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Abstract

Detection of face forgery videos remains a formidable challenge in the field of
digital forensics, especially the generalization to unseen datasets and common
perturbations. In this paper, we tackle this issue by leveraging the synergy between
audio and visual speech elements, embarking on a novel approach through audio-
visual speech representation learning. Our work is motivated by the finding that
audio signals, enriched with speech content, can provide precise information effec-
tively reflecting facial movements. To this end, we first learn precise audio-visual
speech representations on real videos via a self-supervised masked prediction task,
which encodes both local and global semantic information simultaneously. Then,
the derived model is directly transferred to the forgery detection task. Extensive
experiments demonstrate that our method outperforms the state-of-the-art methods
in terms of cross-dataset generalization and robustness, without the participation of
any fake video in model training. The code is available here.

1 Introduction

The rapid advancement of generative models enables synthetic realistic facial images [20, 39, 35], and
they have significantly enhanced face manipulation techniques, allowing for the replacement of facial
identities and the modification of attributes such as expressions [60, 59] and lip movements[1, 3].
While these advancements offer vast potential for entertainment and filmmaking, they also harbor the
risk of misuse for deceptive purposes.

In response to these concerns, there has been a surge in the development of face forgery detection
methodologies grounded in deep learning [4, 55, 63, 71, 43, 70, 30, 64]. Despite these efforts, it is
widely acknowledged that face forgery detectors frequently experience a decline in effectiveness
when confronted with novel manipulation techniques [19, 12, 45]. This vulnerability poses significant
hurdles to the reliable application of these detection systems, highlighting a critical area for ongoing
research and innovation.

To enhance the generalization capabilities of face forgery detectors, researchers have proposed
various methods aimed at mining more discriminative clues [70, 62, 71, 29, 64]. Some works focus
on detecting spatial artifacts left in the process of facial manipulation [12, 43, 70, 9], especially
blending boundaries [43, 57]. However, these methods are sensitive to common perturbations,
making them difficult to generalize to real-life scenarios. Another line of research resorts to model
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temporal features [67, 29, 69, 64], considering that fake videos are synthesized in a frame-by-frame
manner. They identify unnatural facial movements existing in fake videos by applying special
architectures [71] or introducing auxiliary tasks [18, 30, 29]. Although showing promising results,
short-term information modeling capacity (e.g., 1 second [71, 30]) makes them overfit to specific
low-level temporal features to varying degrees, resulting in their suboptimal generalization on unseen
datasets and perturbations, as observed in our experiments.

This motivates us to find more general semantic-level features to detect anomalous facial movements.
Recent efforts on audio-visual speech recognition have shown that accurate speech contents can be
extracted from both audio signals and lip movements [56, 28, 46]. Inspired by this, we conjecture
that audio signals could provide strong semantic supervision for identifying inaccurate lip movements
in fake videos, given that lip sequences and audio segments in a real video should convey the same
speech contents. This brings us to the key problem: how to extract semantically rich speech-related
features to represent detailed lip movements?

An intuitive solution is to align the speech representations of each frame of audio segments and lip
sequences directly, as in [17]. However, this method will fail to detect fake videos processed by lip
synchronization techniques, such as Wav2Lip [53], commonly used by recent talking face generation
technologies. Considering that local lip synchronization cannot bring long-range temporal coherence,
we further propose to perform forgery detection by learning audio and visual speech representations in
a framework that encodes both phonetic and linguistic information, which we term as local and global
information. Specifically, it learns local information by frame-wisely audio-visual representation
alignment and models global dependencies via masked prediction task, following previous speech
representation learning methods [56, 28, 73]. In this way, both short-range and long-range temporal
features are learned. After learning audio-visual speech representation on real videos, we directly
transfer the trained model to the forgery detection task by finding discrepancies between visual and
audio speech representations in fake videos.

Thanks to the unsupervised manner and high-level semantic learning, our method, termed
SpeechForensics, avoids overfitting on forgery features and shows strong robustness on vari-
ous perturbations. We conduct comprehensive experiments to evaluate the effectiveness of our
method, and it shows strong performance under different manipulations, datasets, and perturbations.
Especially, our method achieves the AUC of 99.0% on FakeAVCeleb [38] and 91.7% on KoDF [41].
Our main contributions are summarized as follows:

• We propose to perform face forgery video detection by extracting speech representations
from audio and visual streams. It learns on real videos and can smoothly transfer to the
forgery detection task, markedly streamlining the forgery detection workflow.

• We demonstrate a simple framework, which encodes both short-range and long-range
temporal information, is well-suited to our method. And we tailor it to a face forgery
detector using the proposed modality alignment module.

• Extensive experiments demonstrate the superiority of our method over the state-of-the-art
methods in terms of cross-dataset generalization, robustness, and interpretability, in an
unsupervised manner.

2 Related Work
Face Forgery Detection. Initial approaches in face forgery detection predominantly treat the task
as a binary classification problem, leveraging deep learning models trained on datasets specifically
compiled for detecting forgeries [4, 55, 21, 42]. For instance, [4] introduces a pair of detection net-
works known as Mesonet and MesoInception, demonstrating that lightweight neural networks can
effectively undertake forgery detection tasks. Analogously, [55] highlights the superior performance
of an unconstrained Xception network over its predecessors, focusing primarily on the analysis
of spatial details within individual frames. Subsequently, some works [27, 8, 68, 26, 22, 25] try
to combine temporal networks to perform forgery detection. Despite the promising results in the
in-dataset setting, these vanilla methods usually suffer from severe performance degradation when
facing unseen forgeries.

General Forgery Detection. To boost the generalization of detectors on unseen forgeries, re-
searchers attempt to find more discriminative features at both image and video levels.

2



Image-based methods [12, 43, 70, 57, 9] analyze the spatial artifacts common to forged faces and
generate synthetic data to guide models to focus on them. For example, Face X-ray [43] and
SBI [57] detect blending boundaries caused by the fusion of the forged face and background, and
AUNet [9] concentrates on the relation between different facial action units. While they are adept at
identifying specific artifacts, these artifacts are easily destroyed by some common perturbations, e.g.,
compression, which makes it difficult to generalize to real scenarios.

On another front, video-based methods make efforts to explore temporal clues via special network
architectures [71, 64] or auxiliary tasks [44, 30, 29, 69]. FTCN [71] reduces the convolutional kernel
size to 1 forcing the network to only focuses on temporal features. LipForensics [30] uncovers
unnatural lip movements via pre-training on the lipreading task and finetuning on forgery datasets.
Analogously, RealForensics [29] leverages cross-modal self-supervision learning to capture facial
movements. Despite their notable performance, they tend to rely on short-range low-level temporal
features, leading to their limited generalization on new datasets and robustness against common
perturbations. In contrast, our method detects both short-range and long-range anomalous facial
movements using semantic-level information and functions in an unsupervised manner, inherently
possessing superior generalization and robustness.

Audio-Visual Speech Representation Learning. The advent of extensive large-scale audio-visual
speech datasets [6, 7, 16] has spurred the development of numerous audio-visual speech representation
learning methods in recent years [17, 53, 56, 46]. [17] learns visual and audio speech representations
simultaneously based on synchronization signals between lip movements and corresponding audio
segments. Benefiting from off-the-shelf audio speech recognition models, [47] proposes to learn
visual speech representations by minimizing the distance between learned visual embeddings and
pre-trained audio embeddings. [28] further advances this field by simultaneously learning visual and
auditory speech representations through student-teacher networks. We choose AVHuBERT [56] as
the implementation of our audio-visual speech representation learning, considering it fits into our
framework, i.e., learning both local and global semantic representations, and demonstrates remarkable
efficacy in downstream speech recognition tasks.

3 Method

Our method consists of the audio-visual speech representation learning stage and the face forgery
detection stage. We first learn semantically rich visual and audio speech representations in a unified
feature space from real videos, which can be implemented by many audio-visual speech representation
learning approaches [56, 73, 28]. Subsequently, the model leverages these representations to pinpoint
discrepancies between lip movements and corresponding audio segments in fake videos.

3.1 Speech Representation Learning

In order to simultaneously learn local and global speech information, strongly correlated with short-
range and long-range lip movements, we conduct frame-wise audio-visual representation alignment
and the masked prediction task. Since we mainly focus on the forgery detection task, we will briefly
introduce the representation learning stage, for details refer to [56].

Local representation alignment. Considering X = {(Ii,Ai)}Ni=1 as the set of audio-visual pairs
extracted from real videos. Given a visual and audio pair (I1:T ,A1:T ) from the set X , where T
represents the sequence length of clip. We first get intermediate features F v

1:T = fv
e (I1:T ) and

F a
1:T = fa

e (A1:T ) through the visual frontend fv
e and the audio frontend fa

e , respectively. And
F v and F a are fused by channel-wise concatenation, before which modality dropout is applied
to allow the unimodal input. Then the fused features are fed into subsequent transformer encoder
to learn frame-wise speech representations, as shown in fig. 1. The target labels for training are
derived through cluster assignment [32], which are initialized based on MFCC features of audio and
iteratively refined with audio-visual features learned by encoders via k-means. And we denote them
as γ1:T ∈ {1, 2, . . . , C}, where C is the size of the codebook. By this means, the representations of
every frames of visual and audio modalities are aligned in a unified feature space.

Global information modeling. Following the described procedure, the visual and audio speech
representations for each frame are synchronized, facilitating the computation of their similarity in
subsequent analyses. However, local speech contents conveyed by lip movements, i.e., visemes, only
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Figure 1: Overview of the proposed method. During the stage of audio-visual speech representation
learning, local speech representations and global information are learned by frame-wise feature
alignment and the masked prediction task, respectively. In the stage of forgery detection, we
separately feed the whole lip movement sequence and audio stream of a video into the learned model
to get visual and audio speech representations. And we flag videos with low matching scores between
visual and audio speech representations as fake videos.

contain limited temporal features and can easily be tampered by lip-sync methods, e.g., Wav2Lip [53].
To address this problem, we further introduce global temporal information modeling.

We employ the masked-prediction task, a method extensively utilized across various fields [37, 36, 11],
to model contextual dependencies effectively. Let Mv,Ma ⊂ {1, 2, . . . , T} represent the sets of
indices of visual and audio masked sequences, this task can be formulated as:

L =
∑

t∈Mv∪Ma

log p(γt | F̃ v, F̃ a) (1)

where F̃ a and F̃ v denotes of the corrupted audio features and visual features, respectively.

3.2 Face Forgery Detection

For the forgery detection, we aim to identify discrepancies between visual and audio speech repre-
sentations in manipulated videos. To achieve this, we extract visual embeddings as visual speech
representations by feeding the learned model with only visual inputs, and apply the same procedure
for audio embeddings. Notably, obtaining accurate speech representations from the audio stream is
more straightforward, allowing these to function effectively as pseudo-labels.

Given the visual and audio speech representations of any video, we get their matching score by
calculating frame-wise cosine similarity, which can be formulated as:

S(ev, ea) = 1

T

T∑
t=1

sim(evt , e
a
t ) (2)

where ev and ea represent the visual and audio embeddings extracted from the final layer of our
model, respectively, and sim(·, ·) is the cosine similarity between two vectors. And videos exhibiting
low matching scores are consequently classified as forgeries.

Another crucial problem is the time offsets between visual and audio signals, which inevitably exist
even in real videos due to recording or encoding errors [5, 24]. To address this problem, we consider
two time offset assumptions, i.e., fixed and dynamic, and introduce different modality alignment
approaches to alleviate their impact. See the intuitive illustration of these two assumptions in fig. 1.

Assumption 1: Fixed time offset. First, we assume that the frame offsets between visual and audio
streams remain constant throughout the video. We apply a sliding-window technique, as in [17], to
correct time offsets prior to calculating final matching scores. Specifically, based on the assumption
that the maximum offset between visual and audio streams is τ , we compute the cosine similarity
between the feature of each visual frame and its adjacent audio features within a window of ±τ
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frames. Thereafter, the highest average cosine similarity across this window is taken as the overall
similarity of the video. Consequently, the similarity eq. (2) can be re-formulated as:

S(ev, ea) = max
t−τ≤i≤t+τ

1

T

T∑
t=1

sim(evt , e
a
i ) (3)

where we pad zero vectors as eai when i < 1 or i > T .

Assumption 2: Dynamic time offset. On the contrary, we also consider the dynamic assumption,
i.e., the frame offsets between visual and audio signals vary over time. Based on this assumption, we
introduce the Dynamic Time Warping (DTW) algorithm [49], commonly used to align and calculate
the similarity of two time series data. In this case, eq. (2) will be re-written as:

S(ev, ea) = DTW (ev1:T , e
a
1:T ) (4)

where we also apply cosine similarity as the cost measure of DTW.

4 Experiments

4.1 Experimental Setup
Dataset. We evaluate our methods across three distinct video forgery datasets: Faceforensics++
(FF++) [55], FakeAVCeleb [38] and KoDF [41]. Note that Only the FakeAVCeleb contains videos
belong to the Real-Visual-Fake-Audio category, and we exclude them as we focus on the facial
forgery and to maintain fairness of experiments.

Faceforensics++ contains 1,000 real videos alongside 4,000 fake videos, created via four different
manipulation methods. These include face swapping methods (DeepFakes [1], FaceSwap [3]), and
two face reenactment methods (Face2Face [60] and NeuralTextures [59]). For our evaluation, We
re-download videos using the provided YouTube IDs and extract audio segments from the provided
frame locations. Contrary to the common practice of treating Faceforensics++ as a visual-only
dataset, we paired the original videos with their corresponding audio segments to create an audio-
visual test dataset. After excluding videos unavailable or containing non-corresponding mouth
movements and voices, we selected 500 videos from each category for testing.

FakeAVCeleb contains 500 real videos and 19,500 fake videos. It is derived from VoxCeleb2 [16]
and represents diverse ethnic backgrounds, ages and genders. This dataset involves four manipulation
techniques, Faceswap [40] and Faceswap GAN (FSGAN) [50] for face swapping, SV2TTS [33] for
real-time cloning voice, and Wav2Lip [53] for audio-driven facial reenactment.

KoDF [41] is a large-scale Korean forgery datasets, containing 62,166 real videos and 175,776
fake videos. For our evaluation, we focus on fake videos crafted using four distinct manipulation
techniques: FaceSwap [3], DeepFaceLab [52], FOMM [58], Audio-driven (including ATFHP [66]
and Wav2Lip [53]). From each of these categories, we randomly select 1,000 videos to compile our
testing set.

Preprocessing. We first utilize FFmpeg [61] to convert all videos into 25fps and audio into 16kHz
sample rate. For each video clip, we initiate the process by identifying faces using RetinaFace [23]
and subsequently extract facial landmarks with FAN [10]. We then align the frames using affine
transformations, and crop 96× 96 regions centered around the mouth, as indicated by the landmarks.
For the audio part, we extract MFCC features from wavform every 10ms, and we concatenate 4 adjacent
audio frames to align with visual modality.

Architecture & Training. The audio-visual speech representation model consists of visual frontend,
audio frontend and masked predictor. Following AVHuBert [56], We use the Resnet-18 2D+3D [48]
as the visual frontend. And the audio frontend contains only a single linear projection layer to avoid
the over-reliance issue on the audio stream [56]. The masked predictor is implemented by the standard
transformer encoder. Further details can be found in appendix A.1.

The model is trained on LRS3 [7] and VoxCeleb2 [16] datasets, which contain 433 and 1326 hours
of videos respectively. The training process adhere to the methodology outlined by [56]. For the purp-
oses of our experiments, unless otherwise noted, we utilize a publicly available pretrained model 2.

2https://github.com/facebookresearch/av_hubert
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4.2 Quantitative Comparisons

We compare our method with several state-of-the-art detectors, including Xception [55],
Patch-based [12], Face X-ray [43], LipForensics [30], FTCN [71], RealForensics [29]
and AVAD [13]. Moreover, we also construct a model, consisting of two Resnet 2D [31] mod-
els, to extract only phonetic-level (5 frames) speech information for comparison, And we dub it
SpeechForensics-Local. See appendix A.2 for more details about above detectors.

We undertake extensive experiments focusing on the generalization and robustness of detectors. In
line with established practices in the field [30, 29, 57, 9, 64], we utilize the area under the receiver
operating characteristic curve (AUC) to gauge the efficacy of our method at the video level. Unless
otherwise specified, we take the fixed time offset assumption.

Cross-Manipulation Generalization. In real-world situations, detectors frequently encounter novel
manipulation techniques, underscoring the necessity for these systems to possess robust generalization
capabilities against unseen manipulations. To assess our method’s ability to generalize across different
manipulation methods, we conducted evaluations on the widely recognized FF++ high-quality (HQ)
dataset. For supervised methods, the experiments adopt the leave-one-out strategy, in line with
established practices [30, 29, 71]. It is noteworthy that the settings for both cross-manipulation and
cross-dataset are equivalent for unsupervised methods, i.e., AVAD [24] and our method.

Table 1: Cross-manipulation generalization. We
report video-level AUC (%) on FF++, which con-
tains four manipulation methods, i.e., Deepfakes
(DF), FaceSwap (FS), Face2Face (F2F) and Neural-
Textures (NT). ∗ denotes results of our reproduction.

Method Train on remaining three

DF FS F2F NT Avg

Supervised

Xception [55] 93.9 51.2 86.8 79.7 77.9
Patch-based [12] 94.0 60.5 87.3 84.8 81.7
Face X-ray [43] 99.5 93.2 94.5 92.5 94.9
LipForensics [30] 99.7 90.1 99.7 99.1 97.1
RealForensics∗ [29] 100. 96.1 99.5 97.0 98.1
FTCN [71] 99.8 99.6 98.2 95.6 98.3

Unsupervised
AVAD∗ [24] 59.2 55.1 59.9 58.4 58.2
SpeechForensics-Local 95.6 74.9 95.1 89.1 88.7
SpeechForensics (ours) 99.4 91.1 100. 100. 97.6

The AUC results presented in table 1 demon-
strate that our method either matches or ex-
ceeds performance across different categories,
notably without utilizing any forgery samples.
Remarkably, our approach achieves perfect re-
sults (100%) with the two face reenactment
methods, Face2Face and NeuralTextures.
However, the performance on FaceSwap
(91.1%) is slightly lower compared to the other
categories, a trend that aligns with findings
from related methods such as LipForensics
and RealForensics [29]). This could be
attributed to FaceSwap’s use of target face
landmarks for generating source faces, which
might result in more precise lip shapes. Nonetheless, our method demonstrates the significant ca-
pability in detecting such forgeries through contextual analysis, indicating its effectiveness against
diverse manipulation techniques. Notably, our method significantly outperforms AVAD, which nearly
produces random results. And we note that SpeechForensics-Local also achieves considerable
performance on this dataset, although modeling local speech information.

Cross-Dataset Generalization. We further extend our evaluation to include a cross-dataset com-
parison, aligning with the practise in prior works [30, 29, 13]. This involves testing the performance
of our method on the unseen datasets FakeAVCeleb [38] and KoDF[41], with the supervised models
initially trained on the FF++ dataset. In addition, we also report the results of every category within
the FakeAVCeleb dataset, which is segmented into five categories based on the manipulation tech-
niques used Faceswap [40] (FS), FSGAN [50], Wav2Lip [53] (WL), Faceswap-Wav2Lip (FS-WL)
and FSGAN-Wav2Lip (FSGAN-WL), with the latter two categories indicating the combined use of
manipulation methods.

The results in table 2 show that our method significantly outperforms both supervised and
unsupervised counterparts in the cross-dataset setting, outperforming previous state-of-the-art
method, RealForensics, by 8.8% on FakeAVCeleb and 7.4% on KoDF. It is worth noting that
SpeechForensics-Local fails to detect fake videos generated by Wav2Lip, as we mentioned
above, suggesting the key role of global temporal information for forgery video detection. Conversely,
AVAD [24] shows promise in detecting forgeries generated by Wav2Lip [53], though its performance
on other types of forgery is yet to be fully assessed. Our approach, in contrast, delivers exceptional
performance across all forgery types, achieving a perfect 100% on Wav2Lip-manipulated video. This
underscores the fact that accurate lip synchronization at a local level does not necessarily imply
global semantic integrity. We also provide more multimodal experiment results in appendix A.3.

Cross-Language Generalization. Considering the linguistic diversity encountered in real-world
video content, we expand our evaluation to assess the cross-language generalization capabilities of
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Table 2: Cross-dataset generalization. Video-level AUC (%) on FakeAVCeleb and KoDF. We report
the results of every categories of FakeAVCeleb, and the overall performance on it is reported in
Overall. The average performance over two datasets is reported in Avg.

Method FakeAVCeleb KoDF Avg
FS FSGAN WL FS-WL FSGAN-WL Overall

Supervised

Xception [55] 67.0 62.5 59.7 57.2 68.0 61.6 77.7 69.7
Patch-based [12] 97.4 80.5 78.9 93.8 87.8 83.6 83.9 83.8
Face X-ray [43] 89.9 85.4 69.5 84.4 87.6 78.4 83.0 80.7
LipForensics [30] 89.5 96.4 85.6 87.2 95.8 89.8 59.6 74.7
FTCN[71] 89.3 79.9 80.6 85.2 86.1 82.3 76.5 79.4
RealForensics [29] 98.1 100. 81.0 94.7 99.2 90.2 84.3 87.3

Unsupervised
AVAD [24] 52.8 53.9 93.9 95.8 94.3 85.0 58.0 71.5
SpeechForensics-Local 69.3 85.4 0.10 0.08 0.08 19.0 48.3 33.7
SpeechForensics (ours) 93.9 96.0 100. 99.9 99.9 99.0 91.7 95.4
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Figure 2: Robustness to unseen perturbations. Video-level AUC scores (%) are reported under
different perturbations. Each perturbation contains five intensity levels [34]. “Average” denotes the
mean of each perturbation under each intensity level.

our approach. To categorize the languages present in the FF++ dataset, we utilize Whisper [54] for
language detection and subsequently split the videos into various language categories: including
English (EN), Arabic (AR), Spanish (ES), Russian (RU), Ukrainian (UK), Tagalog (TL) and others.
The results, presented in table 3, illustrate the AUC scores achieved for each language category.
Our findings indicate that our method maintains effective performance across different languages,

Table 3: Cross-language generalization. AUC (%)
scores on videos of different languages in the FF++.

Language EN AR ES RU UK TL Others

AUC 97.8 98.3 98.3 100. 99.3 99.7 97.2

even though it was originally trained
on datasets predominantly in English.
This outcome underscores the versatil-
ity of the audio-visual speech representa-
tions learned by our model, demonstrat-
ing their language-agnostic nature and
highlighting the method’s potential ap-
plicability in diverse linguistic contexts.

Robustness to Unseen Perturbations. Considering the prevalence of image post-processing
operations on social media platforms, such as compression, the robustness of detection systems
emerges as a crucial challenge. In line with previous studies [30, 29, 64, 24], we evaluate the
robustness of our method against various perturbations in the FF++ dataset, and these include Color
saturation change, Color contrast change, Block-wise distortion, Gaussian noise, Gaussian blur,
Pixelation and Video compression, each applied at 5 different intensity levels as in [34].

The results in fig. 2 compare the performance of our method against five supervised baselines
under these conditions.It can be found that detectors primarily relying on low-level texture features,
such as Face X-ray [43], Xception [55] and FTCN [71], are vulnerable to most of the common
perturbations. Notably, while Face X-ray and Xception show diminished effectiveness against
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Figure 3: Visualized analysis. Cosine similarity distributions of audio and visual speech representa-
tions for real videos and fake videos generated by different manipulation methods.

Transcription: well I’d like to give you a rapid fair response first of all

Transcription: well I’d like david grabbe if I renvised on the first of that Transcription: well he liked to give a way a proference place the first of all

Transcription: I thought well that’s repartive I’m going to ask him all that Transcription: well if you want to be before it respond to the first of the hearty

Real

DF FS

F2F NT

Transcription: well I can give you a rapid fire response here first of all

Audio

Figure 4: Interpretative analysis. The transcriptions are based on audio and visual speech represen-
tations of real and different types of fake videos. We show the transcriptions of each type of video
containing the same audio.

perturbations that attenuate high-frequency content (e.g., blur, compression), FTCN is particularly
sensitive to perturbations that disrupt temporal coherence (e.g., noise).

Besides, the three video-based methods, FTCN [71], LipForensics [30] and RealForensics [29], have
all shown sensitivity to Block-wise distortion, suggesting they rely on low-level temporal features
to some extent. Conversely, our method demonstrates exceptional robustness against all types of
perturbations. Moreover, our approach consistently outperforms LipForensics, which also models
lip movements, across various corruption scenarios, although starting from a lower point (97.6% vs
99.6%). This indicates that our method is capable of harnessing more potent semantic representations
for the purpose of forgery detection, despite being trained exclusively on real data. We provide
perturbation examples and more results in appendix A.4.

4.3 Qualitative Results
Visualization. To demonstrate the effectiveness of our method, we conduct an in-depth visual anal-
ysis utilizing FF++ and FakeAVCeleb datasets. Specifically, we included all forgery categories from
FF++, i.e., Deepfakes, FaceSwap, Face2Face and NeuralTextures. From the FakeAVCeleb
dataset, we focused on manipulations made with FSGAN and Wav2Lip, selecting a random sample of
500 videos. As a result, our experiment covers a total of six types of forgery.

For each type of forgery, we calculate the cosine similarity between visual and corresponding audio
speech representations extracted from videos. Figure 3 shows the cosine similarity distribution for
each category. As we can see, almost all types of fake videos are clearly differentiated from real
videos around a cosine similarity threshold of 0.3. An interesting finding is that our method exhibits
exceptional performance on face reenactment techniques, i.e., Face2Face, NeuralTextures and
Wav2Lip, likely due to these methods prioritizing overall visual fidelity at the expense of accurate lip
movements. More visualized results are in appendix A.5.

Interpretative Analysis. Exploring another intriguing aspect, we delve into understanding how
our method functions and what the derived audio-visual representations signify. To shed light on
this, we conduct an interpretative analysis on the FF++. Specifically, we transcribe the extracted
representations using an audio-visual speech recognition model as proposed by [56], fine-tuned for
lipreading with the pretrained audio-visual speech representation model. This enabled us to transcribe
specific speech content from both the lip movements and corresponding audio segments in real and
fake videos, as shown in fig. 4. Note only the mouth region sequences are fed into the model to get
the transcriptions. As can be seen, the sentence transcribed from real lip movement frames is close
to the sentence transcribed from audio. In contrast, lip movements in fake videos frequently result in
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Figure 5: Influence of video length and sliding-
window length. We evaluate the performance of
our method conditioned on different input lengths
and sliding-window lengths.

Table 4: Effect of different models and time
offset assumptions. We report the performance
of models with different architectures and training
datasets on FF++ and FakeAVCeleb.

Model Offset Backbone Dataset FF++ FakeAVCeleb

AVHuBERT [56] Fixed

BASE LRS3 95.3 97.0
BASE LRS3+Vox2 96.1 97.9
LARGE LRS3 95.7 96.8
LARGE LRS3+Vox2 97.6 99.0

Dynamic LARGE LRS3+Vox2 93.7 98.7

VATLM [73] Fixed LARGE LRS3+Vox2 97.1 99.3

nonsensical or chaotic transcriptions. It suggests that these audio and visual speech representations
indeed contain semantic information, which can be used for forgery detection.

4.4 Ablation study
Influence of Video Clip Length. Given that our model accommodates video clips of varying
lengths, we investigated how this aspect impacts the performance of our method on the FF++ dataset.
For this purpose, we selected FaceSwap and Face2Face as two emblematic types of forgeries and
segmented videos into various durations, ranging from 1 second to 20 seconds, while maintaining
consistency in all other hyperparameters. Results in fig. 5 indicate a clear trend: the performance of
our method is continuously enhanced with the extension of the video length to 16 seconds, suggesting
long-range temporal inconsistencies exist in forgery videos. While previous detectors, e.g.,FTCN [71]
and RealForensics [29], can only utilize short-range temporal features, resulting in their suboptimal
performance.

Different time offset assumptions. We also study the effect of different time offset assumptions
between audio and visual streams, i.e., fixed and dynamic. As shown in table 4, the dynamic based
method achieves slightly better performance based on the fixed time offset assumption. A reasonable
explanation is that, compared to real videos, the time offsets of fake videos will be more inconsistent
due to the uncertainty of the forgery process. And the DTW algorithm makes fake videos have higher
matching scores, which is unfavorable to the forgery detection. Furthermore, we investigate the
influence of different maximum offset τ , corresponding sliding-window length 2τ + 1. As fig. 5
shows, increasing window length brings improved performance, reaching a maximum of around 31.

Different Models and Datasets. We further evaluate the effect of different models and training
datasets. For AVHuBERT [56], we use models with two configurations: BASE, which comprises
12 transformer blocks, and LARGE, which includes 24 transformer blocks. Each configuration
was trained on two datasets: LRS3 alone and a combination of LRS3 and VoxCeleb2, respectively.
Furthermore, we evaluate another model, VATLM [73], which also fits our framework but incorporates
text modality. The experimental results on FF++ and FakeAVCeleb are shown in table 4. Results
show larger models and more training data both boost the performance of our approach. While
compared with model size, the influence introduced by datasets is more pronounced. And both
AVHuBERT and VATLM obtain remarkable results.

5 Conclusion and Discussion

In this paper, we have developed a method for forgery detection that identifies discrepancies between
audio and visual speech representations. Demonstrating exceptional generalization capabilities
to unseen manipulations and robustness against prevalent perturbations, our approach sets a new
benchmark, notably without relying on fake videos for training. It also eliminates the need for
finetuning and downstream tasks, significantly streamlining the detection workflow. Moreover, since
our method is based on speech representation learning, it can be implemented in a training-free
manner and may achieve better performance as the latter advances. We are optimistic that our
contributions will inspire further advancements in the field of forgery detection research.

Limitations. While our method exhibits robust performance across diverse evaluations, it is not
without its limitations. Primarily, it is constrained by its reliance on visual speech representations
derived from lip movements, rendering it unsuitable for detecting forgeries that do not alter mouth
regions. However, we note that facial forgeries typically involve the mouth area. In addition, it may
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suffer a certain level of performance degradation when encountering extreme testing samples, e.g.,
videos with numerous silent clips or audio signals containing significant amount of ambient noise,
e.g., background music. These considerations highlight areas for potential improvement and future
exploration in enhancing the versatility and applicability of forgery detection techniques.

Broader Impacts. Our work is aimed at fighting against face forgery technologies. And we hope
it could encourage more future detection works. However, since forgery and detection are two
game-playing technologies, the emergence of new detection methods may lead to the evolution of
forgery methods. And we suggest that detection systems integrate different detection methods to
combat potential new face forgery methods.
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A Appendix

A.1 Architecture Details.

Table 5: Visual frontend architecture.The out-
put size is of the form T ×H ×W , where T
denotes the number of input frames, H denotes
the height of frames and W denotes the width.

stage filters output size
conv1 5× 7× 7, stride 1× 2× 2 T × 44× 44

pool1 max, 1× 3× 3, stride 1× 2× 2 T × 22× 22

res1

[
3× 3, 64
3× 3, 64

]
× 2 T × 22× 22

res2

[
3× 3, 128
3× 3, 128

]
× 2 T × 11× 11

res3

[
3× 3, 256
3× 3, 256

]
× 2 T × 6× 6

res4

[
3× 3, 512
3× 3, 512

]
× 2 T × 3× 3

pool2 global spatial average pool T × 1× 1

The visual frontend is a modified ResNet-18 [48],
where the first convolutional layer is substituted by
a 3D convolutional layer. The resulting visual fea-
tures are then transformed into 1024-dimensional
tensors for each input frame through the applica-
tion of 2D global average pooling. See table 5 for
more details. The masked predictor consists of 24
standard transformer encoder blocks, each featur-
ing 16 attention heads and 1024 channels. A final
linear projection layer, with an output dimension
of 256, is employed to deduce the ultimate cluster
assignments.

A.2 Compared Baselines

We compare our method with both supervised and
unsupervised methods.

Supervised Methods. The state-of-the-art super-
vised methods include: 1) Xception [55]: a widely
used baseline for generalization comparison. 2) Patch-based [12]: a patch-based forgery detection
model with local receptive fields. 3) Face X-ray [43]: a detector focusing on blending boundaries
in fake images. 4) LipForensics [30]: it targets unnatural mouth movements existing in forgery
videos. 5) FTCN [71]: a video detector modeling temporal features via special architecture. 6)
RealForensics [29]: it aims to learn temporally dense representations of facial movements via
audio-visual self-supervision, which facilitates the generalization of forgery detectors.

Unsupervised Methods. 1)AVAD [13]: it leverages a pre-trained audio-visual synchronization
network as its core framework, and adopts a downstream autoregressive model to learn the distribution
of time delays between visual and auditory signals. 2)SpeechForensics-Local: We utilize two Resnet
2D [31] models to extract audio and visual speech representations, respectively. The visual input
contains 5 successive frames and the audio encoder extract features from 0.2s audio clips. We also
train it on the LRS3 [7] dataset, and we dub it as SpeechForensics-Local, since it learns local
phoneme information.

Saturation Contrast Block Noise Blur Pixelation Compression

Level 1

Level 3

Level 5

Figure 6: Perturbed examples. Visualization of all types of perturbations at different intensity levels.
We present three representative (mild, moderate and severe) intensity levels.

14



Table 7: Average robustness to unseen perturbations. The average AUC (%) scores of different
methods over each type of perturbations at all intensity levels. Avg: average performance on corrupted
videos. Drop: decreased performance compared to clean videos.

Method Clean Saturation Contrast Block Noise Blur Pixelation Compress Avg/Drop
Xception [55] 92.2 92.8 91.1 92.5 51.9 73.8 79.1 63.3 77.8/-14.4
Face X-ray [43] 97.7 95.1 85.8 97.3 51.7 62.9 86.8 52.8 76.1/-21.6
LipForensics [30] 99.6 99.2 99.6 83.4 77.0 98.7 94.0 63.5 87.9/-11.7
FTCN [71] 99.4 99.3 95.2 78.2 52.0 89.6 81.0 85.7 83.0/-16.4
RealForensics[29] 99.6 98.7 98.7 76.8 75.6 98.3 98.5 97.2 92.0/-7.6
Ours 97.6 97.4 96.7 94.6 80.8 97.4 96.7 94.2 94.1/-3.5

A.3 More Comparisons with Multimodal Baselines

We also compare our method with more multimodal, i.e., audio-visual, baselines under the cross-
dataset setting. Since they do not have open source codes or pre-trained weights, we provide their
results on the FakeAVCeleb according to [65].

Table 6: Cross-dataset generalization comparisons with
multimodal baselines. We report the AUC (%) scores on
the FakeAVCeleb.

Method MDS [15] VFD [14] Avoid-DF [65] AVAD [24] Ours

Supervised Supervised Supervised Unsupervised Unsupervised

AUC 76.7 82.5 85.8 85.0 99.0

As shown in table 6, our method sig-
nificantly outperform both supervised
and unsupervised counterparts. We note
that many audio-visual face forgery de-
tection methods adopt the cross-modal
fusion strategy [72, 65, 51], However,
our method prove the cross-modal fusion
may not be necessary for the face forgery
detection task, which we believe needs to be explored further.

A.4 Robustness Experiments

Following [30], we apply the perturbations using the DeeperForensics [34] code3, which implements
seven different perturbations conditioned on five intensity levels. And we present some perturbation
examples in fig. 6.

In table 7, we report the average AUC scores across all intensity levels for each perturbation. It can
be seen our method achieves the state-of-the-art robustness to unseen perturbations, although it starts
from a lower AUC score than other supervised methods, e.g., LipForensics [30] and FTCN [71].
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Figure 7: Visualization of cosine similarity distribution of KoDF. Cosine similarity distribution of
audio and visual speech representations of different types of videos in KoDF.

A.5 Visualization Analysis

In fig. 7, we show the cosine similarity distribution of different types of forgeries of KoDF [41],
involving DeepFaceLab [52], FOMM [58], FaceSwap [2] and Audio-driven (including ATFHP [66]
and Wav2Lip [53]). It shows our method has strong generalization to unseen datasets and languages.

3https://github.com/EndlessSora/DeeperForensics-1.0/tree/master/perturbation
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have faithfully described the motivations and performance of our method.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our method in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed information about the models and datasets in the experi-
ment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We have released the source code and execution steps in the supplementary
material and an anonymous repository. And we will open the repository once our paper gets
published.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the key configurations about the training and test details in the
experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments use a empirical random seed and does not report error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Current focus of the research domain of this work is on accuracy rather than
speed. Thus we mainly report the experimental results about accuracy.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform with NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We point out the potential societal impacts of this work in the conclusion
section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The FF++ dataset is released under the FaceForensics Terms of Use. The
FakeAVCeleb dataset is released under the Terms of Use FakeAVCeleb. The KoDF dataset
is released under the KoDF Terms of Use. The AVHuBERT models are released under
Terms of Use AVHuBERT.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper dose not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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