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ABSTRACT

Point cloud video perception has become an essential task for the realm of 3D
vision. Current 4D representation learning techniques typically engage in itera-
tive processing coupled with dense query operations. Although effective in cap-
turing temporal features, this approach leads to substantial computational redun-
dancy. In this work, we propose a framework, named as PvNeXt, for effective
yet efficient point cloud video recognition, via personalized one-shot query oper-
ation. Specially, PvNeXt consists of two key modules, the Motion Imitator and
the Single-Step Motion Encoder. The former module, the Motion Imitator, is de-
signed to capture the temporal dynamics inherent in sequences of point clouds,
thus generating the virtual motion corresponding to each frame. The Single-Step
Motion Encoder performs a one-step query operation, associating point cloud of
each frame with its corresponding virtual motion frame, thereby extracting mo-
tion cues from point cloud sequences and capturing temporal dynamics across the
entire sequence. Through the integration of these two modules, PvNeXt enables
personalized one-shot queries for each frame, effectively eliminating the need for
frame-specific looping and intensive query processes. Extensive experiments on
multiple benchmarks demonstrate the effectiveness of our method.

1 INTRODUCTION

Point cloud videos serve as a pivotal character, offering a dynamic perspective into our environment,
which is fundamental in the realms of robotics and AR systems. These sequences, which present
movements within the physical domain, are crucial in delineating environmental transformations and
facilitating interactions within said environments. This contrasts starkly with the limited descriptive
capabilities of 2D images or static 3D point clouds. Therefore, enhancing the ability of point cloud
video perception becomes a significant yet challenging task. However, 4D data representation learn-
ing presents vital challenges and remains a nascent field of inquiry. The amalgamation of 3D ge-
ometry and dynamic motion often leads to data redundancy within an exceedingly high-dimensional
space, which heavily hinders the development of efficient spatio-temporal representations.

Recent works (Fan et al., 2022; 2021b;a; 2023; Ben-Shabat et al., 2024; Huang et al., 2024) have
attempted to overcome the limitation of 4D data processing through innovative architectures. Al-
though effective in mining the temporal feature, these methods suffer from the same challenge: a
tendency to extensively query features from neighboring segments in sequential frame point clouds
for motion extraction, as seen in Fig. 2a. The accurate representation of video content heavily relies
on temporal dynamics, which necessitates extensive computational efforts for the precise detection
and analysis of dynamic motion in each frame. This process, especially in identifying motion corre-
lations across successive frames, often results in significant computational redundancy.

By comprehensive scrutiny of existing pipelines for point cloud video understanding, we discover
two intrinsic drawbacks of the current paradigm that decrease computational efficiency heavily. The
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first inherent flaw pertains to the constraints arising from the process of traversing each frame to
extract local motion. Traditional methods of 4D representation learning typically involve iterating
over each frame, querying points in proximate locations of neighboring frames, and capturing the
motion variations in various local areas to apprehend the scene’s dynamic information. Subsequent
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Figure 1: Comparisons about accuracy and inference
speed between our algorithm and other baselines.

approaches in 4D representation learn-
ing have employed more sophisticated en-
coders (e.g., convolutional schemes (Fan
et al., 2022; 2021b), or self-attention
mechanisms (Fan et al., 2021a; 2023))
to extract finer geometric motion details.
However, these methods still cannot avoid
the traversal of all frames, leading to mas-
sive computational expenditure. The sec-
ond inadequacy pertains to the substan-
tial overlapping of the resultant local point
frames acquired through grouping within
the 4D space. This overlap results in a sin-
gular input point cloud video frame being
encompassed by multiple point sets con-
currently. Given that the embedding of point cloud frames is executed individually within each local
point set, this scenario leads to the replication of point embeddings for the same point cloud frame
across diverse point sets, we posit that this process requires noteworthy redundant computations.

The aforementioned constraints lead us to explore a novel and efficient paradigm for point cloud
video representation learning, guided by a principle of minimalist design. Our approach stems from
a pivotal insight: frequent querying of adjacent frames may not be inherently linked to optimal per-
formance and could inadvertently introduce superfluous computation. To address this, we eliminate
the process of neighboring frame dense querying. This method relies solely on self-querying to
extract local geometries, thereby significantly reducing computational costs. However, it presents
a key challenge as it lacks the feature interactions of each frame, neglecting the motion between
frames, which is crucial in capturing the geometric properties of temporal sequences.

In light of this, we introduce an additional step prior to the frame query process. This step implicitly
links the motion information of points within specified local regions of adjacent frames, encapsulat-
ing their correlation and the motion of neighboring frames within local representations. Utilizing the
learned motion, virtual frames are simulated. Each frame then only needs to query its corresponding
virtual frame, as shown in Fig. 2b, inherently capturing the dynamic information of the video. This
single-step query operation enables the network to achieve a natural spatio-temporal understanding
of the video, while avoiding complex recurrent and dense query operations.

Building upon these key concepts, we have devised a novel architecture termed PvNeXt, tailored for
the efficient analysis of point cloud videos. PvNeXt elucidates hierarchical features from the input
point cloud video via the integration of multiple progressive learning stages. Each of these stages
encompasses two distinct modules: the Motion Imitator and the Single-Step Motion Encoder.
The former is responsible for capturing the temporal motions between selected frames and their
subsequent frames. This module operates on a per-anchor basis, tracking the displacement of region
centered on the sampled anchor, across consecutive frames. It effectively models the movement
patterns within the point cloud. Subsequently, the Single-Step Motion Encoder module leverages
the learned motion from the Motion Imitator to generate virtual frames. It performs a one-step
query operation, mapping points from the original frame to their corresponding synthetic frames.
This operation extracts geometric features, ensuring the synthetic frames are consistent with the
original input and capturing intricate spatio-temporal relationships. Through the integration of these
two modules, PvNeXt enables personalized one-shot queries for each frame, effectively eliminating
the need for frame-specific looping and intensive query processes.

The effectiveness of PvNeXt is validated through extensive experiments on diverse datasets such
as MSR-Action3D (Li et al., 2010) and more challenging NTU-RGBD (Shahroudy et al., 2016).
Our proposed PvNeXt achieves significant improvement in computation overhead and memory con-
sumption, and establish state-of-the-art performance. As illustrated in Fig. 1, our framework attains
a state-of-the-art level of accuracy while concurrently delivering remarkable efficiency in inference
speed, indicating its effectiveness and efficiency. Notably, PvNeXt achieves a significant improve-
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Figure 2: Illustration of various approaches to spatio-temporal modeling. (a) Current methods typi-
cally capture motion through iterative looping processes combined with dense query operations. (b)
Our proposed method captures motion via personalized one-step queries targeted at virtual frames.

ment in performance on the widely utilized MSR-Action3D benchmark for point cloud video recog-
nition, exhibiting a 1.95% increase in accuracy alongside a remarkable 23× speedup in inference
compared to the PST-Transformer, with over 60× fewer parameters. Our key contributions can be
summarized as follows:

• We present a new framework, PvNeXt, which pioneers a novel and efficient paradigm
tailored for point cloud video analysis.

• We propose a novel personalized one-shot query method, enabling the efficient spatio-
temporal modeling for point cloud video.

• We demonstrate the effectiveness and efficiency of PvNeXt through extensive experiments
on multiple point cloud video recogintion benchmarks.

2 RELATED WORKS

2.1 SUPERVISED POINT CLOUD VIDEO LEARNING

The comprehension of point cloud videos, as an extension of static 3D point cloud understanding,
presents unique challenges due to the incorporation of complex spatial-temporal information. These
videos possess a dual nature of being unordered (intra-frame) and ordered (inter-frame), thereby ne-
cessitating sophisticated approaches to aggregate and utilize spatial-temporal data for the perception
of both geometry and dynamics in 4D point cloud sequences. Current methodologies in this domain
can be primarily categorized into voxel-based and point-based techniques. Voxel-based approaches,
as exemplified by MinkwoskiNet (Choy et al., 2019), involve the voxelization of raw point clouds
followed by the extraction of features from 4D voxels using 4D convolutions. On the other hand,
point-based methods, such as MeteorNet (Liu et al., 2019) and PSTNet (Fan et al., 2022), operate
directly on raw points. MeteorNet, an extension of PointNet++ (Qi et al., 2017b), introduces a tem-
poral dimension and performs explicit tracking of point motions for grouping. Similarly, PSTNet
constructs a point tube along the temporal axis for 4D point convolution. Leading-edge techniques,
including P4Transformer (Fan et al., 2021a), PPTr (Wen et al., 2022), and LeaF (Liu et al., 2023),
fall within the point-based category and integrate the transformer architecture. This integration aims
to obviate point-tracking and enhance the capture of spatio-temporal correlations. Building upon
the foundation of P4Transformer, PST-Tranformer (Fan et al., 2023) further optimizes transformer
utilization, with a specific focus on the temporal motion capture in point cloud videos. To address
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the quadratic complexity of the transformer-based architectures, MAMBA4D (Liu et al., 2024) de-
velops a novel generic 4D backbone for point cloud video understanding, which models long-range
dependencies based on advanced State Space Models (SSMs) with linear complexity. Despite their
efficacy, these methods involve substantial computational overhead due to the intricate handling of
point cloud motion, including numerous loops and extensive query manipulation. This study intro-
duces a novel algorithm that streamlines the process by eliminating the need for complex loops and
query operations. Instead, our method efficiently learns motion through a simplified yet efficient
one-step query operation, demonstrating a significant improvement in computational efficiency.

2.2 REPRESENTATION LEARNING ON POINT CLOUDS.

The effective extraction of discriminative features from point clouds is a crucial task in numerous
3D vision applications. Traditional methods, however, face challenges due to the intrinsic irregular
nature of point cloud data. Conventional strategies, including voxel-based (Maturana & Scherer,
2015; Wu et al., 2015) and view-based (Guo et al., 2016; Qi et al., 2016; Su et al., 2015; Saha et al.,
2022; Wiesmann et al., 2022) techniques, primarily attempt to reshape point clouds into more struc-
tured forms such as voxel grids or 2D images. These processes, though leveraging methodologies
suited for structured data, often result in a diminution of information due to the projection involved.
In response, point-based methods (Qi et al., 2017a;b; Wang et al., 2019) address these limitations by
directly interacting with the raw point cloud data. PointNet (Qi et al., 2017a), a significant innovation
in 3D data analysis, uses shared multi-layer perceptrons (MLPs) for learning distinct features at the
individual point level. It preserves permutation invariance via a max-pooling operator. Extending
this, PointNet++ (Qi et al., 2017b) refines this model by extracting both local and global geometric
features through a hierarchical network structure and MLPs. Building upon this, PointNeXt (Qian
et al., 2022) introduces an inverted residual bottleneck structure and separable MLPs to PointNet++,
enabling efficient scaling of the model and optimizing performance. Additionally, PointMLP (Ma
et al., 2022) presents a simple yet effective approach by integrating a feed-forward residual MLP
with a geometric affine module, enhancing local feature extraction capabilities and offering robust
representations of point cloud data. This paper introduces a novel, streamlined hierarchical learning
framework designed specifically for dynamic point clouds, focusing on efficiently capturing local
geometric motion, proposing an advanced paradigm for 4D point cloud representation learning.

3 METHODOLOGY

In point cloud video area, current methods tend to optimize the motion capture process via the
extensive query operation from neighboring frames in sequential point clouds, leading to a superfi-
cial learning process that distracted by repeated adjuct information, failing to capture the depth and
complexity dynamics in point cloud videos, as well as bring massive computational consumption.
Instead, we propose an efficient paradigm that customizes each frame with personalized one-shot
query, thus avoiding frame-aware loop processes along with the intensive queries.

3.1 PRELIMINARY: DENSE QUERY BASED POINT CLOUD VIDEO PERCEPTION PARADIGM

The design of dense-query-based methods for point cloud video analysis dates back to the PSTNet
and P4Transformer (Fan et al., 2022; 2021a), if not earlier. The primary motivation behind this
direction is to implicitly capture the dynamic of the point cloud video by identifying and associating
relevant points within the surrounding spatio-temporal domain.

Given a set of temporal points P ∈ RN×T×3, where N indicates the number of points in Cartesian
space and T denotes the frames of the input video, current methods (Fan et al., 2022; 2021b;a; 2023)
aims to learn the spatio-temporal structures of P using customized 4D convolution operators.

One of the most pioneering works is PSTNet (Fan et al., 2022), which learns spatio-temporal struc-
ture through massive temporal looping and dense query operation in stacked multiple learning
stages. In each stage, Ns points are re-sampled by the farthest point sampling (FPS) algorithm
where s indexes the stage. Subsequently, the loop operation will be applied across the temporal di-
mension. When stepping into the t-th loop, each sample point will select K neighboring points from
frames within the temporal interval ∆t of current frame t. In frames within the temporal interval,
K neighbors are aggregated by max-pooling to capture local structures. Conceptually, the kernel
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Figure 3: Overall architecture of the proposed one-step query PvNeXt workflow, composed of two
key modules: (i) the Motion Imitator, which captures the motions between selected frames and their
subsequent frames for each sampled point; and (ii) the Single-Step Motion Encoder, which utilizes
the learned dynamics to generate synthetic frames and performs a one-step query from the original
frame points to their corresponding synthetic frames to extract geometric features.

operation of can be formulated as:

g
(τ)
i = A

(
Φ
(
f
(τ)
i,j

)∣∣∣j = 1, ...,K
)
, (1)

where A(·) denotes a symmetric function, e.g., max pooling, to aggregate encoded point features.
Φ(·) denotes the local feature extraction function, implemented by multi-layer perceptron (MLP).
fτ
i,j is the j-th neighbor point feature of i-th sampled point, where neighbors are from the τ -th frame

while the sampled point is from the t-th frame. Here, τ -frame is a frame within the temporal interval
of t-th frame, t−∆t ≤ τ ≤ t+∆t.

Through such operations, PSTNet acquires the geometric features of all frames within the temporal
sampling interval. Subsequently, PSTNet performs a symmetric function, e.g., max pooling, along
the temporal dimension, thereby implicitly extracting the motion within the frames.

gi = A
((

g
(τ)
i

)∣∣∣t−∆t ≤ τ ≤ t+∆t
)
, (2)

The aforementioned dense query step is executed when the iteration reaches frame t. By repeating
the iterative process along with the dense query operation, the network is able to progressively
enlarge the receptive temporal fields, capturing the motion across the point cloud video.

While existing methodologies effectively leverage intricate spatio-temporal data, yielding impres-
sive outcomes, they encounter two principal challenges that inhibit further advancement. Firstly, the
introduction of advanced spatio-temporal feature extractors significantly escalates computational
complexity, thereby resulting in untenable inference latency. Secondly, with the development of
delicate spatio-temporal convolution operators, the performance gain has started to saturate on pop-
ular benchmarks. Both limitations encourage us to develop a new method that circumvents the
employment of sophisticated 4D feature extractors, and provides gratifying results.

3.2 FRAMEWORK OF PVNEXT

In order to get rid of the restrictions mentioned above, we present a simple yet effective network for
point cloud video analysis that without any sophisticated loop process or dense query operations.

The proposed one-step query PvNeXt workflow is presented in Fig. 3, consisting of two key mod-
ules: i) the Motion Imitator, responsible for capturing the motions between selected frames and their
next frames, specific to each sampled point; ii) The Single-Step Motion Encoder, by utilizing the
learned dynamics, generates synthetic frames. Subsequently, it conducts a one-step query operation
from points in the original frame to their corresponding synthetic frames to extract geometry.
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3.2.1 MOTION IMITATOR

The Motion Imitator takes point cloud P as input, captures region motion and enables multiple
region geometric shift learning. To this end, we first select M anchor points from P , query neigh-
bor points from the next frames centered on these anchor points, then aggregate local features and
establish the inner connections between them, finally learn group-aware motion.

Cross-Frame Anchor-Aware Query. In this step, a set of M anchor points D ∈ RM×T×3 is ini-
tially selected from the input point cloud video P , via the Farthest Point Sampling (FPS) algorithm.
These anchors form the foundation for the subsequent anchor-wise motion learning process, wherein
each anchor undergoes independent transformation.

For the i-th anchor point in frame t, we select its K nearest neighbors from the point cloud in frame
t+ 1 and proceed to learn its local feature representation.

Q(t) = Ball Query(D(t), P (t+1)), (3)

Here, Ball Query refers to the algorithm used for locating the points within a radius to the query
point. D(t) denotes the anchor points in frame t, while P (t+1) designates the point cloud associated
with frame t + 1. By extracting geometric features across frames in this manner, the dynamics of
the video are implicitly encoded into the local features.

Group-Aware Aggregation. Considering each cross-frame neighborhood feature discretely results
in multiple complex, intertwined feature motion trajectories, complicating the estimation of the
anchor’s movement direction. To address this, we aggregate the obtained cross-frame local areas to
generate a synthetic target, thereby guiding the subsequent learning of motion as follows:

E(t) =
1

K

K∑
j=1

Q
(t)
j , (4)

Group-Aware Motion Learning. This step primarily predicts the motion trajectories of various
groups based on the anchor point coordinates D ∈ RM×T×3 and the synthetic targets E ∈ RM×T×3

obtained in the previous phase. This step involves no complex operations and merely requires index-
wise subtraction operation. The process can be represented as follows:

X (t) = E(t) −D(t), (5)

3.2.2 SINGLE-STEP MOTION ENCODER

Given an input point cloud video and the learned motion, the Single-Step Motion Encoder first uti-
lizes the motion learned by the Motion Imitator to simulate dynamic virtual frames for each frame
of the video. The encoder then focuses on the point cloud of the current frame, extracting local
geometric information from the synthesized frames. The interaction between the current frame
and the virtual frames inherently captures the dynamic information of the video. The features ex-
tracted through these queries are then fed into a PointNet-like network for further feature extraction.
Through this single-step encoder, the network achieves a natural spatiotemporal understanding of
the video, effectively bypassing the need for complex recurrent and dense query operations.

Virtual Frame Synthesization. This process is critical in embedding dynamic cues within point
cloud videos. By employing the Motion Imitator, which is adept at capturing motion patterns from
the input sequences, PvNeXt is able to generate virtual frames that embody the temporal evolution
of the scene. The virtual frames are synthesized by adding the anchor-aware motion to the anchor-
based groups. This synthesization process is mainly achieved as follow:

H ′(t) = X (t) +H(t), (6)

Here, H(t) represents the anchor-based groups, obtained by searching for several neighbors within
the point clouds. Frames within these groups are synthesized by interpolating motion trajectories
in a group-wise manner, ensuring that the generated frames exhibit coherent and realistic motion
characteristics. This approach not only enriches the raw frames with dynamic context but also
amplifies the efficacy of the subsequent feature extraction process.

One-Step Query Operation. The one-step query operation is designed to streamline the extraction
of spatio-temporal features by consolidating the querying process into a single step. Distinct from
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iterative recurrent mechanisms or dense query strategies, this method executes the query operation
only once to directly integrate interactions between current and virtual frames.

This approach not only efficiently captures both local geometries and dynamic information in a co-
herent framework but also significantly reduces computational overhead and enhances the efficiency
of the processing pipeline. The integrity of motion and spatial details is preserved throughout this
process. Subsequently, the features extracted via this singular query operation are refined further
using a network akin to PointNet for enhanced feature delineation.

4 EXPERIMENTS

We assess the performance of our method for point cloud video recognition on various datasets,
including MSR-Action3D (Li et al., 2010), and more challenging NTU-RGBD (Shahroudy et al.,
2016). Furthermore, we provide ablative analyses on our core algorithm design.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two widely used datasets, MSR-Action3D and NTU-RGBD:

• MSR-Action3D comprises 567 depth videos captured via Kinect v1, spanning 20 distinct ac-
tion categories and totaling approximately 23,000 frames. Each video contains an average of
40 frames. Following established protocols in recent studies (Fan et al., 2023), we partition the
dataset into 270 training videos and 297 testing videos.

• NTU-RGBD encompasses 56,880 videos across 60 fine-grained action categories, providing a
substantial variability in frame count per video, ranging from 30 to 300. Recorded using Kinect
v2 and involving three cameras and 40 subjects, the dataset adopts a cross-subject evaluation
methodology. In this method, subjects are bifurcated into two groups of 20 for training and testing
purposes, respectively, resulting in 40,320 training videos and 16,560 test videos.

Training Details. Our model, is trained end-to-end, following distinct protocols as detailed below:

• MSR-Action3D: During training, 4/8/12/16/24 frames are densely sampled and 2048 points are
selected in each frame. Notably, the frame step for 4-frame setting is defulat to 2, while 1 for other
settings. The model is trained for 50 epochs with a batch size of 64 on single Geforce RTX 3090
GPU. We use the SGD optimizer and the initial learning rate is set to 0.01 with cosine decay.

• NTU-RGBD: Consistent with prior research (Fan et al., 2021a; 2023), the model processes 24
frames at each training step, each containing 2048 points, with a temporal step of 2. This dataset’s
training extends over 15 epochs with a batch size of 24, utilizing a single Geforce RTX 3090 GPU.
The SGD optimizer is employed, setting the initial learning rate at 0.01 with a cosine decay.

Baselines. We compare our method with the state-of-the-art PSTNet++ and PST-Transformer.

• PSTNet++. Utilizing a temporal window, the PSTNet++ observes a limited set of frames for each
localized region, thereby preserving the spatio-temporal structure. Nevertheless, this approach
entails densely querying temporal neighbors, which substantially increases computation.

• PST-Transformer. The PST-Transformer decouples the spatio-temporal structure to reduce the
impact of the spatial irregularity on the temporal modeling, adaptively searching related or similar
points for raw point cloud video modeling. Though effective on modeling the 4D sequences, it
suffers from the temporal looping and dense querying process.

4.2 EXPERIMENTS ON MSR-ACTION3D

Quantitative Comparison. The comparative performance of various methodologies in terms of
point cloud video classification is systematically listed in Tab. 1, Flops and Parameters are achieved
under the 16-frame setting. The results unequivocally demonstrate that our proposed method ex-
hibits superior performance, registering an exemplary state-of-the-art accuracy of 94.77% in 24-
frame setting. This outstanding performance is notably achieved through straightforward network
architectural modifications paired with our unique motion extraction approach, eschewing the need
for intricate training scheme alterations or complex feature extraction. In direct comparison with
the sota method PST-Transformer (Fan et al., 2023) with sophisticated 4D convolution operator, our
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Table 1: Classification results on the MSR-Action3D dataset, accuracy(%, ↑) is reported.

Methods Reference 8-frame 12-frame 16-frame 24-frame Flops(G) Params(M)
Supervised Learning Only

MeteorNet (Liu et al., 2019) ICCV2019 81.14 86.53 88.21 88.50 1.7 17.6
PSTNet (Fan et al., 2022) ICLR2021 83.50 87.88 89.90 91.20 29.06 8.26
P4Transformer (Fan et al., 2021a) CVPR2021 83.17 87.54 89.56 90.94 32.55 44.14
Kinet (Zhong et al., 2022) CVPR2022 83.84 88.53 91.92 93.27 10.35 3.20
PPTr (Wen et al., 2022) ECCV2022 84.02 89.89 90.31 92.33 - -
PSTNet++ (Fan et al., 2021b) TPAMI2022 83.50 88.15 90.24 92.68 30.21 8.43
LeaF (Liu et al., 2023) ICCV2023 84.50 - 91.50 93.84 - -
PST-Transformer (Fan et al., 2023) TPAMI2023 83.97 88.15 91.98 93.73 32.56 44.13
3DInAction (Ben-Shabat et al., 2024) CVPR2024 86.20 88.22 90.57 92.23 - 10.90
PvNeXt (Ours) - 88.88 89.89 93.93 94.77 0.55 0.72

with Self-Supervised Representation Learning
C2P (Zhang et al., 2023) CVPR2023 87.16 - 91.89 94.76 - -
PointCMP (Shen et al., 2023b) CVPR2023 89.56 91.58 92.26 93.27 - -
PointCPSC (Sheng et al., 2023) ICCV2023 88.89 90.24 92.26 92.68 - -
MaST-Pre (Shen et al., 2023a) ICCV2023 - - - 94.08 - -

Table 2: Comparisons on computational overhead between our method and other supervised learning
methods on MSR-Action3D (16-frame) benchmark.

Method Reference Memory Train speed Infer speed Accuracy
(G) (samples/s) (samples/s) (%)

PSTNet ICLR2021 16.01 35.50 82.62 89.90
P4Transformer CVPR2021 9.97 43.02 99.03 89.56
PSTNet++ TPAMI2022 18.49 30.87 75.65 90.24
PST-Transformer TPAMI2023 11.17 30.48 75.33 91.98

Ours (Batch Size=64) - 6.68 800.35 1735.45 93.93

method exhibits a marked enhancement of 1.04% accuracy lift. Moreover, APCT consistently at-
tains high accuracy results across settings of different frames: 88.88%, 89.89%, and 93.93% for 8 /
12 / 16 frames, respectively. These metrics are either at the pinnacle or are approaching the current
best results in each respective subcategory.

Efficiency Comparison. In order to demonstrate the efficacy of our proposed methodology, com-
prehensive comparative analyses were undertaken, the results of which are delineated in Tab. 2
and Fig. 4a. These analyses encompass evaluations of parameters, alongside training and inference
speed. Consistent with experimental setups detailed in prior studies (Fan et al., 2022; 2021b;a;
2023), baseline models were trained with a batch size of 16, whereas our model employed 64.

Our methodology demonstrably surpasses preceding strategies in terms of both speed and accuracy.
Specifically, when compared to the state-of-the-art method PST-Transformer (Fan et al., 2023), our
model registered a 26x speedup in training and a 23x increase in inference speed. Concurrently, it
exhibited an improvement in accuracy by 1.95% accuracy. With respect to the parameter count, our
approach take merely 0.72M parameters, presenting a substantial reduction from current methods.
It utilizes only 1.6% (0.72M v.s. 44.13M) of the parameters necessitated by the PST-Transformer.

Memory Analysis. The proposed PvNeXt architecture not only achieves superior performance in
terms of accuracy but also demonstrates an optimal accuracy versus memory consumption trade-off.
This is illustrated in Fig. 4b, where PvNeXt shows a substantial reduction in GPU memory us-
age. Specifically, PvNeXt reduces memory consumption by 2.77× compared to PSTNet++ and by
1.67× relative to PST-Transformer. This improvement underscores PvNeXt’s efficiency in utilizing
computational resources while enhancing model performance.

4.3 EXPERIMENTS ON NTU-RGBD
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(a) Trade-off: accuracy vs. measured inference speed (b) Trade-off: accuracy vs. memory consumption

23x speedup 1.67x reduction

Figure 4: Comparisons between PvNeXt and other baselines on MSR-Action3D (16-frame). The
size of the pentagram in (a) denotes the parameters, the larger shape denotes higher parameters.

Table 3: Classification results on NTU-RGBD under cross-
subject setting, Action recognition accuracy(%, ↑) is re-
ported. † denotes semi-supervised on 50% annotated data.

Method Reference Accuracy
Supervised Learning Only

3DV-Motion (Wang et al., 2020) CVPR2020 84.5
3DV-PointNet++ (Wang et al., 2020) CVPR2020 88.8
PSTNet (Fan et al., 2022) ICLR2021 90.5
P4Transformer (Fan et al., 2021a) CVPR2021 90.2
PSTNet++ (Fan et al., 2021b) TPAMI2022 91.4
PvNeXt (Ours) - 89.2
PST-Transformer (Fan et al., 2023) TPAMI2023 91.0
PST-Transformer + Ours - 91.4

with Self-Supervised Representation Learning
PointCMP (Shen et al., 2023b) CVPR2023 88.5
PointCPSC† (Sheng et al., 2023) ICCV2023 88.0
MaST-Pre† (Shen et al., 2023a) ICCV2023 90.8

Tab. 3 summarizes the comparison re-
sults on NTU-RGBD dataset, show-
ing our algorithm works well on real-
world challenging point cloud videos.
In particular, our algorithm achieves
impressive result of 89.2% accuracy.
It is noteworthy that our method is
remarkably simple and lightweight.
It achieves results compared to those
method of sophisticated feature ex-
tractors (e.g., PSTNet (Fan et al.,
2022), PST-Transformer (Fan et al.,
2023) ) through mere extraction of
motion and straightforward feature
encoding. This clearly demonstrates
the effectiveness of our algorithm,
which learns advantageous informa-
tion to assist in challenging video un-
derstanding. Besides, we experimented with integrating core components of our method with
the advanced PST-Transformer network. Specifically, we introduced an additional one-step query
branch to the existing PST-Transformer structure to assist in extracting temporal features. This
branch incorporates a Motion Imitator and a Single-Step Motion Encoder, designed to enhance the
model’s ability to handle dynamic sequences effectively. Equipped with our methodology, the PST-
Transformer’s accuracy arises from 91.0 to 91.4, achieving state-of-the-art performance.

In line with some self-supervised representation methods specifically designed for 4D se-
quences, our method distinctly surpasses them, delivering 0.7% and 1.2% accuracy increase for
PointCMP (Shen et al., 2023b) and PointCPSC (Sheng et al., 2023), respectively.

4.4 ABLATION STUDIES

For in-depth analysis, we conduct ablative studies using 16-frame classification on MSR-Action3D.

Motion Imitation. We first investigate the effect of the motion imitation process, the results are
listed in Tab. 4. Owe to this ingenious design, the extracted motion is gradually updated, aligned
with and adaptive to the real dynamics of the video, making PvNeXt a compact model. To fully
demonstrate the effectiveness, we study a variant, PvNeXt with Motion Imitator, where we only
preserve the feature encoding process. As shown in table, a clear performance drop is observed, i.e.,
acc: 93.93% → 86.86%, revealing the efficacy of our motion imitator.
Effect of movement trajectories. We investigate the impact of the virtual motion order of the future
frames via learning motions. Specially, we reverse the movement trajectories by adjusting changes
to the direction of motion, the results are listed in Tab. 5. Despite the flexible motion extraction
facilitated by motion imitators, recklessly reversing the trajectories of characters movements poses
challenges to video understanding, the accuracy drops from 93.93% to 92.25%. This, in turn, reaf-
firms the efficacy of motion imitators in accurately depicting video dynamics.
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Table 4: Effect of Motion
Imitator.

Encoder Imitator Accuracy

✓ ✗ 86.86
✓ ✓ 93.93

Table 5: Effect of movement trajec-
tories.

PvNeXt Motion Objective Accuracy

Reverse x - ∆x 92.25
Forward x + ∆x 93.93

Table 6: Effect of
neighbor number.

Number Accuracy
1 93.27
3 93.93
5 93.60
7 92.93

Table 7: Comparison results with advanced architec-
ture processing more frames.

Method
Backbone

Frame
Acc(%)

MAMBA4D [Arxiv 2024] Mamba 32 93.38
PvNeXt (Ours) CNN 16 / 24 93.93 / 94.77

Table 8: Results on extreme short
frames (4-frame).

Method Acc(%)

PST-Transformer (Fan et al., 2023) 81.14
Ours 75.75
Ours + dense querying 80.47

Effect of neighbor number . We investigate the impact of neighbor numbers of the Motion Imitator.
As illustrated in Tab. 6, we vary the number of neighbors and analyze the results. The results show
that the performance is 92.93% when the number is 7, which is 1.00% lower than the performance
achieved using 3 neighbors. This observation can be attributed to the fact that too many neighbors
can negatively impact the overall motion learning, therefore leading to a decrease in performance.
Comparative analysis with advanced architectures handling extended frame sequences. To
mitigate the quadratic complexity inherent in transformer-based models, MAMBA4D (Liu et al.,
2024) introduces an innovative 4D backbone specifically designed for point cloud video under-
standing, leveraging State Space Models (SSMs) to capture long-range dependencies with linear
complexity. While this architecture excels at processing a greater number of frames, achieving a
notable accuracy of 93.38% as seen in Tab. 7, our proposed method surpasses these results with
93.93% and 94.77% accuracy for 16 and 24 frames, respectively. The more advanced architec-
ture of MAMBA4D still cannot avoid the multiple iterative loops and dense query operations in
point cloud motion analysis, while our method significantly reduces this overhead. By employing
such one-step query operation, PvNeXt efficiently capture motion dynamics, demonstrating superior
computational efficiency and effectiveness.
Analysis of performance on extreme short sequences. Our proposed modules, particularly de-
signed for efficient motion capture and analysis in point cloud videos, do indeed face challenges
when applied to very short sequences, such as those comprising only four frames. The limited
temporal extent in these scenarios constrains the model’s ability to capture comprehensive motion
dynamics, which is essential for accurate analysis. However, they perform exceptionally well with
slightly longer sequences, such as 8-frame sequences, where they can more effectively utilize the
available temporal information. To enhance our model’s performance on very short sequences,
we have incorporated our method with a dense querying strategy, as the 4-frame results in MSR-
Action3D shown in the Table. 8. The results indicate that when applying this strategy, our model
also achieves commendable performance of 80.47 in 4-frame settings. This improvement demon-
strates our method’s adaptability and potential for handling diverse sequence lengths effectively.

5 CONCLUSION
In this work, we introduce a new algorithm, tailored for efficient point cloud video analysis. Our
algorithm incorporates an personalized one-shot query strategy, facilitating the efficient capture of
motion, thereby enabling the spatio-temporal modeling for point cloud videos. Experimental evalu-
ations on comprehensive benchmarks manifest its superiority.
Limitations and applications. While our method is efficient due to the one-shot query strategy, it may
compromise the geometric detail captured compared to dense querying methods. In future work,
we intend to delve deeper into this aspect. Efficient point cloud video perception algorithms have
immense potential in various real-world applications, especially where dynamic 3D environmental
understanding is crucial, such as in robotics and AR/VR.
Acknowledgments This work was financially supported by the National Natural Science Founda-
tion of China (No. 62101032), the Young Elite Scientist Sponsorship Program of China Association
for Science and Technology (No. YESS20220448), and the Young Elite Scientist Sponsorship Pro-
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A APPENDIX

The supplementary material herein extends the discussion and analysis presented in the primary
manuscript. It is structured as follows:

Detailed architectures. (§ A.1) : This section delves into the architecture details of our methodol-
ogy across different datasets, offering a comprehensive understanding of our method.

Comparison of our method with other modality results on NTU-RGBD dataset. (§ A.2) : This
section introduces the comparison analysis of our method with those of other modality on NTU-
RGBD dataset.

Evaluation of the learning performance of the motion imitator. (§ A.3): This section introduces
the analysis of the learning performance of the motion imitator.

Performance in occlusion scenarios. (§ A.4): This section introduces the analysis of the perfor-
mance in occlusion scenarios.

Results on HOI4D dataset. (§ A.5): This section introduces the performance of our method on
longer egocentric point cloud video dataset.

Discussion about recognition tasks and dense action segmentation tasks. (§ A.6): This section
discuss the difference between recognition tasks and action segmentation tasks in point cloud videos.

A.1 DETAILED ARCHITECTURES

At each learning stage, our method first generates the synthetic point clouds via the Motion Imita-
tor, then it leverages the Single-Step Motion Encoder, which samples a subset of points from the
virtual frames, to endow each sampled point with local geometric information and temporal mo-
tion. Through the accumulation of multiple stages, it progressively furnishes a smaller number of
points, each enriched with an extended contextual awareness. The architecture of our method across
different datasets is shown in Tab. 9.

Table 9: Architecture of PvNeXt across different datasets

Dataset Stage MLPS Nsamples Spatial stride Radius

S1 [64] 48 32 0.2
MSR-Action3D S2 [128], [128,256] 32 8 0.4

S3 [512], [512,1024] 8 2 0.4

S1 [64] 32 8 0.1
S2 [128], [128,256] 48 8 0.2

NTU-RGBD S3 [128], [128,256] 16 1 0.4
S4 [128], [128,256] 24 1 0.4
S5 [512], [512,1024] 32 4 0.8

A.2 COMPARISON OF OUR METHOD WITH OTHER MODALITY RESULTS ON NTU-RGBD
DATASET.

A.2.1 MOTIVATION OF DATA CONVERSION.

Our method involves converting RGBD data into point clouds. This step is common in the field,
primarily because it allows researchers to exploit the rich set of tools and algorithms developed for
3D point cloud processing. While this conversion introduces an additional step, it also opens up
opportunities to leverage point cloud-specific methodologies that might not be directly applicable to
RGBD images, particularly those that exploit the inherent 3D structure of the data.

The conversion from RGBD to point clouds might not always lead to enhanced efficiency in process-
ing. In some cases, direct RGBD image processing can be faster due to optimized 2D convolutional
operations available in current deep learning frameworks. However, the conversion to point clouds is
often justified by the ability to handle and interpret 3D data more naturally and accurately, especially
for tasksrequiring precise depth estimations and spatial relationships.
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With the advancement of sensors such as LiDAR, a substantial influx of point cloud data is expected
in the near future. Therefore, it is essential to explore direct processing of point cloud sequences for
recognition tasks, which may be a new direction in the field.

A.2.2 DATA AND SETUP.

The NTU-RGBD dataset encompasses 3D skeletons (5.8GB), masked depth maps (83GB), and RGB
videos (136GB). Our point cloud data is derived solely by extracting depth positions from masked
depth maps and converting them, not by combining RGB videos and depth maps. Consequently,
the derived point cloud data inherently contains less information than RGB videos due to reduced
richness of source data.

A.2.3 COMPARISON ANALYSIS.

During our experiments, the input point cloud for our proposed method solely derives from depth
maps. We do not utilize any auxiliary information such as skeletons or RGB images. As seen in
Tab. 13, we provide detailed comparison between methods processing various modal data, including
3D Skeleton, depth maps, RGB videos and point clouds. Compared to methods that directly process
depth maps, point cloud based approachs achieve superior performance. Since both derive from the
same data source, this validates the potential of point cloud based methods in handling dynamic
sequences.

Although effective, point cloud methods fall short when compared to the latest methods that directly
process RGB videos. Our analysis of RGB video-based methods reveals several reasons for their
higher performance. Recent algorithms for processing RGB video often employ self-supervised
learning techniques, benefiting from the extensive availability of large-scale RGB video datasets.
Recent RGB video algorithms typically utilize 32 or more frames, leveraging more temporal in-
formation than point cloud methods, which only use up to 24 frames. Direct comparisons with
these RGB video methods are unreliable due to the significant computational overhead entailed by
self-supervised techniques and more utilized frames. In contrast, our approach is designed to be
highly efficient and lightweight, avoiding the substantial computational costs associated with these
methods.

A.3 EVALUATION OF THE LEARNING PERFORMANCE OF THE MOTION IMITATOR.

We further evaluate the learning performance of the motion imitator. Specifically, we compute the
chamfer distance between the predicted point cloud and the ground truth (GT) point cloud. We
compare the distance between the predicted point cloud (generated by our method) and the ground
truth (GT) point cloud with the distance between the predicted point cloud (generated by nearest-
neighbor sampling) and the GT point cloud. Nearest-neighbor sampling strategy, the paradigm
commonly adopted in prior approaches (Fan et al., 2022; 2021b;a; 2023), serves as the baseline for
this comparison.

As shown in the Tab. 10, the chamfer distance produced by our method is significantly lower, than
that of the baseline, indicating that the motion imitator learns correlations more effectively. This
reduction indicates that our motion imitator effectively predicts point cloud displacements and aligns
them closely with ground truth motion. The superior learning of motion dynamics facilitates better
temporal consistency across frames, which improves downstream performance in tasks like action
recognition.

Table 10: The learning performance of the motion imitator.

Method Chamfer Distance(↓)

Nearest-neighbor sampling 5.23e-3
Ours 1.35e-3
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A.4 PERFORMANCE IN OCCLUSION SCENARIOS.

We further evaluate the performance of our approach in occlusion scenarios. We adopted a
simulation-based approach to validate the effectiveness of our method. Specifically, we simulated
the occlusion effect encountered by LiDAR sensors, which often leads to partial data loss. Inspired
by the Drop-Local corruption operation from the ModelNet-C (Ren et al., 2022), we applied a sim-
ilar strategy to the MSR-Action3D dataset. This approach artificially introduced local point cloud
occlusions to simulate real-world challenges and constructed a simplified occlusion benchmark for
evaluating the performance of our approach in such scenarios.

As shown in Tab. 11, our approach achieves an accuracy of 88.22% under occlusions, outperform-
ing the advanced PST-Transformer by 1.69%. This result highlights the ability of our method to
effectively capture spatial-temporal dynamics even in the presence of partial data loss. These re-
sults demonstrate that the Motion Imitator and Single-Step Motion Encoder components of our
framework can effectively model motion dynamics, even when some data points are missing. This
robustness suggests that our method remains effective in scenarios involving occlusions.

Table 11: Performance in occlusion scenarios.
Method Accuracy Accuracyocc

PST-Transformer 91.98 86.53
Ours 93.93 88.22

A.5 RESULTS ON HOI4D DATASET.

We further evaluate the performance of our approach on the additional HOI4D (Liu et al., 2022)
dataset,a large-scale 4D egocentric dataset that captures diverse, category-level human-object inter-
actions. HOI4D comprises 2.4M RGB-D egocentric video frames over 4000 sequences, collected by
9 participants interacting with 800 unique object instances spanning 16 categories in 610 different
indoor rooms. We evaluated our method on the dataset’s action segmentation task, which includes
2971 training scenes and 892 test scenes. Each sequence contains 150 frames, with each frame rep-
resented by 2048 points. The task requires the model to predict an action label for each frame within
a point cloud sequence.

As presented in the Tab. 12, our approach achieves an accuracy of 78.5%, outperforming the ad-
vanced method, PPTr, which achieves an accuracy of 77.4%. This improvement highlights the ef-
fectiveness of our model in capturing fine-grained motion dynamics, thereby demonstrating robust
generalization capabilities in real-world scenarios. Furthermore, we observed consistent improve-
ments in additional metrics, such as Edit and F1 scores, highlighting our model’s superior ability to
handle dense prediction tasks.

These improvements demonstrate our model’s capability to better align temporal predictions with
ground truth actions, reduce segmentation errors, and handle transitions smoothly between actions.
These results underline the robustness of our framework in capturing fine-grained motion dynamics
over long sequences.

A.6 DISCUSSION ABOUT RECOGNITION TASKS AND DENSE ACTION SEGMENTATION TASKS.

In point cloud videos, recognition tasks inherently exist information redundancy across point cloud
frames, which our one-shot query strategy effectively handles. In contrast, dense prediction tasks,
such as action segmentation, require a deeper understanding of motion information for each frame,
presenting significantly different challenges.

Our method is primarily designed for point cloud video recognition tasks, offering limited improve-
ments in dense prediction tasks. We believe this distinction between the two task types is an impor-
tant and valuable topic for the community to explore further. We hope this discussion will encourage
others to address these challenges and explore innovative solutions.
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Table 12: Results on HOI4D Action segmentation dataset.

Method Length Accuracy Edit F1@10 F1@25 F1@50

P4Transformer 150 71.2 73.1 73.8 69.2 58.2
PPTr 150 77.4 80.1 81.7 78.5 69.5
Ours 150 78.5 84.5 85.6 82.4 73.0

Table 13: Classification results on NTU-RGBD under cross-subject setting, Action recognition
accuracy(%, ↑) is reported. ∗ denotes self-supervised representation learning. † denotes semi-
supervised on 50% annotated data.

Method Input Accuracy(%, ↑) Flops(G) Params(M)
3D Skeleton

SkeleMotion (Caetano et al., 2019) Skeleton 69.6 - -
DGNN (Shi et al., 2019) Skeleton 89.9 - -
AGC-LSTM (Si et al., 2019) Skeleton 89.2 - -
Shift-GCN (Cheng et al., 2020) Skeleton 90.7 - -
ActCLR (Lin et al., 2023) Skeleton 88.2 - 2.5
SkeAttnCLR (Hua et al., 2023) Skeleton 89.4 - -
Js-SaPR-GCN (Li et al., 2023) Skeleton 90.1 1.7 2.1
CTR-GCN (Chen et al., 2021) Skeleton 92.4 - -
BlockGCN (Zhou et al., 2024) Skeleton 90.9 - 1.5

Depth maps
DynamicMaps+CNN (Wang et al., 2018) Depth 87.1 - -
MVDI (Xiao et al., 2019) Depth 84.6 - -
PA-AWCNN (Yao et al., 2022) Depth 89.6 - -
ActionMAE (Woo et al., 2023) Depth 90.1 - -

RGB videos
Chained Multi-stream (Zolfaghari et al., 2017) RGB 80.8 - -
Glimpse Clouds (Baradel et al., 2018) RGB 86.6 - -
CNN+bi-LSTM(Debnath et al., 2021) RGB 87.2 - 9.4
PA-AWCNN (Yao et al., 2022) RGB 90.4 - -
ViewCLR (Das & Ryoo, 2023) RGB 89.7 - -
Multi-View Learning (Shah et al., 2023) RGB 91.4 - -
MV2MAE (Shah et al., 2024) RGB 90.0 - -

Point clouds
3DV-Motion (Wang et al., 2020) Point 84.5 - -
3DV-PointNet++ (Wang et al., 2020) Point 88.8 - -
PSTNet (Fan et al., 2022) Point 90.5 19.6 8.5
P4Transformer (Fan et al., 2021a) Point 90.2 48.6 65.2
PSTNet++ (Fan et al., 2021b) Point 91.4 - -
PointCMP∗ (Shen et al., 2023b) Point 88.5 - -
PointCPSC∗† (Sheng et al., 2023) Point 88.0 - -
MaST-Pre∗† (Shen et al., 2023a) Point 90.8 - -
PvNeXt (Ours) Point 89.2 7.8 0.9
PST-Transformer (Fan et al., 2023) Point 91.0 48.6 65.2
PST-Transformer + Ours Point 91.4 58.4 77.8
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