
Bodystorming Human-Robot Interactions

David Porfirio,1 Evan Fisher,2 Allison Sauppé,2 Aws Albarghouthi,1 Bilge Mutlu1

1 University of Wisconsin–Madison, Madison, Wisconsin, USA

2 University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA

{dporfirio,aws,bilge}@cs.wisc.edu, {fisher.evan,asauppe}@uwlax.edu

ABSTRACT
Designing and implementing human-robot interactions re
quires numerous skills, from having a rich understanding of
social interactions and the capacity to articulate their subtle
requirements, to the ability to then program a social robot
with the many facets of such a complex interaction. Although
designers are best suited to develop and implement these inter
actions due to their inherent understanding of the context and
its requirements, these skills are a barrier to enabling designers
to rapidly explore and prototype ideas: it is impractical for
designers to also be experts on social interaction behaviors,
and the technical challenges associated with programming a
social robot are prohibitive. In this work, we introduce Syn
thé, which allows designers to act out, or bodystorm, multiple
demonstrations of an interaction. These demonstrations are
automatically captured and translated into prototypes for the
design team using program synthesis. We evaluate Synthé in
multiple design sessions involving pairs of designers bodys
torming interactions and observing the resulting models on a
robot. We build on the findings from these sessions to improve
the capabilities of Synthé and demonstrate the use of these
capabilities in a second design session.

CCS Concepts
•Human-centered computing → Interaction design;
•Software and its engineering → Formal methods;

Author Keywords
Human-robot interaction; interaction design; ideation;
bodystorming; design tools; program synthesis

INTRODUCTION
Robots that are designed to interact with people using human
social norms of interaction present a complex design space
and a new set of design challenges. Designers must not only
create solutions that effectively address user needs and expec
tations, but these solutions must also closely follow acceptable
interaction behavior, both to improve user satisfaction with
the solution and to prevent breakdowns due to social-norm

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UIST ’19, October 20-23, 2019, New Orleans, LA, USA.
Copyright © 2019 Association of Computing Machinery.

ACM ISBN 978-1-4503-6816-2/19/10 ...$15.00.

http://dx.doi.org/10.1145/3332165.3347957

bodystorming interaction traces simulating the program

synthesizing program editing program

User
Traces

Full
Program

Synthé

synthesis

Figure 1. Synthé captures designers’ demonstrations, synthesizes an in
teraction, and allows designers to edit and simulate the interaction.

violations. For example, a hospital delivery robot that “beeps”
as it navigates through a patient ward might effectively inform
the hospital staff of its status, but it might also be seen as disre
spectful by patients who are ill or in recovery [35]. Although
there is a rich body of literature on human social behavior
across the fields of social psychology and interpersonal com
munication, this literature may be unknown, inaccessible, or
impractical to designers. How can designers more effectively
draw on their intrinsic understanding of human interactions in
creating human-robot interactions?

We propose to apply the design ideation method of bodys
torming [55] to support interdisciplinary design teams with
varying formal design experience explore and support complex
human-robot interactions. Although these designers do not
have a formal understanding of human interactions through
their training or reading of the research literature, they instinc
tively navigate such interactions on a day-to-day basis. Our
proposed method leverages this instinctive ability and involves
members of design teams “acting out” or “role-playing” how
they expect the human-robot interaction to flow. However,
although such an approach might enable designers to devise
human-robot interactions that are more closely aligned with
human interactions, turning role-playing sessions into applica

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

479

mailto:dporfirio@cs.wisc.edu
mailto:aws@cs.wisc.edu
mailto:bilge@cs.wisc.edu
mailto:fisher.evan@uwlax.edu
mailto:asauppe@uwlax.edu
http://dx.doi.org/10.1145/3332165.3347957
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3332165.3347957&domain=pdf&date_stamp=2019-10-17

tion prototypes still involves a significant amount of robotics
implementation, hindering the practical use of such a method
by designers who may not have the necessary background to
implement design ideas. To enable design teams to rapidly
explore and prototype ideas, our proposed method uses a new
program synthesis technique, specifically a form of automata
learning [36], to automatically translate demonstrations into
prototypes that the design team can evaluate on robots.

In this paper, we present our application of bodystorming
within Synthé, a design environment that supports design
teams in the creative exploration and prototyping of design
ideas for human-robot interaction. Using this approach, de
signers with no expertise in robotics, programming, or social
behavior can, within minutes, create interactive programs on
a social robot. For example, a team designing a robot that
assists travelers at an airport can perform how the interaction
should play out across several demonstrations. Our system
will then synthesize a program, semantically represented as
a Mealy machine, from various constraints, including (1) a
set of programming building blocks, specified beforehand,
that represent designer actions recognizable by Synthé, and
(2) multiple “traces” of social interaction demonstrated via
the speech and gesture from the design team. At any point
in the design process, designers can review and modify the
input into the synthesis engine, test the prototype program on a
robot, or provide additional traces until they are satisfied with
their design. We evaluated our system in 12 design sessions
involving pairs of designers; improved the design method and
our system based on our findings from these sessions; and
demonstrated the use of the updated method and system in
another design session. The contributions of our work include:

•	 A novel application of bodystorming that enables design
teams to rapidly explore and prototype human-robot inter
actions;

•	 A software environment that captures and synthesizes multi
ple designer demonstrations into prototype programs using
program synthesis;

•	 An empirical understanding of how our proposed method
and our system might support design teams in devising
human-robot interaction solutions.

RELATED WORK

Embodied Design Methods
Using one’s body in the interaction design process enables the
designer to leverage the interconnectedness of the body and
mind, incorporate human kinesthetics into the final product,
and enhance collaboration with other designers [30]. Bodys
torming is one such design technique in which designers brain
storm by situating their bodies in the context of the interaction
being designed in order to gain insight into the user experience
[15, 16, 47]. Bodystorming is achieved by role-playing an
interaction with actors and props [14], which may or may not
entail improvisation, or by immersing oneself in an environ
ment similar to that being designed for [40]. Bodystorming has
been applied to the design of mobile learning experiences [55]
and robotic products [61], but no work has used bodystorming
to synthesize human-robot interaction programs.

Based on bodystorming, embodied sketching involves impro
visation in the design of experiences supported by technology
rather than the technology itself [33]. Improvisation is also
central to embodied design improvisation, a multi-stage gen
erative and analytical design process that makes designers’
tacit understanding of the design space explicit to other stake
holders in the design process [51, 52]. Prototypes are key in
evaluating design ideas generated from this method, such as
a robot ottoman that communicates primarily through move
ment [53]. Similarly, the Personality design method uses a
series of improvisation and brainstorming steps to assign and
implement behaviors based on human personality types [57].

Reflective Design Methods
Reflective design centers on the key insight that designers
reflect on their experiences to shape their insights in the de
sign process [11, 20] and has permeated a variety of other
domains, such as city planning, education, and medicine [60].
HCI researchers have found numerous ways to incorporate
reflective design practices as computers have entered contexts
designers might otherwise be unfamiliar with [50], such as
value-sensitive design [10, 22], participatory design [9, 34],
and critical design [5, 23]. One particular area of interest
in our work is the insight from Schön that designers “know
more than they can say,” being able to exhibit far more of
their knowledge by demonstrating it in context than describ
ing it to others out of context [48]. Using a combination of
knowing-in-action and reflection-in-action to define a problem
[49], designers can modify and expand their understanding of
a problem space during its definition. With knowing-in-action,
designers use their intuitive knowledge of the design space to
act out and explore the actors, goals, and constraints. During
this process, they constantly reflect on their actions and what
is not yet fully articulated, improvising additional scenarios to
more completely define the design space.

Design Tools & Environments
Those with the insight necessary to design an application for
a particular context, such as end users, domain experts, and
designers, may lack the technical background necessary real
ize their ideas. Visual programming environments (VPE’s),
such as Code3, aim to address this challenge by abstracting
programming concepts into high-level graphical components
to assist novice users [27]. The VPE’s Interaction Blocks [46]
and RoVer [42] abstract social robot behaviors into reusable
building blocks, a technique we also use in Synthé. Alterna
tively, programming by demonstration (PbD) allows novice
programmers to physically demonstrate the required sequence
of actions on a robot that are then automatically captured and
translated into a program [4, 7]. PbD algorithms are able to
function in increasingly complex environments, such as recog
nizing the relative positioning of objects in the environment
[38], breaking the task into discrete segments [38], recogniz
ing partial-ordering of those segments [37], and understanding
task constraints [41]. While PbD has been successfully applied
to tasks in both in-home [1] and commercial [54] settings, the
limitations of current PbD algorithms include their focus on
tasks comprised of goals that require physical manipulation
and the requirement to visually confirm completion.

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

480

Various technological advancements have increased the po
tential to program via human-body demonstrations, such as
the recognition of full-body gestures [18] and the retargeting
of motion between figures with different body proportions
[24]. Design tools that capture full-body movement include
systems in which actors’ movements are used to edit the mo
tion of an animated character [21]; trainers’ movements are
authored and edited in order to teach novices expert motions,
[2]; captured motion assists programmers in the generation,
manipulation, and monitoring of visual input to and output
from a camera-based program [29]; and non-expert illustrators
are assisted by the automatic creation of motion illustrations
based on captured sequences of movement [17]. The interface
may also learn an optimal motion by demonstrating candidate
motions to and obtaining ratings from an observer [31].

Computational Methods
Various computational approaches exist for the automatic con
struction of programs and automata from examples. The clas
sic automata learning approach, L* [3], relies on an active
loop of querying the user for examples and asking the user to
confirm that the automaton it learns is the right one. Our set
ting is passive, in that we only have positive examples, given
through bodystorming, and want to learn an automaton that
encompasses them. Our work falls in the category of symbolic
synthesis algorithms (see Solar-Lezama et al. [56] for the pio
neering work and Gulwani et al. [26] for a survey), as it relies
on a reduction of the problem to a combinatorial search us
ing satisfiability (SAT) solvers and their first-order extensions
(SMT solvers). Our work extends work by Neider [36] that
encodes to the Mealy-machine setting, as we treat human and
robot actions as inputs and outputs, respectively. Additionally,
we consider an approximate learning setting, as we may not be
able to find an automaton that precisely captures all observed
interactions (e.g., due to conflicting demonstrations).

SYNTHÉ: DESIGN AND IMPLEMENTATION
In this section, we detail the design, algorithms, and imple
mentation of Synthé, our software environment for facilitating
bodystorming of human-robot interactions, using a running
example. The workflow of Synthé is shown in Figure 1:

•	 Bodystorming: When designers bodystorm an interaction,
they act out the scenario multiple times, resulting in a series
of demonstrations that highlight different paths the scenario
might follow. With Synthé, one designer plays the robot’s
part, while the other plays the human. Demonstrations
are computationally represented as a set of traces, where
each trace represents one demonstration of the human-robot
interaction, captured as a sequence of alternating human
and robot actions throughout the demonstration.

•	 Program synthesis: The traces resulting from bodystorming
are fed into the program synthesis engine that generates a
single program generalizing the observed demonstrations.

•	 Visualization and editing: Synthé enables viewing and mod
ifying the program in a visual programming environment.

•	 Simulation: Finally, designers can compile and deploy the
resulting program on a physical robot. After simulating the

interaction, they may decide to modify it by continuing their
bodystorming session and providing additional traces.

In the remainder of this section, we present the aforementioned
components of Synthé in detail. Our running example entails
the design of a delivery robot interaction, where the robot must
deliver a package to a human. In this example, the human must
verify their identity before receiving the package.

Bodystorming: Capturing Intent
The first and most crucial aspect of Synthé is capturing the
bodystorming session of the design team. Since one designer
acts as the human and the other as the robot, we view a demon
stration through bodystorming as a trace of human and robot
actions; formally, a trace t is a sequence of the form

(h1,r1), . . . ,(hn,rn)

where each pair (hi,ri) represents a human input action hi
and a robot output action ri. For instance, the human action
hi may be saying "hello", while the robot reply ri may be
performing a more complex action such as saying "hello" and
simultaneously performing a waving gesture.1 We visualize
traces as sequences of transitions and states, where transitions
are annotated with both the human action (labeled H) and
robot response (labeled R).

For example, Figure 3 (left) depicts two possible traces for the
delivery robot. In the first trace, the human inputs a greeting
and the robot asks for the human’s identification. The human
then attempts to receive the package, and the robot asks once
more for the human’s identification. Following the second
query, the human denies that they have the appropriate identi
fication, and the robot says farewell. In the second trace, after
querying the human’s identity, the human confirms their iden
tity. The robot expresses gratitude, and the human motions to
receive the package. The robot hands off the package to the
human, and both bid each other farewell.

Throughout the bodystorming session, the design team demon
strates multiple interaction traces. The algorithmic core of
Synthé is agnostic to the complexity of the action language,
such that any combination of inputs can be treated as a robot
output action ri. In practice, Synthé captures (1) speech and
(2) gestures; thus, each action is a combination of speech and
gesture, either of which can be null, e.g., if the designer does
not gesture. Gestures are not included in our running example.

Capturing Speech
Designers manually begin and end Synthé’s bodystorming
recording. During the recording, designer audio is recorded
and utterances are classified into one of several prespecified
categories using natural language processing. The classifica
tion categories depend on the scenario, which in the running ex
ample of the delivery robot included Greeting, QueryID, Con
firmID, DenyID, Gratitude, Receive, Handoff, and Farewell.

Each designer is instrumented with a unidirectional lapel mi
crophone that records timestamped speech, which off-the-shelf
1 Our formulation assumes human actions are followed by robot
actions. In cases, for example, where the robot initiates an interaction,
we simply treat the human action as an empty (null) action.

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

481

Bodystorming

speech signal

gesture signal

time

time

Robot

Human

Robot

Human

speech combines with
gesture to create
interaction trace

the trace is added
to the set of
recorded traces

program synthesis
occurs

Timestamped Data

<h1,r1> <h2,r2> <h3,r3>

designer utterances

designer
gestures the new trace is

included in the
program

<h1,r1>

<h2,r2>

<h3,r3>

Capturing Intent Synthesis

Figure 2. The pipeline from Synthé capturing designer speech and gesture signals, to converting the signals to a trace, to synthesizing an interaction
based on all traces provided thus far. The green circles represent the start states of the interaction, while the red circles represent the end states.

software transcribes and classifies. The timestamps allow Syn
thé to differentiate turns of talk and to generate traces from
demonstrations (Figure 2, left).

Gesture Recognition
Each designer is instrumented with a wireless armband that
integrates a gyroscope and an accelerometer to capture arm
motion and changes in orientation. The designer provides
a single example of each gesture for Synthé to recognize,
which is used by fast dynamic time warping to classify any
subsequent gestures [45]. Gestures are timestamped to couple
the robot’s gestures with its speech (Figure 2, left). Synthé can
classify any performed gesture with reasonable accuracy as
long as examples of the gesture are provided beforehand.

Program Synthesis
The bodystorming session results in a set of traces T represent
ing possible trajectories of the intended interaction. Illustrated
in Figure 2 (right), the technical core of Synthé constructs a
program that mimics the traces T while addressing two chal
lenges: (1) ability to generalize the behavior demonstrated in
the traces, instead of only capturing the finite behavior exhib
ited in the traces, and (2) robustness to conflicting behaviors

H: Greeting
R: QueryID

H: Con�rmID
R: Gratitude

H: Farewell
R: Farewell

H: DenyID
R: Farewell

H: Receive
R: QueryID

H: Receive
R: Hando�

H: Greeting
R: QueryID

H: Con�rmID
R: Gratitude

H: Receive
R: Hando�

H: Farewell
R: Farewell

H: Greeting
R: QueryID

H: Receive
R: QueryID

H: DenyID
R: Farewell

Synthesized interactionDelivery traces

Figure 3. Left: Example traces representing possible interaction trajec
tories. Right: The resulting interaction synthesized from the examples.

in T , e.g., the robot performing a different action in each
trace in response to the same human action. To address these
challenges, we present a novel program synthesis algorithm
that constructs Mealy automata representing the bodystormed
interaction. Our algorithm constructs a set of constraints in
first-order logic (FOL) whose solution is a minimal automaton
that captures most transitions in the traces T . The minimality
constraint serves as an inductive bias to generalize the set of
given traces, e.g., by detecting iterative behavior and construct
ing loops. To illustrate this core idea, Figure 3 (right) depicts
the resulting automata derived from the traces in Figure 3
(left). The interaction completely captures the transitions of
both traces. As a Mealy automaton, the transitions are an
notated with both human actions and robot responses. The
synthesized program includes loops, inferred by our algorithm,
including (1) the robot repeatedly querying the human for their
ID if the human tries to receive before confirming their ID and
(2) the robot handing off multiple objects.

Formalizing our Program Model
A program is represented as an automaton (a Mealy machine)
with a finite set of robot states S = {s1, . . . ,sn} and two transi
tion functions:

fA : S × H → R fT : S × H → S

The action transition function fA defines how the robot reacts
to human actions: it maps human actions (set H) to robot ac
tions (set R), depending on the current state (S). The state tran
sition function fT defines how the state of the robot changes
depending on the observed human action.

We always treat state s1 as the initial state in which the robot
begins. An execution of the automaton is a sequence

s1,(h1,r1),s2, . . . ,sm−1,(hm−1, rm−1),sm

Notice that automaton executions correspond directly (after
removing the states si) to the traces captured by bodystorming.
Our goal is to construct a small automaton whose executions
capture most of the traces in a given set T .

Automata Learning Algorithm
The main challenge in learning an automaton from traces is the
exponential number of automata with respect to the number
of states and possible actions. Because naïve enumeration is

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

482

impractical, we exploit symbolic methods to efficiently encode
and search the space of automata. Specifically, we present
a new automata synthesis technique that encodes the space
of automata in first-order logic and uses powerful satisfiabil
ity modulo theories (SMT) [6] solvers to discover solutions.
Technically, our approach extends that of Neider [36] to the
Mealy-machine setting and approximate learning of automata.

Our algorithm constructs the two transition functions defining
an automaton, fA and fT . We will encode a set of first-order
constraints whose solutions are functions fA and fT (formally,
we use the first-order theory of uninterpreted functions).

Constraint on fT —Our first constraint CT ensures that, for each
trace t ∈ T , the sequence of human actions are manifested in
some execution of the automaton, namely in the state transition
function fT . Formally, for every trace t = (h1,r1), . . . ,(hn,rn),
we define the constraint

n
t

cT ∃x1, . . . ,xn+1. x1 = s1 ∧ fT (xi, hi) = xi+1

i=1

where the variables xi range over the set of states S. Now,
taking all the traces together, we define the overall constraint

CT ct
T

t∈T

Constraint on fA—Our second constraint, CA, ensures that
for each trace t ∈ T , the sequence of robot actions are man
ifested in some execution of the automaton, namely in the
action transition function fA. Formally, for every trace
t = (h1,r1), . . . ,(hn, rn), we define the constraint

n
tcA ∃x1, . . . ,xn. x1 = s1 ∧ fA(xi,hi) = ri

i=1
' --

soft constraint

Now, for all traces, we define the overall constraint

CA ct

A
t∈T

Constraint on initial and final states—Our final constraint, CS,
designates a specific state s f ∈ S as a final (termination) state,
where (1) all traces lead to s f and (2) s f does not have any
outgoing transitions. We omit the formal definition of CS here.

Constraint Solving—Finally, now that we have defined the
constraints, any solution (model) of the formula CT ∧CA ∧CS
results in an automaton over robot states S—by defining the
functions fA and fT —such that the automaton represents all
traces T from the bodystorming session. However, because
there may be traces in T that exhibit contradictory robot behav
ior, and we need to minimize the number of transitions in the
automaton so as it does not exhibit arbitrary behavior, we pose
this is as a maximum satisfiability problem, where instead of
satisfying CT ∧CA ∧CS completely, we want to satisfy as many
of the soft constraints as possible in CA, which allow robot be
havior to not exactly represent some traces in T . Next, we add
a further soft constraint to minimize the number of transitions
between states (by maximizing the number of transitions to

interaction
visualization

options pane

Model View

Trace View Trace Editor

bodystorm history pane

Figure 4. Synthé’s user interface, featuring the model view (top), trace
view (bottom-left) and trace editor (bottom-right)

the sink state s f). The resulting combinatorial optimization
problem can be solved using an off-the-shelf MaxSMT solver.

Supporting Visualization and Editing
Synthé includes a user interface, shown in Figure 4, that pro
vides visual feedback on design progress and limited trace
editing capabilities. The visualization pane allows designers
to switch between viewing their in-progress program as a tran
sition system (the “model view”) and the set of traces provided
thus far (the “trace view”). The history pane allows designers
to view a summary of traces provided thus far, including the
inclusion percentage for each trace. Users can click on a trace
to open up the trace editor, which allows designers to view
traces in more detail and edit them. Editing capabilities in
clude modifying the speech-to-text, action classifications, and
robot gestures corresponding to an action state. Underneath
the history pane, users have the option to record a new trace
or simulate the synthesized program, change the allowed size
of the synthesized program, and change visualizations.

System Implementation
Synthé is primarily implemented in Python version 3.6.2 The
system connects to IBM Watson’s Speech-to-Text service to
convert speech to timestamped text [28], followed by Rasa’s
Intent Classification service trained using examples from a
text classification dataset generator to classify each utterance
[8, 44]. Myo armbands collect the acceleration and orienta
tion data, which is fed to the gesture classifier [59]. Synthé
then solves the resulting synthesis problem using the Z3 SMT
solver [19]. After designers act out a demonstration and Synthé
parses the utterances, synthesis of a new interaction occurs in
the background while all other functionality of Synthé remains
available to users. Designers may act out another demonstra
tion, edit previously-acted traces, or simulate the most recently
2The source code is hosted at https://github.com/Wisc-HCI/Synthé.

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

483

https://github.com/Wisc-HCI/Synthe

synthesized program, all while a new program is synthesized.
Support for visualizing interactions is implemented in D3 [12].

We implemented the ability to simulate interactions in Python
version 2.7 on a Softbank Robotics Nao robot, using version
2.1.4 of NaoQi [43]. The robot traverses the interaction as
a Mealy machine, waiting for human input to determine the
appropriate transition. We implemented the robot to only rec
ognize speech input. Speech intents and referential entities are
extracted using the same recognition and classification system
used to capture designer intent. Speech input that cannot be
accepted by the current state invokes a recovery transition;
the robot states that it did not understand the human’s speech,
and the transition returns to the previous state to allow the hu
man to repeat or provide clarification. For all robot responses
within the synthesized interaction, the robot’s speech is de
rived from the text extracted from the traces. The robot also
chooses gesture behaviors based on the gesture classification
associated with the current state in the synthesized interaction.

EVALUATION
Our evaluation tested Synthé with 12 design teams to obtain
user feedback on bodystorming as a design method for human-
robot interaction. We also tested Synthé’s computational per
formance. While the version of Synthé used in the performance
evaluation is current, the version used in our user study did not
support automatic gesture recognition or derive robot speech
behaviors from designer demonstrations. Rather, robot speech
was prespecified for each robot response. The feedback from
our evaluation informed the improvements made to Synthé.

Design Sessions
Design Procedure—Figure 5 shows the study setup. Upon
obtaining informed consent from both participants, the experi
menter played a video demonstrating the bodystorming design
method, and the capabilities of Synthé. Subsequently, the
experimenter guided the pair in a brief bodystorming demon
stration, explaining how to interpret and edit the demonstration
in Synthé and how to simulate the resulting program on the
robot. The pair was then informed about the two experimental
scenario that they would be assigned: (1) the robot delivers a
package to a human, or (2) the robot provides information to
shoppers at a store about the locations and prices of items for
sale. The participant pairs were given 20–25 minutes to create
their designs and were not allowed to brainstorm beforehand.

monitor, keyboard,
and trackpad

robot

participants wearing lapel microphones

microphone to communicate with robot

Figure 5. The physical layout of our evaluation. In this evaluation, par
ticipants did not wear armbands to capture gestures.

After the design session, participants completed questionnaires
that assessed the value of bodystorming as a design method
and the usability of Synthé. The experimenter then initiated a
retrospective think-aloud (RTA) [39, 25] by first demonstrating
the RTA protocol to the participants and then asking them
to engage in an RTA while watching a video recording of
their design session. The video recordings consisted of the
movement and speech made by participants synchronized with
screen recordings of Synthé being used. After completing
the RTA, the experimenter engaged the pair in a 10-minute
semi-structured interview on their general experience.

Measurement & Analysis—Our evaluation primarily followed
a qualitative approach to assessing how bodystorming, and
Synthé, might support design teams in creative exploration
and prototyping of human-robot interactions. The qualitative
data included transcriptions of participant speech during the
RTA and semi-structured interview. We also measured over
all usability and user experience with Synthé using the USE
questionnaire to assess the value of bodystorming as a design
method [32] and the SUS questionnaire to assess the usability
of Synthé [13]. We included an additional scale that assessed
designers’ perceived interaction design quality. Lastly, we
measured system performance using timing data that describes
how long Synthé takes to synthesize an interaction.

The qualitative data was analyzed following a modified content
analysis process [58], which involved extracting an exhaustive
set of in vivo codes, categorizing these codes to create a shared
code library, clustering the codes in the library to identify
general themes that emerged from the data, and identifying
illustrative instances of data to characterize each theme.

Participants—We recruited 24 participants (8 males, 16 fe
males), aged 18–27 (M = 21.0, SD = 2.61), who made up
12 pairs (2 male-male, 4 male-female, 6 female-female pairs)
and represented our intended users to carry out design ses
sions. Participants came from a wide range of backgrounds,
including design, engineering, humanities, and domain sci
ences such as education and health. Five participants had
self-reported prior design experience. Participants from 10
pairs were personally acquainted with their partner.

Results
In this section, we present the five key themes that emerged
from our analysis of the RTA sessions and interviews, the
results from the design strategy analysis and the post-session
questionnaires, and the performance evaluation of Synthé. Fig
ure 6 shows an example of a design team’s completed interac
tion synthesized from three example demonstrations.

Theme 1: Idea Generation and Feedback
We found that many designers generated ideas from sources
external to the bodystorming process, such as remembering
past experiences similar to the design scenario. For instance,
P3 drew on experience from working in a store to design the
help desk robot, stating that “I used to work at a store so
I think I was like trying to like, think back to like different
scenarios I experienced, while working there.” Designers also
relied on their understanding of social situations to predict
how a robot might behave differently from a person:

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

484

H: Greeting
R: Help_Query

H: Price_Query
R: Price Statement

H:Location_Query
R: Location_Statement

H: A�rm_Deny
R: Farewell

H: Null
R: Help_Query

H: Gratitude
R: Help_Query

H: Farewell
R: Farewell

Figure 6. Example human-robot interaction design of a help desk robot
created during the empirical evaluation.

I was kind of thinking it would be different too if a robot came
to your door versus like a human. I don’t know I just feel like it
would be different interactions... So I feel like it would almost
have to be more questions being asked too. I don’t know just to
make sure everything is right. (P24)

Other participants generated ideas from the study materials
given to them, namely the details about the scenario being
designed for, such as the locations and prices of items in the
store, or the list of possible speech classifications:

Um, what helped me was the speech classification keys, mm
thing. ’Cause that way I could be like, what am I- what are the
different ways I could classify speech, meaning like, these are
the ways you could classify speech so somebody could’ve said
this. (P14)

In contrast to ideation, feedback on ideas and in-progress
designs often arose from within the design process itself. In
the demonstration stage of the workflow, one design team
expressed that bodystorming caused them to think about the
delivery interaction scenario in a different way:

Yeah, I mean, I. . . I don’t, um, physically interact with a person
most times I get a package of course so, uh, you kind of have
to consider like, I see the [delivery] man, sure, but I never, you
know, talk to him but it’s. . . It was interesting to kind of like think
about how don’t actually experience this. (P11)

Designers also received feedback from the visualization of the
full interaction. In one case, P22 mentioned how the updated
visualization after each demonstration guided the design team,
saying “As the thing went on we saw the thing build on the
thing so then we like did our demonstrations based on how
we wanted it to build.” Feedback often came from within the
design team itself, where partners might disagree with each
other’s ideas, or guide the team’s next steps:

I was kind of surprised, at first, when you kept saying, do it
in the other order. I get you were trying to get it- the robot to
recognize it, but I didn’t think it would help. But then like, I
was like well, we have no other choice, like, let’s try to do the
questions in the other order. (P7)

Many designers used mistakes made during acting, or unex
pected behavior displayed by the robot, to guide their design.:

Basically, whenever we knew that we messed up on something
or it didn’t go how we wanted it to we just thought of what we
could do better next time, so even with the simulation when [the
robot] didn’t talk back to us we knew that we had to focus on
that area when we were editing. (P23)

Implications—This theme reinforces the main premise of Syn
thé, indicating that designers can indeed rely on their instinc
tive understanding of social interactions, including their prior
experiences, to develop design ideas for human-robot interac
tion. Engaging in bodystorming is also a reflective process that
enables designers to consider the nuances of what behaviors
might be appropriate for a given scenario as well as how a
robot might act differently from a person in a given scenario.

Theme 2: Constraints in Design Ideation
Many design teams introduced explicit constraints on their
demonstrations, such as by creating detailed plans of the struc
ture and content of future demonstrations. For instance, some
design teams created interaction scripts, containing the spe
cific speech utterances that each designer would say during
their next demonstration, e.g., P11 recalling “And then, uh, we
wrote out all of our lines and stuff.” Although not necessarily
planning out exact speech, some teams still carefully planned
the flow of their demonstrations, while others rehearsed their
demonstrations, before recording them:

Just, rather than just going to do it and be like, oh, can you do
that again? We wanted to get a good cut right off the bat. And
then go into detail on the program like we did. (P2)

Either while acting out a demonstration or editing traces gen
erated post-demonstration, many designers constrained their
speech to adhere to what Synthé was expected to understand
or what a robot was expected to understand in the real-world:

Yeah, and I think when we were talking, we were talking a lot
more clearly and slower than I normally would talk to someone,
just to make sure that the microphone could get what we were
saying, or... (P4)

Similarly, designers such as P24 constrained their interaction
flow to avoid confusing the robot, stating “So we had to do
it so that it was all back and forth instead of one person
saying two things right after another.” Some design teams
also embodied static design roles, either by repeatedly acting
in the same role during demonstrations, or by designating a
single designer to use the graphical interface. For example,
P16 stated that “I was always the robot. Because we wanted
to keep it consistent.”

While many teams followed a preset interaction structure and
speech, some designers took a more fluid approach, switching
their acting roles between demonstrations such as P17 and P18
or even improvising during their demonstrations:

We basically came up with uh, which scenario to go with, and
we really just then improv’d the words as we were going, you
know? (P22)

Implications—These findings underline the need to support
design teams in their planning process, such as in specifying
actions that should or should not be recognized, which can
also improve Synthé’s recognition and synthesis performance.

Theme 3: Mental Models of Synthé
Design ideation was affected by the mental models that design
ers built of Synthé, such as its ability to capture and synthesize
the exact text that designers encoded into their demonstrations,
e.g., P12 expected that the speech “was just going to go from

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

485

the computer to the robot.” Designers also likened the use of
Synthé to “teaching” the robot how to interact:

It wait almost felt like teaching a little kid, in the sense of trying
to kind of, like, explain to them how something works, or what is
this, in that they don’t understand, and you have to adjust what
you’re saying depending on what they’re out- understanding is
of what’s going on. (P9)

Additionally, designers had expectations about how the simu
lations of their designs would play out:

Umm I guess. . . we wanted it to um. . . we were expecting it to say
exactly what we said in the skit, but it didn’t. . . it said something
else. It was still like the right dialogue I guess, but it wasn’t
word for word what we were saying. (P20)

Many designers indicated that the robot exhibited behavior
that they did not expect during simulation. For instance, P23
stated that “It was picking up everything, just like it didn’t
seem like it was in the order we talked about it.” This finding
highlights the key role that simulation plays in the design
process by exposing design flaws and unexpected behavior in
teams’ designs. Designers also expressed dissatisfaction with
the course of their simulations:

So I think we did this one again and we did it good and then we
simulated it and it was kind of weird. . . Like it didn’t work very
well. (P22)

Despite unmet expectations and dissatisfaction with simulation
that these designers expressed, some designers thought that
simulation was a good idea in general, and many designers
expressed a desire for more simulation in their workflows:

Yeah and simulating with the actual robot was cool too, because
then you can like test it out. (P24)

And I think if we went back and like simulated it with the robot,
it would have figured out. (P11)

Implications—Our findings indicate that designers’ mental
models of how Synthé worked affected their ideation and that
helping build correct mental models is critical for Synthé to
serve as an effective design tool. They also highlight the im
portance of prototyping and testing during the ideation process
and thus the iterative nature of design ideation.

Theme 4: Acting Experience
Designers had mixed responses regarding their acting experi
ence and whether they thought that acting was useful to the
design process. Some designers had a positive experience with
acting, finding it to assist with the design process and to add
naturalness to their demonstrations:

Um but doing it face to face with the person I think helped us
plan out our stuff a lot better. (P15)

But as long as we had the right speech it was fine but acting it
out helped be like a real conversation. Because it seemed like
more natural instead of just like scripted. (P23)

Others felt that bodystorming felt artificial:

It felt a little unnatural, even though, I guess we were trying to
make it seem like the conversation was like a normal everyday
kind of thing. (P4)

Ease of learning
Ease of use

Satisfaction
Usefulness

0 20 40 60 80 100

SUS

1 2 3 4 5 6 7

Perceived quality

USE

Figure 7. Results from the SUS and USE questionnaires and the measure
of perceived quality. Error bars represent standard error.

Implications—Our findings indicate that designers will have
different levels of comfort with “acting out” design ideas and
that these individual differences and preferences must be con
sidered when adopting design methods such as bodystorming.

Theme 5: Use of Gestures and Props
Some designers incorporated gestures into their acting to en
hance their designs, and some felt that gesturing during their
demonstrations made acting feel more natural. For instance,
P8 expressed that “it makes it like, more awkward to just
like, “bye,” and then like, stand there, like that just doesn’t
feel natural.” Designers even expressed the need for a more
comprehensive library of gestures that could be encoded on
the robot, e.g., P4 expressed that “some of them, we kinda
found you couldn’t really use with gesture that was listed,
or. . . ” Similarly, designers often incorporated props into their
demonstrations. Multiple design teams thought that props
added realism to their demonstrations:

Yeah, the props made it more realistic I think, because I don’t
think that I would’ve said like “here you go” if I wasn’t holding
anything in my hand. (P16)

Conversely, other design teams did not use gestures or props
in order to focus on their speech:

I think we like more focused on...what we were going to say than
like gestures or doing it or anything like that (P12)

Implications—Findings in this theme indicate a strong need to
incorporate aspects of bodystorming beyond speech, including
the ability to capture and represent the use of gestures and
physical props, in Synthé. While some designers found these
facets of bodystorming to be essential, others chose to focus
on speech. Therefore, gestures and props must be incorporated
in a way that does not become a barrier for designers.

Usability
Figure 7 shows the results for our quantitative measures of
user experience. Designers’ average SUS score was 69.1
(SD = 16.7). Within USE, their average score was 5.18
(SD = 0.78) for usefulness, 4.89 (SD = 1.13) for ease of use,
5.72 (SD = 1.18) for ease of learning, and 5.04 (SD = 1.15)
for satisfaction. Designers’ scores for perceived quality of
their designs was 4.63 (SD = 1.41).

Design Stages
Pairs spend 50% (SD = 3.0%) of non-idle time brainstorming,
32% (SD = 3.8%) editing, 9.1% (SD = 1.3%) acting, and
8.9% (SD = 2.9%) simulating (Figure 8.a). We define idle
time as gaps between brainstorming, editing, simulating, or

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

486

acting, comprising on average 0.92% (SD = 0.01) of total
design time, such as when pairs waited in silence for Synthé
to analyze their speech. We define acting as blocks of time
when Synthé records demonstrations, simulation as when the
simulator is active, editing as when participants are in the
trace editor and make changes to a trace, and brainstorming
as the gaps between acting, editing, and simulating in which
discussion occurs between participants.

Figure 8.b shows the average workflow for all 12 pairs. Each
arc represents a transition from one phase to another phase,
and its width represents the average frequency of that tran
sition. We excluded a total of three brainstorming sessions
from our workflow analysis due to the sessions being shorter
than the shortest observed non-brainstorming session over all
design teams (seven seconds). For example, the sequence
simulating→brainstorming→editing would be treated as sim
ulating→editing if the brainstorming session took less than
seven seconds. We observed transitions from brainstorming to
acting (M = 24%,SD = 5.2%) to be most frequent.

System Performance
We evaluated the performance of Synthé by measuring the
computation time for synthesizing a program with five states
for various amounts and lengths of randomly-generated traces
provided to the system. Length is computed by the number
of states in a trace, minus the start state. Figure 8.c shows the
result of our analysis on a 2.9 GHz Intel Core i5 chip, testing
each combination of trace number and length 10 times. We
observed the average computation time for traces of length less

s a e b
0%

10%

20%

30%

40%

50%

av
er

ag
e

%
 o

f t
im

e
sp

en
t

a

s e

b

s=simulating
a=acting
e=editing
b=brainstorming

24%
(SD=5.2%)

18%
(SD=7.8%)

7.7%
(SD=6.6%)

6.5%
(SD=5.6%)

2.4%
(SD=3.2%)

18%
(SD=7.7%)

22%
(SD=6.0%)

a) b)

c)

standard
error

1 2 3 4 5 6 7 8
of input traces

0

50

100

150

200

tim
e

(s
)

length=2
length=3
length=4
length=5

length=6
length=7
length=8
length=9

Figure 8. The average (a) percent of time spent in each design phase, (b)
frequencies of transitions between phases, and (c) performance of Synthé
as the number and length of input traces increases.

than or equal to five to be consistently below one minute. The
longest observed average time was observed to be 211 seconds
(SD = 6.27) for eight traces of length nine. Completion time
for lengths seven, eight, and nine begins to level off after six
input traces, as Synthé returns, by design, the best possible
solution once three minutes of finding an initial solution has
surpassed. Our evaluation of performance reflects realistic
prototyping with Synthé, as pairs on average supplied 3.25
traces (SD = 1.48) of length 4.72 (SD = 1.82).

DESIGN IMPROVEMENTS
Gesturing—We added automatic gesture recognition to Synthé
based on designers’ use of gestures in our evaluation. Our
solution also addresses designers’ desire for more gestures to
assign to the robot. Designers can now prespecify the types
of gestures that Synthé should recognize, which will cause
Synthé to ask for demonstrations of these gestures upon being
started up. However, simulating new gestures on the robot
requires programming the appropriate robot movements.

Robot Speech—To address the confusion that robot speech did
not match participants’ acted speech, in our updated imple
mentation, the robot matched the acted speech by matching the
current simulation state to a demonstration trace and choosing
speech from the corresponding state in the trace.

Follow-up Study
Study Details—We conducted an informal extended design
session of the updated Synthé with one pair of design students.
Both participants were female and 21 years old. The proce
dure differed from the previous design study, such that (1)
participants had up to one hour for their design session; (2)
our RTA covered only the beginning and end of the session;
and (3) the RTA focused on the updates made to Synthé.

Results—Although satisfied with the selection of gestures avail
able to assign to the robot, designers did not purposefully em
ploy physical acting with gestures or props for the duration of
the session. One designer stated that gesturing was not a prior
ity and that they do not convey as much as speech. During the
interview, designers expressed some interest in using pointing
gestures, although they highlighted that they would not have
anything to point to given the lack of props.

Despite the speech updates made to Synthé, designers ex
pressed dissatisfaction with the speech that the robot uttered.
One designer described the difference in speech as a “broken
connection.” The second designer expressed that the most
difficult aspect of the design “was getting the robot to reply
the way that we wanted to.” Despite these difficulties, design
ers described themselves as “impressed.” The SUS scores for
Synthé were 62.5 and 72.5 for each designer. Designers’ USE
scores for the design method were 4.13 and 5.63 for useful
ness, 3.45 and 5.73 for ease of use, 3.25 and 7.0 for ease of
learning, 3.43 and 6.43 for satisfaction. Designers rated the
perceived quality of their interaction design as 4.2 and 5.0.

DISCUSSION
Our evaluation and follow-up demonstration provide insights
into the benefits and limitations of our design approach and
the efficacy of Synthé, which we discuss below.

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

487

Implications from Empirical Evaluation
Our evaluation helps us understand the mechanisms behind
idea generation, receiving feedback, strategies for planning
and executing design ideas, and designers’ understanding of
the robot’s capabilities and actions. Ideas generated arose
from a wide range of sources, including prior experience,
feedback from their partner, the robot, or from acting. Often
such feedback was received positively and served to guide
designers’ design strategies, but could have served as a source
for misleading feedback. For instance, in the first version of
Synthé, designers were prevented from customizing the robot’s
speech behaviors, yet continued to strive to achieve this ability.

Additionally, enhancing the planning process may further en
courage designers to generate ideas from within the interaction
design process, as well as relying on external sources. Not only
should features be included that support the heavy planning of
demonstrations or the addition of constraints that allow Synthé
to ignore certain undesirable actions, but features should be
included that allow for designers to recover from when their
demonstrations do not go according to plan. The ability to
begin a demonstration from the middle of a trace, rather than
from the beginning, could support the ability to recover. Sim
ilarly, the ability to begin a simulation from any state would
allow designers to rapidly test quick fixes their design.

The results from our quantitative analysis show that true to
bodystorming, brainstorming is an essential component of
Synthé. We found that the majority of design time was spent
brainstorming and that brainstorming was central to partici
pants’ workflows, as illustrated in Figure 8. The participant
workflows also show that although less overall time was spent
acting due to acting sessions generally being short, acting
was performed frequently. We therefore conclude that Synthé
supports bodystorming through brainstorming and acting.

Updated Version of Synthé
With the current version of Synthé, designers still expressed
frustration when the robot’s speech did not adhere to their
exact expectations, even when adhering to such expectations
would potentially cause the robot to contradict itself (e.g. the
robot may state a different price or location for an item than
what exists in its database). Future versions of Synthé may
need to be more explicit in the capabilities of each compo
nent of the design process. Furthermore, although designers
who used the updated version of Synthé were satisfied with
the scope of available gestures, having a library of prespeci
fied gestures may not be sufficient in certain design contexts.
At an airport, for instance, the robot may need to employ a
much wider variety of physical behaviors to suit the diverse
backgrounds of the humans interacting with it.

Rapid Design and Prototyping
In addition to designers’ feedback on our design method, we
also demonstrated the ability to rapidly prototype human-robot
interactions using our method in twenty-five minutes or less.
While many designers expressed that their designs were not
yet complete when their design time ended, designers objec
tively demonstrated the ability to create functioning prototypes

within the allotted time. Additionally, although many design
ers described their design process as thoughtfully planned out
either through outlining or rehearsing their demonstrations be
forehand, we believe that Synthé accommodates this planned
design strategy by requiring only a few traces before an inter
action is synthesized within a brief amount of time and ready
to be tested. In effect, designers have more time to plan their
designs, since fewer demonstrations are required.

Limitations
In addition to the areas of improvement outlined above, Syn
thé’s capabilities are limited to high-level prototyping due lack
of flexibility, namely the inability to manipulate low-level con
trols such as the timing and concurrency of robot behaviors.
Future versions of Synthé must integrate these details into the
trace editor or capture them from designers, as these low-level
details are integral to programming successful human-robot
interactions and common to other programming environments.
Furthermore, Synthé does not support designers creating their
speech and gesture categories from scratch, requiring them
to prespecify interaction components, which also limits the
ability to improvise interactions. Future versions of Synthé
can support on-the-fly designer creation and modification of
constraints, such as speech and gesture classifications, for the
design scenario at hand. Future work could also enable the
mimicry of designer gestures on the robot. Current capture and
retargeting methods may not ensure effective mimicry for all
robot platforms due to differences in geometry and kinematics.

Additionally, our method of interaction synthesis does not
currently distinguish between different behaviors that the hu
man or robot may emit within a single behavior class. Using
the help desk robot as an example, the existence of a prod
uct cannot easily be accounted for within when answering an
end user’s query for the location of an item in the store. If
designers want the robot to be able to make this distinction,
they need to perform separate demonstrations for each store
item, which assumes that speech classifications for each item
exists. Future versions of Synthé need to address this issue,
e.g., using a parameterized (symbolic) automaton alphabet.

CONCLUSION
In this paper, we presented Synthé, which enables pairs of
designers to rapidly prototype human-robot interactions via
bodystorming. Synthé uses a new symbolic program synthesis
algorithm to generalize demonstrations into a program that can
be deployed and simulated on a robot. We evaluated Synthé by
asking designers to bodystorm different interaction scenarios,
improved our system based on our findings, and demonstrated
the improved system in a follow-up study. Our application of
bodystorming within Synthé serves as an example for design-
support tools to address the unique design challenges involved
in creating interactive robotic technologies.

ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation
(NSF) award 1651129 and an NSF Graduate Research Fellow
ship. We thank Loris D’Antoni for pointing us to Neider’s
algorithm, and Linda Wu for her help in analyzing data.

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

488

REFERENCES
[1] Sonya Alexandrova, Maya Cakmak, Kaijen Hsiao, and

Leila Takayama. 2014. Robot programming by
demonstration with interactive action visualizations.. In
Robotics: science and systems. Citeseer.

[2] Fraser Anderson, Tovi Grossman, Justin Matejka, and
George Fitzmaurice. 2013. YouMove: enhancing
movement training with an augmented reality mirror. In
Proceedings of the 26th annual ACM symposium on
User interface software and technology. ACM, 311–320.

[3]	 Dana Angluin. 1987. Learning regular sets from queries
and counterexamples. Information and computation 75,
2 (1987), 87–106.

[4]	 Brenna D Argall, Sonia Chernova, Manuela Veloso, and
Brett Browning. 2009. A survey of robot learning from
demonstration. Robotics and autonomous systems 57, 5
(2009), 469–483.

[5] Shaowen Bardzell, Jeffrey Bardzell, Jodi Forlizzi, John
Zimmerman, and John Antanitis. 2012. Critical design
and critical theory: the challenge of designing for
provocation. In Proceedings of the Designing Interactive
Systems Conference. ACM, 288–297.

[6] Clark Barrett and Cesare Tinelli. 2018. Satisfiability

modulo theories. In Handbook of Model Checking.

Springer, 305–343.

[7] Aude Billard, Sylvain Calinon, Ruediger Dillmann, and
Stefan Schaal. 2008. Robot programming by
demonstration. Springer handbook of robotics (2008),
1371–1394.

[8] Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and
Alan Nichol. 2017. Rasa: Open source language
understanding and dialogue management. arXiv preprint
arXiv:1712.05181 (2017).

[9] Susanne Bødker. 1991. Through the interface-A human
activity approach to user interface design. DAIMI Report
Series 224 (1991).

[10] Alan Borning and Michael Muller. 2012. Next steps for
value sensitive design. In Proceedings of the SIGCHI
conference on human factors in computing systems.
ACM, 1125–1134.

[11]	 Terry Borton. 1969. Reach, Touch, and Teach. Saturday
Rev (1969).

[12] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.
2011. D3 data-driven documents. IEEE Transactions on
Visualization & Computer Graphics 12 (2011),
2301–2309.

[13] John Brooke and others. 1996. SUS-A quick and dirty
usability scale. Usability evaluation in industry 189, 194
(1996), 4–7.

[14] Marion Buchenau and Jane Fulton Suri. 2000.
Experience prototyping. In Proceedings of the 3rd
conference on Designing interactive systems: processes,
practices, methods, and techniques. ACM, 424–433.

[15] Colin Burns, Eric Dishman, Bonnie Johnson, and Bill
Verplank. 1995. Informance": Min (d) ing future
contexts for scenariobased interaction design. In
BayCHI (Palo Alto, August 1995). Abstract available at
http://www. baychi. org/meetings/archive/0895. html.

[16]	 Colin Burns, Eric Dishman, William Verplank, and Bud
Lassiter. 1994. Actors, Hairdos &
Videotape–Informance Design. In Conference
Companion on Human Factors in Computing Systems
(CHI ’94). ACM, New York, NY, USA, 119–120. DOI:
http://dx.doi.org/10.1145/259963.260102

[17] Pei-Yu Peggy Chi, Daniel Vogel, Mira Dontcheva,
Wilmot Li, and Björn Hartmann. 2016. Authoring
illustrations of human movements by iterative physical
demonstration. In Proceedings of the 29th Annual
Symposium on User Interface Software and Technology.
ACM, 809–820.

[18] Gabe Cohn, Daniel Morris, Shwetak Patel, and Desney
Tan. 2012. Humantenna: using the body as an antenna
for real-time whole-body interaction. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 1901–1910.

[19]	 Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An
efficient SMT solver. In International conference on
Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[20] J Dewey. 1933. How We Think. A Restatement of the
Relation of Reflective Thinking to the Educative Process,
Boston etc.(DC Heath and Company) 1933. (1933).

[21] Mira Dontcheva, Gary Yngve, and Zoran Popović. 2003.
Layered acting for character animation. In ACM
Transactions on Graphics (TOG), Vol. 22. ACM,
409–416.

[22]	 Batya Friedman, Peter H Kahn, and Alan Borning. 2008.
Value sensitive design and information systems. The
handbook of information and computer ethics (2008),
69–101.

[23] Bill Gaver and Heather Martin. 2000. Alternatives:
exploring information appliances through conceptual
design proposals. In Proceedings of the SIGCHI
conference on Human Factors in Computing Systems.
ACM, 209–216.

[24] Michael Gleicher. 1998. Retargetting motion to new
characters. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques. ACM,
33–42.

[25] Zhiwei Guan, Shirley Lee, Elisabeth Cuddihy, and
Judith Ramey. 2006. The validity of the stimulated
retrospective think-aloud method as measured by eye
tracking. In Proceedings of the SIGCHI conference on
Human Factors in computing systems. ACM,
1253–1262.

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

489

http://dx.doi.org/10.1145/259963.260102
http://www

[26]	 Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, and
others. 2017. Program synthesis. Foundations and
Trends® in Programming Languages 4, 1-2 (2017),
1–119.

[27] Justin Huang and Maya Cakmak. 2017. Code3: A
system for end-to-end programming of mobile
manipulator robots for novices and experts. In 2017 12th
ACM/IEEE International Conference on Human-Robot
Interaction (HRI. IEEE, 453–462.

[28] IBM. n.d. Speech to Text. (n.d.).
https://www.ibm.com/watson/services/speech-to-text/,
Accessed: 2019-07-15.

[29] Jun Kato, Sean McDirmid, and Xiang Cao. 2012.
DejaVu: integrated support for developing interactive
camera-based programs. In Proceedings of the 25th
annual ACM symposium on User interface software and
technology. ACM, 189–196.

[30]	 Scott R Klemmer, Björn Hartmann, and Leila Takayama.
2006. How bodies matter: five themes for interaction
design. In Proceedings of the 6th conference on
Designing Interactive systems. ACM, 140–149.

[31]	 Heather Knight and Reid Simmons. 2017. An intelligent
design interface for dancers to teach robots. In 2017
26th IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN). IEEE,
1344–1350.

[32]	 Arnold M Lund. 2001. Measuring usability with the use
questionnaire12. Usability interface 8, 2 (2001), 3–6.

[33] Elena Márquez Segura, Laia Turmo Vidal, and Asreen
Rostami. 2016. Bodystorming for movement-based
interaction design. Human Technology 12 (2016).

[34]	 Michael J Muller and Sara Kuhn. 1993. Special issue on
participatory design. Commun. ACM 36, 6 (1993),
24–28.

[35] Bilge Mutlu and Jodi Forlizzi. 2008. Robots in
organizations: the role of workflow, social, and
environmental factors in human-robot interaction. In
Proceedings of the 3rd ACM/IEEE international
conference on Human robot interaction. ACM, 287–294.

[36]	 Hermann Daniel Neider. 2014. Applications of automata
learning in verification and synthesis. (2014).

[37] Scott Niekum, Sachin Chitta, Andrew G Barto,
Bhaskara Marthi, and Sarah Osentoski. 2013.
Incremental Semantically Grounded Learning from
Demonstration.. In Robotics: Science and Systems,
Vol. 9. Berlin, Germany.

[38] Scott Niekum, Sarah Osentoski, George Konidaris, and
Andrew G Barto. 2012. Learning and generalization of
complex tasks from unstructured demonstrations. In
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 5239–5246.

[39] Jakob Nielsen. 1994. Usability engineering. Elsevier.

[40] Antti Oulasvirta, Esko Kurvinen, and Tomi Kankainen.
2003. Understanding contexts by being there: case
studies in bodystorming. Personal and ubiquitous
computing 7, 2 (2003), 125–134.

[41]	 Mike Phillips, Victor Hwang, Sachin Chitta, and Maxim
Likhachev. 2016. Learning to plan for constrained
manipulation from demonstrations. Autonomous Robots
40, 1 (2016), 109–124.

[42] David Porfirio, Allison Sauppé, Aws Albarghouthi, and
Bilge Mutlu. 2018. Authoring and verifying
human-robot interactions. In The 31st Annual ACM
Symposium on User Interface Software and Technology.
ACM, 75–86.

[43]	 Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and
Bruno Maisonnier. 2009. Choregraphe: a graphical tool
for humanoid robot programming. In Robot and Human
Interactive Communication, 2009. RO-MAN 2009. The
18th IEEE International Symposium on. IEEE, 46–51.

[44] Rodrigo Pimentel. 2019. Chatito. (2019).
https://rodrigopivi.github.io/Chatito/, Accessed:
2019-07-15.

[45] Stan Salvador and Philip Chan. 2007. Toward accurate
dynamic time warping in linear time and space.
Intelligent Data Analysis 11, 5 (2007), 561–580.

[46] Allison Sauppé and Bilge Mutlu. 2014. Design patterns
for exploring and prototyping human-robot interactions.
In Proceedings of the 32nd annual ACM conference on
Human factors in computing systems. ACM, 1439–1448.

[47] Dennis Schleicher, Peter Jones, and Oksana Kachur.
2010. Bodystorming as embodied designing.
Interactions 17, 6 (2010), 47–51.

[48] Donald A Schön. 1987. Educating the reflective
practitioner. (1987), 8–9.

[49] Donald A Schön. 1992. Designing as reflective
conversation with the materials of a design situation.
Knowledge-based systems 5, 1 (1992), 11.

[50] Phoebe Sengers, Kirsten Boehner, Shay David, and
Joseph’Jofish’ Kaye. 2005. Reflective design. In
Proceedings of the 4th decennial conference on Critical
computing: between sense and sensibility. ACM, 49–58.

[51] David Sirkin and Wendy Ju. 2014. Using embodied
design improvisation as a design research tool. In
Proceedings of the international conference on Human
Behavior in Design (HBiD 2014), Ascona, Switzerland.

[52] David Sirkin and Wendy Ju. 2015. Embodied design
improvisation: a method to make tacit design knowledge
explicit and usable. In Design Thinking Research.
Springer, 195–209.

[53] David Sirkin, Brian Mok, Stephen Yang, and Wendy Ju.
2015. Mechanical ottoman: how robotic furniture offers
and withdraws support. In Proceedings of the Tenth
Annual ACM/IEEE International Conference on
Human-Robot Interaction. ACM, 11–18.

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

490

https://www.ibm.com/watson/services/speech-to-text/
https://rodrigopivi.github.io/Chatito/

[54] Alexander Skoglund, Boyko Iliev, Bourhane Kadmiry,
and Rainer Palm. 2007. Programming by demonstration
of pick-and-place tasks for industrial manipulators using
task primitives. In 2007 International Symposium on
Computational Intelligence in Robotics and Automation.
IEEE, 368–373.

[55] Brian K Smith. 2014. Bodystorming mobile learning
experiences. TechTrends 58, 1 (2014), 71–76.

[56]	 Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. 2006. Combinatorial
sketching for finite programs. ACM Sigplan Notices 41,
11 (2006), 404–415.

[57]	 Marco Spadafora, Victor Chahuneau, Nikolas Martelaro,
David Sirkin, and Wendy Ju. 2016. Designing the
behavior of interactive objects. In Proceedings of the

TEI’16: Tenth International Conference on Tangible,

Embedded, and Embodied Interaction. ACM, 70–77.

[58] Steve Stemler. 2001. An overview of content analysis.
Practical assessment, research & evaluation 7, 17
(2001), 137–146.

[59] Thalmic Labs. 2016. Myo Blog. (2016).
https://developerblog.myo.com/, Accessed: 2019-07-15.

[60] Willemien Visser. 2010. Schön: Design as a reflective
practice. Collection 2 (2010), 21–25.

[61]	 Ji-Dong Yim and Christopher D Shaw. 2009. Designing
CALLY: a cell-phone robot. In CHI’09 Extended
Abstracts on Human Factors in Computing Systems.
ACM, 2659–2662.

Session 4B: Human-Robot Interaction

UIST '19, October 20–23, 2019, New Orleans, LA, USA

491

https://developerblog.myo.com/

	Introduction
	Related Work
	Embodied Design Methods
	Reflective Design Methods
	Design Tools & Environments
	Computational Methods

	Synthé: Design and Implementation
	Bodystorming: Capturing Intent
	Program Synthesis
	Supporting Visualization and Editing
	System Implementation

	Evaluation
	Design Sessions
	Results
	Theme 1: Idea Generation and Feedback
	Theme 2: Constraints in Design Ideation
	Theme 3: Mental Models of Synthé
	Theme 4: Acting Experience
	Theme 5: Use of Gestures and Props

	Design Improvements
	Follow-up Study

	Discussion
	Implications from Empirical Evaluation
	Updated Version of Synthé
	Rapid Design and Prototyping
	Limitations

	Conclusion
	Acknowledgements
	References

