Study: Real Prediction
To intuitively demonstrate the superiority of UDC, we present
the medication recommendations for a randomly selected patient.
Specifically, UDC achieves a significantly higher Jaccard compared
to the other baselines. This indicates that UDC can generate diagnos-
tic and treatment suggestions that are much closer to the clinically
validated outcomes and better distinguish between positive and
negative samples. Furthermore, F1-score generated by our model
is also higher compared to RAREMed. This finding suggests that
instead of relying on broad recommendations to enhance perfor-
mance metrics, our framework offers improved recommendations
that effectively balance sensitivity and specificity [8].

Table 6: Example recommendation result.
Method Recommended Med Set
Ground-Truth

Num:12
TP: [’B05X’, ’B01A’, ’A12B’, ’C07A’, ’A06A’, ’C10A’,
’N02B’, ’A03B’, ’C09A’, ’N06A’, ’A04A’, ’C09C’]

RAREMed
Num:12

F1-score:0.7500
Jaccard:0.6000

TP: [’A03B’, ’A06A’, ’A12B’, ’B01A’, ’B05X’, ’C07A’,
’C09A’, ’C10A’, ’N02B’]
FN: [’A04A’, ’C09C’, ’N06A’]
FP: [’A02B’, ’A12C’, ’N02A’]

UDC
Num: 10

F1-score:0.8181
Jaccard:0.6923

TP: [’A03B’, ’A06A’, ’A12B’, ’B01A’, ’B05X’, ’C07A’,
’C09A’, ’C10A’, ’N02B’]
FN: [’A04A’, ’C09C’, ’N06A’]
FP: [’A12C’]
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