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Abstract

Monkeypox is a disease caused by infection with monkeypox virus that causes significant
morbidity in several central and western African countries. There are currently no proven,
safe treatments for monkeypox virus infection. Lesions pass through several stages before
resolution. Evaluating the clinical efficacy of possible treatments involves manually tracking
changes in lesion counts over time until lesion resolution (scabbed or desquamated), which
is both labor intensive and prone to human error. To support a randomized controlled
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trial evaluating putative therapeutics we developed a deep learning method for monkeypox
lesion segmentation and counting in patient photos. In 20 photos from 12 patients with
monkeypox, we manually annotated all visible lesions and trained a U-Net network with
Inceptionv4 encoder to segment lesions. In a leave-one-out evaluation our method shows
promising results for lesion segmentation, with a median Dice of 0.74 (interquartile range:
0.72, 0.79) on the unseen photos. Automated lesion counting was evaluated on a second
held-out set of 20 photographs. Automatic lesion counting performs similarly to human
raters when compared to ground truth, with median lesion count difference of 2.00 (-8.00,
10.25) for the algorithm compared to 5.50 (2.75, 12.00) and -2.00 (-7.00, 1.25) for two other
human raters.
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1. Introduction

Monkeypox is a re-emerging disease which causes significant morbidity, with human mon-
keypox cases have been increasing in sub-Saharan Africa since 2000 (Rimoin et al., 2010),
and is considered a high threat pathogen causing a disease of public health importance
(Sklenovska and Van Ranst, 2018). The first human case of recorded in 1970 in the Demo-
cratic Republic of the Congo (DRC). It has since spread to several other central and western
African countries, often in remote areas where communication infrastructure and availabil-
ity of medical expertise is limited. A monkeypox outbreak was declared on 9 December 2021
in Maniema, Democratic Republic of the Congo, with a total of 196 cases and 24 deaths as
of 12 December 2021 (WHO, 2021).

Symptoms of monkeypox are similar to smallpox. Illness begins with fever, muscle
aches, swollen lymph nodes, chills, and/or exhaustion. Within 1–3 days of the onset of
initial symptoms, the patients develop lesions starting on the face then spreading across
the body. Lesions progress through several stages, from macules to papules to vesicles to
pustules, and finally to a scabbing and desquamating end stage. The illness typically lasts
2 to 4 weeks causing significant morbidity, and a mortality rate as high as 1 in 10.

There are currently no proven, safe treatments for monkeypox virus infection. Phase
I clinical trials have demonstrated a reasonable safety profile of tecovirimat for treating
orthopox virus infections in humans (Jordan et al., 2010; Mucker et al., 2013). However,
randomized controlled clinical trials are needed to evaluate the efficacy of tecovirimat and
similar compounds for treatment of human monkeypox infection. The primary measurement
of disease progression is manual lesion counting from onset until resolution. WHO guidelines
classify Monkeypox cases based on the number of skin lesions: mild (<25 skin lesions),
moderate (25—99 skin lesions), severe (100—250 skin lesions), or grave (>250 skin lesions)
(Jezek and Fenner, 1988). However, such manual assessments are both labor intensive and
prone to human error, and no studies have been conducted to characterize the variability
between observers or establish acceptable limits of agreement. To support future monkeypox
studies, we propose a deep learning method for lesion segmentation and counting in patient
photos.

No previous studies have been reported for monkeypox lesion segmentation or count-
ing from photographs. However, a similar metric of lesion counts and endpoint of lesion
resolution is used in the staging and tracking of acne. Lesion counting and classification
are the primary targets, with segmentation performance a secondary target. Lesion lo-
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calization and segmentation has been proposed by template matching (Humayun et al.,
2012), multi-level thresholding and GLCM feature extraction (Hanifa Setianingrum et al.,
2020), k-means clustering (Lucut and Smith, 2016; Malik et al., 2014), support vector ma-
chines (Hanifa Setianingrum et al., 2020; Alamdari et al., 2016), and semi-automated region
growing with manual seed points (Budhi et al., 2017). Lesion classification has been as-
sessed using shallow neural networks (Junayed et al., 2019; Malgina and Kurochkina, 2021),
and classification models based on hand-crafted features (Hanifa Setianingrum et al., 2020;
Malik et al., 2014; Lucut and Smith, 2016). Other deep learning, instance segmentation,
and thresholding methods have been proposed for other skin diseases such as herpes zoster
(Arias and Mejia, 2020; Mej́ıa Lara and Arias Velasquez, 2022), chicken pox (Oyola et al.,
2012), and histology images (Chen et al., 2017; Moen et al., 2019).

For a planned prospective study of monkeypox photographs which will be collected in
2022, we propose using a deep learning U-Net architecture to segment lesions then estimate
lesion counts from a connected component analysis of the segmentation mask. We present
this proof-of-concept study for as a baseline method for automating the segmentation and
measurement of monkeypox lesions, developed and evaluated using a set of 40 historical
photographs from 17 patients.

2. Materials & Methods

2.1. Data

The set of patient images provided for this study was gathered in the Democratic Republic of
Congo between 2007 – 2011, using two consumer-grade cameras (Samsung Digimax L70 and
Canon Powershot A630). These were acquired to document cases, particularly in mothers
and young infants (Mbala et al., 2017). No imaging protocol was followed as they were
not acquired for the purpose of lesion counting, leading to a variety of lighting conditions,
backgrounds, fields of view, imaging distances, and body sites. Photographs have also been
downsampled from their original resolution to 1024x768 pixels for archival.

A data curation process was followed for this historic set in order to gather all pho-
tographs of sufficient quality for our study. From the set of 381 photographs across 30
patients, we first removed those which were unrelated to skin lesions, such as those showing
only a single large wound on the scalp or closeup photos of the eye. From the remaining
190 photos we removed those which were too blurred due to either motion or camera focus
(58 photos) and repeated photos of the same skin area at the same time point (66 photos)
retaining only the best example for annotation. Finally, no expert consensus guidelines
have been established for counting large, coalesced lesions or wounds, so photographs with
high numbers of these were also removed (26 photos).

The remaining 40 photographs were used in this study, covering 17 patients. We split
this into two equal sets. Image set 1 was used for algorithm development and training,
which we will refer to as the “development set”. Image set 2 was held-out and only used
to evaluate our final model on the task of lesion counting, and will be referred to as the
“test set”. Due to the paucity of data, we selected the photographs in the development set
to cover representative examples of lesion appearance, body sites, and lighting conditions.
The development set contained 20 photographs from 12 patients. The test set contained 20
photographs from 13 patients, with 11 images from 5 patients not present in the development
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set and the remaining 9 photographs coming from 8 patients represented in the development
set. The photographs of patients present in both sets were of different body sites and time
points, with no overlap of skin areas represented in the development and test sets. We
recognize that the overlap of previously seen patients may lead to an overestimation of
performance on the test set, so we also examine the subgroup of unseen patients in our
analysis.

2.2. Ground Truth

Lesion Segmentation Manual segmentation masks were created for all 20 images in
the development set using the open-source Gnu Image Manipulation Program (GIMP). A
single annotator, Rater A, followed a predefined protocol whereby all visible lesions were
traced on a transparent annotation layer using the pencil tool. Lesions from all stages were
demarcated in the same manner, with the lesion boundaries drawn along to the edge of
affected and normal appearing skin for each lesion. This required approximately 25 hours
to annotate images in the development set. Once completed, the annotation layer of each
image was exported to create a binary mask of lesion pixels.

Lesion Counts Ground truth lesion counts were also collected manually for the 20 images
in the test set. GIMP was also used for this task, with the pencil tool used to mark the center
of each visible lesion on a transparent annotation layer. Touching and coalesced lesions were
marked separately if defined structures could still be discerned. A pencil diameter of 3 pixels
was used to ensure that the markings never overlapped, even for small adjacent lesions. Each
image was assessed by the same annotator (rater A) who had provided segmentation ground
truth, in addition to two other human raters (B and C). Given the much higher level of
experience and familiarity with the dataset, we consider the lesion counts by Rater A as
the ground truth for all subsequent analyses.

2.3. Segmentation Algorithm

We selected the ubiquitous U-Net architecture first proposed by Ronneberger et al. (Ron-
neberger et al., 2015). This network uses a symmetric encoder-decoder structure with a
contracting path which captures context and expanding path which enables precise local-
ization. Long skip connections are used to concatenate the upsampled feature map in the
expansive path with the corresponding feature map from the contracting path. Our al-
gorithm uses an InceptionV4 network (Längkvist et al., 2014) as the encoder, initialized
with ImageNet weights, following the implementation in “Segmentation Models Pytorch”
(Yakubovskiy, Accessed December 12th, 2021).

An image-level leave-one-out experiment was conducted to assess the segmentation per-
formance of the algorithm using the development set. For each fold a single photo was held
out for testing. The training and validation sets were constructed from patches extracted
from the remaining 19 photos. Each model was trained for 50 epochs with binary cross
entropy loss using the Adam optimizer (Kingma and Ba, 2014), with an initial learning
rate of 0.0001, reduced to 0.00001 after 25 epochs. The best weights for each model were
selected from the highest Dice value on the validation set.
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Data preparation consisted of extracting 300 128x128 pixel patches for training and vali-
dation. These were generated from random pixel locations in the image, with the constraint
that the corresponding ground truth mask contained at least 1 lesion pixel.

During training, data augmentation was applied at each iteration via a random combi-
nation of elastic transformations, left/right flipping, gaussian blur, affine scaling and trans-
lation, perspective transforms, color temperature adjustments, and gamma adjustments.

Model testing was carried out with a sliding window approach, with a window size
of 128x128 and stride of 32. Each pixel therefore receives 16 predications, with the final
segmentation mask calculated via majority vote.

2.4. Performance Assessment

We evaluated the segmentation performance on the network using the Dice Similarity Co-
efficient (DSC), given by,

DSC =
2|X ∩ Y |
|X|+ |Y |

(1)

where |X| is the number of all lesion pixels in the predicted segmentation mask and |Y |
is the number of all the lesion pixels in the ground truth mask.

Lesion count performance was evaluated by calculating the number of predicted lesions
through connected component analysis of the segmentation mask for a given image, and
comparing to the ground truth number of lesions counted by rater A. We also show corre-
lation and Bland-Altman plots for comparisons between the network and ground truth.

3. Results & Discussion

3.1. Lesion Segmentation

An image-level leave-one-out experiment was conducted using the development set to es-
timate the segmentation performance of the network. For each fold, the model is trained
on all patches from 19 photographs then tested on the held-out photo. Example lesion
predictions are shown in Figure 1. Predicted lesions are shown as colored contours, with
green showing lesions present in both the predicted mask and ground truth, blue showing
areas only in the predicted mask (false positives), and magenta showing areas only in the
ground truth (false negative). Figure 1a shows a close-up view of the back of the hands and
lower right leg, with the majority of lesions in the umbilicated stage (i.e. belly-button-like
in appearance). Figure 1b shows the predictions for hypopigmented papules on the back.
For both lesion stages, the localization performance of the network is very good with a low
number of false positive and false negative regions, despite the differences in lesion appear-
ance, size, and lighting conditions. Figure 1c shows a more complex case, with multiple
coalesced necrotic lesions on the hands and arms of an infant. Despite the good overall
performance of the network for most lesions, the complex structures of the coalesced and
necrotic regions results in a large discrepancy between predicted and ground truth lesion
estimates when calculated from the segmentation masks (290 for the network and 219 for
the ground truth). In this case, large regions of affected skin were marked as a single lesion
by the annotator and the network marked many smaller areas.
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Figure 1: Example predicted lesions for images in the development set. Correctly identified
lesions are shown as a green contour, false positives shown in blue, and false
negatives shown in magenta. (a) Close view of umbilicated lesions taken indoors
with flash. (b) Distant view of hypopigmented papules taken outdoors in natural
light. (c) Close view of coalesced necrotic lesions.

The Dice value was calculated between the predicted lesion mask and the ground truth
for each held-out image, with a median Dice of 0.74 (interquartile range: 0.72, 0.79) across
the 20 images in the development set (Figure 2a).

3.2. Lesion Counting

To assess the performance of our network at estimating lesion counts a single model was
trained using all 20 images in the development set. The model was then tested on the 20 un-
seen images in the test set, and lesion counts estimated by connected component analysis of
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Figure 2: (a) Segmentation performance in leave-one-out experiment using Dice metric.
Each point is a single image from the development set (set 1). (b) Difference in
lesion counts (median, mean) from ground truth by human rater B (+5.5, +8.9),
human rater C (-2.0, -3.6), and network (+2.0, -5.8). Mean value shown as red
cross. (c) Lesion count performance of the network by patient sub-group; patients
represented in the training set (seen), and entirely held-out patients (unseen) (d)
Correlation plot of network vs ground truth lesion counts. Each point is a single
image from the held-out test set (set 2). (e) Bland-Altman plot of the difference
from network to ground truth, against the mean of network and ground truth
count per image.

the segmentation masks. The predicted lesion count was then compared against the ground
truth number of lesions (Figure 2d). We observe a strong correlation between predicted
and ground truth counts (r = 0.97), with a tendency for the algorithm to underestimate as
the density of lesions increases.
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Comparing against two other human raters (Figure 2b) we find that the algorithm
performs similarly, with differences from the ground truth counts (median, mean) by human
rater B of (+5.5, +8.9), human rater C (-2.0, -3.6), and network (+2.0, -5.8). The lesion
count performance of the network by patient sub-group (seen and unseen) is shown in
Figure 2c. While we cannot draw firm conclusions due to the small sample size (n=9 and
n=11 in the seen and unseen groups respectively), there does not appear to be a substantial
difference in performance when the model has or has not seen skin from a different body
region from the same patient.

We observe significant heteroscedascity in Figure 2e. This effect was also observed when
comparing rater A manual counts to the counts derived from the ground truth segmentation
masks in the development set. Coalescing and touching lesions are likely a significant source
of this heteroscedascity due to lesion estimation deriving from connected components of the
predicted segmentation masks.

4. Conclusions

We have presented the first application of image analysis techniques to the task of monkey-
pox lesion counting from photographs. The U-Net architecture with Inceptionv4 encoder,
trained with a small set of ground truth segmentation images, may provide a reliable method
of lesion segmentation in photographs of affected patients. Our method produces compara-
ble performance to human raters for lesion counting, and may offer a more scalable solution
to lesion tracking for future clinical studies.

WHO guidelines classify monkeypox cases based on the number of skin lesions. Accurate
lesion numbers would therefore help in the initial staging of the disease for a patient. The
evolution of lesion numbers at different stages may give a more accurate representation of
disease progression over time, which would be a key clinical target for future clinical trials
of potential treatments. We present our segmentation and counting method as a first step
towards this longer-term goal. We anticipate the real-world application of our approach to
a future clinical trial would involve acquiring patient photographs of a standardized set of
body sites, manual lesion counting in the field, and automatic lesions counts from analysis
of the images. This would serve as both a validation of the image analysis technique, and
as a second read of the patient severity to help with quality assurance during the study.

Future work will aim to improve segmentation performance with more annotated patient
photographs, and compare other techniques used in similar skin image processing applica-
tions against the established baseline method presented here. Lesion count estimation could
also be improved through more sophisticated analysis of the predicted segmentation masks.
A further extension to classifying lesion types would require further careful labelling of seg-
mented lesion types by trained clinicians, but could also improve the tracking and staging
of the disease in larger studies.
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