
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HIERARCHY DECODING: A TRAINING-FREE PARAL-
LEL DECODING STRATEGY FOR DIFFUSION LARGE
LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The utilization of Large language models (LLMs) has become increasingly
widespread, and has attracted considerable attention. Although the emergence
of Discrete Diffusion Large Language Models (dLLMs) mitigates the inference
latency inherent in autoregressive LLM decoding, its computational overhead re-
mains substantial. To address this challenge, we propose Hierarchy-dLLM, a
hierarchical decoding framework inspired by the divide-and-conquer principle.
Our method recursively partitions masked spans into smaller sub-decoding areas
and decodes tokens according to their confidence, which substantially increases
the number of tokens generated per forward pass and improves information uti-
lization. Extensive experiments conducted on multiple benchmarks demonstrate
that Hierarchy-dLLM achieves accuracy comparable to or even surpassing ex-
isting baselines. Meanwhile, it is up to 17× faster than vanilla decoding and
about 1.5× faster than the Fast-dLLM. These results establish hierarchical de-
coding as a practical solution for efficient large language model inference. The
implementation is available at https://anonymous.4open.science/r/
Hierarchy-dLLM-anonymous-65C1/.

1 INTRODUCTION

Although autoregressive (AR) large language models (Radford & Narasimhan, 2018) currently dom-
inate the field, Diffusion large language models (dLLMs) (Yu et al., 2025a) are gaining momentum
within the research community due to their unique potential for parallel decoding. In AR decoding,
tokens are generated sequentially, which constrains efficiency and limits opportunities for paral-
lelization. In contrast, dLLMs reconstruct linguistic sequences through iterative denoising with
bidirectional attention, enabling simultaneous refinement of multiple tokens and thus parallel de-
coding (Li et al., 2022). Such a property not only improves scalability but also opens new research
directions for developing more efficient and flexible decoding strategies.

In practice, however, comparable performance has yet to be observed in the open-source community,
despite several commercial closed-source dLLMs claiming impressive throughput (Google Deep-
Mind, 2025; Khanna et al., 2025; Song et al., 2025b). A key reason lies in the architectural trade-off
of dLLMs: by adopting bidirectional attention, th ly slower than that of autoregressive models of
similar size. To compensate, dLLMs must achieve substantial gains from parallel decoding. How-
ever, representative open-source models such as LLaDA (Zhu et al., 2025) and Dream (HKUNLP,
2025) default to greedy decoding, generating only one token per step. This approach makes their
efficiency fall short of AR models, underscoring why accelerating parallel decoding has become a
central research focus for dLLMs.

Yet, attempts to scale up parallel decoding face intrinsic difficulties, often referred to as the curse
of parallel decoding (Wu et al., 2025). This curse arises because tokens predicted within the same
decoding step should satisfy a conditional independence assumption; otherwise, forcing them to be
generated simultaneously can lead to substantial performance degradation. For example, given the
sentence “In the classroom, Alice arranged pens, papers, and books neatly on her desk before the
teacher began the lesson”, parallel prediction may produce incoherent outputs such as “pens, pens,
and pens”, illustrating how naive parallel decoding can undermine semantic consistency.

1

https://anonymous.4open.science/r/Hierarchy-dLLM-anonymous-65C1/
https://anonymous.4open.science/r/Hierarchy-dLLM-anonymous-65C1/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While existing studies primarily focus on confidence-based criteria to determine which tokens
should be decoded at each step, such approaches commonly ignore how the spatial distribution
of undecoded positions affects the decoding process. To better understand this factor, we conducted
a preliminary study, and observed that when undecoded tokens are sparsely scattered across the
sequence, one-pass decoding produces a token distribution that closely matches step-by-step gener-
ation. In contrast, when undecoded tokens form consecutive spans, the resulting distribution exhibits
substantial divergence from step-wise generation, leading to pronounced distributional drift. These
observations highlight the necessity of incorporating spatial structure into decoding strategies for
diffusion-based language models.

To address this challenge, we introduce Hierarchy-dLLM, a novel hierarchical parallel decoding
framework inspired by the divide-and-conquer paradigm. Rather than treating all masked posi-
tions equally, Hierarchy-dLLM dynamically partitions masked tokens into independent subordinate
decoding areas according to the positions of decoded tokens. The proposed decoding strategy is ex-
ecuted independently across individual decoding areas, which allows multiple areas to be decoded
in parallel and leads to a significant improvement in overall decoding efficiency.

Our main contributions can be summarized as follows:

1. We performed a comprehensive analysis of the dLLM decoding mechanism. We found that
preserving a sparse layout of undecoded tokens within the sequence can effectively reduce
distributional drift, thus improving the stability and accuracy of parallel decoding.

2. We propose Hierarchy-dLLM, to the best of our knowledge the first position-based decod-
ing framework for diffusion-based large language models, which systematically leverages
divide-and-conquer principles to enhance parallel decoding.

3. We conduct extensive experiments demonstrating that Hierarchy-dLLM achieves superior
trade-offs between inference speed and generation quality compared with existing open-
source dLLM baselines, running up to 17× faster than vanilla decoding and 1.5× faster
than Fast-dLLM.

XXX

XXX

Segmentation 1 Segmentation 2 Segmentation 3

Consecutive Mask

Sparse Mask

XOriginal tokens Masked tokens

(a) Pre-study

2 4 6 8 10
Number of Tokens 

0

2

4

6

Av
er

ag
e 

KL
 D

iv
er

ge
nc

e

Approximate KL Divergence of Masked Tokens 
 on Humaneval (Mean ± SEM)

Consecutive Mask
Consecutive SEM
Sparse Mask
Consecutive SEM

(b) HumanEval

2 4 6 8 10
Number of Tokens 

0

1

2

3

Av
er

ag
e 

KL
 D

iv
er

ge
nc

e

Approximate KL Divergence of Masked Tokens 
 on GSM8K (Mean ± SEM)

Consecutive Mask
Consecutive SEM
Sparse Mask
Consecutive SEM

(c) GSM8k

Figure 1: Average KL-Divergence of Masked Tokens Over Number of Tokens. (a) shows two
masking methods used in our study: Consecutive Mask, where tokens are masked as a contiguous
block, and Sparse Mask, where masked tokens are scattered across multiple positions. (b) and (c)
report the average KL divergence (mean ± SEM) of masked tokens under these two strategies on
HumanEval and GSM8k official answers, respectively. The results indicate that Consecutive Mask
generally yields larger KL divergence compared to Sparse Mask, suggesting that scattered masking
provides more stable token-level predictions across decoding steps.

2 PRELIMINARY STUDY

2.1 DLLM INFERENCE PROCESS

Within the framework of dLLMs, the current mainstream instantiation is the Masked Diffusion
Model (MDM) (Shi et al., 2025). We therefore focus our discussion on MDMs in this subsection.
Unlike traditional autoregressive models (ARMs) that rely on the chain rule for left-to-right pre-
diction, MDMs construct probabilistic models via masked token prediction, thereby naturally sup-
porting bidirectional context modeling and alleviating several limitations of ARMs such as reversal
reasoning difficulties and temporal distribution shifts.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Problem setting. Let V denote a fixed vocabulary. We define a sequence X = (x1, x2, . . . , xL),
where each element xi ∈ V represents a token drawn from the vocabulary, and L ∈ N denotes the
length of the sequence. MDMs define a forward masking process that progressively replaces tokens
with a special mask symbol [MASK]. At time t ∈ [0, 1], the noisy sequence Xt is sampled as

qt|0(Xt|X0) =

L∏
i=1

qt|0(x
i
t|xi

0), qt|0(x
i
t|xi

0) =

{
1− t, xi

t = xi
0,

t, xi
t = M.

(1)

As t→ 1, the sequence becomes fully masked.

Reverse process. The reverse process recovers the original data distribution by iteratively predict-
ing masked tokens:

qs|t(Xs|Xt) =

L∏
i=1

qs|t(x
i
s|Xt), (2)

where

qs|t(x
i
s|Xt) =


1, xi

t ̸= M, xi
s = xi

t,
s
t , xi

t = M, xi
s = M,

t−s
t q0|t(x

i
s|Xt), xi

t = M, xi
s ̸= M,

0, otherwise.

(3)

Decoding process. During generation, MDMs start from a fully masked sequence (t = 1) and
gradually denoise toward t = 0. Let p0 denotes the original prompt, rt denotes a fully masked
sequence and ci is masked tokens in rt. Then, the start state of decoding process can be denoted as
Xt = concat(p0, rt). At each step, the model assigns a predictive distribution over the true values
of selected masked tokens:

xi
s = argmax pθ(Xs | Xt), (4)

and a proportion s
t of the tokens remain masked according to their confidence, such that only one

token is decoded in each step when s
t is scheduled accordingly, and the reverse process remains

consistent with the forward process. Importantly, s
t is a tunable parameter that controls the trade-

off between speed and fidelity: smaller values correspond to more tokens being decoded at once
(fewer steps, higher efficiency), whereas larger values yield fewer tokens per step (more steps, better
generation quality).

Semi-Autoregressive Diffusion Decoding. To further enhance quality and controllability, Semi-
Autoregressive Diffusion Decoding (SADD) has been introduced. The idea is to divide the sequence
into multiple blocks and generate them sequentially from left to right. Within each block, however,
the MDM reverse process (with random or low-confidence remasking) is applied in parallel. This
hybrid approach combines the global consistency of diffusion with the sequential structure of au-
toregression, yielding better performance on complex reasoning and dialogue tasks. This hybrid
strategy has been employed in recent dLLMs such as LLaDA (Nie et al., 2025a) and MMaDA (?).

2.2 PARALLEL DECODING ANALYSIS

DLLMs are designed to utilize their parallel ability to accelerate the decoding process of LLMs,
but most open-source dLLMs fail the expectation because of their incompatibility between paral-
lelism and accuracy. During decoding, the sampling procedure defined in Equation 4 produces only
the marginal distribution for each token, p(xi

s | xt), for i = {1, . . . , L}. However, parallel de-
coding requires access to the joint distribution over multiple tokens to be decoded simultaneously:
p(x1

j , x
2
j , . . . , x

k
j | Xt), where k denotes the number of tokens generated in one parallel decoding

step. This discrepancy gives rise to a methodological challenge, namely that parallel decoding must
approximate the joint distribution using only the available marginals p(xi

j | Xt). Designing effec-
tive approximation strategies for bridging this gap constitutes a central problem in the development
of parallel decoding algorithms.

To gain empirical insights into this theoretical inconsistency, we investigate how the positional dis-
tribution of previously decoded tokens affects the decoding process. In principle, the consistency
of different decoding strategies can be quantitatively assessed by the Kullback–Leibler divergence

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

KL(pstepwise(x) ∥ pone-pass(x)). However, directly computing the standard KL divergence over multi-
step generation is computationally intractable. Therefore, we employ an approximation where n
denotes the number of masked tokens, and their step-by-step generation is regarded as the ground
truth. Specifically, given the logits zstep from stepwise decoding, we take the most probable token
index

i∗ = argmax
v∈V

zstep
v , (5)

and approximate the ground-truth distribution as one-hot, i.e., pstepwise(v) ≈ 1[v=i∗]. For the one-
pass prediction, we compute

pone-pass(v) = softmax(zonce)v. (6)

Under this approximation, the KL divergence reduces to the negative log-likelihood of the one-pass
model at i∗:

KLapprox = −
n∑

j=1

log pone-pass(i
∗
j ), (7)

where i∗j is the argmax token in the j-th masked position determined by stepwise decoding. This
formulation can be interpreted as a cross-entropy surrogate of the KL divergence, where one-hot
targets make the comparison tractable and are standard in language modeling (Goldberg, 2017).

We evaluate the proposed approximation on two representative benchmarks: HumanEval (Chen
et al., 2021), which focuses on code generation, and GSM8k (Cobbe et al., 2021), which targets
mathematical reasoning. The experimental results are presented in Fig. 1. On both benchmarks, the
approximate KL divergence under the consecutive masking strategy increases steadily as the num-
ber of masked tokens grows, with a markedly faster growth rate compared to the sparse masking
strategy. In contrast, sparse masking maintains consistently low divergence across decoding steps.
This observation suggests that sparse masking allows dLLMs to make better use of bidirectional
self-attention. Specifically, by leaving unmasked anchor positions interleaved throughout the in-
put, sparse masking enables the model to attend to reliable contextual signals from both left and
right neighborhoods of each masked position, thereby improving the robustness and consistency of
parallel decoding.

These results suggest that the sparse mask offers substantial advantages in mitigating distributional
shift and maintaining decoding stability. This empirical robustness is consistent with our preliminary
observation: when most tokens in a sequence are already decoded, the undecoded tokens approx-
imate the ground truth more closely if they are sparsely scattered across the text rather than being
continuously clustered. Motivated by this finding, we hypothesize that if undecoded tokens can be
structurally organized to mimic such sparse distributions through an appropriate decoding strategy, it
becomes possible to accelerate the generation process while preserving or even improving decoding
accuracy.

3 METHODOLOGY

Building on our preliminary study, we find that sparse masking—where undecoded tokens remain
sparsely scattered—suppresses distributional shift and stabilizes decoding. This effect arises be-
cause sparsity enables more effective use of bidirectional attention, guiding predictions toward the
ground truth. Motivated by this observation, we propose a divide-and-conquer framework that par-
titions undecoded sequences into smaller subproblems, allowing parallel resolution that both accel-
erates generation and reduces bias.

3.1 DIVIDE-AND-CONQUER DECODING STRUCTURE

To achieve efficient and stable text generation, we design the model with a divide-and-conquer de-
coding structure, which progressively resolves masked spans through an iterative process of initial-
ization, decoding, and subdivision. This design seeks to balance decoding efficiency with generation
accuracy by breaking down the complex decoding task into smaller, well-structured units. The hier-
archical organization prevents the model from predicting overly dependent tokens in the same step,
converting the difficulty of parallel decoding into a series of more tractable sub-problems.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Masked tokens Unmasked tokens Decoding areas Decode Partition

① Initialize the decoding area.

② Try to decode at
least one token within 
each area according to 
confidence.

③ Partition 
sub-decoding areas 
based on the tokens 
decoded.

④ Iterate steps 2 and 3 
within each decoding area.

Figure 2: Illustration of Hierarchy-dLLM. The decoding process starts by initializing a decoding
area, then decoding tokens based on confidence, and partitioning sub-areas according to the decoded
tokens. Steps 2 and 3 are iteratively applied within each sub-decoding area, enabling efficient multi-
token decoding while preserving accuracy.

Initialization stage. Before decoding begins in each block, the block is represented as a contiguous
span of masked tokens with a predefined length l. This masked span serves as the initial sub-
decoding areas, providing a structured starting point for the generation process.

Decoding stage. Each sub-decoding area is processed independently and in parallel, following the
decoding strategy introduced in Section 3.2. The objective is to maximize decoding efficiency while
trying to ensure that each block yields at least one valid token. By decoding in parallel across
multiple sub-areas, the model inherently possesses significant structural potential for acceleration.

Subdivision stage. Tokens generated in the previous step act as anchors to partition the remaining
masked regions. Every contiguous span of undecoded tokens is split into smaller, independent sub-
decoding areas, which are then processed in the next iteration. This recursive partitioning gradually
reduces the decoding problem to smaller segments, simplifying the generation task.

The decoding and subdivision stages are repeated iteratively until no masked tokens remain in any
decoding block. Through this iterative refinement process, the model incrementally resolves all
masked positions while maintaining stability and coherence in the generated sequence. Overall,
the divide-and-conquer decoding structure provides a principled framework that achieves O(log n)-
level acceleration while fully exploiting the rich contextual information inherent in the bidirectional
attention mechanism of dLLMs. This design not only ensures substantial efficiency gains but also
preserves decoding accuracy, thereby offering a scalable and reliable foundation for subsequent
stages of our model.

3.2 DECODING STRATEGIES WITHIN SUB-DECODING AREAS

The greatest challenge in the divide-and-conquer structure lies in how to decode effectively within
each sub-decoding area. Our objective is to decode as many tokens as possible at each step while
minimizing the risk of introducing errors that propagate through later iterations. To formalize this,
let pθ(xi

s | Xt) denote the model’s posterior probability of predicting token xi
s at position i in the

s-th decoding step, given the current corrupted sequence Xt. We then define the confidence score
for position i as

ci = max
v∈V

pθ(x
i
s = v | Xt). (8)

A natural starting point is to decode tokens only when they are sufficiently reliable. Let A denote a
sub-decoding area. Concretely, whenever ci surpasses a high threshold τhigh,

xi
s = argmax

v∈V
pθ(x

i
s = v | Xt), if ci ≥ τhigh, i ∈ A, (9)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the corresponding token is committed to the sequence. This simple rule favors semantic stability,
since only high-confidence tokens are introduced, and it also allows multiple positions within A to
be decoded in parallel when the evidence is strong.

Yet in practice, some sub-decoding areas may not contain any tokens above the high threshold, as
the underlying probability distribution over the vocabulary can be relatively flat in these regions,
leaving all candidate tokens with comparable but low confidence scores. If we decode nothing in
such cases, progress slows dramatically; if we force a decision, performance can suffer. To mitigate
this trade-off, we relax the condition: when no position meets equation 9, we still allow one token to
be decoded, namely the most confident candidate inA, provided that its confidence exceeds a lower
threshold τlow,

xi∗

s = argmax
v∈V

pθ(x
i∗

s = v | Xt), if i∗ = argmax
i∈A

ci, ci
∗
≥ τlow. (10)

This adaptive rule ensures that each area contributes meaningfully while preventing the premature
incorporation of extremely unreliable predictions.

These two conditions, however, may occasionally leave an iteration without any decoded tokens.
This typically happens in more challenging cases, where the model cannot confidently commit to a
prediction, so that the probability distribution over the vocabulary is relatively flat across positions
and all candidate tokens fall below the relaxed threshold τlow. To avoid stalling, we enforce steady
progress by always decoding the globally most confident position when necessary:

xi†

s = argmax
v∈V

pθ(x
i†

s = v | Xt), if i† = arg max
i∈{1,...,L}

ci. (11)

This fallback guarantees that every step yields at least one decoded token.

Finally, as decoding advances, early predictions can become inconsistent with the evolving context,
reflected by a noticeable confidence drop. To adaptively correct such cases, we introduce a remask-
ing step: before repartitioning into sub-decoding areas, all decoded tokens are checked, and any
token with ci < τremask is replaced by the mask symbol [MASK],

xi
s = [MASK] if ci < τremask. (12)

This prevents error accumulation and helps maintain global coherence throughout the sequence.

Taken together, our decoding strategy begins with a strict high-threshold rule, then gradually relaxes
through a controlled low-threshold selection, incorporates a fallback to guarantee steady progress,
and finally applies a remasking step to revise unreliable predictions. In following this progressively
relaxed procedure, the strategy adheres to a best-effort principle, since it encourages decoding when-
ever trustworthy evidence is available while postponing or correcting low-confidence tokens, thereby
balancing efficiency, token-level reliability, and contextual coherence under the bidirectional atten-
tion mechanism of dLLMs.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

We implement the proposed Hierarchy-dLLM framework on three open-source models:
llada-instruct-8B, llada-1.5-8B, and Dream-7B, and evaluate it on four widely used
benchmarks: GSM8K and MATH500 (Lightman et al., 2023) for mathematical reasoning, and Hu-
manEval and MBPP (Austin et al., 2021) for code generation, with few-shot settings adopted in
accordance with Nie et al. (2025b) and Zhu et al. (2025). To provide a comprehensive assessment
of performance and efficiency, We compare Hierarchy-dLLM against both vanilla autoregressive
decoding and the parallel decoding scheme of Fast-dLLM. All experiments are run on a single
NVIDIA H20 GPU. Unless otherwise specified, the block size is set to 32 and the generation length
to 512. For hyperparameter tuning, we conduct a grid search where τhigh ranges from 0.78 to 0.88,
τlow ranges from 0.3 to 0.5, and τremask is either disabled or chosen between 0.3 and 0.35. The exact
settings and implementation details are available in our released code. We report performance using
Pass@1 accuracy, and efficiency is measured with tokens per forward call (TPF) and throughput per
second (TPS). Note that TPS excluds the eos token, and for consistency, we also exclude the eos
token in TPF. All evaluations are conducted with the lm-eval (Gao et al., 2024) library to ensure
consistency and reproducibility.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Main results of Hierarchy-dLLM on the LLaDA-1.5-8B model across four bench-
marks. We report task performance (Accuracy Score) and decoding efficiency. Efficiency is mea-
sured by TPS (throughput per second), reflecting practical throughput, and TPF (tokens per forward
call), indicating how many tokens are decoded per model invocation. Values in parentheses denote
the relative performance change compared to the baseline and the speedup factor with respect to
decoding efficiency. The best performance and highest TPS/TPF are highlighted in bold.

Task Method
LLaDA-Instruct-8B LLaDA-1.5-8B

Performance Speed Performance Speed

Score ↑ TPF ↑ TPS ↑ Score ↑ TPF ↑ TPS ↑

GSM8K
Vanilla 77.26 0.52 2.35 83.17 0.65 1.99

Fast-dLLM 77.86(0.6+) 2.85(5.48×) 12.80 (5.45×) 83.32(0.15+) 3.10(4.77×) 9.54(4.79×)
Hierarchy-dLLM 77.18(0.08−) 3.79(7.29×) 19.41(8.26×) 83.70(0.53+) 4.25(6.54×) 14.83(7.45×)

Math500
Vanilla 41.20 0.83 7.87 39.80 0.84 7.96

Fast-dLLM 40.60(0.6−) 2.71(3.27×) 24.99(3.17×) 39.40(0.4−) 2.79(3.32×) 25.81(3.24×)
Hierarchy-dLLM 41.60(0.4+) 3.53(4.25×) 37.34(4.74×) 41.60(1.8+) 3.99(4.75×) 42.25(5.31×)

Humaneval
Vanilla 43.90 0.93 8.56 43.29 0.93 8.56

Fast-dLLM 43.90(0+) 2.94(3.16×) 27.12(3.17×) 42.07(1.22−) 2.97(3.19×) 27.45(3.21×)
Hierarchy-dLLM 44.51(0.61+) 3.93(4.23×) 41.52 (4.85×) 45.12(1.83+) 4.20(4.52×) 44.18(5.16×)

MBPP
Vanilla 37.60 0.13 0.65 40.20 0.16 0.80

Fast-dLLM 37.60(0+) 1.73(10.81×) 7.26(11.17×) 40.40(0.2+) 10.76(10.76×) 8.40(10.5×)
Hierarchy-dLLM 37.60(0+) 2.03(15.62×) 11.20(17.23×) 40.40(0.2+) 2.29(14.31×) 12.70(15.88×)

4.2 MAIN RESULTS

Across four benchmarks and three model families, Hierarchy-dLLM consistently delivers strong
accuracy while achieving the highest decoding efficiency.

Based on the experimental results on LLaDA-1.5-8B and LLaDA-Instruct-8B, Hierarchy-dLLM
achieves the best of both worlds—higher accuracy than both vanilla and Fast-dLLM baselines while
providing the fastest decoding. The method shows the most notable gains on mathematical reasoning
tasks of GSM8K and Math500, where it not only accelerates throughput by up to 17× over baselines
but also improves accuracy by about 1 point, indicating its ability to mitigate error accumulation
in long reasoning chains. On code generation tasks of HumanEval and MBPP, Hierarchy-dLLM
maintains or slightly improves accuracy while substantially increasing speed, with TPF gains up to
10×, underscoring its suitability for deterministic token generation.

On the Dream-7B model, we observe that Hierarchy-dLLM still brings comparable speedup gains,
achieving large improvements in both TPF and TPS across all four benchmarks while maintaining
stable performance. This confirms that the hierarchical mechanism consistently enhances decoding
efficiency even on models trained with different architectures. However, compared to LLaDA, the
absolute performance of Dream-7B with Hierarchy-dLLM achieves comparable speedups while its
accuracy drop is no larger than, and sometimes smaller than, Fast-dLLM. We attribute this to Dream
originating from an autoregressive base model, which provides weaker inherent support for parallel
decoding and thus limits quality preservation compared to models with stronger parallelism.

Overall, Hierarchy-dLLM offers a unified acceleration framework that simultaneously improves or
preserves task performance while substantially reducing inference cost across diverse settings.

4.3 ABOLITION STUDY AND ANALYSIS

Unless otherwise specified, all ablation studies are conducted on the GSM8k dataset using the
LLaDA-1.5-8B model. The generation length is fixed to 512 and the block length to 32, with all
other hyperparameters kept identical to those in Section 4.1.

Impact of different Generation Length. To investigate the impact of block length, we fix the
generation length to 512 and evaluate the performance of the baseline model and Hierarchy-dLLM
with block sizes of 16, 32, and 64. As shown in Table 3, while the performance of both methods re-
mains stable across different block sizes, Hierarchy-dLLM consistently achieves significantly higher
TPF and TPS compared to vanilla decoding. Moreover, its advantage becomes more pronounced

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Main results of Hierarchy-dLLM on the Dream-7B model across four benchmarks.

Task Method Performance Speed
Score ↑ TPF ↑ TPS ↑

GSM8K
Vanilla 75.8 1.00 4.76

Fast-dLLM 73.8(2−) 2.08(2.08×) 9.30(1.95×)
Hierarchy-dLLM 73.2(2.6−) 2.61(2.61×) 12.39(2.60×)

Math500
Vanilla 17.8 1.00 10.41

Fast-dLLM 12.0(5.8−) 2.32(2.32×) 21.45(2.06×)
Hierarchy-dLLM 16.0(1.8−) 3.17(3.17×) 32.54(3.13×)

Humaneval
Vanilla 54.9 1.00 9.69

Fast-dLLM 50.6(4.3−) 2.08(2.08×) 18.12(1.87×)
Hierarchy-dLLM 51.8(3.1−) 2.61(2.61×) 25.32(2.61×)

MBPP
Vanilla 56.8 1.0 5.97

Fast-dLLM 54.6(2.2−) 4.35(4.35×) 23.57(3.96×)
Hierarchy-dLLM 54.4(2.4−) 5.06(5.06×) 29.89(5.01×)

as the block length increases, demonstrating that the hierarchical design effectively sustains high
throughput under larger decoding blocks.

Impact of different Block Length. As reported in Table 4, the TPS of dLLMs decreases as
the generation length grows, which can be attributed to the bidirectional self-attention mechanism:
longer sequences require more computation per decoding step. Although Hierarchy-dLLM is also
affected, the slowdown is considerably mitigated compared to vanilla decoding. Consequently, the
speedup ratio of Hierarchy-dLLM increases with generation length, while its performance exhibits a
similar upward trend to the baseline, demonstrating stable efficiency and effectiveness under longer
decoding scenarios.

Table 3: Performance and Speed on GSM8K
with Different Generation Lengths.

Gen Length Method Performance Speed

Score ↑ TPF ↑ TPS ↑

256
LLaDA-1.5-8B 82.29 0.97 4.13

Hierarchy-dLLM 81.34 4.38 (4.52×) 18.53 (4.49×)

512
LLaDA-1.5-8B 83.17 0.65 1.99

Hierarchy-dLLM 83.70 4.25 (6.54×) 14.83 (6.45×)

1024
LLaDA-1.5-8B 84.38 0.26 0.76

Hierarchy-dLLM 84.31 3.09 (11.88×) 9.06 (11.92×)

Table 4: Performance and Speed on GSM8K
with Different Block Lengths

Block Length Method Performance Speed

Score ↑ TPF ↑ TPS ↑

16
LLaDA-1.5-8B 83.40 0.69 2.22

Hierarchy-dLLM 81.58 3.52(5.10×) 12.89(5.81×)

32
LLaDA-1.5-8B 83.17 0.66 2.13

Hierarchy-dLLM 83.70 4.25 (6.44×) 14.83 (6.96×)

64
LLaDA-1.5-8B 83.85 0.64 1.98

Hierarchy-dLLM 81.35 4.69 (7.23×) 17.18 (8.68×)

Effects of adjusting the threshold and low-threshold hyperparameters. The effect of thresh-
old and low threshold settings on performance and speed is examined when remasking is disabled.
Fig. 3a reports the score and TPS as the high threshold τhigh varies, with low threshold τlow fixed
at 0.3. Fig. 3a shows the counterpart results when τlow varies with τhigh fixed at 0.82. Across both
settings, the performance of Hierarchy-dLLM remains relatively stable at a high level, indicating
robustness to threshold choices. By contrast, TPS is more sensitive: increasing τhigh leads to a
noticeable decline in efficiency, while changes in τlow only cause minor variations in TPS. These
findings suggest that selecting a moderately small τhigh is crucial to balancing accuracy and effi-
ciency, whereas τlow has a negligible impact, reflecting that the model is resilient to uncertainty
pruning in low-confidence regions.

Comparison with naive parallel sampling. We further compare Hierarchy-dLLM with a vanilla
parallel decoding strategy where a fixed number of tokens, including the eos token, are sampled in
each step so that the total token count divided by sampling steps matches the intended parallel factor.
As shown in Fig. 3c, increasing the number of tokens per step rapidly degrades the performance of
vanilla parallel decoding despite the speed gain, leading to a poor speed–accuracy trade-off. In
contrast, Hierarchy-dLLM maintains consistently high performance even under high TPF, while
preserving substantial speed improvements. This demonstrates that Hierarchy-dLLM achieves a
more favorable balance between efficiency and accuracy compared to naive parallel decoding.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88
Threshold

65

70

75

80

85

Sc
or

e

score
tps

20

21

22

23

24

25

TP
S

(a) Score and TPS vs. τhigh

0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48
Low Threshold

65

70

75

80

85

Sc
or

e

score
tps

20

21

22

23

24

25

TP
S

(b) Score and TPS vs. τlow

2 4 6 8 10
TPF (with eos token)

50

60

70

80

Sc
or

e

Vanilla Parallel Decoding
Hierarchy-dLLM

(c) Score vs. TPF(with eos)

Figure 3: Joint Analysis of Accuracy and Efficiency On GSM8K (a) Score and TPS with varying
τhigh while fixing τlow = 0.3. (b) Score and TPS with varying τlow while fixing τhigh = 0.82. (c)
Comparison of score versus TPF between vanilla parallel decoding and Hierarchy-dLLM.

5 RELATED WORKS

5.1 DIFFUSION LARGE LANGUAGE MODELS

Diffusion modeling for language has emerged as a promising alternative to autoregression, evolv-
ing from score entropy methods (Lou et al., 2024) to masked formulations with improved training
efficiency (Shi et al., 2025) and scaling properties comparable to AR models (Nie et al., 2025a).
Early foundations of discrete diffusion were established by Austin et al. (2023), highlighting the
importance of transition matrix design and drawing connections to autoregressive and mask-based
modeling. Building on these developments, large-scale systems such as LLaDA demonstrate com-
petitive or even superior performance to strong AR baselines (Nie et al., 2025b), while extensions
adapt diffusion to multimodality and robotics (Wen et al., 2025; Yang et al., 2025). Complementary
work like DREAM enhances reasoning controllability in autoregressive models (HKUNLP, 2025).

5.2 ACCELERATION TECHNIQUES FOR DLLMS

Existing efforts on accelerating dLLMs can be broadly grouped into two categories: cache-based
approaches and decoding strategies. Cache-based methods. Unlike autoregressive models where
key–value caching is standard, dLLMs require specialized mechanisms due to bidirectional atten-
tion. Recent works thus propose adaptive prompt caching, block-wise or dual caches, and saliency-
based eviction (Liu et al., 2025; Wu et al., 2025; Song et al., 2025a), which substantially improve
throughput while preserving accuracy. Decoding strategies. A complementary line accelerates
inference by parallelizing or restructuring decoding. Training-free methods leverage confidence-
aware or revokable decoding schemes (Wu et al., 2025; Hong et al., 2025; Wei et al., 2025; Israel
et al., 2025), while trainable approaches integrate auxiliary autoregressive pre-training or confident
decoding objectives (Yu et al., 2025b). Together, these strategies reduce iteration counts and enable
faster yet reliable generation.

6 CONCLUSION

In this work, we introduced Hierarchy-dLLM, a hierarchical decoding framework that applies the
divide-and-conquer principle to accelerate large language model inference. By recursively partition-
ing masked spans into smaller sub-decoding areas and decoding tokens according to confidence, our
method effectively increases the number of tokens generated per step, thereby improving informa-
tion utilization. Experiments on multiple benchmarks show that Hierarchy-dLLM maintains com-
parable or even better accuracy than existing approaches, while achieving up to 17× speedup over
vanilla decoding and about 1.5× faster than Fast-dLLM. These results demonstrate that hierarchical,
divide-and-conquer decoding provides a practical and scalable solution for efficient autoregressive
generation. While our current framework is entirely training-free, an exciting future direction is
to perform post-training adaptations so that the model distribution better aligns with hierarchical
decoding, potentially further enhancing both efficiency and effectiveness.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces, 2023. URL https://arxiv.org/abs/
2107.03006.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Yoav Goldberg. Neural Network Methods for Natural Language Processing. Synthesis Lectures on
Human Language Technologies. Springer Cham, 1 edition, 2017. ISBN 978-3-031-01037-8. doi:
10.1007/978-3-031-02165-7. First edition, Part of the Synthesis Lectures on Human Language
Technologies series.

Google DeepMind. Gemini diffusion. https://deepmind.google/models/
gemini-diffusion/, 2025. Accessed: 2025-09-01.

HKUNLP. Dream: [blog post]. https://hkunlp.github.io/blog/2025/dream/,
2025. Accessed: 2025-09-01.

Feng Hong, Geng Yu, Yushi Ye, Haicheng Huang, Huangjie Zheng, Ya Zhang, Yanfeng Wang, and
Jiangchao Yao. Wide-in, narrow-out: Revokable decoding for efficient and effective dllms, 2025.
URL https://arxiv.org/abs/2507.18578.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding, 2025. URL https://arxiv.org/abs/2506.00413.

Samar Khanna, Siddhant Kharbanda, Shufan Li, Harshit Varma, Eric Wang, Sawyer Birnbaum,
Ziyang Luo, Yanis Miraoui, Akash Palrecha, Stefano Ermon, et al. Mercury: Ultra-fast language
models based on diffusion. arXiv preprint arXiv:2506.17298, 2025.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori B. Hashimoto.
Diffusion-lm improves controllable text generation, 2022. URL https://arxiv.org/abs/
2205.14217.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

10

https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://zenodo.org/records/12608602
https://deepmind.google/models/gemini-diffusion/
https://deepmind.google/models/gemini-diffusion/
https://hkunlp.github.io/blog/2025/dream/
https://arxiv.org/abs/2507.18578
https://arxiv.org/abs/2506.00413
https://arxiv.org/abs/2205.14217
https://arxiv.org/abs/2205.14217
https://arxiv.org/abs/2305.20050


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching, 2025. URL https://arxiv.org/abs/2506.06295.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution, 2024. URL https://arxiv.org/abs/2310.16834.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text, 2025a. URL https://arxiv.org/abs/
2410.18514.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025b.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018. URL https://api.semanticscholar.org/CorpusID:49313245.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and gen-
eralized masked diffusion for discrete data, 2025. URL https://arxiv.org/abs/2406.
04329.

Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction, 2025a. URL
https://arxiv.org/abs/2508.02558.

Yuxuan Song, Zheng Zhang, Cheng Luo, Pengyang Gao, Fan Xia, Hao Luo, Zheng Li, Yuehang
Yang, Hongli Yu, Xingwei Qu, Yuwei Fu, Jing Su, Ge Zhang, Wenhao Huang, Mingxuan Wang,
Lin Yan, Xiaoying Jia, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Yonghui Wu, and Hao Zhou.
Seed diffusion: A large-scale diffusion language model with high-speed inference, 2025b. URL
https://arxiv.org/abs/2508.02193.

Qingyan Wei, Yaojie Zhang, Zhiyuan Liu, Dongrui Liu, and Linfeng Zhang. Accelerating diffusion
large language models with slowfast sampling: The three golden principles, 2025. URL https:
//arxiv.org/abs/2506.10848.

Yuqing Wen, Hebei Li, Kefan Gu, Yucheng Zhao, Tiancai Wang, and Xiaoyan Sun. Llada-vla:
Vision language diffusion action models, 2025. URL https://arxiv.org/abs/2509.
06932.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding, 2025. URL https://arxiv.org/abs/2505.22618.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang.
Mmada: Multimodal large diffusion language models, 2025. URL https://arxiv.org/
abs/2505.15809.

Runpeng Yu, Qi Li, and Xinchao Wang. Discrete diffusion in large language and multimodal models:
A survey, 2025a. URL https://arxiv.org/abs/2506.13759.

Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
model with parallel decoding, 2025b. URL https://arxiv.org/abs/2505.16990.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei
Chen, Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference
optimization for large language diffusion models, 2025. URL https://arxiv.org/abs/
2505.19223.

11

https://arxiv.org/abs/2506.06295
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/2410.18514
https://arxiv.org/abs/2410.18514
https://api.semanticscholar.org/CorpusID:49313245
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/2508.02558
https://arxiv.org/abs/2508.02193
https://arxiv.org/abs/2506.10848
https://arxiv.org/abs/2506.10848
https://arxiv.org/abs/2509.06932
https://arxiv.org/abs/2509.06932
https://arxiv.org/abs/2505.22618
https://arxiv.org/abs/2505.15809
https://arxiv.org/abs/2505.15809
https://arxiv.org/abs/2506.13759
https://arxiv.org/abs/2505.16990
https://arxiv.org/abs/2505.19223
https://arxiv.org/abs/2505.19223


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

In accordance with the ICLR policy on Large Language Model (LLM) usage, we disclose that
LLMs (e.g., ChatGPT) were used solely as a writing assistant for language polishing and minor
text refinement including improving readability, grammar, and style. The model was not involved
in research ideation, experimental design, data collection, analysis, or interpretation of results. All
scientific contributions and substantive content were generated entirely by the authors.

B PSEUDOCODE OF HIERARCHY-DLLM

For clarity and reproducibility, we provide the pseudocode of the proposed Hierarchy-dLLM decod-
ing algorithm in Algorithm 1. Equation 13 summarizes the decoding rule across all sub-decoding
areas. The strategy follows a progressive relaxation principle: (i) tokens above the high thresh-
old are committed directly; (ii) if no such tokens exist, we fall back to the most confident position
within each area above the low threshold; (iii) if still no commitment is possible, the model globally
commits to the most confident token to guarantee progress; and (iv) after each step, all committed
tokens are re-evaluated, and low-confidence ones are remasked. This unified rule concisely encodes
the decision-making logic underlying Algorithm 1 in the pseudocode, ensuring both efficiency and
robustness during divide-and-conquer decoding.

xi
s =



argmaxv∈V pθ(x
i
s = v | Xt), if ci ≥ τhigh, i ∈ A

argmaxv∈V pθ(x
i∗
s = v | Xt), if i∗ = argmaxj∈A cj , ci

∗
≥ τlow

argmaxv∈V pθ(x
i†
s = v | Xt), if i† = argmaxj∈{1,...,L} c

j

[MASK], otherwise

(13)

C IMPACT OF DIFFERENT GENERATION LENGTH ON OTHER TASKS

We further examine the impact of generation length by evaluating Math500, HumanEval, and MBPP
under lengths of 256, 512, and 1024 tokens. As reported in Table 5 the task accuracy of both vanilla
decoding and Hierarchy-dLLM remains stable across different generation lengths, indicating that
extending sequence length does not harm the correctness of generated outputs. In contrast, the ef-
ficiency metrics reveal a clear distinction: Hierarchy-dLLM consistently yields substantially higher
TPF and TPS than vanilla decoding across all datasets. This advantage is especially pronounced
at longer generation lengths, where vanilla decoding exhibits severe throughput degradation while
Hierarchy-dLLM maintains high sampling efficiency. These findings confirm that the hierarchical
design not only sustains accuracy but also scales favorably with longer contexts, making it particu-
larly advantageous for tasks requiring extended generations.

D IMPACT OF DIFFERENT BLOCK LENGTH ON OTHER TASKS

To better understand the role of block length in hierarchical decoding, we evaluate Math500, Hu-
manEval, and MBPP with block sizes of 16, 32, and 64. As shown in Table 6, task-level performance
remains broadly comparable between vanilla decoding and Hierarchy-dLLM, with only minor fluc-
tuations when block sizes increase from 16 to 64. This suggests that the hierarchical decoding
strategy does not compromise output correctness even when operating under different structural
granularities.

In terms of efficiency, however, the differences are striking. For all three datasets, Hierarchy-dLLM
consistently delivers much higher TPF and TPS values, often exceeding vanilla decoding by an
order of magnitude. At small block sizes of 16, throughput already improves significantly, with
Hierarchy-dLLM showing 4×–10× improvements across tasks. When block size grows to 32 and
64, the advantage becomes even more pronounced: in HumanEval and MBPP, Hierarchy-dLLM
exhibits more than 15× speedup relative to vanilla TPS, underscoring its ability to maintain high
parallelism within and across sub-decoding areas.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1: Hierarchy-dLLM
Input: Prompt: p; block length: L; number of blocks: N ; thresholds: τlow, τhigh, τremask
Output: Decoded sequence
Initialize sequence x← p ∥ [MASK]L×N ;
// p concatenated with L×N masks
for i← 1 to N do

// Select the i-th block of L masks
Let B ← positions of masks [(i− 1)L+ 1, iL] in x;
while not all tokens in B decoded do

// Remask step (only within block B)
foreach token xj ∈ B do

if conf(xj) < τremask then
set xj ← [MASK];

Divide block B into sub-decoding areas;
D ← ∅;
// decoded tokens in this iteration
foreach sub-decoding area A ⊆ B do

t∗ ← argmaxt∈A conf(t);
c∗ ← conf(t∗);
if c∗ > τlow and t∗ is maximal in A then

decode t∗; add to D;
if t∗ is maximal in A or c∗ > τhigh then

decode t∗; add to D;

if D = ∅ then
decode token with highest confidence across the entire block B;

return decoded sequence;

Table 5: Performance and Speed on Other Tasks with Different Generation Lengths.

Gen Length Task Method Performance Speed

Score ↑ TPF ↑ TPS ↑

256

Math500
Vanilla 35.8 0.98 16.07

Hierarchy-dLLM 33.40 3.56 (3.68×) 59.18 (3.68×)

Humaneval
Vanilla 42.68 0.97 14.01

Hierarchy-dLLM 35.98 4.45 (4.59×) 54.50 (3.89×)

MBPP
Vanilla 40.8 0.34 2.12

Hierarchy-dLLM 39.6 2.91 (8.56×) 19.81 (9.34×)

512

Math500
Vanilla 39.80 0.84 7.96

Hierarchy-dLLM 41.60 3.99 (4.75×) 42.25 (5.31×)

Humaneval
Vanilla 43.29 0.93 8.56

Hierarchy-dLLM 45.12 4.20 (4.52×) 44.18 (5.16×)

MBPP
Vanilla 40.40 0.16 0.80

Hierarchy-dLLM 40.40 2.29 (14.31×) 12.70 (15.88×)

1024

Math500
Vanilla 42.2 0.63 3.62

Hierarchy-dLLM 40.20 4.43 (7.03×) 28.43 (7.85×)

Humaneval
Vanilla 43.90 0.54 2.92

Hierarchy-dLLM 43.90 3.70 (6.85×) 22.42 (7.68×)

MBPP
Vanilla 40.60 0.06 0.22

Hierarchy-dLLM 39.00 1.55(25.83×) 6.17(28.5×)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 6: Performance and Speed on Other Tasks with Different Block Lengths.

Block Length Task Method Performance Speed

Score ↑ TPF ↑ TPS ↑

16

Math500
Vanilla 40.40 0.87 8.86

Hierarchy-dLLM 38.00 3.70 (4.25×) 40.61 (4.58×)

Humaneval
Vanilla 42.07 0.94 8.61

Hierarchy-dLLM 42.68 3.69 (3.93×) 38.56 (4.48×)

MBPP
Vanilla 41.20 0.17 0.86

Hierarchy-dLLM 40.00 1.66 (9.76×) 8.87 (10.31×)

32

Math500
Vanilla 39.80 0.84 7.96

Hierarchy-dLLM 41.60 3.99 (4.75×) 42.25 (5.31×)

Humaneval
Vanilla 43.29 0.93 8.56

Hierarchy-dLLM 45.12 4.20 (4.52×) 44.18 (5.16×)

MBPP
Vanilla 40.40 0.16 0.80

Hierarchy-dLLM 40.40 2.29 (14.31×) 12.70 (15.88×)

64

Math500
Vanilla 39.40 0.88 8.91

Hierarchy-dLLM 37.2 4.47 (5.08×) 50.75 (5.70×)

Humaneval
Vanilla 40.85 0.93 8.73

Hierarchy-dLLM 37.80 4.24 (4.56×) 44.61 (5.11×)

MBPP
Vanilla 34.8 0.13 0.63

Hierarchy-dLLM 34.20 2.23 (17.15×) 12.30 (19.52×)

E CASE STUDY

To illustrate Hierarchy-dLLM’s decoding process, we present qualitative case studies on both
GSM8K (Figure 4) and HumanEval (Figure 5). The GSM8K case with τhigh = 0.9, τlow = 0.4, and
remask disabled, visualizes hierarchical decoding with color-coded token steps, confirming that the
model generates multiple tokens per step while reliably committing at least one token in each sub-
decoding area. This ensures that reasoning chains are preserved without introducing inconsistency.
The HumanEval case highlights how the same mechanism enables efficient multi-token generation
in programming tasks, producing syntactically consistent partial code blocks across steps. These vi-
sualizations further reveal that decoding proceeds in parallel across sub-decoding areas, while within
each area the model can also efficiently sample multiple tokens in parallel, thereby achieving both
hierarchical structure and intra-step efficiency.

Importantly, these examples demonstrate that Hierarchy-dLLM strikes a desirable balance between
quality and speed. On GSM8K, the model can generate correct intermediate steps and final answers,
while still benefiting from faster decoding compared with vanilla left-to-right generation. On Hu-
manEval, the model preserves program correctness and syntax while accelerating generation through
parallel sampling. This combination of stable accuracy with substantial throughput gains reflects the
core advantage of hierarchical decoding, as it avoids the typical trade-off between effectiveness and
efficiency and offers a unified approach applicable across reasoning and code tasks. The complete
prompts used in both experiments are provided in the appendix for reproducibility.

Prompt

Question: Jen and Tyler are gymnasts practicing flips. Jen is practicing the triple-flip while
Tyler is practicing the double-flip. Jen did sixteen triple-flips during practice. Tyler flipped
in the air half the number of times Jen did. How many double-flips did Tyler do?
Answer: Jen did 16 triple-flips, so she did 16 * 3 = 48 flips. Tyler did half the number
of flips, so he did 48/2 = 24 flips. A double flip has two flips, so Tyler did 24/2 = 12
double-flips.
#### 12

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Question: Four people in a law firm are planning a party. Mary will buy a platter of pasta
for $20 and a loaf of bread for $2. Elle and Andrea will split the cost for buying 4 cans of
soda which cost $1.50 each, and chicken wings for $10. Joe will buy a cake that costs $5.
How much more will Mary spend than the rest of the firm put together?
Answer: Mary will spend $22. Elle and Andrea together will spend $16, and with Joe’s $5
the total is $21. So Mary spends $1 more.
#### 1

Question: A charcoal grill burns fifteen coals to ash every twenty minutes of grilling. The
grill ran for long enough to burn three bags of coals. Each bag of coal contains 60 coals.
How long did the grill run?
Answer: The grill burned 3 × 60 = 180 coals. Since 15 coals burn every 20 minutes, the
grill ran for (180/15)× 20 = 240 minutes.
#### 240

Question: A bear is preparing to hibernate... How many pounds did it gain eating small
animals?
Answer: The bear gained 200 pounds from berries, 400 from acorns, 200 from salmon.
Remaining 200 are from small animals.
#### 200

Question: Brendan can cut 8 yards of grass per day... How many yards will Brendan be able
to cut after a week?
Answer: With 50% more efficiency he cuts 12 yards/day. In 7 days: 12× 7 = 84.
#### 84

Question: Skyler has 100 hats on his hand with the colors red, blue, and white. Half of the
hats are red, 3/5 of the remaining hats are blue, and the rest are white. How many white hats
does Skyler have?
Answer:

Half  of  1 0 0  is  5 0 ,  so  Sky ler  has  

5 0  red  hats . 3 / 5  of  the  remain  5 0  is

 3 0  blue  hats . So ,  Sky ler  has  5 0  -

 3 0  =  2 0  white  hats . ####  2 0

0-15

16-31

32-47

48-63

1

2

3

4

5

6

7

8

9

10

St
ep

Figure 4: Visualization of Decoding Steps on GSM8K. Tokens are color-coded by their decoding
step (lighter = earlier, darker = later). Thresholds are set to τhigh = 0.9, τlow = 0.4, with remasking
disabled. The figure illustrates that multiple tokens are generated in a single step, while each sub-
decoding area reliably commits at least one token, consistent with the intended hierarchical decoding
behavior.

Prompt

Question:
def compare(game,guess): ”””I think we all remember that feeling when the result of some
long-awaited event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing. Your task is to determine if a person correctly
guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a
match.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Return an array of the same length denoting how far off each guess was. If they have guessed
correctly, the value is 0, and if not, the value is the absolute difference between the guess
and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) - [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) - [4,4,1,0,0,6] ”””

Answer:

    result  =  []     for  i  in  range (len (game )):         if

 game [i ]  ==  guess [i ]:         result .append ( 0 )        

 else :         abs _diff erence  =  abs (game [i ]  -  guess [i ])

        result .append (abs _diff erence )         return  result

0-15

16-31

32-47

48-63

1

2

3

4

5

6

7

8

St
ep

Figure 5: Visualization of Decoding Steps on Humaneval.

16


	Introduction
	Preliminary Study
	DLLM inference process
	Parallel Decoding Analysis

	Methodology
	Divide-and-Conquer Decoding Structure
	Decoding Strategies Within Sub-decoding Areas

	Experiments
	Experiment settings
	Main Results
	Abolition Study and Analysis

	Related Works
	Diffusion Large Language Models
	Acceleration Techniques for DLLMs

	Conclusion
	LLM Usage Statement
	Pseudocode of Hierarchy-dLLM
	Impact of Different Generation Length on Other Tasks
	Impact of Different Block Length on Other Tasks
	Case Study

