
Published as a conference paper at ICLR 2025

ENHANCING LANGUAGE MODEL AGENTS USING
DIVERSITY OF THOUGHTS

Vijay Lingam† Behrooz Omidvar Tehrani† Sujay Sanghavi§ Gaurav Gupta†

Sayan Ghosh† Linbo Liu† Jun Huan† Anoop Deoras†
†AWS AI Labs §Amazon
vjlingam@amazon.com omidvart@amazon.com

{sujayrs,gauravaz,sghoshnc,linbol,lukehuan,adeoras}@amazon.com

ABSTRACT

A popular approach to building agents using Language Models (LMs) involves
iteratively prompting the LM, reflecting on its outputs, and updating the input
prompts until the desired task is achieved. However, our analysis reveals two
key shortcomings in the existing methods: (i) limited exploration of the deci-
sion space due to repetitive reflections, which result in redundant inputs, and
(ii) an inability to leverage insights from previously solved tasks. To address
these issues, we introduce DoT1 (Diversity of Thoughts), a novel framework that
a) explicitly reduces redundant reflections to enhance decision-space exploration,
and b) incorporates a task-agnostic memory component to enable knowledge re-
trieval from previously solved tasks—unlike current approaches that operate in
isolation for each task. Through extensive experiments on a suite of program-
ming benchmarks (HumanEval, MBPP, and LeetCodeHardGym) using a variety
of LMs, DoT demonstrates up to a 10% improvement in Pass@1 while main-
taining cost-effectiveness. Furthermore, DoT is modular by design. For instance,
when the diverse reflection module of DoT is integrated with existing methods like
Tree of Thoughts (ToT), we observe a significant 13% improvement on Game of
24 (one of the main benchmarks of ToT), highlighting the broad applicability and
impact of our contributions across various reasoning tasks.

1 INTRODUCTION

Developing autonomous AI-based frameworks leveraging Large Language Models (LLMs) to solve
challenging reasoning and decision-making tasks is an active area of research. Recent research
works have focused on utilizing different LLMs as the backbone to develop AI agents that can
understand, reason, and reflect on their own actions when solving a task. An AI agent typically per-
forms iterative inference to effectively reason and solve a task by leveraging LLMs and knowledge
of tools if available. Examples of such agentic architectures are ReAct (Yao et al., 2023b), Tree
of Thoughts (ToT) (Yao et al., 2023a), and Toolformer (Schick et al., 2023), which have explored
the in-context learning abilities of LLMs, proposing iterative inference-level algorithms to mimic
human-like learning. Such agent architectures promote generalistic approaches to reasoning and
learning, which differs from prior reinforcement learning-based solutions introduced by Mnih et al.
(2013); Le et al. (2022) that were tailored towards a specific task and demanded extensive compute
and data for training.

Building upon ReAct, Reflexion (Shinn et al., 2023) improved the reasoning capabilities in the
agent by introducing “self-reflections”, a mechanism to steer the model away from previous failed
trajectories. Similarly, LATS (Zhou et al., 2023) extended these ideas by enabling multiple reasoning
paths and employing search algorithms like Monte Carlo Tree Search (MCTS) to identify optimal
solutions. These methods represent significant strides in enhancing LLMs’ reasoning capabilities
through an iterative feedback.

1https://github.com/amazon-science/DiversityOfThoughts

1

https://github.com/amazon-science/DiversityOfThoughts

Published as a conference paper at ICLR 2025

Table 1: Self-reflection counts and output token usage on a
HumanEval subset, highlighting redundancy across prob-
lems. “Ref” denotes reflections.

Problem Name Total Ref Unique Ref #Tokens

145 order by points 36 4 5129
130 tri 111 8 14,484
129 minPath 84 10 12,227
132 is nested 36 9 4292
84 solve 96 13 10,329

Table 2: Pass@1 and cost com-
parison for OpenAI o1 on the
LeetCodeHardGym benchmark.
DoT outperforms Reflexion.

Method Pass@1 Cost

Base 45 $12.75
Reflexion 62 $24.24

DoT 72.5 $33.47

Despite these advancements, current frameworks suffer from few critical limitations: (i) poor explo-
ration of the decision space, primarily due to repetitive reflections, and (ii) an inadequate memory
mechanism. To depict these shortcomings, we revisited the self-reflections generated by Reflex-
ion and LATS. Specifically, we analyzed the generated self-reflections by these two approaches
for the HumanEval dataset (Chen et al., 2021b). Upon careful inspection, we observed that sev-
eral self-reflections were repetitive. We employed an LLM (GPT-4o) to identify clusters of similar
self-reflections and we manually inspected a random sample (see details of prompt used in Ap-
pendix A.3). Our analysis revealed that a significant portion of the self-reflections generated by
LATS were repetitive and redundant, leading to poor decision-space exploration and excessive to-
ken usage. We present key statistics for a representative subset of the HumanEval dataset in Table 1.
Similar patterns were observed across other datasets.

Reflexion and LATS incorporate a local memory component to store reflections and failed imple-
mentations, using it as additional context to improve subsequent generations. However, this memory
is reset before tackling the next task. In contrast, Didolkar et al. (2024) demonstrated that recent
LLMs can leverage metacognitive abilities to apply prior insights to new tasks, achieving signifi-
cant performance gains. Their method involves curating in-context examples based on skill exem-
plars—insights from related tasks—but relies on a predefined set of exemplars, which necessitates
additional training data and limits adaptability across diverse tasks.

To address these limitations, we propose Diversity of Thoughts (DoT), a novel framework that
enhances decision space exploration by (a) reducing redundant reflections and (b) integrating
a task-agnostic memory component. DoT promotes diverse reasoning attempts using a variety
of thought/step sampling strategies, ensuring effective intermediate reflections to guide decision-
making. The task-agnostic memory bank dynamically retrieves relevant in-context examples from
previously solved tasks, boosting the model’s ability to generate informed reasoning paths.

This approach not only reduces redundant computations but also significantly improves efficiency,
resulting in a more cost-effective solution. For example, on the LeetCodeHardGym benchmark,
DoT achieved a 10% gain in Pass@1 (Claude Sonnet 3.5) with a 4× cost reduction compared to
LATS (see Section 3.2.1 and Table 6). Additionally, DoT demonstrated substantial improvements on
OpenAI o12 in a preliminary study, outperforming both the base model and Reflexion (see Table 2).

In summary, our main contributions in this paper are mentioned below:

• We identify redundancy as a critical limitation in the existing reflection-based reasoning
frameworks (e.g., Reflexion, LATS), as shown anecdotally in Figure 1 and quantitatively
in Table 1. Additionally, current frameworks handle each task in isolation, missing the
opportunity for cross-task knowledge transfer.

• We propose (i) DoT, a novel framework that promotes diversity in reasoning trajectories,
and (ii) DoT-bank, which further extends DoT by incorporating similar trajectories from
a task-agnostic memory bank to enhance decision space exploration.

• Our extensive experiments across multiple code generation datasets (HumanEval, MBPP,
LeetCodeHardGym) and models demonstrate the effectiveness of DoT. We achieve
state-of-the-art results, with up to a 10% improvement in Pass@1 on LeetCodeHardGym

2https://openai.com/index/introducing-openai-o1-preview/

2

https://openai.com/index/introducing-openai-o1-preview/

Published as a conference paper at ICLR 2025

Figure 1: Examples of repetitions in generated self-reflections from LATS on problem
145 order by points in the HumanEval dataset. The words highlighted in red are redundant
across Reflection 23, 24 and 27.

for Claude Sonnet 3.5, while reducing token costs by 4× compared to LATS and 1.4×
more expensive than Reflexion.

2 METHODOLOGY

Problem Setup. We briefly review the standard LLM-based reasoning and decision making setup.
We are provided with an input x in natural language, along with a pretrained LLM pθ(·) param-
eterized by frozen learned parameters θ. The goal is to generate an output response y that cor-
responds to a solution for reasoning tasks or a set of actions for decision making. Traditional
input-output prompting (y ∼ pθ(x)) leads to sub-optimal performance. Following the observa-
tions made by Brown et al. (2020), a flurry of prompting techniques were proposed, which prepend
additional input text with specific instructions or few-shot input-output examples to input query x.
Incorporating such additional context helps to improve reasoning and decision making performance.
promptIO(x) denotes a generic stage in the process of transforming the given input prompt x into
output y as: y ∼ pθ(promptIO(x)). An illustration of this process is shown in Figure 2.

System Message:
You are an AI that only responds with python code, NOT ENGLISH. You
will be given a function signature and its docstring by the user.
Write your full implementation (restate the function signature).

↪→
↪→

User Message:
def cube_Sum(n: int) -> int:

"""
Write a python function to find the cube sum of first n even

natural numbers.↪→
"""

Figure 2: An example of promptIO(x) on programming tasks. The User Message denotes x in the
above example, and the promptIO(x) prepended a System Message specific to a task.

Preliminaries. Our framework’s design is inspired by Reflexion (Shinn et al., 2023), which en-
hances reasoning through iterative interaction with an external API or environment. Reflexion in-
volves three agents—actor (Ma), evaluator (Me), and self-reflection (Msr)—working cyclically
until a termination condition is met. For code generation, the process is as follows:

(a) The actor Ma receives input and generates an output (e.g., a code snippet).
(b) The evaluator Me scores this output (e.g., the number of unit tests passed).
(c) If the score is low (i.e., code fails), the self-reflection agent Msr diagnoses the issue, suggests a
fix, and adds it to the input context along with the failed action. This new input is given to the actor,
and the cycle repeats until success or a trial limit is reached.

3

Published as a conference paper at ICLR 2025

Environment

Diverse Reflections (LM)

Evaluator

Actor (LM)Trajectory
(short-term memory)

Experience
(long-term memory)

 Action Reward Score

 External Feedback

 Sample potential candidate

 Store successful trajectories

 k diverse reflections

Task Agnostic
Memory Bank

 Retrieve similar trajectories

DoT Agent

Figure 3: Overview of DoT and DoT-bank’s architecture. We introduce a new diverse-reflections
model to mitigate redundancy in reflections, and a task agnostic memory bank to enable knowledge
transfer across tasks.

As noted in Table 1, in several cases, the generated self-reflections are repetitive and redundant,
thereby hindering the effective exploration of the decision space.

2.1 DOT: PROPOSED FRAMEWORK

DoT builds upon Reflexion by replacing the self-reflection model with a novel diverse-reflections
model, Mdr. We extend this further with DoT-bank, which introduces a task-agnostic memory
bank, MB. Thus, DoT comprises three models: the actor Ma and evaluator Me (similar to Re-
flexion) and the diverse-reflections model Mdr. In DoT-bank, MB is additionally leveraged. We
provide a detailed description of each component and the workflow that illustrates how these pieces
are integrated. An illustration is provided in Figure 3.

Actor (Ma): The actor is powered by an LLM of choice with specific instructions to generate
actions conditioned on the state observations; these actions could be snippets of text, or other actions
as per the setting. For example when the task is code generation, the input to the actor is a task
description, associated history etc. as a text string, and the output action is a code snippet.

Evaluator (Me): Computes a reward score for the action generated by the actor. Depending on the
task, Me can be an external environment (e.g., Python interpreter), a Likert scale rating (Yao et al.,
2023a; Zhou et al., 2023), or another LLM (Shinn et al., 2023; Zhou et al., 2023). For example, in
the setting of code generation, the reward can be measured by the number of visible or synthetic unit
tests passed.

Diverse-Reflections (Mdr): To address redundancy, we propose the Diverse-Reflections
module, which generates k diverse reflections in one shot using an explicit prompt:
zi = pθ(z1...k | DivIO(x)). The exact prompt structure (DivIO(x)) is detailed in Figure 5
(see Appendix A.4). Reflections from previous iterations are also included in the context. We inves-
tigate alternative approaches for generating k diverse reflections in Section 3.3.3 and find one-shot
sampling to be the most effective in terms of both performance and cost. Recent work (Hayati et al.,
2024) supports that one-shot sampling can produce semantically diverse outputs. Additionally, we
introduce a diversity metric in Section 3.3.1 to quantitatively demonstrate how our Mdr module
effectively reduces redundancy in generated reflections.

Task-Agnostic Memory Bank (MB): Our second contribution is a persistent, task-agnostic mem-
ory MB that stores successful trajectories of the DoT agent. A trajectory is deemed successful if it
passes all visible or synthetic tests. Each entry in MB is indexed by a unique task-id and consists
of a complete task trajectory. When the actor Ma is invoked, we retrieve j relevant trajectories from
MB and include them in its input context. As more tasks are solved, MB grows, facilitating knowl-
edge transfer between tasks. We evaluate our framework in two configurations—DoT (without MB)
and DoT-bank (with MB)—and analyze the impact of the number of retrieved examples on per-

4

Published as a conference paper at ICLR 2025

Algorithm 1 DoT and DoT-bank Framework

Require: Dataset D, Retriever, Max Trials Tmax

1: Initialize: Actor Ma, Evaluator Me, Diverse Reflections Generator Mdsr,
2: Memory Bank MB = ∅, Failed Tasks F = ∅
3:
4: Phase 1: DoT: solving and constructing memory bank
5: for each task t ∈ D do
6: Generate τ using Ma and evaluate using Me

7: if τ passes evaluation then
8: Add τ to MB
9: else

10: set i = 0
11: while t not solved or i < Tmax do
12: Generate k diverse reflections using Mdsr

13: Generate k new trajectories using by feeding these reflections and τ to Ma

14: for each generated trajectory τi do
15: Evaluate τi using Me and record score
16: if τi passes evaluation then
17: Add τi to MB, break the while loop
18: end if
19: end for
20: if none of the k trajectories passed then
21: Select a trajectory at random (weighted by the corresponding score)
22: end if
23: Increment i
24: end while
25: if no trajectory passes after Tmax trials then
26: Add t to F
27: end if
28: end if
29: end for
30:
31: Phase 2: DoT-bank: reattempting failed tasks using memory bank
32: for each failed task t ∈ F do
33: Retrieve J similar trajectories from MB
34: Ma′ → Inject retrieved trajectories into context of actor
35: Repeat Phase 1 with Ma′ and update MB if successful
36: end for

formance in Section 3.3.3. The orchestration of these agents is presented as DoT framework in Algo-
rithm 1. Additional implementation details and a discussion on MB are provided in Appendix A.1.

2.2 RELATION TO OTHER METHODS

Tree-of-Thought (ToT) (Yao et al., 2023a) extends Chain-of-Thought (CoT) by exploring multiple
reasoning paths over intermediate states (also referred to as “thoughts”). It constructs a tree, where
each node contains [x, z1...i] and represents a partial solution. Thoughts can either be sampled
or proposed using CoT: zi ∼ pCoT

θ (x, z1...i−1). To select the final solution, classic search tree
algorithms such as BFS/DFS are employed, combined with a language model-based evaluator that
assigns a value to each node.

LATS (Zhou et al., 2023) unifies reasoning, acting, and planning under one framework. It replaces
the cyclic workflow in Reflexion with a Monte Carlo Tree Search (MCTS) for proficient exploration
of the decision space. During tree exploration, each node is assigned a value, which is a convex
combination of LM based evaluation and self-consistency. A noteworthy detail is that current action
is agnostic at a given level of the search tree to previous actions: a(i)t ∼ pθ(st). We refer the reader
to Algorithm 1 in (Zhou et al., 2023) for additional details.

5

Published as a conference paper at ICLR 2025

3 EXPERIMENTS

In this section, we begin with an overview of the models and datasets used in our experiments. We
then describe the experimental setup in detail and conclude with a discussion of the results.

Summary: We perform a comprehensive evaluation of our proposed framework, DoT and
DoT-bank, using a wide range of LLMs and benchmarks spanning reasoning and programming
tasks. The key findings are: (i) DoT and DoT-bank consistently outperformed baselines like
Reflexion and LATS in terms of accuracy across datasets like HumanEval, LeetCodeHardGym,
and MBPP, while being significantly more cost-effective than LATS (see Section 3.2.1). (ii) The
performance gains were observed across different LLM architectures and model sizes, with larger
improvements seen for less powerful models (see Table 4 and Table 8). (iii) Quantitative analysis
(see Section 3.3.1) revealed that DoT generates diverse and non-repetitive self-reflections, leading
to more effective exploration of the decision space. (iv) Embedding-based retrieval of few-shot ex-
amples from a memory bank (DoT-bank) further boosted performance. (v) The diversity strategy
introduced in DoT is also applicable to other reasoning frameworks like Tree of Thoughts, leading
to substantial gains on challenging datasets like Game of 24 (see Section 3.3.4).

3.1 EXPERIMENT SETUP

Models: We conduct a comprehensive evaluation of DoT using a diverse suite of both open-source
LLMs (Llama-3.1 8B and Llama-3.1 70B) Dubey et al. (2024) and proprietary LLMs (Claude Sonnet
3.53, GPT-3.5-Turbo, GPT-4, GPT-4o, GPT-4o-mini4). This diverse selection allows for a holistic
assessment of our framework’s performance across different architectures and model sizes. Our em-
pirical results demonstrate that the effectiveness of our contributions remains consistent, regardless
of the specific LLM being used.

Datasets and Metrics: In this work, we experiment on a variety of tasks spanning the domains of
reasoning and programming. Table 3 presents an overview of the tasks and their corresponding eval-
uation metrics. For each method, we also report the dollar cost of invoking the respective LLM APIs.

Table 3: Datasets used for Programming and Reasoning tasks.

Task Type Dataset Name Size Metric

Programming HumanEval 164 problems, ∼3 visible test cases/problem Pass@1

Programming MBPP 397 sampled problems Pass@1

Programming LeetCodeHardGym 40 uncontaminated problems Pass@1
Reasoning Game of 24 100 puzzles 0-1 Acc

To evaluate the programming capabilities of DoT and DoT-bank, we conduct experiments on Hu-
manEval(Chen et al., 2021a), MBPP (Austin et al., 2021), and LeetCodeHardGym (Shinn et al.,
2023) benchmarks, using Pass@1 as our primary metric. During solution generation, only visible or
synthetic test cases are used to ensure the validity of Pass@1. The final solution is then assessed on
hidden test cases, assigning a Pass@1 score of 1 if all hidden tests are passed, and 0 otherwise.

Hyperparameters. We use the hyperparameters recommended by the authors of the respective
baselines. For Reflexion, we set max-iterations to k = 3 for HumanEval and MBPP, and k = 5 for
LeetCodeHardGym. For LATS, k = 8 is used across all datasets. For DoT and DoT-bank, we
set k = 3 for HumanEval and MBPP, and k = 5 for LeetCodeHardGym. In Appendix A.2.4, we
show that naively increasing k (the total number of generated reflections) in Reflexion has minimal
impact on performance, highlighting that DoT variants are both more effective and cost-efficient.
Note: unless specified, the number of retrieved trajectories is 1 for all DoT-bank experiments.

3https://www.anthropic.com/news/claude-3-5-sonnet
4https://openai.com/index/hello-gpt-4o/

6

Published as a conference paper at ICLR 2025

Table 4: HumanEval Dataset Results Using Visible Test Cases. Bold indicates the best result and
underscore denotes the second best result. ∆Base is the relative improvement over the Base model.
DoT and DoT-bank show consistent improvements in performance.

Method Sonnet 3.5 Llama-3.1-8B Llama-3.1-70B

Pass@1 ∆Base Cost Pass@1 ∆Base Cost Pass@1 ∆Base Cost

Base 86.59 - $0.39 59.76 - $0.01 79.27 - $0.04
Reflexion 88.41 +1.82 $0.89 72.56 +12.80 $0.07 87.2 +7.93 $0.17

LATS 88.41 +1.82 $7.64 74.39 +14.63 $2.00 84.76 +5.49 $4.56

DoT 91.46 +4.87 $1.14 73.17 +13.41 $0.10 89.63 +10.36 $0.21
DoT-bank 93.9 +7.31 $1.67 78.66 +18.90 $0.17 93.29 +14.02 $0.31

3.2 EXPERIMENTS & RESULTS

3.2.1 PROGRAMMING TASKS

HumanEval Chen et al. (2021a) We use visible tests included in the problem doc-strings for all
iterative baselines (Reflexion, LATS, DoT, and DoT-bank). Table 4 compares DoT variants against
the baselines across two key metrics: accuracy and cost. The results indicate that DoT achieves a
higher pass@1 rate than LATS, Reflexion, and traditional input-output prompting. Moreover, DoT is
significantly more cost-effective than LATS, demonstrating that it strikes a more optimal balance
between cost and accuracy. DoT-bank offers additional performance improvements over DoT with
gains of up to 4% in pass@1 as shown in Table 4. This highlights the significance of retaining
insights from cross tasks. The performance improvement with DoT is independent of the choice of
LLM. We observe consistent gains in pass@1 regardless of the underlying LLM, as shown in Ta-
ble 4. Notably, the performance delta is greater for less powerful models like the Llama-3.1 family.

In Table 5, we compare DoT against the baselines using synthetically generated tests. At the time
the experiments were done, we discovered a bug in the official LATS implementation, where the
“num success” variable was mistakenly incremented even when an incorrect solution was generated.
For comparison, we report both the original and bug-free versions of LATS in Table 5. After fixing
the bug, there is a steep 10% drop in Pass@1. Overall, our results suggest that DoT delivers superior
or competitive performance while being significantly more cost-efficient than LATS.

LeetCodeHardGym Shinn et al. (2023) Table 6 compares the performance of DoT variants
against the baselines using Claude Sonnet 3.5 as base LLM. While LATS incurs a notably high
token consumption, leading to increased costs, both Reflexion and LATS fail to deliver any perfor-
mance gains on this dataset. In contrast, DoT effectively explores more diverse reasoning paths,
leading to a broader exploration of the decision space, which is reflected in the substantial 7.5% net
performance gains. DoT-bank further amplifies this improvement with an additional 2.5% gain in
the performance. We present additional results using GPT-4o models in Appendix A.2.2.

Table 5: Results for the HumanEval dataset using GPT-3.5-Turbo model. Results with * are obtained
from Zhou et al. (2023). ∆CoT shows the relative gains w.r.t CoT method.

Method Pass@1 ∆CoT

CoT* 46.9 -
ReAct* 56.9 +10.00

Reflexion* 68.1 +21.20
ToT* 54.4 +7.50

LATS* 83.8 +36.90
LATS (corrected) 73.9 +27.00

DoT 75 +28.10

7

Published as a conference paper at ICLR 2025

MBPP Austin et al. (2021) Since MBPP’s problem prompts lack visible test cases by default, we
follow Shinn et al. (2023) and use synthetic unit tests to generate potential solutions for all iterative
baselines. Consistent with our earlier findings, DoT and DoT-bank leads to notable performance
improvements, with particularly significant gains observed in less powerful LLM backbones as il-
lustrated in Table 8.
To ensure the gains are not random, we repeat select experiments three times and report statistically
significant findings in Section 3.3.1. A detailed token usage analysis is provided in Appendix A.2.3.

Table 6: LeetcodeHardGym Dataset Results
(Table 1). Bold highlights the best result,
while underscore marks the second best.
∆Base indicates the improvement over the
Base model.

Method Pass@1 ∆Base Cost

Base 42.5 - $0.18
Reflexion 42.5 +0.00 $1.59
LATS 42.5 +0.00 $14.75

DoT 50.0 +7.50 $3.18
DoT-bank 52.5 +10.0 $3.78

Table 7: Accuracy on the Game of 24 Dataset
(GPT-4). Augmenting diversity to the exist-
ing reasoning frameworks results in signifi-
cant gains.

Game of 24 (GPT-4) Accuracy

Base 7.3%
CoT 4.0%
ToT 69.0%

ToT + Diversity 82.0% (+13.0%)

Table 8: Performance comparison on MBPP using synthetic test cases. DoT and DoT-Bank outper-
form other methods in Pass@1, while maintaining cost-efficiency across models.

Method Sonnet 3.5 Llama-3.1-8B Llama-3.1-70B

Pass@1 ∆base Cost Pass@1 ∆base Cost Pass@1 ∆base Cost

Base 77.08 - $0.68 48.61 - $0.02 72.80 - $0.07
Reflexion 79.35 +2.27 $6.42 60.96 +12.35 $0.37 71.79 -1.01 $0.74
LATS 79.72 +2.64 $98.71 61.21 +12.60 $7.41 73.55 +0.57 $21.01

DoT 80.35 +3.27 $9.52 64.23 +15.62 $0.59 76.32 +3.52 $1.21
DoT-bank 84.63 +7.55 $9.74 66.50 +17.89 $0.71 78.34 +5.54 $1.34

3.3 ADDITIONAL STUDIES

3.3.1 QUANTITATIVE ANALYSIS OF GENERATED SELF-REFLECTIONS

To quantify the diversity, we compute the average pairwise cosine similarity across generated self-
reflections for each problem within a dataset, reporting both the mean and standard deviation. We
use the ‘all-Mini-LM-v6’ model from SentenceTransformers5 to generate embeddings for these re-
flections and tabulate our results in Table 9. A lower similarity score indicates greater diversity.

Table 9: Average pairwise cosine similarity scores for generated reflections across baselines.
DoT variants produce more diverse and less redundant reflections.

Dataset + Model Reflexion LATS DoT DoT-Bank

HumanEval + Llama-3.1-70B 0.83±0.09 0.65±0.41 0.48±0.11 0.48±0.12

LeetCodeHardGym + Sonnet 3.5 0.83±0.13 0.70±0.29 0.62±0.13 0.61±0.10

5https://sbert.net

8

Published as a conference paper at ICLR 2025

3.3.2 MEMORY-BANK FEW-SHOT SELECTION’S IMPACT ON PERFORMANCE

Recall from Algorithm 1 that in phase 1, successful trajectories along with the problem’s docstring
embeddings are stored in the memory bank. In phase 2, for re-attempting failed problems, the
docstring embedding is used to retrieve and inject k similar trajectories as in-context examples.
To evaluate the impact of retrieved few-shot examples from the memory bank, we conducted an
ablative study comparing two strategies: (i) Random, which injects k random trajectories from MB
into the context of Ma, and (ii) Cosine-sim, which retrieves the k most similar (closest in embedding
space) trajectories based on the cosine similarity of their embeddings. Table 10 demonstrates that
embedding-based retrieval consistently outperforms random selection, with performance plateauing
at k = 3. This highlights that injecting contextually similar examples improves model performance,
consistent with recent findings in (Didolkar et al., 2024).

Table 10: Performance on HumanEval with GPT-4o using varying numbers of memory bank
examples: Random examples are uniformly sampled, while Cosine-sim examples are retrieved by
cosine similarity.

#ICL Examples 0 1 2 3 4 5

Random 92.68 95.12 97.56 96.95 96.34 96.95
Cosine-sim 92.68 97.56 98.17 98.78 98.17 97.56

3.3.3 GENERATING DIVERSE REFLECTIONS

We analyze two variants for generating diverse reflections and empirically study their performance
and the associated costs.

Iterative Sampling: To encourage diverse reflections, we condition each generated reflection on
all previous ones, incorporating them into the context using a structured prompt. Formally, zi ∼
PDiv
θ (zi | x, z1...i−1) ∀i ∈ (1...k).

Table 11: Comparison of Sampling Methods for generating diverse reflections on the HumanEval
Benchmark. The table shows pass@1 performance and cost for each model using one-shot and
iterative sampling methods.

Sampling Method GPT-4o-mini GPT-4o OpenAI o1

Pass@1 Cost Pass@1 Cost Pass@1 Cost

One Shot 92.07 $0.05 95.12 $1.01 99.39 $26.75
Iterative 91.00 $0.07 93.29 $1.57 95.73 $37.37

From Table 11, we observe that one-shot sampling for generating diverse reflections consistently
outperforms iterative sampling across all models. A recent study by Hayati et al. (2024) further
supports our observation. GPT-4o-mini achieves a notable Pass@1 score of 92.07 at a minimal cost
($0.05), making it the most cost-efficient. As model size increases, the cost disparity becomes more
pronounced—one-shot sampling is approximately $10 cheaper while delivering a 4% improvement.

Other sampling methods, such as repetitive sampling or using an LLM to filter redundant reflections
(similar to our motivation analysis), were not explored due to their higher costs, which compromise
cost efficiency.

3.3.4 IMPACT OF DIVERSITY ON EXISTING REASONING FRAMEWORKS

The modular design of diversity strategy introduced in this work, aimed at mitigating redundancies
in generated steps and thoughts, broadly, is also applicable to the existing reasoning frameworks.
As a demonstration, we enhanced the Tree of Thoughts (ToT) framework by incorporating diversity
into the thought sampling strategy. This was achieved through explicit prompting and by passing
previously generated thoughts through context. We compared this enhanced version with the base

9

Published as a conference paper at ICLR 2025

ToT implementation on the challenging Game-of-24 dataset, with the results presented in Table 7.
We refer the reader to Appendix A.4.1 for the exact prompts been used. By introducing diversity
into the proposed thoughts, we observed a substantial 13% improvement in 0-1 accuracy.

4 RELATED WORK

We categorize the literature on LLM reasoning capabilities into three main themes: (i) enhancing
step-by-step reasoning abilities, (ii) promoting diversity in the reasoning process, and (iii) incor-
porating memory mechanisms and external memory to facilitate learning from past experiences.

Reasoning in LLMs. Since LLMs were identified as few-shot learners (Brown et al., 2020), sev-
eral prompting techniques and inference strategies have been proposed to improve their reasoning
abilities. Chain of Thought (CoT)(Wei et al., 2022) introduced step-by-step reasoning to enhance
problem-solving. Self-Consistency(Wang et al., 2023) extended CoT by leveraging multiple inde-
pendent CoT runs for improved outcomes. Tree of Thoughts (ToT)(Yao et al., 2023a) employed
search algorithms like BFS/DFS with LLM-guided heuristics to further boost performance. Re-
Act (Yao et al., 2023b) integrates reasoning and action steps, while Reflexion (Shinn et al., 2023)
extends this approach by incorporating a “self-reflection” component, building upon the Self-Refine
framework (Madaan et al., 2023). More recently, LATS (Zhou et al., 2023) integrated Monte Carlo
Tree Search (MCTS) into Reflexion, achieving gains at the expense of higher token usage and costs.
However, our analysis revealed that Reflexion and LATS generate redundant self-reflections thereby
hindering effective decision space exploration.

Diversity in Reasoning. Inducing diversity in LLM reasoning has been explored through methods
like DIV-se (Naik et al., 2024), which uses varied prompts and personas (e.g., “Think like Alan
Turing” or “Think like a Math Professor”). However, it requires manual persona selection, limiting
flexibility. Flow of Reasoning (FoR)(Yu et al., 2024) uses GFlowNet to train LLMs to generate
diverse reasoning without predefined personas but involves task-specific fine-tuning. In contrast, our
framework, DoT, promotes diversity through structured prompts and one-shot sampling, leveraging
a task-agnostic memory bank without personas, manual interventions, or task-specific training. This
enables DoT to explore multiple decision branches and adapt across domains seamlessly.

LLM Memory. Memory mechanisms enable LLMs to retain and learn from past experiences, en-
hancing their ability to reason and adapt. MemoryBank (Zhong et al., 2024) enables LLMs to update
and retrieve past interactions to align with user intent. MemoChat (Lu et al., 2023) trains LLMs to
efficiently retrieve relevant dialogue history. Reflexion (Shinn et al., 2023) leverages memory in a
reinforcement learning manner, with past action described in verbal format. CLIN Majumder et al.
(2024) stores causal abstractions in an evolving memory. In contrast, our task agnostic memory bank
stores entire agent trajectories retrieving them as in-context examples, enriching decision-making
and reasoning.

External Memory for LLMs. External memory methods like Buffer of Thoughts (BoT) (Yang
et al., 2024) introduce high-level “thought templates” to assist reasoning, while Needle in a
Haystack Chaudhury et al. (2024) demonstrates the utility of external memory for tasks requir-
ing long context lengths. Our approach differs by storing complete task trajectories in a dynamic,
task-agnostic memory bank, injecting relevant examples to improve reasoning. The memory-bank
grows as the agent solves more tasks.

5 LIMITATIONS & CONCLUSION

DoT and DoT-bank significantly reduce costs compared to LATS but remain 1.4× more expen-
sive than Reflexion and up to 8× higher than the base LLM. Iterative reasoning frameworks also
suffer from increased latency due to repeated interactions with external environments (e.g., tools,
APIs), limiting scalability. While our one-shot sampling mitigates redundancies in generated reflec-
tions, it is not entirely foolproof, leaving room for future research on more efficient strategies to
generate diverse reflections. This work addresses key limitations in self-reflection-based reasoning
frameworks, namely redundant reflections and missed opportunities for cross-task knowledge trans-
fer. Although focused on programming tasks, extending these methods to other reasoning domains
presents an exciting avenue for future exploration.

10

Published as a conference paper at ICLR 2025

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Subhajit Chaudhury, Soham Dan, Payel Das, Georgios Kollias, and Elliot Nelson. Needle in the
haystack for memory based large language models. arXiv preprint arXiv:2407.01437, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Aniket Rajiv Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timo-
thy P Lillicrap, Danilo Jimenez Rezende, Yoshua Bengio, Michael Curtis Mozer, and Sanjeev
Arora. Metacognitive capabilities of LLMs: An exploration in mathematical problem solving.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=D19UyP4HYk.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, and Akhil Mathur et. al. The llama 3 herd of models, 2024. URL https://arxiv.
org/abs/2407.21783.

Shirley Anugrah Hayati, Minhwa Lee, Dheeraj Rajagopal, and Dongyeop Kang. How far can we
extract diverse perspectives from large language models? In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Processing, Miami, Florida, USA, November 2024.
Association for Computational Linguistics.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Hoi. CodeRL:
Mastering code generation through pretrained models and deep reinforcement learning. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
WaGvb7OzySA.

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng
Wu. Memochat: Tuning llms to use memos for consistent long-range open-domain conversation.
arXiv preprint arXiv:2308.08239, 2023.

11

https://arxiv.org/abs/2108.07732
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=D19UyP4HYk
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=WaGvb7OzySA
https://openreview.net/forum?id=WaGvb7OzySA

Published as a conference paper at ICLR 2025

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

Bodhisattwa Prasad Majumder, Bhavana Dalvi Mishra, Peter Jansen, Oyvind Tafjord, Niket Tandon,
Li Zhang, Chris Callison-Burch, and Peter Clark. CLIN: A continually learning language agent
for rapid task adaptation and generalization. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=xS6zx1aBI9.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. DI-
VERSITY OF THOUGHT IMPROVES REASONING ABILITIES OF LARGE LANGUAGE
MODELS, 2024. URL https://openreview.net/forum?id=FvfhHucpLd.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric
Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer:
Language models can teach themselves to use tools. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural In-
formation Processing Systems, volume 36, pp. 68539–68551. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: language agents with verbal reinforcement learning. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 8634–8652. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 24824–24837. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E. Gonza-
lez, and Bin CUI. Buffer of thoughts: Thought-augmented reasoning with large language models.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=ANO1i9JPtb.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 11809–11822. Curran Associates, Inc.,
2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International Con-
ference on Learning Representations, 2023b. URL https://openreview.net/forum?
id=WE_vluYUL-X.

12

https://openreview.net/forum?id=S37hOerQLB
https://openreview.net/forum?id=xS6zx1aBI9
https://arxiv.org/abs/1312.5602
https://openreview.net/forum?id=FvfhHucpLd
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://openreview.net/forum?id=1PL1NIMMrw
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://openreview.net/forum?id=ANO1i9JPtb
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

Published as a conference paper at ICLR 2025

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Efficient
training of llm policy with divergent thinking. arXiv preprint arXiv:2406.05673, 2024.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 19724–19731, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language
agent tree search unifies reasoning acting and planning in language models, 2023.

13

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

The memory bank is implemented as a hash map: unique-task-id: complete-task-trajectory. In
phase 1 of our DoT algorithm, successful trajectories and the embedding of the task’s docstring
are stored. In phase 2, when re-attempting failed tasks, we generate an embedding for the task’s
docstring and retrieve the top k most similar trajectories using cosine similarity. We use Cohere-
Embed-V3-English for embedding generation. The k closest trajectories, based on cosine similarity,
are considered relevant and serve as in-context examples for the actor agent.

A.2 ADDITIONAL EXPERIMENTS

A.2.1 EXPERIMENTS WITH STATISTICAL SIGNIFICANCE

To ensure the reported gains are not random, we repeat a subset of experiments three times and report
both average and standard deviation in Table 12. These results further validate DoT’s effectiveness.

Table 12: 3-run average Pass@1 on HumanEval and LeetCodeHardGym using Sonnet-3.5.
DoT variants show statistically significant improvements.

Model HumanEval LeetCodeHardGym

Base 85.57±0.94 40.83±2.89

Reflexion 88.21±0.35 41.67±1.44

LATS 89.16±0.68 42.50±2.50

DoT 91.46±0.61 50.00±2.50

DoT-bank 94.10±0.35 53.33±1.44

A.2.2 LEETCODEHARDGYM

We replicate the LeetCodeHardGym experiments using GPT-4o and GPT-4o-mini, and summarize
the results in Table 13. DoT achieves comparable or superior performance with a 4× reduction
in cost. Notably, DoT-bank outperforms LATS by 12.5% on GPT-4o, while being 2.5× more
cost-efficient.

Table 13: LeetcodeHardGym Dataset Results with Visible Test Cases. Bold highlights the best
result, while underscore marks the second best. ∆Base indicates the improvement over the Base
model. DoT and DoT-bank consistently enhance performance across various base models.

Method GPT-4o-mini GPT-4o

Pass@1 ∆Base Cost Pass@1 ∆Base Cost

Base 15.0 - $0.05 25.0 - $0.18
Reflexion 17.5 2.50 $0.10 27.5 2.50 $1.26

LATS 20.0 5.00 $0.72 32.5 7.50 $13.33

DoT 22.5 7.50 $0.15 32.5 7.50 $3.18
DoT-bank 22.5 7.50 $0.26 45.0 20.0 $5.48

A.2.3 LLM TOKEN USAGE ANALYSIS

Table 14 presents a breakdown of average input and output token usage across different methods.
DoT’s token usage closely mirrors that of Reflexion, yet it achieves significantly better performance.
In contrast, LATS is an order of magnitude more token- and cost-intensive than the other baselines.

14

Published as a conference paper at ICLR 2025

Table 14: Token usage and cost analysis for different methods on the HumanEval dataset using
Sonnet-3.5.

Method Avg Input Tokens Avg Output Tokens Avg Cost per task ($)

Base 223 114 0.0024
Reflexion 702 221 0.0054
LATS 9370 1230 0.0466
DoT 904 282 0.0070
DoT-bank 1418 395 0.0102

A.2.4 IMPACT OF INCREASED ITERATIONS ON REFLEXION PERFORMANCE

Table 15 analyzes the impact of increasing the maximum iterations (k) on performance (Pass@1)
for the Reflexion method. The table shows that naively increasing the number of reflections has
minimal impact on performance, while DoT variants outperform Reflexion at k = 3.

Table 15: Performance and Cost Analysis for Different K Values

Method K=3 K=6 K=8 K=10

Reflexion 88.41 ($0.89) 89.02 ($1.36) 89.63 ($1.64) 89.63 ($1.87)

DoT 91.46 ($1.14) – – –
DoT-bank 93.90 ($1.67) – – –

A.3 PROMPT TO CLUSTER REFLECTIONS USING GPT-4O

We use the prompt illustrated in Figure 4 to cluster reflections by using GPT-4o. In Table 16 we
show an example of how the output from GPT-4o looks like corresponding to the aforementioned
prompt.

You are provided with a list of sentences, each identified by a unique
ID. Your task is to group these sentences into clusters, where each
cluster contains sentences that convey the same meaning. The
sentences might be phrased differently, but they should express the
same core idea or intent.

↪→
↪→
↪→
↪→

Instructions:
Review each sentence carefully, considering synonyms, paraphrasing, and

variations in expression.↪→
Group the sentences that share the same meaning into a single cluster.
For each cluster, list the unique IDs of the sentences included.

Input Format:
A list of sentences with unique IDs.

Output Format:
Cluster IDs along with a concise summary of each cluster, presented in

table format↪→

Figure 4: Prompt to cluster reflections

15

Published as a conference paper at ICLR 2025

Cluster
ID

Sentence IDs Summary

1 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13,
14, 15

The implementation fails to raise a TypeError for non-
integer inputs, particularly strings. Type checking needs to
be improved to explicitly raise TypeErrors for non-integer
inputs. Various methods for fixing include adjusting condi-
tions or using try-except blocks.

2 16, 17, 18, 19, 20,
21, 22, 23, 24, 25,
26, 27, 28, 29, 30,
31, 32, 33, 34, 35,
36, 37, 38, 39, 40,
41, 42, 43, 44, 45,
46, 47, 48, 49, 50,
51

The implementation fails to raise a TypeError for non-
integer inputs, and relies on try-except blocks which do not
handle all cases. The solution involves adding explicit type
checks before calculations to ensure correct error handling.

Table 16: Clusters of sentences with similar meaning and their summaries

A.4 PROMPTS USED IN DOT

We use the prompt in Figure 5 to generate K diverse reflection. We use the prompt in Figure 6 to
generate function implementations by using the reflections and few-shot examples for the program-
ming tasks.

You are a Python programming assistant. You will be given a function
implementation, unit tests, and previously generated reflections.↪→

Write multiple unique and diverse reflections to fix the problem. Each
reflection should follow this structure:↪→

Problem: {a terse description of the identified problem}.
Fix: {proposed fix or hint to fix the identified problem}.

Ensure your reflections are accurate and leverage previous reflections
to avoid repetition. Aim for diversity in your explanations while
prioritizing the correctness of your hints. Add "\n\n" at the end
of each proposed reflection. Only provide the few sentence
descriptions in your answer, not the implementation.

↪→
↪→
↪→
↪→
RESTRICT TO {K} UNIQUE REFLECTIONS.

Figure 5: Prompt for generating K diverse reflections

A.4.1 ADDING DIVERSITY TO TREE-OF-THOUGHTS

We use the following prompt shown in Figure 7 to add diversity over Tree-of-thoughts for Game of
24 task (corresponds to results shown in Table 7).

16

Published as a conference paper at ICLR 2025

Example 1:
[function impl]:
```python
def longest_subarray_with_sum_limit(nums: List[int], target: int) ->

List[int]:↪→
n = len(nums)
left, right = 0, 0
max_length = 0
current_sum = 0
result = []
while right < n:

current_sum += nums[right]
while current_sum > target:

current_sum -= nums[left]
left += 1

if right - left + 1 >= max_length:
max_length = right - left + 1
result = nums[left:right+1]

right += 1
return result

```

[unit test results]:
Tests passing:
assert longest_subarray_with_sum_limit([1, 2, 3, 4, 5], 8) == [1, 2, 3]
assert longest_subarray_with_sum_limit([1, 2, 3, 4, 5], 15) == [1, 2,

3, 4, 5]↪→
assert longest_subarray_with_sum_limit([1, -1, 2, -2, 3, -3], 2) == [1,

-1, 2, -2, 3]↪→
assert longest_subarray_with_sum_limit([], 10) == []
assert longest_subarray_with_sum_limit([], 0) == []
assert longest_subarray_with_sum_limit([], -5) == []
Tests failing:
assert longest_subarray_with_sum_limit([5, 6, 7, 8, 9], 4) == [] #

output: [5]↪→

[self-reflection]:
Problem: The implementation failed the test where no subarray fulfills

the condition. The issue is due to the use of `>=` instead of `>`
in the condition to update the result.

↪→
↪→
Fix: Change the condition to only update the result when the current

subarray length is strictly greater than the previous longest
subarray length by replacing `>=` with `>` in the condition.

↪→
↪→

Problem: The current implementation does not handle the case where the
sum of any subarray exceeds the target, leading to incorrect
results.

↪→
↪→
Fix: Add a condition to check if the sum of the subarray exceeds the

target before updating the result.↪→

Problem: The algorithm might not correctly identify the longest
subarray when multiple subarrays have the same length but different
sums.

↪→
↪→
Fix: Introduce an additional check to ensure that the subarray with the

sum closest to the target is selected when lengths are equal.↪→

Problem: The code does not consider the possibility of an empty array
or a target that is too small to be achieved by any subarray.↪→

Fix: Implement a preliminary check to return an empty array if the
target is smaller than the smallest element in `nums` or if `nums`
is empty.

↪→
↪→

17

Published as a conference paper at ICLR 2025

Example 2:
[function impl]:
```python
def longest_subarray_with_sum_limit(nums: List[int], target: int) ->

List[int]:↪→
n = len(nums)
left, right = 0, 0
max_length = 0
current_sum = 0
result = []
while current_sum + nums[right] <= target:

current_sum += nums[right]
right += 1

while right < n:
current_sum += nums[right]
while current_sum > target:

current_sum -= nums[left]
left += 1

if right - left + 1 > max_length:
max_length = right - left + 1
result = nums[left:right+1]

right += 1
return result

```

[unit test results]:
Tests passing:
assert longest_subarray_with_sum_limit([], 10) == []
assert longest_subarray_with_sum_limit([], 0) == []
assert longest_subarray_with_sum_limit([], -5) == []
Tests failing:
assert longest_subarray_with_sum_limit([1, 2, 3, 4, 5], 8) == [1, 2, 3]

output: list index out of range↪→
assert longest_subarray_with_sum_limit([1, 2, 3, 4, 5], 15) == [1, 2,

3, 4, 5] # output: list index out of range↪→
assert longest_subarray_with_sum_limit([5, 6, 7, 8, 9], 4) == [] #

output: list index out of range↪→
assert longest_subarray_with_sum_limit([1, -1, 2, -2, 3, -3], 2) == [1,

-1, 2, -2, 3] # output: list index out of range↪→

[self-reflection]:
Problem: The implementation fails due to an IndexError caused by

accessing `nums[right]` without bounds checking.↪→
Fix: Add a bounds check for the `right` variable in the `while

current_sum + nums[right] <= target:` loop by modifying the
condition to `while right < len(nums) and current_sum + nums[right]
<= target:`.

↪→
↪→
↪→

Problem: The initial while loop does not account for the scenario where
the right index exceeds the length of the array.↪→

Fix: Introduce a boundary condition to ensure `right` remains within
the array limits during the initial accumulation phase.↪→

Problem: The implementation incorrectly attempts to extend the subarray
beyond the array`s bounds, leading to a runtime error.↪→

Fix: Implement a check within the loop to ensure `right` does not
exceed the length of `nums` before accessing `nums[right]`.↪→

Problem: The code does not correctly handle cases where the target sum
is less than any single element in the array, resulting in a
failure to return an empty array.

↪→
↪→
Fix: Add a preliminary check to return an empty array if no subarray

can possibly meet the target.↪→

END OF EXAMPLES

Figure 6: Prompt for generating function implementations by using the reflections and few shot
examples.

18

Published as a conference paper at ICLR 2025

Task: Game of 24 is a mathematical reasoning challenge, where the goal
is to use 4 numbers and basic arithmetic operations $(+ - * /)$ to
obtain 24.

↪→
↪→

You have the following numbers: {input}

Generate several possible next steps by applying basic arithmetic
operations (+, -, *, /) to pairs of numbers.↪→

Each step should use a unique combination of numbers and a unique
operation that has not been used in the current set of
possibilities.

↪→
↪→

Possible operations include:
- Addition: a + b
- Subtraction: a - b or b - a
- Multiplication: a * b
- Division: a / b or b / a (provided the result is an integer)

Instructions:
1. Do not repeat any operations that have already been listed.
2. Avoid using the same pair of numbers for the same operation.
3. Provide the result of the operation and show the new set of numbers

after applying the operation.↪→

Example:

Input: 4, 5, 6, 7

Possible next steps:
4 + 5 = 9 (left: 9 6 7)
4 * 5 = 20 (left: 20 6 7)
4 - 5 = -1 (left: -1 6 7)
5 - 4 = 1 (left: 1 6 7)
4 + 6 = 10 (left: 5 7 10)
4 * 6 = 24 (left: 5 7 24)
4 - 6 = -2 (left: -2 5 7)
4 + 7 = 11 (left: 5 6 11)
4 * 7 = 28 (left: 5 6 28)
4 - 7 = -3 (left: -3 5 6)
5 + 6 = 11 (left: 4 7 11)
5 * 6 = 30 (left: 4 7 30)
5 + 7 = 12 (left: 4 6 12)
5 * 7 = 35 (left: 4 6 35)
5 - 7 = -2 (left: -2 4 6)
6 + 7 = 13 (left: 4 5 13)
6 * 7 = 42 (left: 4 5 42)
6 - 7 = -1 (left: -1 4 5)

Input: {input}

Possible next steps:

Figure 7: Prompt for obtaining diverse reasoning chains for the Game of 24 task

19

	Introduction
	Methodology
	DoT: Proposed Framework
	Relation to Other Methods

	Experiments
	Experiment Setup
	Experiments & Results
	Programming Tasks

	Additional Studies
	Quantitative Analysis of Generated Self-Reflections
	Memory-Bank Few-Shot Selection's Impact on Performance
	Generating Diverse Reflections
	Impact of Diversity on Existing Reasoning Frameworks

	Related Work
	Limitations & Conclusion
	Appendix
	Additional Implementation Details
	Additional Experiments
	Experiments with Statistical Significance
	LeetCodeHardGym
	LLM Token Usage Analysis
	Impact of Increased Iterations on Reflexion Performance

	Prompt to cluster reflections using GPT-4o
	Prompts used in DoT
	Adding diversity to Tree-of-Thoughts

