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ABSTRACT 
Designing and implementing human-robot interactions re­
quires numerous skills, from having a rich understanding of 
social interactions and the capacity to articulate their subtle 
requirements, to the ability to then program a social robot 
with the many facets of such a complex interaction. Although 
designers are best suited to develop and implement these inter­
actions due to their inherent understanding of the context and 
its requirements, these skills are a barrier to enabling designers 
to rapidly explore and prototype ideas: it is impractical for 
designers to also be experts on social interaction behaviors, 
and the technical challenges associated with programming a 
social robot are prohibitive. In this work, we introduce Syn­
thé, which allows designers to act out, or bodystorm, multiple 
demonstrations of an interaction. These demonstrations are 
automatically captured and translated into prototypes for the 
design team using program synthesis. We evaluate Synthé in 
multiple design sessions involving pairs of designers bodys­
torming interactions and observing the resulting models on a 
robot. We build on the findings from these sessions to improve 
the capabilities of Synthé and demonstrate the use of these 
capabilities in a second design session. 

CCS Concepts 
•Human-centered computing → Interaction design; 
•Software and its engineering → Formal methods; 

Author Keywords 
Human-robot interaction; interaction design; ideation; 
bodystorming; design tools; program synthesis 

INTRODUCTION 
Robots that are designed to interact with people using human 
social norms of interaction present a complex design space 
and a new set of design challenges. Designers must not only 
create solutions that effectively address user needs and expec­
tations, but these solutions must also closely follow acceptable 
interaction behavior, both to improve user satisfaction with 
the solution and to prevent breakdowns due to social-norm 
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Figure 1. Synthé captures designers’ demonstrations, synthesizes an in­
teraction, and allows designers to edit and simulate the interaction. 

violations. For example, a hospital delivery robot that “beeps” 
as it navigates through a patient ward might effectively inform 
the hospital staff of its status, but it might also be seen as disre­
spectful by patients who are ill or in recovery [35]. Although 
there is a rich body of literature on human social behavior 
across the fields of social psychology and interpersonal com­
munication, this literature may be unknown, inaccessible, or 
impractical to designers. How can designers more effectively 
draw on their intrinsic understanding of human interactions in 
creating human-robot interactions? 

We propose to apply the design ideation method of bodys­
torming [55] to support interdisciplinary design teams with 
varying formal design experience explore and support complex 
human-robot interactions. Although these designers do not 
have a formal understanding of human interactions through 
their training or reading of the research literature, they instinc­
tively navigate such interactions on a day-to-day basis. Our 
proposed method leverages this instinctive ability and involves 
members of design teams “acting out” or “role-playing” how 
they expect the human-robot interaction to flow. However, 
although such an approach might enable designers to devise 
human-robot interactions that are more closely aligned with 
human interactions, turning role-playing sessions into applica­

Session 4B: Human-Robot Interaction
 

UIST '19, October 20–23, 2019, New Orleans, LA, USA

479

mailto:dporfirio@cs.wisc.edu
mailto:aws@cs.wisc.edu
mailto:bilge@cs.wisc.edu
mailto:fisher.evan@uwlax.edu
mailto:asauppe@uwlax.edu
http://dx.doi.org/10.1145/3332165.3347957
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3332165.3347957&domain=pdf&date_stamp=2019-10-17


tion prototypes still involves a significant amount of robotics 
implementation, hindering the practical use of such a method 
by designers who may not have the necessary background to 
implement design ideas. To enable design teams to rapidly 
explore and prototype ideas, our proposed method uses a new 
program synthesis technique, specifically a form of automata 
learning [36], to automatically translate demonstrations into 
prototypes that the design team can evaluate on robots. 

In this paper, we present our application of bodystorming 
within Synthé, a design environment that supports design 
teams in the creative exploration and prototyping of design 
ideas for human-robot interaction. Using this approach, de­
signers with no expertise in robotics, programming, or social 
behavior can, within minutes, create interactive programs on 
a social robot. For example, a team designing a robot that 
assists travelers at an airport can perform how the interaction 
should play out across several demonstrations. Our system 
will then synthesize a program, semantically represented as 
a Mealy machine, from various constraints, including (1) a 
set of programming building blocks, specified beforehand, 
that represent designer actions recognizable by Synthé, and 
(2) multiple “traces” of social interaction demonstrated via 
the speech and gesture from the design team. At any point 
in the design process, designers can review and modify the 
input into the synthesis engine, test the prototype program on a 
robot, or provide additional traces until they are satisfied with 
their design. We evaluated our system in 12 design sessions 
involving pairs of designers; improved the design method and 
our system based on our findings from these sessions; and 
demonstrated the use of the updated method and system in 
another design session. The contributions of our work include: 

•	 A novel application of bodystorming that enables design 
teams to rapidly explore and prototype human-robot inter­
actions; 

•	 A software environment that captures and synthesizes multi­
ple designer demonstrations into prototype programs using 
program synthesis; 

•	 An empirical understanding of how our proposed method 
and our system might support design teams in devising 
human-robot interaction solutions. 

RELATED WORK 

Embodied Design Methods 
Using one’s body in the interaction design process enables the 
designer to leverage the interconnectedness of the body and 
mind, incorporate human kinesthetics into the final product, 
and enhance collaboration with other designers [30]. Bodys­
torming is one such design technique in which designers brain­
storm by situating their bodies in the context of the interaction 
being designed in order to gain insight into the user experience 
[15, 16, 47]. Bodystorming is achieved by role-playing an 
interaction with actors and props [14], which may or may not 
entail improvisation, or by immersing oneself in an environ­
ment similar to that being designed for [40]. Bodystorming has 
been applied to the design of mobile learning experiences [55] 
and robotic products [61], but no work has used bodystorming 
to synthesize human-robot interaction programs. 

Based on bodystorming, embodied sketching involves impro­
visation in the design of experiences supported by technology 
rather than the technology itself [33]. Improvisation is also 
central to embodied design improvisation, a multi-stage gen­
erative and analytical design process that makes designers’ 
tacit understanding of the design space explicit to other stake­
holders in the design process [51, 52]. Prototypes are key in 
evaluating design ideas generated from this method, such as 
a robot ottoman that communicates primarily through move­
ment [53]. Similarly, the Personality design method uses a 
series of improvisation and brainstorming steps to assign and 
implement behaviors based on human personality types [57]. 

Reflective Design Methods 
Reflective design centers on the key insight that designers 
reflect on their experiences to shape their insights in the de­
sign process [11, 20] and has permeated a variety of other 
domains, such as city planning, education, and medicine [60]. 
HCI researchers have found numerous ways to incorporate 
reflective design practices as computers have entered contexts 
designers might otherwise be unfamiliar with [50], such as 
value-sensitive design [10, 22], participatory design [9, 34], 
and critical design [5, 23]. One particular area of interest 
in our work is the insight from Schön that designers “know 
more than they can say,” being able to exhibit far more of 
their knowledge by demonstrating it in context than describ­
ing it to others out of context [48]. Using a combination of 
knowing-in-action and reflection-in-action to define a problem 
[49], designers can modify and expand their understanding of 
a problem space during its definition. With knowing-in-action, 
designers use their intuitive knowledge of the design space to 
act out and explore the actors, goals, and constraints. During 
this process, they constantly reflect on their actions and what 
is not yet fully articulated, improvising additional scenarios to 
more completely define the design space. 

Design Tools & Environments 
Those with the insight necessary to design an application for 
a particular context, such as end users, domain experts, and 
designers, may lack the technical background necessary real­
ize their ideas. Visual programming environments (VPE’s), 
such as Code3, aim to address this challenge by abstracting 
programming concepts into high-level graphical components 
to assist novice users [27]. The VPE’s Interaction Blocks [46] 
and RoVer [42] abstract social robot behaviors into reusable 
building blocks, a technique we also use in Synthé. Alterna­
tively, programming by demonstration (PbD) allows novice 
programmers to physically demonstrate the required sequence 
of actions on a robot that are then automatically captured and 
translated into a program [4, 7]. PbD algorithms are able to 
function in increasingly complex environments, such as recog­
nizing the relative positioning of objects in the environment 
[38], breaking the task into discrete segments [38], recogniz­
ing partial-ordering of those segments [37], and understanding 
task constraints [41]. While PbD has been successfully applied 
to tasks in both in-home [1] and commercial [54] settings, the 
limitations of current PbD algorithms include their focus on 
tasks comprised of goals that require physical manipulation 
and the requirement to visually confirm completion. 
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Various technological advancements have increased the po­
tential to program via human-body demonstrations, such as 
the recognition of full-body gestures [18] and the retargeting 
of motion between figures with different body proportions 
[24]. Design tools that capture full-body movement include 
systems in which actors’ movements are used to edit the mo­
tion of an animated character [21]; trainers’ movements are 
authored and edited in order to teach novices expert motions, 
[2]; captured motion assists programmers in the generation, 
manipulation, and monitoring of visual input to and output 
from a camera-based program [29]; and non-expert illustrators 
are assisted by the automatic creation of motion illustrations 
based on captured sequences of movement [17]. The interface 
may also learn an optimal motion by demonstrating candidate 
motions to and obtaining ratings from an observer [31]. 

Computational Methods 
Various computational approaches exist for the automatic con­
struction of programs and automata from examples. The clas­
sic automata learning approach, L* [3], relies on an active 
loop of querying the user for examples and asking the user to 
confirm that the automaton it learns is the right one. Our set­
ting is passive, in that we only have positive examples, given 
through bodystorming, and want to learn an automaton that 
encompasses them. Our work falls in the category of symbolic 
synthesis algorithms (see Solar-Lezama et al. [56] for the pio­
neering work and Gulwani et al. [26] for a survey), as it relies 
on a reduction of the problem to a combinatorial search us­
ing satisfiability (SAT) solvers and their first-order extensions 
(SMT solvers). Our work extends work by Neider [36] that 
encodes to the Mealy-machine setting, as we treat human and 
robot actions as inputs and outputs, respectively. Additionally, 
we consider an approximate learning setting, as we may not be 
able to find an automaton that precisely captures all observed 
interactions (e.g., due to conflicting demonstrations). 

SYNTHÉ: DESIGN AND IMPLEMENTATION 
In this section, we detail the design, algorithms, and imple­
mentation of Synthé, our software environment for facilitating 
bodystorming of human-robot interactions, using a running 
example. The workflow of Synthé is shown in Figure 1: 

•	 Bodystorming: When designers bodystorm an interaction, 
they act out the scenario multiple times, resulting in a series 
of demonstrations that highlight different paths the scenario 
might follow. With Synthé, one designer plays the robot’s 
part, while the other plays the human. Demonstrations 
are computationally represented as a set of traces, where 
each trace represents one demonstration of the human-robot 
interaction, captured as a sequence of alternating human 
and robot actions throughout the demonstration. 

•	 Program synthesis: The traces resulting from bodystorming 
are fed into the program synthesis engine that generates a 
single program generalizing the observed demonstrations. 

•	 Visualization and editing: Synthé enables viewing and mod­
ifying the program in a visual programming environment. 

•	 Simulation: Finally, designers can compile and deploy the 
resulting program on a physical robot. After simulating the 

interaction, they may decide to modify it by continuing their 
bodystorming session and providing additional traces. 

In the remainder of this section, we present the aforementioned 
components of Synthé in detail. Our running example entails 
the design of a delivery robot interaction, where the robot must 
deliver a package to a human. In this example, the human must 
verify their identity before receiving the package. 

Bodystorming: Capturing Intent 
The first and most crucial aspect of Synthé is capturing the 
bodystorming session of the design team. Since one designer 
acts as the human and the other as the robot, we view a demon­
stration through bodystorming as a trace of human and robot 
actions; formally, a trace t is a sequence of the form 

(h1,r1), . . . ,(hn,rn) 

where each pair (hi,ri) represents a human input action hi 
and a robot output action ri. For instance, the human action 
hi may be saying "hello", while the robot reply ri may be 
performing a more complex action such as saying "hello" and 
simultaneously performing a waving gesture.1 We visualize 
traces as sequences of transitions and states, where transitions 
are annotated with both the human action (labeled H) and 
robot response (labeled R). 

For example, Figure 3 (left) depicts two possible traces for the 
delivery robot. In the first trace, the human inputs a greeting 
and the robot asks for the human’s identification. The human 
then attempts to receive the package, and the robot asks once 
more for the human’s identification. Following the second 
query, the human denies that they have the appropriate identi­
fication, and the robot says farewell. In the second trace, after 
querying the human’s identity, the human confirms their iden­
tity. The robot expresses gratitude, and the human motions to 
receive the package. The robot hands off the package to the 
human, and both bid each other farewell. 

Throughout the bodystorming session, the design team demon­
strates multiple interaction traces. The algorithmic core of 
Synthé is agnostic to the complexity of the action language, 
such that any combination of inputs can be treated as a robot 
output action ri. In practice, Synthé captures (1) speech and 
(2) gestures; thus, each action is a combination of speech and 
gesture, either of which can be null, e.g., if the designer does 
not gesture. Gestures are not included in our running example. 

Capturing Speech 
Designers manually begin and end Synthé’s bodystorming 
recording. During the recording, designer audio is recorded 
and utterances are classified into one of several prespecified 
categories using natural language processing. The classifica­
tion categories depend on the scenario, which in the running ex­
ample of the delivery robot included Greeting, QueryID, Con­
firmID, DenyID, Gratitude, Receive, Handoff, and Farewell. 

Each designer is instrumented with a unidirectional lapel mi­
crophone that records timestamped speech, which off-the-shelf 
1 Our formulation assumes human actions are followed by robot 
actions. In cases, for example, where the robot initiates an interaction, 
we simply treat the human action as an empty (null) action. 
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Figure 2. The pipeline from Synthé capturing designer speech and gesture signals, to converting the signals to a trace, to synthesizing an interaction 
based on all traces provided thus far. The green circles represent the start states of the interaction, while the red circles represent the end states. 

software transcribes and classifies. The timestamps allow Syn­
thé to differentiate turns of talk and to generate traces from 
demonstrations (Figure 2, left). 

Gesture Recognition 
Each designer is instrumented with a wireless armband that 
integrates a gyroscope and an accelerometer to capture arm 
motion and changes in orientation. The designer provides 
a single example of each gesture for Synthé to recognize, 
which is used by fast dynamic time warping to classify any 
subsequent gestures [45]. Gestures are timestamped to couple 
the robot’s gestures with its speech (Figure 2, left). Synthé can 
classify any performed gesture with reasonable accuracy as 
long as examples of the gesture are provided beforehand. 

Program Synthesis 
The bodystorming session results in a set of traces T represent­
ing possible trajectories of the intended interaction. Illustrated 
in Figure 2 (right), the technical core of Synthé constructs a 
program that mimics the traces T while addressing two chal­
lenges: (1) ability to generalize the behavior demonstrated in 
the traces, instead of only capturing the finite behavior exhib­
ited in the traces, and (2) robustness to conflicting behaviors 

H: Greeting
R: QueryID

H: Con�rmID
R: Gratitude

H: Farewell
R: Farewell

H: DenyID
R: Farewell

H: Receive
R: QueryID

H: Receive
R: Hando�

H: Greeting
R: QueryID

H: Con�rmID
R: Gratitude

H: Receive
R: Hando�

H: Farewell
R: Farewell

H: Greeting
R: QueryID

H: Receive
R: QueryID

H: DenyID
R: Farewell

Synthesized interactionDelivery traces

Figure 3. Left: Example traces representing possible interaction trajec­
tories. Right: The resulting interaction synthesized from the examples. 

in T , e.g., the robot performing a different action in each 
trace in response to the same human action. To address these 
challenges, we present a novel program synthesis algorithm 
that constructs Mealy automata representing the bodystormed 
interaction. Our algorithm constructs a set of constraints in 
first-order logic (FOL) whose solution is a minimal automaton 
that captures most transitions in the traces T . The minimality 
constraint serves as an inductive bias to generalize the set of 
given traces, e.g., by detecting iterative behavior and construct­
ing loops. To illustrate this core idea, Figure 3 (right) depicts 
the resulting automata derived from the traces in Figure 3 
(left). The interaction completely captures the transitions of 
both traces. As a Mealy automaton, the transitions are an­
notated with both human actions and robot responses. The 
synthesized program includes loops, inferred by our algorithm, 
including (1) the robot repeatedly querying the human for their 
ID if the human tries to receive before confirming their ID and 
(2) the robot handing off multiple objects. 

Formalizing our Program Model 
A program is represented as an automaton (a Mealy machine) 
with a finite set of robot states S = {s1, . . . ,sn} and two transi­
tion functions: 

fA : S × H → R fT : S × H → S 

The action transition function fA defines how the robot reacts 
to human actions: it maps human actions (set H) to robot ac­
tions (set R), depending on the current state (S). The state tran­
sition function fT defines how the state of the robot changes 
depending on the observed human action. 

We always treat state s1 as the initial state in which the robot 
begins. An execution of the automaton is a sequence 

s1,(h1,r1),s2, . . . ,sm−1,(hm−1, rm−1),sm 

Notice that automaton executions correspond directly (after 
removing the states si) to the traces captured by bodystorming. 
Our goal is to construct a small automaton whose executions 
capture most of the traces in a given set T . 

Automata Learning Algorithm 
The main challenge in learning an automaton from traces is the 
exponential number of automata with respect to the number 
of states and possible actions. Because naïve enumeration is 
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impractical, we exploit symbolic methods to efficiently encode 
and search the space of automata. Specifically, we present 
a new automata synthesis technique that encodes the space 
of automata in first-order logic and uses powerful satisfiabil­
ity modulo theories (SMT) [6] solvers to discover solutions. 
Technically, our approach extends that of Neider [36] to the 
Mealy-machine setting and approximate learning of automata. 

Our algorithm constructs the two transition functions defining 
an automaton, fA and fT . We will encode a set of first-order 
constraints whose solutions are functions fA and fT (formally, 
we use the first-order theory of uninterpreted functions). 

Constraint on fT —Our first constraint CT ensures that, for each 
trace t ∈ T , the sequence of human actions are manifested in 
some execution of the automaton, namely in the state transition 
function fT . Formally, for every trace t = (h1,r1), . . . ,(hn,rn), 
we define the constraint   

n
t 

 
cT  ∃x1, . . . ,xn+1. x1 = s1 ∧ fT (xi, hi) = xi+1

i=1 

where the variables xi range over the set of states S. Now, 
taking all the traces together, we define the overall constraint  

CT  ct
T 

t∈T 

Constraint on fA—Our second constraint, CA, ensures that 
for each trace t ∈ T , the sequence of robot actions are man­
ifested in some execution of the automaton, namely in the 
action transition function fA. Formally, for every trace 
t = (h1,r1), . . . ,(hn, rn), we define the constraint   

n 
tcA  ∃x1, . . . ,xn. x1 = s1 ∧ fA(xi,hi) = ri 

i=1 
'             --             ­

soft constraint

Now, for all traces, we define the overall constraint 

 
CA  ct 

A 
t∈T 

Constraint on initial and final states—Our final constraint, CS, 
designates a specific state s f ∈ S as a final (termination) state, 
where (1) all traces lead to s f and (2) s f does not have any 
outgoing transitions. We omit the formal definition of CS here. 

Constraint Solving—Finally, now that we have defined the 
constraints, any solution (model) of the formula CT ∧CA ∧CS 
results in an automaton over robot states S—by defining the 
functions fA and fT —such that the automaton represents all 
traces T from the bodystorming session. However, because 
there may be traces in T that exhibit contradictory robot behav­
ior, and we need to minimize the number of transitions in the 
automaton so as it does not exhibit arbitrary behavior, we pose 
this is as a maximum satisfiability problem, where instead of 
satisfying CT ∧CA ∧CS completely, we want to satisfy as many 
of the soft constraints as possible in CA, which allow robot be­
havior to not exactly represent some traces in T . Next, we add 
a further soft constraint to minimize the number of transitions 
between states (by maximizing the number of transitions to 

interaction
visualization

options pane

Model View

Trace View Trace Editor

bodystorm history pane

Figure 4. Synthé’s user interface, featuring the model view (top), trace 
view (bottom-left) and trace editor (bottom-right) 

the sink state s f ). The resulting combinatorial optimization 
problem can be solved using an off-the-shelf MaxSMT solver. 

Supporting Visualization and Editing 
Synthé includes a user interface, shown in Figure 4, that pro­
vides visual feedback on design progress and limited trace 
editing capabilities. The visualization pane allows designers 
to switch between viewing their in-progress program as a tran­
sition system (the “model view”) and the set of traces provided 
thus far (the “trace view”). The history pane allows designers 
to view a summary of traces provided thus far, including the 
inclusion percentage for each trace. Users can click on a trace 
to open up the trace editor, which allows designers to view 
traces in more detail and edit them. Editing capabilities in­
clude modifying the speech-to-text, action classifications, and 
robot gestures corresponding to an action state. Underneath 
the history pane, users have the option to record a new trace 
or simulate the synthesized program, change the allowed size 
of the synthesized program, and change visualizations. 

System Implementation 
Synthé is primarily implemented in Python version 3.6.2 The 
system connects to IBM Watson’s Speech-to-Text service to 
convert speech to timestamped text [28], followed by Rasa’s 
Intent Classification service trained using examples from a 
text classification dataset generator to classify each utterance 
[8, 44]. Myo armbands collect the acceleration and orienta­
tion data, which is fed to the gesture classifier [59]. Synthé 
then solves the resulting synthesis problem using the Z3 SMT 
solver [19]. After designers act out a demonstration and Synthé 
parses the utterances, synthesis of a new interaction occurs in 
the background while all other functionality of Synthé remains 
available to users. Designers may act out another demonstra­
tion, edit previously-acted traces, or simulate the most recently 
2The source code is hosted at https://github.com/Wisc-HCI/Synthé. 
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synthesized program, all while a new program is synthesized. 
Support for visualizing interactions is implemented in D3 [12]. 

We implemented the ability to simulate interactions in Python 
version 2.7 on a Softbank Robotics Nao robot, using version 
2.1.4 of NaoQi [43]. The robot traverses the interaction as 
a Mealy machine, waiting for human input to determine the 
appropriate transition. We implemented the robot to only rec­
ognize speech input. Speech intents and referential entities are 
extracted using the same recognition and classification system 
used to capture designer intent. Speech input that cannot be 
accepted by the current state invokes a recovery transition; 
the robot states that it did not understand the human’s speech, 
and the transition returns to the previous state to allow the hu­
man to repeat or provide clarification. For all robot responses 
within the synthesized interaction, the robot’s speech is de­
rived from the text extracted from the traces. The robot also 
chooses gesture behaviors based on the gesture classification 
associated with the current state in the synthesized interaction. 

EVALUATION 
Our evaluation tested Synthé with 12 design teams to obtain 
user feedback on bodystorming as a design method for human-
robot interaction. We also tested Synthé’s computational per­
formance. While the version of Synthé used in the performance 
evaluation is current, the version used in our user study did not 
support automatic gesture recognition or derive robot speech 
behaviors from designer demonstrations. Rather, robot speech 
was prespecified for each robot response. The feedback from 
our evaluation informed the improvements made to Synthé. 

Design Sessions 
Design Procedure—Figure 5 shows the study setup. Upon 
obtaining informed consent from both participants, the experi­
menter played a video demonstrating the bodystorming design 
method, and the capabilities of Synthé. Subsequently, the 
experimenter guided the pair in a brief bodystorming demon­
stration, explaining how to interpret and edit the demonstration 
in Synthé and how to simulate the resulting program on the 
robot. The pair was then informed about the two experimental 
scenario that they would be assigned: (1) the robot delivers a 
package to a human, or (2) the robot provides information to 
shoppers at a store about the locations and prices of items for 
sale. The participant pairs were given 20–25 minutes to create 
their designs and were not allowed to brainstorm beforehand. 

monitor, keyboard,
and trackpad

robot

participants wearing lapel microphones

microphone to communicate with robot

Figure 5. The physical layout of our evaluation. In this evaluation, par­
ticipants did not wear armbands to capture gestures. 

After the design session, participants completed questionnaires 
that assessed the value of bodystorming as a design method 
and the usability of Synthé. The experimenter then initiated a 
retrospective think-aloud (RTA) [39, 25] by first demonstrating 
the RTA protocol to the participants and then asking them 
to engage in an RTA while watching a video recording of 
their design session. The video recordings consisted of the 
movement and speech made by participants synchronized with 
screen recordings of Synthé being used. After completing 
the RTA, the experimenter engaged the pair in a 10-minute 
semi-structured interview on their general experience. 

Measurement & Analysis—Our evaluation primarily followed 
a qualitative approach to assessing how bodystorming, and 
Synthé, might support design teams in creative exploration 
and prototyping of human-robot interactions. The qualitative 
data included transcriptions of participant speech during the 
RTA and semi-structured interview. We also measured over­
all usability and user experience with Synthé using the USE 
questionnaire to assess the value of bodystorming as a design 
method [32] and the SUS questionnaire to assess the usability 
of Synthé [13]. We included an additional scale that assessed 
designers’ perceived interaction design quality. Lastly, we 
measured system performance using timing data that describes 
how long Synthé takes to synthesize an interaction. 

The qualitative data was analyzed following a modified content 
analysis process [58], which involved extracting an exhaustive 
set of in vivo codes, categorizing these codes to create a shared 
code library, clustering the codes in the library to identify 
general themes that emerged from the data, and identifying 
illustrative instances of data to characterize each theme. 

Participants—We recruited 24 participants (8 males, 16 fe­
males), aged 18–27 (M = 21.0, SD = 2.61), who made up 
12 pairs (2 male-male, 4 male-female, 6 female-female pairs) 
and represented our intended users to carry out design ses­
sions. Participants came from a wide range of backgrounds, 
including design, engineering, humanities, and domain sci­
ences such as education and health. Five participants had 
self-reported prior design experience. Participants from 10 
pairs were personally acquainted with their partner. 

Results 
In this section, we present the five key themes that emerged 
from our analysis of the RTA sessions and interviews, the 
results from the design strategy analysis and the post-session 
questionnaires, and the performance evaluation of Synthé. Fig­
ure 6 shows an example of a design team’s completed interac­
tion synthesized from three example demonstrations. 

Theme 1: Idea Generation and Feedback 
We found that many designers generated ideas from sources 
external to the bodystorming process, such as remembering 
past experiences similar to the design scenario. For instance, 
P3 drew on experience from working in a store to design the 
help desk robot, stating that “I used to work at a store so 
I think I was like trying to like, think back to like different 
scenarios I experienced, while working there.” Designers also 
relied on their understanding of social situations to predict 
how a robot might behave differently from a person: 
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H: Greeting
R: Help_Query

H: Price_Query
R: Price Statement

H:Location_Query
R: Location_Statement

H: A�rm_Deny
R: Farewell

H: Null
R: Help_Query

H: Gratitude
R: Help_Query

H: Farewell
R: Farewell

Figure 6. Example human-robot interaction design of a help desk robot 
created during the empirical evaluation. 

I was kind of thinking it would be different too if a robot came 
to your door versus like a human. I don’t know I just feel like it 
would be different interactions... So I feel like it would almost 
have to be more questions being asked too. I don’t know just to 
make sure everything is right. (P24) 

Other participants generated ideas from the study materials 
given to them, namely the details about the scenario being 
designed for, such as the locations and prices of items in the 
store, or the list of possible speech classifications: 

Um, what helped me was the speech classification keys, mm 
thing. ’Cause that way I could be like, what am I- what are the 
different ways I could classify speech, meaning like, these are 
the ways you could classify speech so somebody could’ve said 
this. (P14) 

In contrast to ideation, feedback on ideas and in-progress 
designs often arose from within the design process itself. In 
the demonstration stage of the workflow, one design team 
expressed that bodystorming caused them to think about the 
delivery interaction scenario in a different way: 

Yeah, I mean, I. . . I don’t, um, physically interact with a person 
most times I get a package of course so, uh, you kind of have 
to consider like, I see the [delivery] man, sure, but I never, you 
know, talk to him but it’s. . . It was interesting to kind of like think 
about how don’t actually experience this. (P11) 

Designers also received feedback from the visualization of the 
full interaction. In one case, P22 mentioned how the updated 
visualization after each demonstration guided the design team, 
saying “As the thing went on we saw the thing build on the 
thing so then we like did our demonstrations based on how 
we wanted it to build.” Feedback often came from within the 
design team itself, where partners might disagree with each 
other’s ideas, or guide the team’s next steps: 

I was kind of surprised, at first, when you kept saying, do it 
in the other order. I get you were trying to get it- the robot to 
recognize it, but I didn’t think it would help. But then like, I 
was like well, we have no other choice, like, let’s try to do the 
questions in the other order. (P7) 

Many designers used mistakes made during acting, or unex­
pected behavior displayed by the robot, to guide their design.: 

Basically, whenever we knew that we messed up on something 
or it didn’t go how we wanted it to we just thought of what we 
could do better next time, so even with the simulation when [the 
robot] didn’t talk back to us we knew that we had to focus on 
that area when we were editing. (P23) 

Implications—This theme reinforces the main premise of Syn­
thé, indicating that designers can indeed rely on their instinc­
tive understanding of social interactions, including their prior 
experiences, to develop design ideas for human-robot interac­
tion. Engaging in bodystorming is also a reflective process that 
enables designers to consider the nuances of what behaviors 
might be appropriate for a given scenario as well as how a 
robot might act differently from a person in a given scenario. 

Theme 2: Constraints in Design Ideation 
Many design teams introduced explicit constraints on their 
demonstrations, such as by creating detailed plans of the struc­
ture and content of future demonstrations. For instance, some 
design teams created interaction scripts, containing the spe­
cific speech utterances that each designer would say during 
their next demonstration, e.g., P11 recalling “And then, uh, we 
wrote out all of our lines and stuff.” Although not necessarily 
planning out exact speech, some teams still carefully planned 
the flow of their demonstrations, while others rehearsed their 
demonstrations, before recording them: 

Just, rather than just going to do it and be like, oh, can you do 
that again? We wanted to get a good cut right off the bat. And 
then go into detail on the program like we did. (P2) 

Either while acting out a demonstration or editing traces gen­
erated post-demonstration, many designers constrained their 
speech to adhere to what Synthé was expected to understand 
or what a robot was expected to understand in the real-world: 

Yeah, and I think when we were talking, we were talking a lot 
more clearly and slower than I normally would talk to someone, 
just to make sure that the microphone could get what we were 
saying, or... (P4) 

Similarly, designers such as P24 constrained their interaction 
flow to avoid confusing the robot, stating “So we had to do 
it so that it was all back and forth instead of one person 
saying two things right after another.” Some design teams 
also embodied static design roles, either by repeatedly acting 
in the same role during demonstrations, or by designating a 
single designer to use the graphical interface. For example, 
P16 stated that “I was always the robot. Because we wanted 
to keep it consistent.” 

While many teams followed a preset interaction structure and 
speech, some designers took a more fluid approach, switching 
their acting roles between demonstrations such as P17 and P18 
or even improvising during their demonstrations: 

We basically came up with uh, which scenario to go with, and 
we really just then improv’d the words as we were going, you 
know? (P22) 

Implications—These findings underline the need to support 
design teams in their planning process, such as in specifying 
actions that should or should not be recognized, which can 
also improve Synthé’s recognition and synthesis performance. 

Theme 3: Mental Models of Synthé 
Design ideation was affected by the mental models that design­
ers built of Synthé, such as its ability to capture and synthesize 
the exact text that designers encoded into their demonstrations, 
e.g., P12 expected that the speech “was just going to go from 
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the computer to the robot.” Designers also likened the use of 
Synthé to “teaching” the robot how to interact: 

It wait almost felt like teaching a little kid, in the sense of trying 
to kind of, like, explain to them how something works, or what is 
this, in that they don’t understand, and you have to adjust what 
you’re saying depending on what they’re out- understanding is 
of what’s going on. (P9) 

Additionally, designers had expectations about how the simu­
lations of their designs would play out: 

Umm I guess. . . we wanted it to um. . . we were expecting it to say 
exactly what we said in the skit, but it didn’t. . . it said something 
else. It was still like the right dialogue I guess, but it wasn’t 
word for word what we were saying. (P20) 

Many designers indicated that the robot exhibited behavior 
that they did not expect during simulation. For instance, P23 
stated that “It was picking up everything, just like it didn’t 
seem like it was in the order we talked about it.” This finding 
highlights the key role that simulation plays in the design 
process by exposing design flaws and unexpected behavior in 
teams’ designs. Designers also expressed dissatisfaction with 
the course of their simulations: 

So I think we did this one again and we did it good and then we 
simulated it and it was kind of weird. . . Like it didn’t work very 
well. (P22) 

Despite unmet expectations and dissatisfaction with simulation 
that these designers expressed, some designers thought that 
simulation was a good idea in general, and many designers 
expressed a desire for more simulation in their workflows: 

Yeah and simulating with the actual robot was cool too, because 
then you can like test it out. (P24) 

And I think if we went back and like simulated it with the robot, 
it would have figured out. (P11) 

Implications—Our findings indicate that designers’ mental 
models of how Synthé worked affected their ideation and that 
helping build correct mental models is critical for Synthé to 
serve as an effective design tool. They also highlight the im­
portance of prototyping and testing during the ideation process 
and thus the iterative nature of design ideation. 

Theme 4: Acting Experience 
Designers had mixed responses regarding their acting experi­
ence and whether they thought that acting was useful to the 
design process. Some designers had a positive experience with 
acting, finding it to assist with the design process and to add 
naturalness to their demonstrations: 

Um but doing it face to face with the person I think helped us 
plan out our stuff a lot better. (P15) 

But as long as we had the right speech it was fine but acting it 
out helped be like a real conversation. Because it seemed like 
more natural instead of just like scripted. (P23) 

Others felt that bodystorming felt artificial: 

It felt a little unnatural, even though, I guess we were trying to 
make it seem like the conversation was like a normal everyday 
kind of thing. (P4) 

Ease of learning
Ease of use

Satisfaction
Usefulness

0 20 40 60 80 100

SUS

1 2 3 4 5 6 7

Perceived quality

USE

Figure 7. Results from the SUS and USE questionnaires and the measure 
of perceived quality. Error bars represent standard error. 

Implications—Our findings indicate that designers will have 
different levels of comfort with “acting out” design ideas and 
that these individual differences and preferences must be con­
sidered when adopting design methods such as bodystorming. 

Theme 5: Use of Gestures and Props 
Some designers incorporated gestures into their acting to en­
hance their designs, and some felt that gesturing during their 
demonstrations made acting feel more natural. For instance, 
P8 expressed that “it makes it like, more awkward to just 
like, “bye,” and then like, stand there, like that just doesn’t 
feel natural.” Designers even expressed the need for a more 
comprehensive library of gestures that could be encoded on 
the robot, e.g., P4 expressed that “some of them, we kinda 
found you couldn’t really use with gesture that was listed, 
or. . . ” Similarly, designers often incorporated props into their 
demonstrations. Multiple design teams thought that props 
added realism to their demonstrations: 

Yeah, the props made it more realistic I think, because I don’t 
think that I would’ve said like “here you go” if I wasn’t holding 
anything in my hand. (P16) 

Conversely, other design teams did not use gestures or props 
in order to focus on their speech: 

I think we like more focused on...what we were going to say than 
like gestures or doing it or anything like that (P12) 

Implications—Findings in this theme indicate a strong need to 
incorporate aspects of bodystorming beyond speech, including 
the ability to capture and represent the use of gestures and 
physical props, in Synthé. While some designers found these 
facets of bodystorming to be essential, others chose to focus 
on speech. Therefore, gestures and props must be incorporated 
in a way that does not become a barrier for designers. 

Usability 
Figure 7 shows the results for our quantitative measures of 
user experience. Designers’ average SUS score was 69.1 
(SD = 16.7). Within USE, their average score was 5.18 
(SD = 0.78) for usefulness, 4.89 (SD = 1.13) for ease of use, 
5.72 (SD = 1.18) for ease of learning, and 5.04 (SD = 1.15) 
for satisfaction. Designers’ scores for perceived quality of 
their designs was 4.63 (SD = 1.41). 

Design Stages 
Pairs spend 50% (SD = 3.0%) of non-idle time brainstorming, 
32% (SD = 3.8%) editing, 9.1% (SD = 1.3%) acting, and 
8.9% (SD = 2.9%) simulating (Figure 8.a). We define idle 
time as gaps between brainstorming, editing, simulating, or 
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acting, comprising on average 0.92% (SD = 0.01) of total 
design time, such as when pairs waited in silence for Synthé 
to analyze their speech. We define acting as blocks of time 
when Synthé records demonstrations, simulation as when the 
simulator is active, editing as when participants are in the 
trace editor and make changes to a trace, and brainstorming 
as the gaps between acting, editing, and simulating in which 
discussion occurs between participants. 

Figure 8.b shows the average workflow for all 12 pairs. Each 
arc represents a transition from one phase to another phase, 
and its width represents the average frequency of that tran­
sition. We excluded a total of three brainstorming sessions 
from our workflow analysis due to the sessions being shorter 
than the shortest observed non-brainstorming session over all 
design teams (seven seconds). For example, the sequence 
simulating→brainstorming→editing would be treated as sim­
ulating→editing if the brainstorming session took less than 
seven seconds. We observed transitions from brainstorming to 
acting (M = 24%,SD = 5.2%) to be most frequent. 

System Performance 
We evaluated the performance of Synthé by measuring the 
computation time for synthesizing a program with five states 
for various amounts and lengths of randomly-generated traces 
provided to the system. Length is computed by the number 
of states in a trace, minus the start state. Figure 8.c shows the 
result of our analysis on a 2.9 GHz Intel Core i5 chip, testing 
each combination of trace number and length 10 times. We 
observed the average computation time for traces of length less 
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Figure 8. The average (a) percent of time spent in each design phase, (b) 
frequencies of transitions between phases, and (c) performance of Synthé 
as the number and length of input traces increases. 

than or equal to five to be consistently below one minute. The 
longest observed average time was observed to be 211 seconds 
(SD = 6.27) for eight traces of length nine. Completion time 
for lengths seven, eight, and nine begins to level off after six 
input traces, as Synthé returns, by design, the best possible 
solution once three minutes of finding an initial solution has 
surpassed. Our evaluation of performance reflects realistic 
prototyping with Synthé, as pairs on average supplied 3.25 
traces (SD = 1.48) of length 4.72 (SD = 1.82). 

DESIGN IMPROVEMENTS 
Gesturing—We added automatic gesture recognition to Synthé 
based on designers’ use of gestures in our evaluation. Our 
solution also addresses designers’ desire for more gestures to 
assign to the robot. Designers can now prespecify the types 
of gestures that Synthé should recognize, which will cause 
Synthé to ask for demonstrations of these gestures upon being 
started up. However, simulating new gestures on the robot 
requires programming the appropriate robot movements. 

Robot Speech—To address the confusion that robot speech did 
not match participants’ acted speech, in our updated imple­
mentation, the robot matched the acted speech by matching the 
current simulation state to a demonstration trace and choosing 
speech from the corresponding state in the trace. 

Follow-up Study 
Study Details—We conducted an informal extended design 
session of the updated Synthé with one pair of design students. 
Both participants were female and 21 years old. The proce­
dure differed from the previous design study, such that (1) 
participants had up to one hour for their design session; (2) 
our RTA covered only the beginning and end of the session; 
and (3) the RTA focused on the updates made to Synthé. 

Results—Although satisfied with the selection of gestures avail­
able to assign to the robot, designers did not purposefully em­
ploy physical acting with gestures or props for the duration of 
the session. One designer stated that gesturing was not a prior­
ity and that they do not convey as much as speech. During the 
interview, designers expressed some interest in using pointing 
gestures, although they highlighted that they would not have 
anything to point to given the lack of props. 

Despite the speech updates made to Synthé, designers ex­
pressed dissatisfaction with the speech that the robot uttered. 
One designer described the difference in speech as a “broken 
connection.” The second designer expressed that the most 
difficult aspect of the design “was getting the robot to reply 
the way that we wanted to.” Despite these difficulties, design­
ers described themselves as “impressed.” The SUS scores for 
Synthé were 62.5 and 72.5 for each designer. Designers’ USE 
scores for the design method were 4.13 and 5.63 for useful­
ness, 3.45 and 5.73 for ease of use, 3.25 and 7.0 for ease of 
learning, 3.43 and 6.43 for satisfaction. Designers rated the 
perceived quality of their interaction design as 4.2 and 5.0. 

DISCUSSION 
Our evaluation and follow-up demonstration provide insights 
into the benefits and limitations of our design approach and 
the efficacy of Synthé, which we discuss below. 
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Implications from Empirical Evaluation 
Our evaluation helps us understand the mechanisms behind 
idea generation, receiving feedback, strategies for planning 
and executing design ideas, and designers’ understanding of 
the robot’s capabilities and actions. Ideas generated arose 
from a wide range of sources, including prior experience, 
feedback from their partner, the robot, or from acting. Often 
such feedback was received positively and served to guide 
designers’ design strategies, but could have served as a source 
for misleading feedback. For instance, in the first version of 
Synthé, designers were prevented from customizing the robot’s 
speech behaviors, yet continued to strive to achieve this ability. 

Additionally, enhancing the planning process may further en­
courage designers to generate ideas from within the interaction 
design process, as well as relying on external sources. Not only 
should features be included that support the heavy planning of 
demonstrations or the addition of constraints that allow Synthé 
to ignore certain undesirable actions, but features should be 
included that allow for designers to recover from when their 
demonstrations do not go according to plan. The ability to 
begin a demonstration from the middle of a trace, rather than 
from the beginning, could support the ability to recover. Sim­
ilarly, the ability to begin a simulation from any state would 
allow designers to rapidly test quick fixes their design. 

The results from our quantitative analysis show that true to 
bodystorming, brainstorming is an essential component of 
Synthé. We found that the majority of design time was spent 
brainstorming and that brainstorming was central to partici­
pants’ workflows, as illustrated in Figure 8. The participant 
workflows also show that although less overall time was spent 
acting due to acting sessions generally being short, acting 
was performed frequently. We therefore conclude that Synthé 
supports bodystorming through brainstorming and acting. 

Updated Version of Synthé 
With the current version of Synthé, designers still expressed 
frustration when the robot’s speech did not adhere to their 
exact expectations, even when adhering to such expectations 
would potentially cause the robot to contradict itself (e.g. the 
robot may state a different price or location for an item than 
what exists in its database). Future versions of Synthé may 
need to be more explicit in the capabilities of each compo­
nent of the design process. Furthermore, although designers 
who used the updated version of Synthé were satisfied with 
the scope of available gestures, having a library of prespeci­
fied gestures may not be sufficient in certain design contexts. 
At an airport, for instance, the robot may need to employ a 
much wider variety of physical behaviors to suit the diverse 
backgrounds of the humans interacting with it. 

Rapid Design and Prototyping 
In addition to designers’ feedback on our design method, we 
also demonstrated the ability to rapidly prototype human-robot 
interactions using our method in twenty-five minutes or less. 
While many designers expressed that their designs were not 
yet complete when their design time ended, designers objec­
tively demonstrated the ability to create functioning prototypes 

within the allotted time. Additionally, although many design­
ers described their design process as thoughtfully planned out 
either through outlining or rehearsing their demonstrations be­
forehand, we believe that Synthé accommodates this planned 
design strategy by requiring only a few traces before an inter­
action is synthesized within a brief amount of time and ready 
to be tested. In effect, designers have more time to plan their 
designs, since fewer demonstrations are required. 

Limitations 
In addition to the areas of improvement outlined above, Syn­
thé’s capabilities are limited to high-level prototyping due lack 
of flexibility, namely the inability to manipulate low-level con­
trols such as the timing and concurrency of robot behaviors. 
Future versions of Synthé must integrate these details into the 
trace editor or capture them from designers, as these low-level 
details are integral to programming successful human-robot 
interactions and common to other programming environments. 
Furthermore, Synthé does not support designers creating their 
speech and gesture categories from scratch, requiring them 
to prespecify interaction components, which also limits the 
ability to improvise interactions. Future versions of Synthé 
can support on-the-fly designer creation and modification of 
constraints, such as speech and gesture classifications, for the 
design scenario at hand. Future work could also enable the 
mimicry of designer gestures on the robot. Current capture and 
retargeting methods may not ensure effective mimicry for all 
robot platforms due to differences in geometry and kinematics. 

Additionally, our method of interaction synthesis does not 
currently distinguish between different behaviors that the hu­
man or robot may emit within a single behavior class. Using 
the help desk robot as an example, the existence of a prod­
uct cannot easily be accounted for within when answering an 
end user’s query for the location of an item in the store. If 
designers want the robot to be able to make this distinction, 
they need to perform separate demonstrations for each store 
item, which assumes that speech classifications for each item 
exists. Future versions of Synthé need to address this issue, 
e.g., using a parameterized (symbolic) automaton alphabet. 

CONCLUSION 
In this paper, we presented Synthé, which enables pairs of 
designers to rapidly prototype human-robot interactions via 
bodystorming. Synthé uses a new symbolic program synthesis 
algorithm to generalize demonstrations into a program that can 
be deployed and simulated on a robot. We evaluated Synthé by 
asking designers to bodystorm different interaction scenarios, 
improved our system based on our findings, and demonstrated 
the improved system in a follow-up study. Our application of 
bodystorming within Synthé serves as an example for design-
support tools to address the unique design challenges involved 
in creating interactive robotic technologies. 
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