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ABSTRACT

In this paper, we aim at Graph embedding learning for automatic
grasping of low-dimensional node representation on biomedical
networks. The purpose is to use different neural Graph embedding
methods for conducting analysis on 3 major biomedical link predic-
tion tasks: drug-disease association (DDA) prediction, drug-drug in-
teraction (DDI) classification, and protein-protein interaction (PPI)
classification. We observe that graph embedding method achieve a
promising result without the use of any biological features.
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1 INTRODUCTION

Graphs are used worldwide to represent biomedical nodes and
edges. In the past few years, neural network models mark their suc-
cess in various fields. Analysis of biomedical graphs would greatly
help in predicting potential drug indications as in [3]. Graph em-
bedding [4] automatically learn a low dimensional feature repre-
sentation for every node, while saving the structural representation
of graphs which is used as features for link prediction. For Link
prediction task we used 3 different Neural Network-based methods
LINE [4], SDNE [5], and GAE [1] each for DDA prediction, DDI
prediction, and PPI prediction. We compile 3 benchmark datasets
from commonly used biomedical databases for instance NDFRT
DDA !, DrugBank DDI 2, and STRING PPI 3

2 METHODOLOGY

Link prediction is one of the crucial tasks in biomedical fields. It
can be thought of as a given set of biomedical entities and their
known interaction, we aim to predict other potential interactions
between entities [2]. We perform DDAs prediction using the TMF

!https://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/
Zhttps://www.drugbank.ca/
3https://string-db.org/
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technique where a DDA matrix is factorized to learn low dimension
representation for drugs and diseases in the latent space.

We use OpenNE 4, an open source python package for network
embedding to learn node embeddings for LINE [4] and SDNE [5].
We compiled SVD using Numpy > to obtain GAE® [1] embeddings.
For the link prediction task, the respective datasets are split into the
training set(80%) and test set(20%). The number of unknown links
are greater than known ones. Therefore, we randomly chose broken
edges as negative with an equal number of positive samples in both
the training and testing stage. For every node pair, we concatenate
the embeddings of two nodes as edge feature and made a Logistic
Regression Binary Classifier using SKLearn package .

3 EXPERIMENTS AND RESULTS

For our experiments, we performed 3 compiled biomedical net-
works on the dataset. The Performance of the classifier is showen
in Table 1. The result on the test set shows that GAE outperformed
the other model for link prediction over DrugBank DDI and SPRING
PPI dataset. While LINE performed better over the NDFRT DDA
dataset. This shows that proposed graph embeddings methods de-
serve greater attention for future biomedical link prediction and
analysis. In future, We want to further expand our research by
conducting extensive experiments with multiple datasets and other
techniques of graph embedding.

Method | NDFRT DDA | DrugBank DDI | STRING PPI
LINE 96% 90.3% 85.6%
SDNE 94% 90.5% 87.6%
GAE 80.6% 91.7% 89.9%

Table 1: Model performance score for various dataset
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