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ABSTRACT

The utilization of Large language models (LLMs) has become increasingly
widespread, and has attracted considerable attention. Although the emergence
of Discrete Diffusion Large Language Models (dLLMs) mitigates the inference
latency inherent in autoregressive LLM decoding, its computational overhead re-
mains substantial. To address this challenge, we propose Hierarchy-dLLM, a
hierarchical decoding framework inspired by the divide-and-conquer principle.
Our method recursively partitions masked spans into smaller sub-decoding areas
and decodes tokens according to their confidence, which substantially increases
the number of tokens generated per forward pass and improves information uti-
lization. Extensive experiments conducted on multiple benchmarks demonstrate
that Hierarchy-dLLM achieves accuracy comparable to or even surpassing ex-
isting baselines. Meanwhile, it is up to 17× faster than vanilla decoding and
about 1.5× faster than the Fast-dLLM. These results establish hierarchical de-
coding as a practical solution for efficient large language model inference. The
implementation is available at https://anonymous.4open.science/r/
Hierarchy-dLLM-anonymous-65C1/.

1 INTRODUCTION

Although autoregressive (AR) large language models (Radford & Narasimhan, 2018) currently dom-
inate the field, Diffusion large language models (dLLMs) (Yu et al., 2025a) are gaining momentum
within the research community due to their unique potential for parallel decoding. In AR decoding,
tokens are generated sequentially, which constrains efficiency and limits opportunities for paral-
lelization. In contrast, dLLMs reconstruct linguistic sequences through iterative denoising with
bidirectional attention, enabling simultaneous refinement of multiple tokens and thus parallel de-
coding (Li et al., 2022). Such a property not only improves scalability but also opens new research
directions for developing more efficient and flexible decoding strategies.

In practice, however, comparable performance has yet to be observed in the open-source community,
despite several commercial closed-source dLLMs claiming impressive throughput (Google Deep-
Mind, 2025; Khanna et al., 2025; Song et al., 2025b). A key reason lies in the architectural trade-off
of dLLMs: by adopting bidirectional attention, th ly slower than that of autoregressive models of
similar size. To compensate, dLLMs must achieve substantial gains from parallel decoding. How-
ever, representative open-source models such as LLaDA (Zhu et al., 2025) and Dream (HKUNLP,
2025) default to greedy decoding, generating only one token per step. This approach makes their
efficiency fall short of AR models, underscoring why accelerating parallel decoding has become a
central research focus for dLLMs.

Yet, attempts to scale up parallel decoding face intrinsic difficulties, often referred to as the curse
of parallel decoding (Wu et al., 2025). This curse arises because tokens predicted within the same
decoding step should satisfy a conditional independence assumption; otherwise, forcing them to be
generated simultaneously can lead to substantial performance degradation. For example, given the
sentence “In the classroom, Alice arranged pens, papers, and books neatly on her desk before the
teacher began the lesson”, parallel prediction may produce incoherent outputs such as “pens, pens,
and pens”, illustrating how naive parallel decoding can undermine semantic consistency.
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While existing studies primarily focus on confidence-based criteria to determine which tokens
should be decoded at each step, such approaches commonly ignore how the spatial distribution
of undecoded positions affects the decoding process. To better understand this factor, we conducted
a preliminary study, and observed that when undecoded tokens are sparsely scattered across the
sequence, one-pass decoding produces a token distribution that closely matches step-by-step gener-
ation. In contrast, when undecoded tokens form consecutive spans, the resulting distribution exhibits
substantial divergence from step-wise generation, leading to pronounced distributional drift. These
observations highlight the necessity of incorporating spatial structure into decoding strategies for
diffusion-based language models.

To address this challenge, we introduce Hierarchy-dLLM, a novel hierarchical parallel decoding
framework inspired by the divide-and-conquer paradigm. Rather than treating all masked posi-
tions equally, Hierarchy-dLLM dynamically partitions masked tokens into independent subordinate
decoding areas according to the positions of decoded tokens. The proposed decoding strategy is ex-
ecuted independently across individual decoding areas, which allows multiple areas to be decoded
in parallel and leads to a significant improvement in overall decoding efficiency.

Our main contributions can be summarized as follows:

1. We performed a comprehensive analysis of the dLLM decoding mechanism. We found that
preserving a sparse layout of undecoded tokens within the sequence can effectively reduce
distributional drift, thus improving the stability and accuracy of parallel decoding.

2. We propose Hierarchy-dLLM, to the best of our knowledge the first position-based decod-
ing framework for diffusion-based large language models, which systematically leverages
divide-and-conquer principles to enhance parallel decoding.

3. We conduct extensive experiments demonstrating that Hierarchy-dLLM achieves superior
trade-offs between inference speed and generation quality compared with existing open-
source dLLM baselines, running up to 17× faster than vanilla decoding and 1.5× faster
than Fast-dLLM.
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Figure 1: Average KL-Divergence of Masked Tokens Over Number of Tokens. (a) shows two
masking methods used in our study: Consecutive Mask, where tokens are masked as a contiguous
block, and Sparse Mask, where masked tokens are scattered across multiple positions. (b) and (c)
report the average KL divergence (mean ± SEM) of masked tokens under these two strategies on
HumanEval and GSM8k official answers, respectively. The results indicate that Consecutive Mask
generally yields larger KL divergence compared to Sparse Mask, suggesting that scattered masking
provides more stable token-level predictions across decoding steps.

2 PRELIMINARY STUDY

2.1 DLLM INFERENCE PROCESS

Within the framework of dLLMs, the current mainstream instantiation is the Masked Diffusion
Model (MDM) (Shi et al., 2025). We therefore focus our discussion on MDMs in this subsection.
Unlike traditional autoregressive models (ARMs) that rely on the chain rule for left-to-right pre-
diction, MDMs construct probabilistic models via masked token prediction, thereby naturally sup-
porting bidirectional context modeling and alleviating several limitations of ARMs such as reversal
reasoning difficulties and temporal distribution shifts.
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Problem setting. Let V denote a fixed vocabulary. We define a sequence X = (x1, x2, . . . , xL),
where each element xi ∈ V represents a token drawn from the vocabulary, and L ∈ N denotes the
length of the sequence. MDMs define a forward masking process that progressively replaces tokens
with a special mask symbol [MASK]. At time t ∈ [0, 1], the noisy sequence Xt is sampled as

qt|0(Xt|X0) =

L∏
i=1

qt|0(x
i
t|xi

0), qt|0(x
i
t|xi

0) =

{
1− t, xi

t = xi
0,

t, xi
t = M.

(1)

As t→ 1, the sequence becomes fully masked.

Reverse process. The reverse process recovers the original data distribution by iteratively predict-
ing masked tokens:

qs|t(Xs|Xt) =

L∏
i=1

qs|t(x
i
s|Xt), (2)

where

qs|t(x
i
s|Xt) =


1, xi

t ̸= M, xi
s = xi

t,
s
t , xi

t = M, xi
s = M,

t−s
t q0|t(x

i
s|Xt), xi

t = M, xi
s ̸= M,

0, otherwise.

(3)

Decoding process. During generation, MDMs start from a fully masked sequence (t = 1) and
gradually denoise toward t = 0. Let p0 denotes the original prompt, rt denotes a fully masked
sequence and ci is masked tokens in rt. Then, the start state of decoding process can be denoted as
Xt = concat(p0, rt). At each step, the model assigns a predictive distribution over the true values
of selected masked tokens:

xi
s = argmax pθ(Xs | Xt), (4)

and a proportion s
t of the tokens remain masked according to their confidence, such that only one

token is decoded in each step when s
t is scheduled accordingly, and the reverse process remains

consistent with the forward process. Importantly, s
t is a tunable parameter that controls the trade-

off between speed and fidelity: smaller values correspond to more tokens being decoded at once
(fewer steps, higher efficiency), whereas larger values yield fewer tokens per step (more steps, better
generation quality).

Semi-Autoregressive Diffusion Decoding. To further enhance quality and controllability, Semi-
Autoregressive Diffusion Decoding (SADD) has been introduced. The idea is to divide the sequence
into multiple blocks and generate them sequentially from left to right. Within each block, however,
the MDM reverse process (with random or low-confidence remasking) is applied in parallel. This
hybrid approach combines the global consistency of diffusion with the sequential structure of au-
toregression, yielding better performance on complex reasoning and dialogue tasks. This hybrid
strategy has been employed in recent dLLMs such as LLaDA (Nie et al., 2025a) and MMaDA (?).

2.2 PARALLEL DECODING ANALYSIS

DLLMs are designed to utilize their parallel ability to accelerate the decoding process of LLMs,
but most open-source dLLMs fail the expectation because of their incompatibility between paral-
lelism and accuracy. During decoding, the sampling procedure defined in Equation 4 produces only
the marginal distribution for each token, p(xi

s | xt), for i = {1, . . . , L}. However, parallel de-
coding requires access to the joint distribution over multiple tokens to be decoded simultaneously:
p(x1

j , x
2
j , . . . , x

k
j | Xt), where k denotes the number of tokens generated in one parallel decoding

step. This discrepancy gives rise to a methodological challenge, namely that parallel decoding must
approximate the joint distribution using only the available marginals p(xi

j | Xt). Designing effec-
tive approximation strategies for bridging this gap constitutes a central problem in the development
of parallel decoding algorithms.

To gain empirical insights into this theoretical inconsistency, we investigate how the positional dis-
tribution of previously decoded tokens affects the decoding process. In principle, the consistency
of different decoding strategies can be quantitatively assessed by the Kullback–Leibler divergence

3
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KL(pstepwise(x) ∥ pone-pass(x)). However, directly computing the standard KL divergence over multi-
step generation is computationally intractable. Therefore, we employ an approximation where n
denotes the number of masked tokens, and their step-by-step generation is regarded as the ground
truth. Specifically, given the logits zstep from stepwise decoding, we take the most probable token
index

i∗ = argmax
v∈V

zstep
v , (5)

and approximate the ground-truth distribution as one-hot, i.e., pstepwise(v) ≈ 1[v=i∗]. For the one-
pass prediction, we compute

pone-pass(v) = softmax(zonce)v. (6)

Under this approximation, the KL divergence reduces to the negative log-likelihood of the one-pass
model at i∗:

KLapprox = −
n∑

j=1

log pone-pass(i
∗
j ), (7)

where i∗j is the argmax token in the j-th masked position determined by stepwise decoding. This
formulation can be interpreted as a cross-entropy surrogate of the KL divergence, where one-hot
targets make the comparison tractable and are standard in language modeling (Goldberg, 2017).

We evaluate the proposed approximation on two representative benchmarks: HumanEval (Chen
et al., 2021), which focuses on code generation, and GSM8k (Cobbe et al., 2021), which targets
mathematical reasoning. The experimental results are presented in Fig. 1. On both benchmarks, the
approximate KL divergence under the consecutive masking strategy increases steadily as the num-
ber of masked tokens grows, with a markedly faster growth rate compared to the sparse masking
strategy. In contrast, sparse masking maintains consistently low divergence across decoding steps.
This observation suggests that sparse masking allows dLLMs to make better use of bidirectional
self-attention. Specifically, by leaving unmasked anchor positions interleaved throughout the in-
put, sparse masking enables the model to attend to reliable contextual signals from both left and
right neighborhoods of each masked position, thereby improving the robustness and consistency of
parallel decoding.

These results suggest that the sparse mask offers substantial advantages in mitigating distributional
shift and maintaining decoding stability. This empirical robustness is consistent with our preliminary
observation: when most tokens in a sequence are already decoded, the undecoded tokens approx-
imate the ground truth more closely if they are sparsely scattered across the text rather than being
continuously clustered. Motivated by this finding, we hypothesize that if undecoded tokens can be
structurally organized to mimic such sparse distributions through an appropriate decoding strategy, it
becomes possible to accelerate the generation process while preserving or even improving decoding
accuracy.

3 METHODOLOGY

Building on our preliminary study, we find that sparse masking—where undecoded tokens remain
sparsely scattered—suppresses distributional shift and stabilizes decoding. This effect arises be-
cause sparsity enables more effective use of bidirectional attention, guiding predictions toward the
ground truth. Motivated by this observation, we propose a divide-and-conquer framework that par-
titions undecoded sequences into smaller subproblems, allowing parallel resolution that both accel-
erates generation and reduces bias.

3.1 DIVIDE-AND-CONQUER DECODING STRUCTURE

To achieve efficient and stable text generation, we design the model with a divide-and-conquer de-
coding structure, which progressively resolves masked spans through an iterative process of initial-
ization, decoding, and subdivision. This design seeks to balance decoding efficiency with generation
accuracy by breaking down the complex decoding task into smaller, well-structured units. The hier-
archical organization prevents the model from predicting overly dependent tokens in the same step,
converting the difficulty of parallel decoding into a series of more tractable sub-problems.

4
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Masked tokens Unmasked tokens Decoding areas Decode Partition

① Initialize the decoding area.

② Try to decode at
least one token within 
each area according to 
confidence.

③ Partition 
sub-decoding areas 
based on the tokens 
decoded.

④ Iterate steps 2 and 3 
within each decoding area.

Figure 2: Illustration of Hierarchy-dLLM. The decoding process starts by initializing a decoding
area, then decoding tokens based on confidence, and partitioning sub-areas according to the decoded
tokens. Steps 2 and 3 are iteratively applied within each sub-decoding area, enabling efficient multi-
token decoding while preserving accuracy.

Initialization stage. Before decoding begins in each block, the block is represented as a contiguous
span of masked tokens with a predefined length l. This masked span serves as the initial sub-
decoding areas, providing a structured starting point for the generation process.

Decoding stage. Each sub-decoding area is processed independently and in parallel, following the
decoding strategy introduced in Section 3.2. The objective is to maximize decoding efficiency while
trying to ensure that each block yields at least one valid token. By decoding in parallel across
multiple sub-areas, the model inherently possesses significant structural potential for acceleration.

Subdivision stage. Tokens generated in the previous step act as anchors to partition the remaining
masked regions. Every contiguous span of undecoded tokens is split into smaller, independent sub-
decoding areas, which are then processed in the next iteration. This recursive partitioning gradually
reduces the decoding problem to smaller segments, simplifying the generation task.

The decoding and subdivision stages are repeated iteratively until no masked tokens remain in any
decoding block. Through this iterative refinement process, the model incrementally resolves all
masked positions while maintaining stability and coherence in the generated sequence. Overall,
the divide-and-conquer decoding structure provides a principled framework that achieves O(log n)-
level acceleration while fully exploiting the rich contextual information inherent in the bidirectional
attention mechanism of dLLMs. This design not only ensures substantial efficiency gains but also
preserves decoding accuracy, thereby offering a scalable and reliable foundation for subsequent
stages of our model.

3.2 DECODING STRATEGIES WITHIN SUB-DECODING AREAS

The greatest challenge in the divide-and-conquer structure lies in how to decode effectively within
each sub-decoding area. Our objective is to decode as many tokens as possible at each step while
minimizing the risk of introducing errors that propagate through later iterations. To formalize this,
let pθ(xi

s | Xt) denote the model’s posterior probability of predicting token xi
s at position i in the

s-th decoding step, given the current corrupted sequence Xt. We then define the confidence score
for position i as

ci = max
v∈V

pθ(x
i
s = v | Xt). (8)

A natural starting point is to decode tokens only when they are sufficiently reliable. Let A denote a
sub-decoding area. Concretely, whenever ci surpasses a high threshold τhigh,

xi
s = argmax

v∈V
pθ(x

i
s = v | Xt), if ci ≥ τhigh, i ∈ A, (9)

5
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the corresponding token is committed to the sequence. This simple rule favors semantic stability,
since only high-confidence tokens are introduced, and it also allows multiple positions within A to
be decoded in parallel when the evidence is strong.

Yet in practice, some sub-decoding areas may not contain any tokens above the high threshold, as
the underlying probability distribution over the vocabulary can be relatively flat in these regions,
leaving all candidate tokens with comparable but low confidence scores. If we decode nothing in
such cases, progress slows dramatically; if we force a decision, performance can suffer. To mitigate
this trade-off, we relax the condition: when no position meets equation 9, we still allow one token to
be decoded, namely the most confident candidate inA, provided that its confidence exceeds a lower
threshold τlow,

xi∗

s = argmax
v∈V

pθ(x
i∗

s = v | Xt), if i∗ = argmax
i∈A

ci, ci
∗
≥ τlow. (10)

This adaptive rule ensures that each area contributes meaningfully while preventing the premature
incorporation of extremely unreliable predictions.

These two conditions, however, may occasionally leave an iteration without any decoded tokens.
This typically happens in more challenging cases, where the model cannot confidently commit to a
prediction, so that the probability distribution over the vocabulary is relatively flat across positions
and all candidate tokens fall below the relaxed threshold τlow. To avoid stalling, we enforce steady
progress by always decoding the globally most confident position when necessary:

xi†

s = argmax
v∈V

pθ(x
i†

s = v | Xt), if i† = arg max
i∈{1,...,L}

ci. (11)

This fallback guarantees that every step yields at least one decoded token.

Finally, as decoding advances, early predictions can become inconsistent with the evolving context,
reflected by a noticeable confidence drop. To adaptively correct such cases, we introduce a remask-
ing step: before repartitioning into sub-decoding areas, all decoded tokens are checked, and any
token with ci < τremask is replaced by the mask symbol [MASK],

xi
s = [MASK] if ci < τremask. (12)

This prevents error accumulation and helps maintain global coherence throughout the sequence.

Taken together, our decoding strategy begins with a strict high-threshold rule, then gradually relaxes
through a controlled low-threshold selection, incorporates a fallback to guarantee steady progress,
and finally applies a remasking step to revise unreliable predictions. In following this progressively
relaxed procedure, the strategy adheres to a best-effort principle, since it encourages decoding when-
ever trustworthy evidence is available while postponing or correcting low-confidence tokens, thereby
balancing efficiency, token-level reliability, and contextual coherence under the bidirectional atten-
tion mechanism of dLLMs.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

We implement the proposed Hierarchy-dLLM framework on three open-source models:
llada-instruct-8B, llada-1.5-8B, and Dream-7B, and evaluate it on four widely used
benchmarks: GSM8K and MATH500 (Lightman et al., 2023) for mathematical reasoning, and Hu-
manEval and MBPP (Austin et al., 2021) for code generation, with few-shot settings adopted in
accordance with Nie et al. (2025b) and Zhu et al. (2025). To provide a comprehensive assessment
of performance and efficiency, We compare Hierarchy-dLLM against both vanilla autoregressive
decoding and the parallel decoding scheme of Fast-dLLM. All experiments are run on a single
NVIDIA H20 GPU. Unless otherwise specified, the block size is set to 32 and the generation length
to 512. For hyperparameter tuning, we conduct a grid search where τhigh ranges from 0.78 to 0.88,
τlow ranges from 0.3 to 0.5, and τremask is either disabled or chosen between 0.3 and 0.35. The exact
settings and implementation details are available in our released code. We report performance using
Pass@1 accuracy, and efficiency is measured with tokens per forward call (TPF) and throughput per
second (TPS). Note that TPS excluds the eos token, and for consistency, we also exclude the eos
token in TPF. All evaluations are conducted with the lm-eval (Gao et al., 2024) library to ensure
consistency and reproducibility.

6
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Table 1: Main results of Hierarchy-dLLM on the LLaDA-1.5-8B model across four bench-
marks. We report task performance (Accuracy Score) and decoding efficiency. Efficiency is mea-
sured by TPS (throughput per second), reflecting practical throughput, and TPF (tokens per forward
call), indicating how many tokens are decoded per model invocation. Values in parentheses denote
the relative performance change compared to the baseline and the speedup factor with respect to
decoding efficiency. The best performance and highest TPS/TPF are highlighted in bold.

Task Method
LLaDA-Instruct-8B LLaDA-1.5-8B

Performance Speed Performance Speed

Score ↑ TPF ↑ TPS ↑ Score ↑ TPF ↑ TPS ↑

GSM8K
Vanilla 77.26 0.52 2.35 83.17 0.65 1.99

Fast-dLLM 77.86(0.6+) 2.85(5.48×) 12.80 (5.45×) 83.32(0.15+) 3.10(4.77×) 9.54(4.79×)
Hierarchy-dLLM 77.18(0.08−) 3.79(7.29×) 19.41(8.26×) 83.70(0.53+) 4.25(6.54×) 14.83(7.45×)

Math500
Vanilla 41.20 0.83 7.87 39.80 0.84 7.96

Fast-dLLM 40.60(0.6−) 2.71(3.27×) 24.99(3.17×) 39.40(0.4−) 2.79(3.32×) 25.81(3.24×)
Hierarchy-dLLM 41.60(0.4+) 3.53(4.25×) 37.34(4.74×) 41.60(1.8+) 3.99(4.75×) 42.25(5.31×)

Humaneval
Vanilla 43.90 0.93 8.56 43.29 0.93 8.56

Fast-dLLM 43.90(0+) 2.94(3.16×) 27.12(3.17×) 42.07(1.22−) 2.97(3.19×) 27.45(3.21×)
Hierarchy-dLLM 44.51(0.61+) 3.93(4.23×) 41.52 (4.85×) 45.12(1.83+) 4.20(4.52×) 44.18(5.16×)

MBPP
Vanilla 37.60 0.13 0.65 40.20 0.16 0.80

Fast-dLLM 37.60(0+) 1.73(10.81×) 7.26(11.17×) 40.40(0.2+) 10.76(10.76×) 8.40(10.5×)
Hierarchy-dLLM 37.60(0+) 2.03(15.62×) 11.20(17.23×) 40.40(0.2+) 2.29(14.31×) 12.70(15.88×)

4.2 MAIN RESULTS

Across four benchmarks and three model families, Hierarchy-dLLM consistently delivers strong
accuracy while achieving the highest decoding efficiency.

Based on the experimental results on LLaDA-1.5-8B and LLaDA-Instruct-8B, Hierarchy-dLLM
achieves the best of both worlds—higher accuracy than both vanilla and Fast-dLLM baselines while
providing the fastest decoding. The method shows the most notable gains on mathematical reasoning
tasks of GSM8K and Math500, where it not only accelerates throughput by up to 17× over baselines
but also improves accuracy by about 1 point, indicating its ability to mitigate error accumulation
in long reasoning chains. On code generation tasks of HumanEval and MBPP, Hierarchy-dLLM
maintains or slightly improves accuracy while substantially increasing speed, with TPF gains up to
10×, underscoring its suitability for deterministic token generation.

On the Dream-7B model, we observe that Hierarchy-dLLM still brings comparable speedup gains,
achieving large improvements in both TPF and TPS across all four benchmarks while maintaining
stable performance. This confirms that the hierarchical mechanism consistently enhances decoding
efficiency even on models trained with different architectures. However, compared to LLaDA, the
absolute performance of Dream-7B with Hierarchy-dLLM achieves comparable speedups while its
accuracy drop is no larger than, and sometimes smaller than, Fast-dLLM. We attribute this to Dream
originating from an autoregressive base model, which provides weaker inherent support for parallel
decoding and thus limits quality preservation compared to models with stronger parallelism.

Overall, Hierarchy-dLLM offers a unified acceleration framework that simultaneously improves or
preserves task performance while substantially reducing inference cost across diverse settings.

4.3 ABOLITION STUDY AND ANALYSIS

Unless otherwise specified, all ablation studies are conducted on the GSM8k dataset using the
LLaDA-1.5-8B model. The generation length is fixed to 512 and the block length to 32, with all
other hyperparameters kept identical to those in Section 4.1.

Impact of different Generation Length. To investigate the impact of block length, we fix the
generation length to 512 and evaluate the performance of the baseline model and Hierarchy-dLLM
with block sizes of 16, 32, and 64. As shown in Table 3, while the performance of both methods re-
mains stable across different block sizes, Hierarchy-dLLM consistently achieves significantly higher
TPF and TPS compared to vanilla decoding. Moreover, its advantage becomes more pronounced

7
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Table 2: Main results of Hierarchy-dLLM on the Dream-7B model across four benchmarks.

Task Method Performance Speed
Score ↑ TPF ↑ TPS ↑

GSM8K
Vanilla 75.8 1.00 4.76

Fast-dLLM 73.8(2−) 2.08(2.08×) 9.30(1.95×)
Hierarchy-dLLM 73.2(2.6−) 2.61(2.61×) 12.39(2.60×)

Math500
Vanilla 17.8 1.00 10.41

Fast-dLLM 12.0(5.8−) 2.32(2.32×) 21.45(2.06×)
Hierarchy-dLLM 16.0(1.8−) 3.17(3.17×) 32.54(3.13×)

Humaneval
Vanilla 54.9 1.00 9.69

Fast-dLLM 50.6(4.3−) 2.08(2.08×) 18.12(1.87×)
Hierarchy-dLLM 51.8(3.1−) 2.61(2.61×) 25.32(2.61×)

MBPP
Vanilla 56.8 1.0 5.97

Fast-dLLM 54.6(2.2−) 4.35(4.35×) 23.57(3.96×)
Hierarchy-dLLM 54.4(2.4−) 5.06(5.06×) 29.89(5.01×)

as the block length increases, demonstrating that the hierarchical design effectively sustains high
throughput under larger decoding blocks.

Impact of different Block Length. As reported in Table 4, the TPS of dLLMs decreases as
the generation length grows, which can be attributed to the bidirectional self-attention mechanism:
longer sequences require more computation per decoding step. Although Hierarchy-dLLM is also
affected, the slowdown is considerably mitigated compared to vanilla decoding. Consequently, the
speedup ratio of Hierarchy-dLLM increases with generation length, while its performance exhibits a
similar upward trend to the baseline, demonstrating stable efficiency and effectiveness under longer
decoding scenarios.

Table 3: Performance and Speed on GSM8K
with Different Generation Lengths.

Gen Length Method Performance Speed

Score ↑ TPF ↑ TPS ↑

256
LLaDA-1.5-8B 82.29 0.97 4.13

Hierarchy-dLLM 81.34 4.38 (4.52×) 18.53 (4.49×)

512
LLaDA-1.5-8B 83.17 0.65 1.99

Hierarchy-dLLM 83.70 4.25 (6.54×) 14.83 (6.45×)

1024
LLaDA-1.5-8B 84.38 0.26 0.76

Hierarchy-dLLM 84.31 3.09 (11.88×) 9.06 (11.92×)

Table 4: Performance and Speed on GSM8K
with Different Block Lengths

Block Length Method Performance Speed

Score ↑ TPF ↑ TPS ↑

16
LLaDA-1.5-8B 83.40 0.69 2.22

Hierarchy-dLLM 81.58 3.52(5.10×) 12.89(5.81×)

32
LLaDA-1.5-8B 83.17 0.66 2.13

Hierarchy-dLLM 83.70 4.25 (6.44×) 14.83 (6.96×)

64
LLaDA-1.5-8B 83.85 0.64 1.98

Hierarchy-dLLM 81.35 4.69 (7.23×) 17.18 (8.68×)

Effects of adjusting the threshold and low-threshold hyperparameters. The effect of thresh-
old and low threshold settings on performance and speed is examined when remasking is disabled.
Fig. 3a reports the score and TPS as the high threshold τhigh varies, with low threshold τlow fixed
at 0.3. Fig. 3a shows the counterpart results when τlow varies with τhigh fixed at 0.82. Across both
settings, the performance of Hierarchy-dLLM remains relatively stable at a high level, indicating
robustness to threshold choices. By contrast, TPS is more sensitive: increasing τhigh leads to a
noticeable decline in efficiency, while changes in τlow only cause minor variations in TPS. These
findings suggest that selecting a moderately small τhigh is crucial to balancing accuracy and effi-
ciency, whereas τlow has a negligible impact, reflecting that the model is resilient to uncertainty
pruning in low-confidence regions.

Comparison with naive parallel sampling. We further compare Hierarchy-dLLM with a vanilla
parallel decoding strategy where a fixed number of tokens, including the eos token, are sampled in
each step so that the total token count divided by sampling steps matches the intended parallel factor.
As shown in Fig. 3c, increasing the number of tokens per step rapidly degrades the performance of
vanilla parallel decoding despite the speed gain, leading to a poor speed–accuracy trade-off. In
contrast, Hierarchy-dLLM maintains consistently high performance even under high TPF, while
preserving substantial speed improvements. This demonstrates that Hierarchy-dLLM achieves a
more favorable balance between efficiency and accuracy compared to naive parallel decoding.
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Figure 3: Joint Analysis of Accuracy and Efficiency On GSM8K (a) Score and TPS with varying
τhigh while fixing τlow = 0.3. (b) Score and TPS with varying τlow while fixing τhigh = 0.82. (c)
Comparison of score versus TPF between vanilla parallel decoding and Hierarchy-dLLM.

5 RELATED WORKS

5.1 DIFFUSION LARGE LANGUAGE MODELS

Diffusion modeling for language has emerged as a promising alternative to autoregression, evolv-
ing from score entropy methods (Lou et al., 2024) to masked formulations with improved training
efficiency (Shi et al., 2025) and scaling properties comparable to AR models (Nie et al., 2025a).
Early foundations of discrete diffusion were established by Austin et al. (2023), highlighting the
importance of transition matrix design and drawing connections to autoregressive and mask-based
modeling. Building on these developments, large-scale systems such as LLaDA demonstrate com-
petitive or even superior performance to strong AR baselines (Nie et al., 2025b), while extensions
adapt diffusion to multimodality and robotics (Wen et al., 2025; Yang et al., 2025). Complementary
work like DREAM enhances reasoning controllability in autoregressive models (HKUNLP, 2025).

5.2 ACCELERATION TECHNIQUES FOR DLLMS

Existing efforts on accelerating dLLMs can be broadly grouped into two categories: cache-based
approaches and decoding strategies. Cache-based methods. Unlike autoregressive models where
key–value caching is standard, dLLMs require specialized mechanisms due to bidirectional atten-
tion. Recent works thus propose adaptive prompt caching, block-wise or dual caches, and saliency-
based eviction (Liu et al., 2025; Wu et al., 2025; Song et al., 2025a), which substantially improve
throughput while preserving accuracy. Decoding strategies. A complementary line accelerates
inference by parallelizing or restructuring decoding. Training-free methods leverage confidence-
aware or revokable decoding schemes (Wu et al., 2025; Hong et al., 2025; Wei et al., 2025; Israel
et al., 2025), while trainable approaches integrate auxiliary autoregressive pre-training or confident
decoding objectives (Yu et al., 2025b). Together, these strategies reduce iteration counts and enable
faster yet reliable generation.

6 CONCLUSION

In this work, we introduced Hierarchy-dLLM, a hierarchical decoding framework that applies the
divide-and-conquer principle to accelerate large language model inference. By recursively partition-
ing masked spans into smaller sub-decoding areas and decoding tokens according to confidence, our
method effectively increases the number of tokens generated per step, thereby improving informa-
tion utilization. Experiments on multiple benchmarks show that Hierarchy-dLLM maintains com-
parable or even better accuracy than existing approaches, while achieving up to 17× speedup over
vanilla decoding and about 1.5× faster than Fast-dLLM. These results demonstrate that hierarchical,
divide-and-conquer decoding provides a practical and scalable solution for efficient autoregressive
generation. While our current framework is entirely training-free, an exciting future direction is
to perform post-training adaptations so that the model distribution better aligns with hierarchical
decoding, potentially further enhancing both efficiency and effectiveness.

9
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A LLM USAGE STATEMENT

In accordance with the ICLR policy on Large Language Model (LLM) usage, we disclose that
LLMs (e.g., ChatGPT) were used solely as a writing assistant for language polishing and minor
text refinement including improving readability, grammar, and style. The model was not involved
in research ideation, experimental design, data collection, analysis, or interpretation of results. All
scientific contributions and substantive content were generated entirely by the authors.

B PSEUDOCODE OF HIERARCHY-DLLM

For clarity and reproducibility, we provide the pseudocode of the proposed Hierarchy-dLLM decod-
ing algorithm in Algorithm 1. Equation 13 summarizes the decoding rule across all sub-decoding
areas. The strategy follows a progressive relaxation principle: (i) tokens above the high thresh-
old are committed directly; (ii) if no such tokens exist, we fall back to the most confident position
within each area above the low threshold; (iii) if still no commitment is possible, the model globally
commits to the most confident token to guarantee progress; and (iv) after each step, all committed
tokens are re-evaluated, and low-confidence ones are remasked. This unified rule concisely encodes
the decision-making logic underlying Algorithm 1 in the pseudocode, ensuring both efficiency and
robustness during divide-and-conquer decoding.

xi
s =



argmaxv∈V pθ(x
i
s = v | Xt), if ci ≥ τhigh, i ∈ A

argmaxv∈V pθ(x
i∗
s = v | Xt), if i∗ = argmaxj∈A cj , ci

∗
≥ τlow

argmaxv∈V pθ(x
i†
s = v | Xt), if i† = argmaxj∈{1,...,L} c

j

[MASK], otherwise

(13)

C IMPACT OF DIFFERENT GENERATION LENGTH ON OTHER TASKS

We further examine the impact of generation length by evaluating Math500, HumanEval, and MBPP
under lengths of 256, 512, and 1024 tokens. As reported in Table 5 the task accuracy of both vanilla
decoding and Hierarchy-dLLM remains stable across different generation lengths, indicating that
extending sequence length does not harm the correctness of generated outputs. In contrast, the ef-
ficiency metrics reveal a clear distinction: Hierarchy-dLLM consistently yields substantially higher
TPF and TPS than vanilla decoding across all datasets. This advantage is especially pronounced
at longer generation lengths, where vanilla decoding exhibits severe throughput degradation while
Hierarchy-dLLM maintains high sampling efficiency. These findings confirm that the hierarchical
design not only sustains accuracy but also scales favorably with longer contexts, making it particu-
larly advantageous for tasks requiring extended generations.

D IMPACT OF DIFFERENT BLOCK LENGTH ON OTHER TASKS

To better understand the role of block length in hierarchical decoding, we evaluate Math500, Hu-
manEval, and MBPP with block sizes of 16, 32, and 64. As shown in Table 6, task-level performance
remains broadly comparable between vanilla decoding and Hierarchy-dLLM, with only minor fluc-
tuations when block sizes increase from 16 to 64. This suggests that the hierarchical decoding
strategy does not compromise output correctness even when operating under different structural
granularities.

In terms of efficiency, however, the differences are striking. For all three datasets, Hierarchy-dLLM
consistently delivers much higher TPF and TPS values, often exceeding vanilla decoding by an
order of magnitude. At small block sizes of 16, throughput already improves significantly, with
Hierarchy-dLLM showing 4×–10× improvements across tasks. When block size grows to 32 and
64, the advantage becomes even more pronounced: in HumanEval and MBPP, Hierarchy-dLLM
exhibits more than 15× speedup relative to vanilla TPS, underscoring its ability to maintain high
parallelism within and across sub-decoding areas.
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Algorithm 1: Hierarchy-dLLM
Input: Prompt: p; block length: L; number of blocks: N ; thresholds: τlow, τhigh, τremask
Output: Decoded sequence
Initialize sequence x← p ∥ [MASK]L×N ;
// p concatenated with L×N masks
for i← 1 to N do

// Select the i-th block of L masks
Let B ← positions of masks [(i− 1)L+ 1, iL] in x;
while not all tokens in B decoded do

// Remask step (only within block B)
foreach token xj ∈ B do

if conf(xj) < τremask then
set xj ← [MASK];

Divide block B into sub-decoding areas;
D ← ∅;
// decoded tokens in this iteration
foreach sub-decoding area A ⊆ B do

t∗ ← argmaxt∈A conf(t);
c∗ ← conf(t∗);
if c∗ > τlow and t∗ is maximal in A then

decode t∗; add to D;
if t∗ is maximal in A or c∗ > τhigh then

decode t∗; add to D;

if D = ∅ then
decode token with highest confidence across the entire block B;

return decoded sequence;

Table 5: Performance and Speed on Other Tasks with Different Generation Lengths.

Gen Length Task Method Performance Speed

Score ↑ TPF ↑ TPS ↑

256

Math500
Vanilla 35.8 0.98 16.07

Hierarchy-dLLM 33.40 3.56 (3.68×) 59.18 (3.68×)

Humaneval
Vanilla 42.68 0.97 14.01

Hierarchy-dLLM 35.98 4.45 (4.59×) 54.50 (3.89×)

MBPP
Vanilla 40.8 0.34 2.12

Hierarchy-dLLM 39.6 2.91 (8.56×) 19.81 (9.34×)

512

Math500
Vanilla 39.80 0.84 7.96

Hierarchy-dLLM 41.60 3.99 (4.75×) 42.25 (5.31×)

Humaneval
Vanilla 43.29 0.93 8.56

Hierarchy-dLLM 45.12 4.20 (4.52×) 44.18 (5.16×)

MBPP
Vanilla 40.40 0.16 0.80

Hierarchy-dLLM 40.40 2.29 (14.31×) 12.70 (15.88×)

1024

Math500
Vanilla 42.2 0.63 3.62

Hierarchy-dLLM 40.20 4.43 (7.03×) 28.43 (7.85×)

Humaneval
Vanilla 43.90 0.54 2.92

Hierarchy-dLLM 43.90 3.70 (6.85×) 22.42 (7.68×)

MBPP
Vanilla 40.60 0.06 0.22

Hierarchy-dLLM 39.00 1.55(25.83×) 6.17(28.5×)
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Table 6: Performance and Speed on Other Tasks with Different Block Lengths.

Block Length Task Method Performance Speed

Score ↑ TPF ↑ TPS ↑

16

Math500
Vanilla 40.40 0.87 8.86

Hierarchy-dLLM 38.00 3.70 (4.25×) 40.61 (4.58×)

Humaneval
Vanilla 42.07 0.94 8.61

Hierarchy-dLLM 42.68 3.69 (3.93×) 38.56 (4.48×)

MBPP
Vanilla 41.20 0.17 0.86

Hierarchy-dLLM 40.00 1.66 (9.76×) 8.87 (10.31×)

32

Math500
Vanilla 39.80 0.84 7.96

Hierarchy-dLLM 41.60 3.99 (4.75×) 42.25 (5.31×)

Humaneval
Vanilla 43.29 0.93 8.56

Hierarchy-dLLM 45.12 4.20 (4.52×) 44.18 (5.16×)

MBPP
Vanilla 40.40 0.16 0.80

Hierarchy-dLLM 40.40 2.29 (14.31×) 12.70 (15.88×)

64

Math500
Vanilla 39.40 0.88 8.91

Hierarchy-dLLM 37.2 4.47 (5.08×) 50.75 (5.70×)

Humaneval
Vanilla 40.85 0.93 8.73

Hierarchy-dLLM 37.80 4.24 (4.56×) 44.61 (5.11×)

MBPP
Vanilla 34.8 0.13 0.63

Hierarchy-dLLM 34.20 2.23 (17.15×) 12.30 (19.52×)

E CASE STUDY

To illustrate Hierarchy-dLLM’s decoding process, we present qualitative case studies on both
GSM8K (Figure 4) and HumanEval (Figure 5). The GSM8K case with τhigh = 0.9, τlow = 0.4, and
remask disabled, visualizes hierarchical decoding with color-coded token steps, confirming that the
model generates multiple tokens per step while reliably committing at least one token in each sub-
decoding area. This ensures that reasoning chains are preserved without introducing inconsistency.
The HumanEval case highlights how the same mechanism enables efficient multi-token generation
in programming tasks, producing syntactically consistent partial code blocks across steps. These vi-
sualizations further reveal that decoding proceeds in parallel across sub-decoding areas, while within
each area the model can also efficiently sample multiple tokens in parallel, thereby achieving both
hierarchical structure and intra-step efficiency.

Importantly, these examples demonstrate that Hierarchy-dLLM strikes a desirable balance between
quality and speed. On GSM8K, the model can generate correct intermediate steps and final answers,
while still benefiting from faster decoding compared with vanilla left-to-right generation. On Hu-
manEval, the model preserves program correctness and syntax while accelerating generation through
parallel sampling. This combination of stable accuracy with substantial throughput gains reflects the
core advantage of hierarchical decoding, as it avoids the typical trade-off between effectiveness and
efficiency and offers a unified approach applicable across reasoning and code tasks. The complete
prompts used in both experiments are provided in the appendix for reproducibility.

Prompt

Question: Jen and Tyler are gymnasts practicing flips. Jen is practicing the triple-flip while
Tyler is practicing the double-flip. Jen did sixteen triple-flips during practice. Tyler flipped
in the air half the number of times Jen did. How many double-flips did Tyler do?
Answer: Jen did 16 triple-flips, so she did 16 * 3 = 48 flips. Tyler did half the number
of flips, so he did 48/2 = 24 flips. A double flip has two flips, so Tyler did 24/2 = 12
double-flips.
#### 12
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Question: Four people in a law firm are planning a party. Mary will buy a platter of pasta
for $20 and a loaf of bread for $2. Elle and Andrea will split the cost for buying 4 cans of
soda which cost $1.50 each, and chicken wings for $10. Joe will buy a cake that costs $5.
How much more will Mary spend than the rest of the firm put together?
Answer: Mary will spend $22. Elle and Andrea together will spend $16, and with Joe’s $5
the total is $21. So Mary spends $1 more.
#### 1

Question: A charcoal grill burns fifteen coals to ash every twenty minutes of grilling. The
grill ran for long enough to burn three bags of coals. Each bag of coal contains 60 coals.
How long did the grill run?
Answer: The grill burned 3 × 60 = 180 coals. Since 15 coals burn every 20 minutes, the
grill ran for (180/15)× 20 = 240 minutes.
#### 240

Question: A bear is preparing to hibernate... How many pounds did it gain eating small
animals?
Answer: The bear gained 200 pounds from berries, 400 from acorns, 200 from salmon.
Remaining 200 are from small animals.
#### 200

Question: Brendan can cut 8 yards of grass per day... How many yards will Brendan be able
to cut after a week?
Answer: With 50% more efficiency he cuts 12 yards/day. In 7 days: 12× 7 = 84.
#### 84

Question: Skyler has 100 hats on his hand with the colors red, blue, and white. Half of the
hats are red, 3/5 of the remaining hats are blue, and the rest are white. How many white hats
does Skyler have?
Answer:

Half  of  1 0 0  is  5 0 ,  so  Sky ler  has  

5 0  red  hats . 3 / 5  of  the  remain  5 0  is

 3 0  blue  hats . So ,  Sky ler  has  5 0  -

 3 0  =  2 0  white  hats . ####  2 0
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Figure 4: Visualization of Decoding Steps on GSM8K. Tokens are color-coded by their decoding
step (lighter = earlier, darker = later). Thresholds are set to τhigh = 0.9, τlow = 0.4, with remasking
disabled. The figure illustrates that multiple tokens are generated in a single step, while each sub-
decoding area reliably commits at least one token, consistent with the intended hierarchical decoding
behavior.

Prompt

Question:
def compare(game,guess): ”””I think we all remember that feeling when the result of some
long-awaited event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing. Your task is to determine if a person correctly
guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a
match.
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Return an array of the same length denoting how far off each guess was. If they have guessed
correctly, the value is 0, and if not, the value is the absolute difference between the guess
and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) - [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) - [4,4,1,0,0,6] ”””

Answer:

    result  =  []     for  i  in  range (len (game )):         if

 game [i ]  ==  guess [i ]:         result .append ( 0 )        

 else :         abs _diff erence  =  abs (game [i ]  -  guess [i ])

        result .append (abs _diff erence )         return  result
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Figure 5: Visualization of Decoding Steps on Humaneval.
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