

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTROL-AUGMENTED AUTOREGRESSIVE DIFFUSION FOR DATA ASSIMILATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Despite recent advances in test-time scaling and finetuning of diffusion models, guidance in Auto-Regressive Diffusion Models (ARDMs) remains underexplored. We introduce an amortized framework that augments pretrained ARDMs with a lightweight *controller* network, trained offline by previewing future ARDM rollouts and learning stepwise controls that anticipate upcoming observations under a terminal cost objective. We evaluate this framework in the context of data assimilation (DA) for chaotic spatiotemporal partial differential equations (PDEs), a setting where existing methods are often computationally prohibitive and prone to forecast drift under sparse observations. Our approach reduces DA inference to a single forward rollout with on-the-fly corrections, avoiding expensive adjoint computations and/or optimizations during inference. We demonstrate that our method consistently outperforms four state-of-the-art baselines in stability, accuracy, and physical fidelity across two canonical PDEs and six observation regimes. We will release code and checkpoints publicly.

1 INTRODUCTION

Recently, much progress has been made on inference-time scaling (Uehara et al., 2025) and finetuning (Uehara et al., 2024; Domingo-Enrich et al., 2025) in diffusion models. In parallel, Auto-Regressive Diffusion Models (ARDMs) (Ge et al., 2022; Yang et al., 2023; Yu et al., 2023; Huang et al., 2025) have emerged as powerful modeling paradigm for high-dimensional spatiotemporal dynamics in scientific applications (Pathak et al., 2024; Mardani et al., 2025). However, a traditional way of training ARDMs relies on teacher forcing (Williams & Zipser, 1989) which can lead to error accumulation over inference time rollouts. Therefore, a fundamental question is: *How can we tame rollout errors in ARDMs in a principled and computationally efficient way*.

We explore this question through the lens of data assimilation (DA). DA aims to forecast high-dimensional dynamics—such as PDE states or global atmospheric weather states—while continuously incorporating observational data from sensors, weather stations, or satellites. Without such adaptation, forecasts quickly diverge from the true trajectory, even under nearly perfect initial conditions, due to chaos in the underlying dynamics (Kalnay, 2002; Carrassi et al., 2018; Evensen et al., 2022). Classical DA schemes, such as ensemble Kalman filters and variational methods (Le Dimet & Talagrand, 1986; Courtier et al., 1998; Tr’emolo, 2006) have been enormously successful in operational weather prediction, but require costly adjoints or large ensembles (Wang & Yu, 2021) and are not straightforward to combine with learned, non-Gaussian surrogates such as ARDMs.

Mathematically, one can cast DA as a sequential inverse problem (Sanz-Alonso et al., 2023), where the goal is to adjust the generative process so that forecasts remain consistent with lossy, partial observations. In this context, diffusion models have emerged as powerful priors for solving inverse problems (Chung et al., 2022; Pandey et al., 2025) and can thus serve as a promising alternative for DA either at test time (Rozet & Louppe, 2023; Qu et al., 2024; Manshausen et al., 2025) or by conditioning diffusion model training directly on observations (Huang et al., 2024). However, inference-only guidance in diffusion models can be expensive due to per-instance optimization, while naïve conditional training on observations can destabilize learning and is expensive to re-train for each new observation regime. This raises a natural question: *Given a pretrained ARDM model of the dynamics, how can we finetune it to generate high fidelity forecasts which adhere to the incoming observations, without resorting to expensive per-instance optimization routines at test time?*

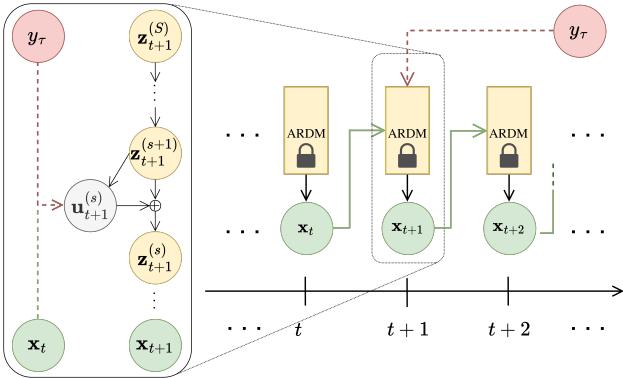


Figure 1: **Overview of (CADA).** A pretrained autoregressive diffusion model (ARDM) generates forecasts by conditioning on previous states x_t in its denoising steps. A separately trained lightweight controller injects additive controls $u_{t+1}^{(s)}$ into the denoising sub-steps $z_{t+1}^{(s+1)} \rightarrow z_{t+1}^{(s)}$, using past states and previewed future observations y_τ within the forecast window. These controls guide the frozen ARDM so that its predictions x_{t+1} remain consistent with incoming observations at test time.

Method Overview. In this work, we build on recent formulations of diffusion guidance as stochastic control (Pandey et al., 2025; Rout et al., 2025) and propose a finetuning framework for ARDMs that embeds a *learned controller* directly into the generative dynamics. More specifically, a learned *controller* network—finetuned in a separate stage—injects affine *controls* into each denoising step of a pretrained autoregressive diffusion model, steering the dynamics to satisfy a terminal cost—which ensures that the generated forecasts align with incoming observations in a limited preview window—while satisfying a regularization penalty which enforces closeness to the unguided dynamics. At inference time, our system performs causal, feed-forward rollouts with sliding preview windows, avoiding any additional optimization or gradient-based guidance during assimilation and is thus extremely fast and stable. We study this framework on canonical chaotic PDE benchmarks and a compact ERA5-style experiment, using them as testbeds for diffusion-based DA with realistic observation sparsity. To summarize,

- We propose a diffusion-based DA framework that introduces a learned control mechanism for steering the dynamics of a pretrained ARDM to align with incoming observations (Fig. 1).
- We train the controller offline on synthetic assimilation scenarios. At test-time, the resulting *controlled ARDM* performs fully causal and feedforward rollouts without requiring any additional optimization; thus enabling fast, accurate and stable assimilation.
- Empirically, our method outperforms existing diffusion-based DA baselines on PDE and compact ERA5-based weather forecasting setups while better preserving domain-standard physical diagnostics across short and long horizons and offering upto 10x faster inference.

2 CONTROL AUGMENTED DATA ASSIMILATION (CADA)

2.1 PROBLEM STATEMENT: CHAOTIC FORECASTING WITH DELAYED, SPARSE OBSERVATIONS

When forecasting physical systems with autoregressive models, chaotic dynamics often cause small initial errors to grow rapidly, leading to instability. Real-time simulations are therefore commonly stabilized using incoming observations, a process known as data assimilation (DA). *In this DA setting, our aim is to guide a pretrained autoregressive model to produce forecasts that remain consistent with partial observations while limiting long-horizon drift.*

In this paper, we consider a sequential prediction problem involving (physical) time indices $t \in \mathbb{N}$ and a corresponding state space \mathbf{x}_t . For a subset of time indices $\mathcal{T} \subseteq \mathbb{N}$, we assume that we have additional observations $\mathbf{y}_\mathcal{T} \triangleq \{\mathbf{y}_\tau\}_{\tau \in \mathcal{T}}$. In a DA setup for weather forecasting, these could be

satellite data or data coming from weather stations. Importantly, we assume that these observations are noisy or incomplete and on their own insufficient to predict the ground truth state \mathbf{x}_t . Furthermore, we assume that we have a given, pretrained autoregressive forecasting model,

$$\mathcal{Q} = q_0(\mathbf{x}_0) \prod_{t \geq 0} q(\mathbf{x}_{t+1} | \mathbf{x}_t). \quad (1)$$

We will later assume this to be a conditional diffusion model, but defer details to the next subsection. Our goal will be to incorporate the additional observations $\mathbf{y}_{\mathcal{T}} \triangleq \{\mathbf{y}_{\tau}\}_{\tau \in \mathcal{T}}$ in order to get a better forecast *without having to retrain or even modify \mathcal{Q}* .

In order to optimally integrate the \mathbf{y} -variables, we need to assume a cost function $\Phi(\mathbf{x}_t; \mathbf{y}_t)$ that measures the compatibility of state \mathbf{x}_t with observation \mathbf{y}_t . For example, assume a common scenario in which $\mathbf{y}_t = A(\mathbf{x}_t)$, where A is some lossy data degradation operator simulating the observation process (e.g., information loss due to blur, noise, or downsampling to a smaller spatial resolution). In this case, we typically choose $\Phi = \|\mathbf{y}_t - A(\mathbf{x}_t)\|^2$ as the mean squared error between the observation and the degraded ground truth state \mathbf{x}_t (more details on operators can be found in App. A). This is analogous to a likelihood model $p(\mathbf{y}_t | \mathbf{x}_t) \propto \exp(-\frac{1}{\beta} \Phi(\mathbf{x}_t; \mathbf{y}_t))$ that models the compatibility of \mathbf{x}_t and \mathbf{y}_t , where β is a temperature parameter expressing our level of error tolerance.

A rigorous way to integrate observations \mathbf{y}_t into the simulation is Bayesian inference. To this end, the optimal sampling distribution is the *tilted posterior* distribution, mediating between prior belief and data evidence,

$$\mathcal{P}^* \propto \mathcal{Q} \cdot \exp\left(-\frac{1}{\beta} \sum_{\tau \in \mathcal{T}} \Phi(\mathbf{x}_{\tau}; \mathbf{y}_{\tau})\right). \quad (2)$$

In most cases of interest, this posterior distribution is intractable to compute, however, notable exceptions exist in the literature. For example, classical data assimilation methods such as Kalman filtering oftentimes assume that \mathcal{Q} is a Gauss-Markov model and $A(\cdot)$ is linear (Sanz-Alonso et al., 2023), in which case the Bayesian updates are tractable. However, such assumptions severely limit the expressivity (e.g., multimodality) of \mathcal{Q} .

Interestingly, it can be shown that \mathcal{P}^* is the optimizer of the following variational problem (proof in App. B),

$$\mathcal{C}(\mathcal{P}) \triangleq \sum_{\tau \in \mathcal{T}} \mathbb{E}_{\mathbf{x}_{\tau} \sim \mathcal{P}} [\Phi(\mathbf{x}_{\tau}; \mathbf{y}_{\tau})] + \beta D_{\text{KL}}(\mathcal{P} \parallel \mathcal{Q}). \quad (3)$$

If \mathcal{P} is optimized over a restricted set of distributions, this amounts to a variational inference problem (Zhang et al., 2018). While it is possible to sample directly from the unnormalized tilted distribution in Eq. 2 (Vargas et al., 2023; Richter & Berner, 2024), we instead directly optimize the objective in Eq. 3 by inferring the guided dynamics \mathcal{P} . In the remainder of this section, we elucidate on different aspects of inferring the distribution \mathcal{P} by defining the form of the unguided and guided autoregressive dynamics (Sec. 2.2), learning the guided dynamics (Sec. 2.3) and some practical instantiations (Sec. 2.4).

2.2 DIFFUSION-BASED DYNAMICS MODELING AND CONTROL

In order to model complex temporal dependencies, we draw on conditional Auto-Regressive Diffusion Models (ARDM) (Yang et al., 2023; Rühling Cachay et al., 2023; Price et al., 2023) for modeling dynamics. To this end, in addition to physical time steps $t \in \mathbb{N}$, we introduce additional diffusion denoising sub-steps $s \in \{S-1, \dots, 0\}$. As follows, we denote denoising indices (s) by superscript indices, and physical time steps t by subscript indices (as before).

As before, we consider an autoregressive process $\mathcal{Q} = p_0(\mathbf{x}_0) \prod_{t \geq 0} q(\mathbf{x}_{t+1} | \mathbf{x}_t)$ with $p_0(\mathbf{x}_0)$ being an initial distribution. Since we never train or modify this ARDM’s neural parameters, we suppress them in our notation. We model each transition distribution $q(\mathbf{x}_{t+1} | \mathbf{x}_t)$ by the *marginal distributions* (end states) of a conditional diffusion model,

$$q(\mathbf{x}_{t+1} | \mathbf{x}_t) = \int \left[\prod_{s=0}^{S-1} q(\mathbf{z}_{t+1}^{(s)} | \mathbf{z}_{t+1}^{(s+1)}; \mathbf{x}_t) \right] p(\mathbf{z}_{t+1}^{(S)}) d\mathbf{z}_{t+1}^{(1:S)}. \quad (4)$$

where each diffusion transition distribution is parameterized as, $q(\mathbf{z}_{t+1}^{(s)} | \mathbf{z}_{t+1}^{(s+1)}, \mathbf{x}_t) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{z}_{t+1}^{(s+1)}, \mathbf{x}_t, s+1), \sigma_{s+1}^2 \mathbf{I}_d)$ where $\boldsymbol{\mu}$ is the pretrained denoiser. The latents $\mathbf{z}_{t+1}^{(s)}$ represent

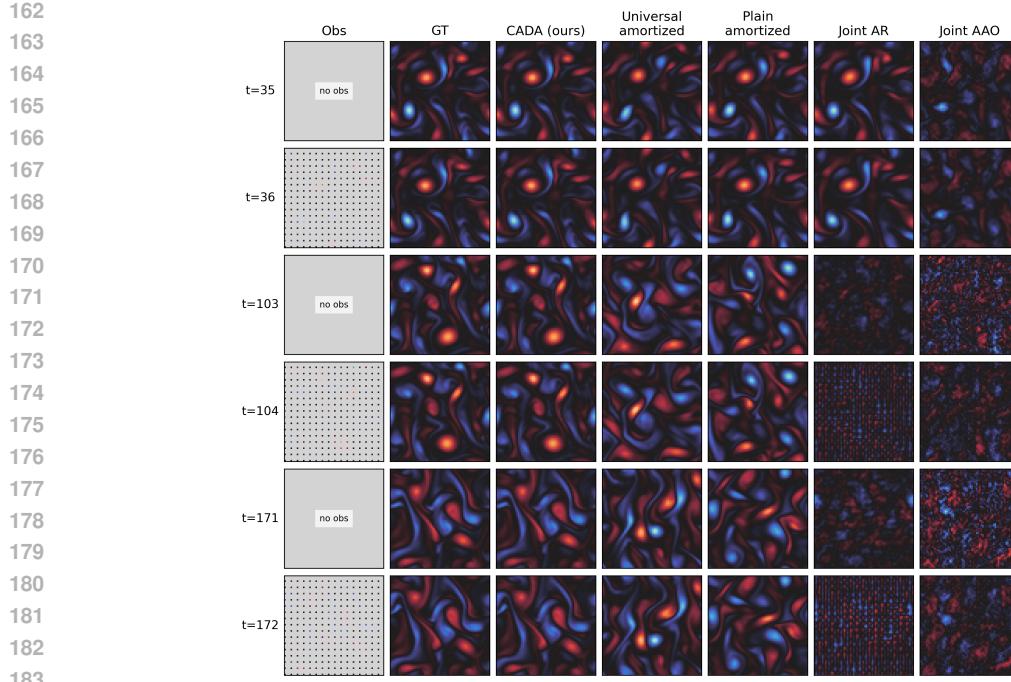


Figure 2: **Our method improves rollout stability and reconstruction consistency over long horizons.** Qualitative results on 2D Kolmogorov flow (horizon 180) show snapshots at representative timesteps, including regions with and without observations. While most baselines drift around $t \approx 35$, our approach (CADA) preserves sharp reconstructions. Joint-AR avoids catastrophic divergence but loses fine-scale structures at later steps, increasingly so for longer horizons (see Tab. 1,3).

intermediate noisy states and $p(\mathbf{z}_{t+1}^{(S)})$ represents the prior distribution for sampling initial noise. Thus, at each autoregressive timestep t , the next state $\mathbf{x}_{t+1} \equiv \mathbf{z}_{t+1}^{(0)}$ is obtained by simulating S diffusion sampling steps conditioned on \mathbf{x}_t . We refer to this formulation as *unguided ARDM dynamics*.

As stated in Sec. 2.1, our goal is to steer the pretrained unguided \mathcal{Q} so that the generated trajectories are aligned towards the upcoming observations while remaining close to the unguided dynamics. Therefore, we model the variational distribution \mathcal{P} as an autoregressive process augmented with *control* variables \mathbf{u} that help steer the process to align with incoming observations \mathbf{y} :

$$\mathcal{P} = p_0(\mathbf{x}_0) \prod_{t \geq 0} p(\mathbf{x}_{t+1} | \mathbf{x}_t; \mathbf{U}_{t+1}) \quad (5)$$

Formally, we define the transition kernel of \mathcal{P} at each timestep t as a conditional diffusion model,

$$p(\mathbf{x}_{t+1} | \mathbf{x}_t; \mathbf{U}_{t+1}) = \int \left[\prod_{s=0}^{S-1} p(\mathbf{z}_{t+1}^{(s)} | \mathbf{z}_{t+1}^{(s+1)}; \mathbf{u}_{t+1}^{(s)}, \mathbf{x}_t) \right] p(\mathbf{z}_{t+1}^{(S)}) d\mathbf{z}_{t+1}^{(1:S)}. \quad (6)$$

where for brevity, we denote $\mathbf{U}_{t+1} = (\mathbf{u}_{t+1}^{(0)}, \dots, \mathbf{u}_{t+1}^{(S-1)})$ and $\gamma > 0$ is a scalar hyperparameter. Intuitively, at each denoising sub-step, we inject *controls* $\mathbf{u}_{t+1}^{(s)}$ which perturb the noisy state $\mathbf{z}_{t+1}^{(s+1)}$ in a direction which minimizes the training objective in Eq. 3. Furthermore, following Pandey et al. (2025), we parameterize the guided diffusion posterior in Eq. 6,

$$p(\mathbf{z}_{t+1}^{(s)} | \mathbf{z}_{t+1}^{(s+1)}; \mathbf{u}_{t+1}^{(s)}, \mathbf{x}_t) \triangleq \mathcal{N}(\boldsymbol{\mu}(\mathbf{z}_{t+1}^{(s+1)} + \gamma \mathbf{u}_{t+1}^{(s)}, \mathbf{x}_t, s+1), \sigma_{s+1}^2 \mathbf{I}_d). \quad (7)$$

Note that $\boldsymbol{\mu}$ is the pretrained denoiser of the original ARDM \mathcal{Q} . We thus define our controlled process \mathcal{P} in terms of an additive shift to the ARDM’s noisy inputs.

Given controls \mathbf{U}_{t+1} , we can then roll-out the guided transition kernel to sample from the variational distribution \mathcal{P} , evaluate the rewards along the path, and backpropagate the gradients accordingly.

216 We refer to this parameterization as *guided ARDM*. Next, we discuss different ways of learning the
 217 controls \mathbf{U}_{t+1} given some upcoming observations within a fixed time horizon.
 218

219 **2.3 LEARNING THE CONTROLS**
 220

221 Given the unguided and guided ARDM formulation in Sec. 2.2, we learn the controls \mathbf{U}_{t+1} by
 222 optimizing the variational objective in Eq. 3. One alternative is to treat the controls $\{\mathbf{u}_t^{(s)}\}$ as free
 223 variables and optimize Eq. 3 *per assimilation window* at test time, analogous to Pandey et al. (2025).
 224 This is akin to the notion of test-time scaling in diffusion models (Uehara et al., 2025). Consequently,
 225 we refer to this ablation of our method as *Test-Time Optimization based DA* (TTO-DA). Another
 226 common alternative in inverse problems is *reconstruction guidance*, where one adjusts the score at
 227 each diffusion step using $\nabla_{\mathbf{x}}\Phi(\mathbf{x}; \mathbf{y})$, without introducing a separate control policy. In the absence of
 228 a direct estimate $\mathbb{E}[\mathbf{x}_\tau^{(0)} | \mathbf{x}_t^{(s)}]$ of the future state \mathbf{x}_τ , both strategies require backpropagation through
 229 the entire ARDM chain for every new forecast, which is prohibitively expensive in long autoregressive
 230 rollouts and does not naturally encode fixed-lag structure.

231 To mitigate these issues, we instead propose to amortize the controls by learning a controller trained
 232 over synthetic assimilation scenarios in a separate training stage. More specifically, during training,
 233 we roll out the guided ARDM (Eq. 5) trajectory and evaluate the arrival costs in Eq. 3 at observation
 234 arrival times τ . Since, sampling from the guided ARDM model at any time t requires specifying the
 235 controls \mathbf{U}_t , we parameterize the controls at any diffusion substep s and observation arrival time τ as,
 236

$$\mathbf{u}_t^{(s)} = \mathbf{u}_\psi(\mathbf{z}_t^{(s+1)}, \mathbf{x}_{t-1}, \mathbf{y}_\tau, s, \tau - t). \quad (8)$$

237 where $\mathbf{z}_t^{(s+1)}$ denotes the noisy state, \mathbf{x}_{t-1} denotes the forecast at the previous timestep, and \mathbf{y}_τ
 238 denotes a compact summary of upcoming observations. The parameters ψ are then optimized, while
 239 keeping the pretrained ARDM parameters fixed. This yields an on-policy *amortized* controller that
 240 can be applied in a single forward pass at test time to correct the forecasts. We refer to the resulting
 241 framework as *Control-Augmented Data Assimilation (CADA)*.
 242

243 Our proposed method CADA learns a reusable policy \mathbf{u}_ψ from short *preview windows*: all trajectory-
 244 level optimization is done once in an offline manner. At inference, we simply run the pretrained
 245 ARDM with lightweight control corrections. Empirically, this amortized control not only reduces
 246 inference cost significantly but also yields more stable and physically faithful DA trajectories than
 247 reconstruction guidance or TTO-DA baselines (see Sec. 4).
 248

249 **2.4 PRACTICAL DESIGN CHOICES**
 250

251 **Anchored windows.** During training, we operate on short, *anchored* windows of length Λ . We
 252 sample a start index t_0 , roll out the controlled dynamics (Eq. 5) for Λ steps, and only consider
 253 observation arrivals inside this window, i.e. $\tau \in \mathcal{T} \cap [t_0+1, t_0+\Lambda]$. Next, at each rollout step t in
 254 this window, the controller receives a summary of the nearest upcoming observation (see App. C),
 255 lead time s , and the previous forecast \mathbf{x}_t . The controller then emits per-substep corrections as per Eq.
 256 8 which are injected into the diffusion sub-steps via Eq. 7.
 257

258
 259 **Training on what is previewed.** Consequently, the training objective is localized to what the
 260 controller can see. We instantiate Eq. 3 with $\beta = 0$ and a parametric path distribution \mathcal{P}_ψ induced
 261 by the controlled kernel in Eq. 6. Concretely, for an anchored window $[t_0+1, t_0+\Lambda]$ with active
 262 observation times $\mathcal{A}_{t_0, \Lambda} = \mathcal{T} \cap [t_0+1, t_0+\Lambda]$, we optimize
 263

$$\mathcal{L}(\psi) := \sum_{\tau \in \mathcal{A}_{t_0, \Lambda}} \mathbb{E}_{\mathbf{x}_{t_0+1:t_0+\Lambda} \sim \mathcal{P}_\psi(\cdot | \mathbf{x}_{t_0})} [\Phi(\mathbf{x}_\tau; \mathbf{y}_\tau)], \quad (9)$$

264 where the windowed rollout distribution is
 265

$$\mathcal{P}_\psi(\mathbf{x}_{t_0+1:t_0+\Lambda} | \mathbf{x}_{t_0}) = \prod_{t=t_0}^{t_0+\Lambda-1} p(\mathbf{x}_{t+1} | \mathbf{x}_t; \mathbf{U}_{t+1}(\psi)), \quad (10)$$

270 and the per-step controls $U_{t+1}(\psi)$ are given by the policy u_ψ in Eq. 8. In practice, we approximate
 271 the expectation in Eq. 9 with Monte Carlo rollouts over such windows and minimize $\mathcal{L}(\psi)$ by
 272 stochastic gradient descent. The small step size γ and short preview horizon constrain how far each
 273 transition can deviate from the pretrained ARDM. **Algorithm 2** (App. D) summarizes the resulting
 274 training procedure on anchored windows.

275
 276 **Inference by sliding previews.** During inference, we apply the learned controller in a causal,
 277 feed-forward fashion. Starting from an initial state, we advance autoregressively and, at each step,
 278 form a preview of size Λ over the future observation schedule, apply the controls from Eq. 8, and
 279 move forward Λ steps before switching to the next preview. We implement this on top of a DDIM
 280 sampler (Song et al., 2020), but the preview mechanism is sampler-agnostic and only requires access
 281 to the diffusion sub-steps. We also note that inference rollouts in our experiments are substantially
 282 longer (more than 10 times) than the training windows (e.g., 60/180 steps for the Kolmogorov PDE),
 283 demonstrating that a controller trained on short previews can be reused to produce long-horizon
 284 forecasts and thus exhibits stable rollouts. **Algorithm 3** (App. D) details this sliding-preview inference
 285 scheme.

286 3 RELATED WORK

287
 288 **Guidance in Diffusion Models.** Some existing works on guidance in diffusion models rely on
 289 explicit approximations of the score of the noisy likelihood score by approximating the diffusion
 290 posterior $p(\mathbf{x}^{(0)}|\mathbf{x}^{(t)})$ (Chung et al., 2022; Song et al., 2023; Kawar et al., 2022; Pandey et al., 2024;
 291 Pokle et al., 2024). While this can result in accurate guidance and faster sampling, a large proportion
 292 of these methods are limited to linear inverse problems, which further limits their application. More
 293 recent works (Pandey et al., 2025; Rout et al., 2025) alleviate some of these problems by formulating
 294 guidance as optimal control. Our method directly builds on top of Pandey et al. (2025) by amortizing
 295 the controls in a separate finetuning stage and extending their framework to autoregressive diffusion
 296 models. There has also been recent work in finetuning diffusion models (Clark et al., 2023; Fan et al.,
 297 2023; Domingo-Enrich et al., 2025) which is complimentary to our proposed framework.

298
 299 **Data assimilation** Several recent works utilize diffusion models for DA. Rozet & Louppe (2023)
 300 train score-based diffusion models on short trajectory segments to generate full long trajectories
 301 during inference. Their framework has been also applied in Qu et al. (2024) and Manshausen et al.
 302 (2025). However, these approaches rely on inference-time-only guidance, lacking trajectory consis-
 303 tency mechanisms that avoid error accumulation during observational gaps. Autoregressive methods
 304 (Shysheya et al., 2024; Gao et al., 2024) and DiffDA (Huang et al., 2024) improve stability but re-
 305 main computationally expensive due to inference-time optimization. Latent space-based approaches
 306 (Foroumandi & Moradkhani, 2025; Fan et al., 2025) reduce dimensionality but introduce reconstruc-
 307 tion biases and latent-physical decoupling errors. We address these limitations by integrating learned
 308 feedback controls directly into autoregressive diffusion denoising, enabling inference as a single
 309 forward rollout with robust long-horizon stability and substantial computational efficiency.

310 4 EXPERIMENTS

311
 312 We evaluate Control-Augmented Data Assimilation (CADA) on two chaotic PDE benchmarks. To
 313 highlight challenges in delayed and sparse observations, we test six regimes combining spatial
 314 downsampling and temporal masking. Baselines include four strong diffusion-based DA methods
 315 (joint- and conditional-score) plus two CADA ablations. Our study addresses three questions: (i)
 316 *Accuracy under delayed preview*—does preview-aware control reduce drift with infrequent, lagged
 317 data? (ii) *Stability across horizons*—do improvements hold for long rollouts where chaos dominates?
 318 (iii) *Mechanism*—are gains driven by amortization or brute-force search? We next detail datasets,
 319 training, metrics, baselines, and provide comprehensive quantitative and qualitative results.

320
 321 **Dataset** The two canonical PDE benchmarks we consider are the 1D Kuramoto–Sivashinsky (KS)
 322 equation and the 2D Kolmogorov flow. Both systems exhibit nonlinear instabilities and long-range
 323 correlations, making them challenging testbeds for data assimilation with sparse observations (Du &
 324 Zaki, 2021; Lippe et al., 2023). Details on the exact PDE and data generation can be found in App E.

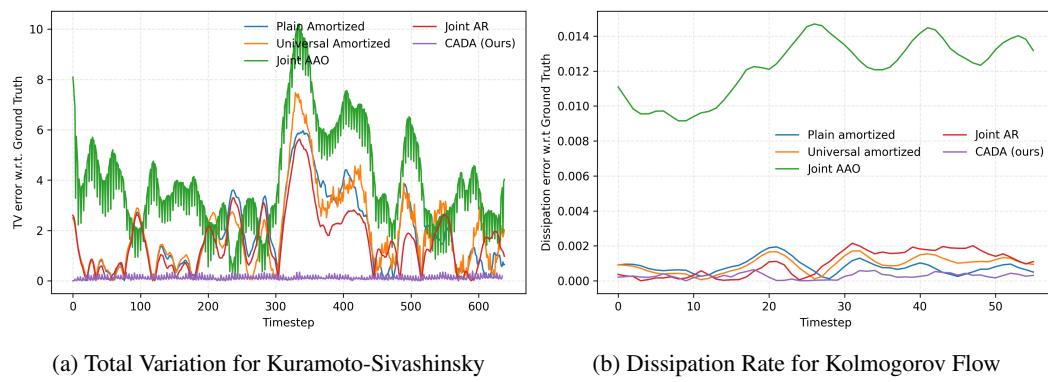


Figure 3: **Our method better preserves physics-aware diagnostics under sparse observations.** (a) Total variation (TV) error for the 1D Kuramoto–Sivashinsky system over a 640-step rollout; lower TV error indicates more faithful preservation of spatial oscillations. (b) Dissipation rate error for 2D Kolmogorov flow over a 60-step rollout; accurate dissipation reflects correct energy cascade to small scales. Both figures correspond to the MR4 observation regime (details in Sec. 4).

Observation Regimes. We evaluate six assimilation settings for each dataset, designed to probe robustness under varying degrees of spatial sparsity and temporal delay akin to (Rozet & Louppe, 2023) and (Shysheya et al., 2024). The first set of regimes applies *spatial downsampling* with factors $\{2, 4, 8\}$ (denoted DS-2/4/8), where observations are available at every simulator step within the preview window Λ , but only on coarsened spatial grids. The second set applies *regular strided masking* with the same factors (denoted MS-2/4/8), where observations are reported every fourth simulator step within the window (temporal stride of 4) and further subsampled spatially by the given factor. In all cases, operator metadata (e.g., masks) are carried with each observation, as detailed in App. A.

Experimental Setup. We train a separate *controller* network for each observation regime, using a common pretrained ARDM (distinct for each dataset). We present full architectural and training details of the ARDM and controller network in App. F and App. G, respectively. The ARDM backbone in CADA employs DDIM sampling with $S=3$ denoising sub-steps per simulator transition. The preview horizon is set to $\Lambda=16$ for Kolmogorov flow and $\Lambda=54$ for Kuramoto–Sivashinsky, with the active observation selected by the nearest-arrival rule within the anchored window (see App. C). To strengthen the assimilation signal, we evaluate the arrival cost not only at observation indices but also at their intermediate denoising sub-steps, using Tweedie estimates of the forecast state at each sub-step. Forecasts are evaluated under both short and long horizons to separate near-term correction from long-term stability: 60 and 180 steps for Kolmogorov flow, and 140 and 640 steps for Kuramoto–Sivashinsky.

Evaluation Metrics. We evaluate forecasts using both trajectory-based and physics-aware metrics. First, we report time averaged root-mean-square error (RMSE). Second, we compute the high correlation time (HCT). Beyond pointwise errors, we assess physical fidelity by including domain-specific diagnostics. For Kuramoto–Sivashinsky, it is the *total variation* (TV) and for Kolmogorov flow, it is the *dissipation rate*. More details on these metrics can be found in App. E.

Together, RMSE and HCT evaluate assimilated forecast accuracy and temporal coherence, while TV and dissipation provide assessments of structural fidelity in chaotic PDE dynamics.

Baselines Score-based Data Assimilation (Rozet & Louppe, 2023) learns local joint scores over short segments under a k -order Markov factorization and reconstructs a full-trajectory score to sample *all-at-once* (AAO). This provides a principled joint generative model over trajectories, but is memory-intensive for long sequences and in practice requires sequential evaluation of local windows; AAO often benefits from additional corrector steps to enforce start–end consistency.

Using the same local joint score, Shysheya et al. (2024) adopt an autoregressive rollout that generates P future states conditioned on the past C (with $P+C=2k+1$), iterating along the horizon. Relative

378 to AAO, the AR factorization increases the effective Markov order seen at each step and empirically
 379 yields more stable long-range rollouts at the cost of additional neural function evaluations. Both of
 380 these joint-score based methods are referred to as *Joint AAO* and *Joint AR* in this text.
 381

382 We also evaluate two conditioning architectures from [Shysheya et al. \(2024\)](#): *Plain Amortized*, which
 383 fixes the number of conditioning frames C during training, and *Universal Amortized*, which samples
 384 $C \sim U(0, \dots, 2k)$ and uses masking to admit variable (C, P) at test time while keeping a fixed input
 385 window. Both can be combined with reconstruction guidance for partial observations, following the
 386 conditional score formulations.
 387

Our ablations. (i) *TTO-DA* (test-time optimization): a non-amortized variant that updates controls
 388 per step via inner optimization under a terminal-cost objective, requiring explicit rollouts to evaluate
 389 arrival costs; this parallels [Pandey et al. \(2025\)](#) by extending it to autoregressive temporal setting.
 390 However, unlike [Pandey et al. \(2025\)](#), the temporal DA problem setting doesn't give direct access
 391 to the estimate of future state $\mathbb{E}[\mathbf{x}_\tau^{(0)} | \mathbf{x}_t^{(s)}]$, necessitating a full autoregressive rollout till τ at each
 392 denoising substep to optimize controls for that substep making TTO-DA extremely expensive. (*Note*
 393 *that this precisely where our method of amortizing the controls via u_ψ and training it offline comes*
 394 *in handy and makes the inference extremely cheap.*) (ii) *BoN* (Best-of- n): a selection baseline
 395 that samples $n=16$ independent latent seeds and returns the trajectory with the lowest terminal
 396 cost—representing a simple inference-time selection heuristic used in contemporary alignment/scaling
 397 studies ([Singhal et al., 2025](#); [Gao et al., 2023](#)).
 398

Qualitative and Quantitative Analysis. Tab. 1 reports quantitative comparisons between CADA,
 399 state-of-the-art baselines, and ablations. CADA consistently outperforms all baselines across metrics,
 400 and notably maintains nearly constant RMSE from short to long rollouts. High Correlation Time
 401 (HCT; Tab. 3, see App. H) corroborates this: correlations remain high throughout full trajectories,
 402 whereas other ARDM-based models (Plain and Universal Amortized) exhibit substantial long-horizon
 403 degradation and in some regimes even struggle at short horizons. Such instability is undesirable for
 404 operational DA, where stable forecasts over fixed-lag windows are critical.
 405

406 Not using amortization (TTO-DA, the test-time-optimized control variant) leads to a clear drop in
 407 performance—modest on short rollouts but increasingly severe over long horizons. This indicates that
 408 simply tilting the distribution at arrival times is insufficient; amortizing over observations and preview
 409 windows is essential for stability. The Best-of- n (BoN) heuristic, which samples multiple trajectories
 410 and selects the lowest-cost one, performs significantly worse: while BoN can improve sample quality
 411 in image generation, DA requires consistent step-by-step correction rather than ex-post trajectory
 412 selection, underscoring the importance of amortized control for sequential inverse problems.
 413

414 Fig. 2 and Fig. 5 (App. I) illustrate performance under masked observation regimes for long-horizon
 415 rollouts on both KS (1D) and Kolmogorov (2D). These settings are particularly challenging, as
 416 observations are sparse in both time and space. On KS, autoregressive diffusion baselines diverge
 417 after roughly 200 steps, whereas CADA remains stable for the full 640-step horizon. Joint score-based
 418 methods maintain stability but exhibit strong visual artifacts. On Kolmogorov, ARDM baselines such
 419 as Plain and Universal Amortized start diverging shortly after step 35; Joint AR is more stable but
 420 loses fine-scale detail at later times. In contrast, CADA preserves sharper, more physically consistent
 421 structures throughout.
 422

423 Fig. 3a tracks total variation in the KS system, a proxy for fine-scale spatiotemporal variability.
 424 All baselines either under- or over-estimate fine scales, whereas CADA tracks the ground truth
 425 closely across the entire horizon, with small variance and minimal drift. Fig. 3b reports dissipation
 426 rate in Kolmogorov flow, a canonical diagnostic of turbulent energy transfer. Joint-score methods
 427 underestimate dissipation, and amortized ARDMs overshoot, leading to unphysical rollouts. CADA,
 428 by contrast, aligns closely with the ground truth, preserving the correct energy balance. Together,
 429 these results show that control augmentation not only reduces forecast drift but also better preserves
 430 domain-relevant physical invariants.
 431

432 In addition to accuracy and stability, CADA is also substantially more efficient at inference. Tab. 2
 433 reports wall-clock time for generating 8 trajectories in the MS-8 regime (horizon 60). CADA
 434 achieves a runtime of 6.3 s, compared to 63.4–65.6 s for conditional ARDM baselines (Plain and
 435 Universal Amortized) and 326.8–756.3 s for joint-score DA methods (Joint AAO/AR), i.e., over 10×
 436 and 50–120× speedups, respectively. This reflects that CADA performs a single forward rollout of
 437

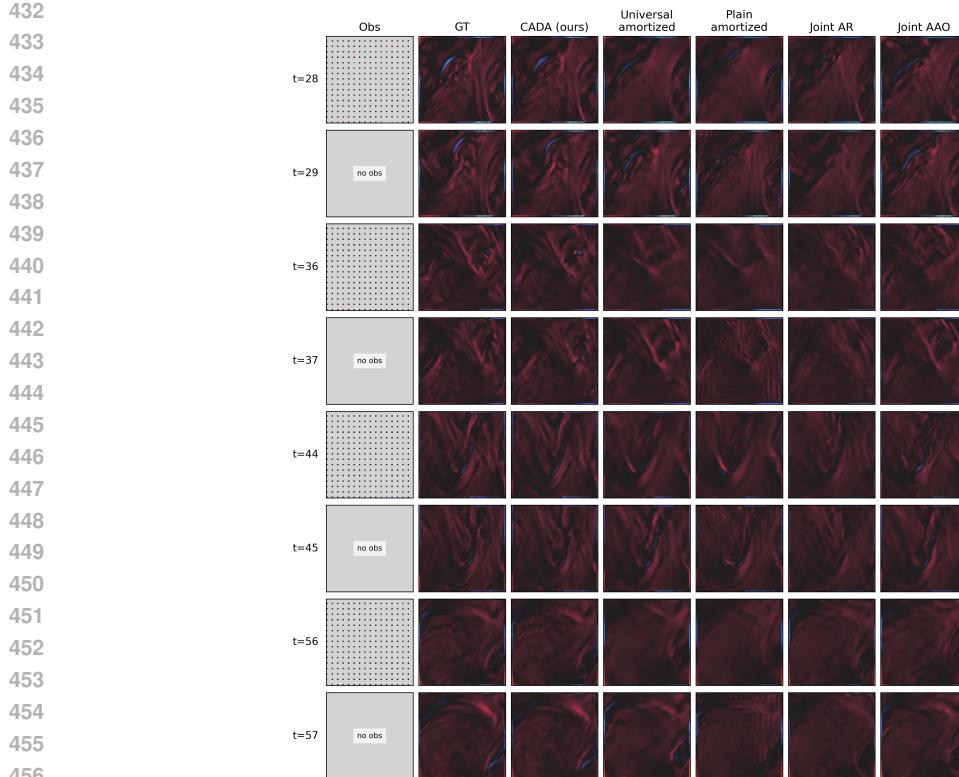


Figure 4: **ERA5 vorticity** assimilation under sparse MS-4 observations (500 hPa) (ERA5 temperature in Fig. 6). We evaluate the ability maintain fine-scale rotational structure. Rows correspond to evaluation times, with observation availability shown on the left. The ground truth (GT) reveals sharp, filamentary vorticity patterns that are notoriously difficult to preserve under sparse DA. Joint-score baselines (Joint AR/AOO) maintain broad flow patterns but lose small-scale filaments; Plain and Universal Amortized models show substantial smoothing and mode collapse. CADA uniquely retains coherent eddies and streaks even when observations are missing, demonstrating stable, physically consistent assimilation across long horizons. (see Tab. 4).

the pretrained ARDM with a lightweight controller, whereas guidance-only and joint-score methods require repeated score or gradient evaluations during sampling.

Appendix I further corroborates these findings in three additional settings. First, an ERA5-based case study on 500 hPa winds and temperature over North America shows that the same controller architecture transfers to an NWP-style surrogate and reanalysis-like observations: in the MS-4 regime, CADA reduces RMSE by roughly $3.5\text{--}4\times$ relative to the next-best diffusion baseline (Tab. 4, Figs. 6–4). Second, a comparison to classical baselines under matched observation operators and cadences highlights that EnKF/3DVar/4DVar deteriorate sharply under aggressive downsampling and mixed-resolution regimes, whereas CADA remains accurate (Tab. 5, Fig. 7). Third, a randomized spatial-mask experiment with irregular, non-grid-aligned observations shows that CADA attains the lowest RMSE by a wide margin (Tab. 6), demonstrating robustness to irregular observation networks without architectural changes.

5 CONCLUSION

We introduced Control-Augmented Data Assimilation (CADA), a finetuning framework that integrates a learned control mechanism into pretrained autoregressive diffusion models. By amortizing anticipatory corrections through preview windows, CADA transforms data assimilation into a feed-forward process that is both computationally efficient and stable across long horizons.

486
 487 **Table 1: Our method outperforms baselines (RMSE \downarrow) across six observation regimes.** Results on
 488 Kolmogorov flow (60/180 steps) and Kuramoto–Sivashinsky (140/640 steps) under short- and long-
 489 horizon rollouts show CADA consistently superior. Ablations confirm that removing amortization
 490 (TTO-DA) or relying on heuristic selection (BoN) substantially degrades performance. Observation
 491 regimes (Sec. 4) include downsampled (DS, every step observed) and masked (MS, observations
 492 every fourth step). Refer to Tab. 3 in App.H for HCT \uparrow metric.

	DS-2		DS-4		DS-8		MS-2		MS-4		MS-8	
	short	long										
Kolmogorov												
CADA (ours)	0.016	0.016	0.020	0.020	0.138	0.351	0.017	0.017	0.024	0.024	0.060	0.286
Joint AAO	0.041	0.045	0.210	0.189	0.380	0.244	0.141	0.171	0.358	0.559	0.465	0.523
Joint AR	0.038	0.031	0.185	0.115	0.366	0.218	0.046	0.129	0.152	0.261	0.404	0.574
Plain Amortized	0.109	0.814	0.229	1.033	0.712	1.276	0.245	0.454	0.302	0.477	0.316	0.479
Universal Amortized	0.295	1.398	1.061	1.566	1.612	1.766	0.186	0.397	0.323	0.469	0.351	0.483
TTO-DA	0.040	0.243	0.027	0.115	0.156	0.401	0.078	0.298	0.113	0.357	0.215	0.433
BoN	0.258	0.420	0.264	0.440	0.299	0.442	0.265	0.447	0.266	0.454	0.306	0.488
Kuramoto–Sivashinsky												
CADA (ours)	0.006	0.006	0.006	0.006	0.009	0.009	0.006	0.006	0.011	0.011	0.011	0.096
Joint AAO	0.017	0.017	0.091	0.092	0.417	0.424	0.045	0.038	0.210	0.195	0.614	0.599
Joint AR	0.018	0.018	0.091	0.093	0.413	0.428	0.026	0.009	0.041	0.032	0.134	0.136
Plain Amortized	0.041	9.787	0.146	10.73	1.859	11.81	0.034	1.163	0.036	1.165	0.039	1.211
Universal Amortized	0.043	5.574	0.146	6.210	2.096	6.947	0.041	1.098	0.044	1.197	0.048	1.239
TTO-DA	0.016	8.288	0.009	0.053	0.418	0.634	0.016	0.298	0.114	0.363	0.081	0.580
BoN	0.046	1.257	0.046	1.498	0.048	3.122	0.045	1.987	0.046	1.644	0.049	2.128

	Method	Time (s) \downarrow		\times CADA \downarrow
		Plain Amortized	Universal Amortized	
Joint AAO	63.4	65.6	326.8	51.9
Joint AR	756.3	230.4	25.8	120.0
TTO-DA	36.6	4.1	6.3	1.0
BoN				
CADA (ours)				

514 Table 2: Inference wall-clock time (seconds) for 8 trajectories in the MR8 regime on Kolmogorov
 515 flow, horizon length 60. CADA is over 10 \times faster than conditional ARDM baselines and 50–120 \times
 516 faster than joint-score DA methods.

517
 518
 519
 520 On two canonical chaotic PDE benchmarks, CADA consistently outperforms state-of-the-art diffusion-
 521 based DA methods, yielding more accurate forecasts, improved long-term stability, and closer
 522 adherence to domain-standard physical diagnostics. Our experiments show that amortization is key:
 523 test-time-only optimization or naive trajectory selection cannot match the robustness achieved by
 524 offline-trained control policies.

525 Beyond PDEs, our framework suggests a general recipe for embedding control into generative
 526 dynamics. This perspective opens avenues for extending diffusion models to other sequential inverse
 527 problems where observations are delayed, sparse, or noisy—from atmospheric science and climate
 528 modeling to robotics and scientific simulation. Future work will explore adaptive preview horizons,
 529 integration with real-world observational data, and scaling to higher-dimensional systems.

530
 531
 532
 533 **Limitations and scope.** Our study focuses on autoregressive diffusion surrogates trained on two
 534 canonical chaotic PDEs (plus a compact ERA5-style case) with a fixed preview horizon and a
 535 separate controller per observation regime. Training the ARDM prior is computationally comparable
 536 to existing diffusion-based surrogates for PDEs and NWP, while the additional cost of learning
 537 controllers is modest; nevertheless, scaling to fully global, multi-level NWP systems will require
 538 more compute. We view extensions to meta-learned controllers, adaptive previews, and richer
 539 observational operators as natural directions for future work rather than fundamental limitations of
 the proposed framework.

540 ETHICS STATEMENT
541

542 Our work focuses on amortized guidance for autoregressive diffusion models. While we present
543 these ideas in the context of data assimilation in PDEs, our setup could be adapted for malicious
544 terminal costs which can lead to potential misuse. Therefore, responsible deployment, monitoring,
545 and safeguards are critical to balance performance gains with societal risks.

546
547 REPRODUCIBILITY STATEMENT
548

549 We include proofs for all theoretical results introduced in the main text in Appendix B. We in-
550 clude further experimental and implementation details (including model architectures and other
551 hyperparameter choices) in Appendix G. Our code will be made available by the time of publication.

552 REFERENCES
553

554 Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
555 for neural pde solvers. In *International Conference on Machine Learning*, pp. 2241–2256. PMLR,
556 2022.

557 Alberto Carrassi, Marc Bocquet, Laurent Bertino, and Geir Evensen. Data assimilation in the
558 geosciences: An overview of methods, issues, and perspectives. *WIREs Climate Change*, 9(5):
559 e535, 2018. doi: <https://doi.org/10.1002/wcc.535>. URL <https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wcc.535>.

560 Hyungjin Chung, Jeongsol Kim, Michael Thompson Mccann, Marc Louis Klasky, and Jong Chul Ye.
561 Diffusion posterior sampling for general noisy inverse problems. In *The Eleventh International
562 Conference on Learning Representations*, 2022.

563 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on
564 differentiable rewards. *arXiv preprint arXiv:2309.17400*, 2023.

565 Philippe Courtier, E Andersson, W Heckley, D Vasiljevic, M Hamrud, A Hollingsworth, F Rabier,
566 M Fisher, and J Pailleux. The ecmwf implementation of three-dimensional variational assimilation
567 (3d-var). i: Formulation. *Quarterly Journal of the Royal Meteorological Society*, 124(550):
568 1783–1807, 1998.

569 Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, and Ricky T. Q. Chen. Adjoint matching:
570 Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
571 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=xQBRrtQM8u>.

572 Yifan Du and Tamer A Zaki. Evolutional deep neural network. *Physical Review E*, 104(4):045303,
573 2021.

574 Geir Evensen, Femke C Vossepoel, and Peter Jan Van Leeuwen. *Data assimilation fundamentals: A
575 unified formulation of the state and parameter estimation problem*. Springer Nature, 2022. doi:
576 <https://doi.org/10.1007/978-3-030-96709-3>.

577 Hang Fan, Ben Fei, Pierre Gentine, Yi Xiao, Kun Chen, Yubao Liu, Yongquan Qu, Fenghua Ling,
578 and Lei Bai. Physically consistent global atmospheric data assimilation with machine learning in a
579 latent space. *arXiv preprint arXiv:2502.02884*, 2025.

580 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
581 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-tuning
582 text-to-image diffusion models. In *Thirty-seventh Conference on Neural Information Processing
583 Systems*, 2023. URL <https://openreview.net/forum?id=80TPepXzeh>.

584 Ehsan Foroumandi and Hamid Moradkhani. Harnessing generative deep learning for enhanced
585 ensemble data assimilation. *Water Resources Research*, 61(7):e2025WR040078, 2025. doi: <https://doi.org/10.1029/2025WR040078>. URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2025WR040078>. e2025WR040078 2025WR040078.

594 Han Gao, Xu Han, Xiantao Fan, Luning Sun, Li-Ping Liu, Lian Duan, and Jian-Xun Wang. Bayesian
 595 conditional diffusion models for versatile spatiotemporal turbulence generation. *Computer Methods
 596 in Applied Mechanics and Engineering*, 427:117023, 2024.

597

598 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
 599 *International Conference on Machine Learning*, pp. 10835–10866. PMLR, 2023.

600 Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang, David Jacobs, Jia-Bin Huang, and
 601 Devi Parikh. *Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive Trans-
 602 former*, pp. 102–118. Springer Nature Switzerland, 2022. ISBN 9783031197901. doi: 10.1007/
 603 978-3-031-19790-1_7. URL http://dx.doi.org/10.1007/978-3-031-19790-1_7.

604

605 Langwen Huang, Lukas Gianinazzi, Yuejiang Yu, Peter D Dueben, and Torsten Hoefer. Diffda: a
 606 diffusion model for weather-scale data assimilation. *arXiv preprint arXiv:2401.05932*, 2024.

607

608 Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging
 609 the train-test gap in autoregressive video diffusion. *arXiv preprint arXiv:2506.08009*, 2025.

610 Eugenia Kalnay. *Atmospheric Modeling, Data Assimilation and Predictability*. Cambridge University
 611 Press, 2002. doi: <https://doi.org/10.1017/CBO9780511802270>.

612

613 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration
 614 models. *Advances in Neural Information Processing Systems*, 35:23593–23606, 2022.

615 François-Xavier Le Dimet and Olivier Talagrand. Variational algorithms for analysis and assimila-
 616 tion of meteorological observations: theoretical aspects. *Tellus A: Dynamic Meteorology and
 617 Oceanography*, 38(2):97–110, 1986.

618 Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
 619 refiner: Achieving accurate long rollouts with neural pde solvers. *Advances in Neural Information
 620 Processing Systems*, 36:67398–67433, 2023.

621

622 Peter Manshausen, Yair Cohen, Peter Harrington, Jaideep Pathak, Mike Pritchard, Piyush Garg,
 623 Morteza Mardani, Karthik Kashinath, Simon Byrne, and Noah Brenowitz. Generative data
 624 assimilation of sparse weather station observations at kilometer scales, 2025. URL <https://arxiv.org/abs/2406.16947>.

625

626 Morteza Mardani, Noah Brenowitz, Yair Cohen, Jaideep Pathak, Chieh-Yu Chen, Cheng-Chin Liu,
 627 Arash Vahdat, Mohammad Amin Nabian, Tao Ge, Akshay Subramaniam, Karthik Kashinath,
 628 Jan Kautz, and Mike Pritchard. Residual corrective diffusion modeling for km-scale atmo-
 629 spheric downscaling. *Communications Earth & Environment*, 6(1), February 2025. ISSN
 630 2662-4435. doi: 10.1038/s43247-025-02042-5. URL <http://dx.doi.org/10.1038/s43247-025-02042-5>.

631

632 Kushagra Pandey, Ruihan Yang, and Stephan Mandt. Fast samplers for inverse problems in iterative
 633 refinement models. In *The Thirty-eighth Annual Conference on Neural Information Processing
 634 Systems*, 2024. URL <https://openreview.net/forum?id=qxs4IvtLdD>.

635

636 Kushagra Pandey, Farrin Marouf Sofian, Felix Draxler, Theofanis Karaletsos, and Stephan Mandt.
 637 Variational control for guidance in diffusion models. *arXiv preprint arXiv:2502.03686*, 2025.

638

639 Jaideep Pathak, Yair Cohen, Piyush Garg, Peter Harrington, Noah Brenowitz, Dale Durran, Morteza
 640 Mardani, Arash Vahdat, Shaoming Xu, Karthik Kashinath, and Michael Pritchard. Kilometer-
 641 scale convection allowing model emulation using generative diffusion modeling, 2024. URL
 642 <https://arxiv.org/abs/2408.10958>.

643

644 Ashwini Pokle, Matthew J. Muckley, Ricky T. Q. Chen, and Brian Karrer. Training-free linear image
 645 inverses via flows. *Transactions on Machine Learning Research*, 2024. ISSN 2835-8856. URL
 646 <https://openreview.net/forum?id=PLIt3a4yTm>.

647

648 Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
 649 Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Gencast: Diffusion-
 650 based ensemble forecasting for medium-range weather. *arXiv preprint arXiv:2312.15796*, 2023.

648 Yongquan Qu, Juan Nathaniel, Shuolin Li, and Pierre Gentine. Deep generative data assimilation in
 649 multimodal setting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 650 *Recognition (CVPR) Workshops*, pp. 449–459, June 2024.

651

652 Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. In *The Twelfth*
 653 *International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=h4pNROs006>.

654

655 Litu Rout, Yujia Chen, Nataniel Ruiz, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai,
 656 and Wen-Sheng Chu. RB-modulation: Training-free stylization using reference-based modulation.
 657 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=bnINPG5A32>.

658

659 François Rozet and Gilles Louppe. Score-based data assimilation. *Advances in Neural Information*
 660 *Processing Systems*, 36:40521–40541, 2023.

661

662 Salva Rühling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. Dyffusion: A dynamics-informed
 663 diffusion model for spatiotemporal forecasting. *Advances in neural information processing systems*,
 664 36:45259–45287, 2023.

665

666 Daniel Sanz-Alonso, Andrew Stuart, and Armeen Taeb. *Inverse Problems and Data Assimilation*.
 667 London Mathematical Society Student Texts. Cambridge University Press, 2023.

668

669 Aliaksandra Shysheya, Cristiana Diaconu, Federico Bergamin, Paris Perdikaris, José Miguel
 670 Hernández-Lobato, Richard Turner, and Emile Mathieu. On conditional diffusion models for pde
 671 simulations. *Advances in Neural Information Processing Systems*, 37:23246–23300, 2024.

672

673 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 674 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 675 models. *arXiv preprint arXiv:2501.06848*, 2025.

676

677 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 678 *preprint arXiv:2010.02502*, 2020.

679

680 Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
 681 models for inverse problems. In *International Conference on Learning Representations*, 2023.
 682 URL https://openreview.net/forum?id=9_gsMA8MRKQ.

683

684 Yannick Tr’emolet. Accounting for an imperfect model in 4d-var. *Quarterly Journal of the Royal*
 685 *Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical*
 686 *oceanography*, 132(621):2483–2504, 2006.

687

688 Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
 689 force learning-based fine-tuning of diffusion models: A tutorial and review, 2024. URL
 690 <https://arxiv.org/abs/2407.13734>.

691

692 Masatoshi Uehara, Yulai Zhao, Chenyu Wang, Xiner Li, Aviv Regev, Sergey Levine, and Tommaso
 693 Biancalani. Inference-time alignment in diffusion models with reward-guided generation: Tutorial
 694 and review, 2025. URL <https://arxiv.org/abs/2501.09685>.

695

696 Francisco Vargas, Will Sussman Grathwohl, and Arnaud Doucet. Denoising diffusion samplers.
 697 In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=8pvnfTAbulf>.

698

699 Rui Wang and Rose Yu. Physics-guided deep learning for dynamical systems: A survey. *arXiv*
 700 *preprint arXiv:2107.01272*, 2021.

701

Ronald J. Williams and David Zipser. A learning algorithm for continually running fully recurrent
 702 neural networks. *Neural Computation*, 1(2):270–280, June 1989. ISSN 1530-888X. doi: 10.1162/
 703 neco.1989.1.2.270. URL <http://dx.doi.org/10.1162/neco.1989.1.2.270>.

Ruihan Yang, Prakhar Srivastava, and Stephan Mandt. Diffusion probabilistic modeling for video
 704 generation. *Entropy*, 25(10):1469, 2023.

702 Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 703 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 704 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

705 Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational
 706 inference. *IEEE transactions on pattern analysis and machine intelligence*, 41(8):2008–2026,
 707 2018.

710 A OBSERVATION OPERATORS

713 Our experiments employ linear observation operators that map the full state \mathbf{x} to observed signals \mathbf{y}_k .

715 **Masked observations.** For temporally strided or spatially sparse measurements, we define a
 716 (possibly time-varying) binary mask $\mathbf{M} \in \{0, 1\}^{1 \times D}$ broadcast across channels, with

$$717 \quad A_{\text{mask}}(\mathbf{x}) = \mathbf{M} \odot \mathbf{x}, \quad \Phi^{\text{mask}}(\mathbf{x}; \mathbf{y}) = \frac{\|\mathbf{M} \odot (\mathbf{x} - \mathbf{y})\|_2^2}{\|\mathbf{M}\|_1}.$$

720 **Downsampling observations.** For coarse-resolution sensing, we apply average pooling P_f over
 721 non-overlapping $f \times f$ blocks followed by nearest-neighbor upsampling U_f :

$$723 \quad A_{\text{down}}(\mathbf{x}) = U_f(P_f \mathbf{x}), \quad \Phi^{\text{ds}}(\mathbf{x}; \mathbf{y}) = \|U_f(P_f \mathbf{x}) - U_f(P_f \mathbf{y})\|_2^2.$$

725 These operators produce the observed signals \mathbf{y}_τ that define the arrival-time costs in Eq. 3. While
 726 we restrict to masking and downsampling here, any differentiable operator Φ could be incorporated
 727 within our framework without modification.

729 B PROOF OF THE TILTED DISTRIBUTION

731 We show that the optimization problem in Eq. 3 admits the tilted distribution in Eq. 2 as its optimal
 732 solution.

734 **Setup.** Recall the objective

$$736 \quad \mathcal{C}(\mathbf{x}) = \sum_{t \in \mathcal{T}} \mathbb{E}_{\mathbf{x}_t \sim \mathcal{P}} [\Phi_t(\mathbf{x}_t; \mathbf{y}_t)] + \beta D_{\text{KL}}(\mathcal{P} \parallel \mathcal{Q}),$$

739 where \mathcal{P} is the guided ARDM distribution over trajectories, \mathcal{Q} the unguided distribution, and Φ_t an
 740 arrival-time cost.

741 **Variational form.** Expanding the KL divergence,

$$744 \quad D_{\text{KL}}(\mathcal{P} \parallel \mathcal{Q}) = \mathbb{E}_{\mathcal{P}} \left[\log \frac{\mathcal{P}}{\mathcal{Q}} \right].$$

746 Thus the objective reads

$$748 \quad \mathcal{C}(\mathcal{P}) = \mathbb{E}_{\mathcal{P}} \left[\sum_{t \in \mathcal{T}} \Phi_t(\mathbf{x}_t; \mathbf{y}_t) + \beta \log \frac{\mathcal{P}}{\mathcal{Q}} \right].$$

751 **Lagrangian minimization.** Consider minimizing $\mathcal{C}(\mathcal{P})$ over distributions \mathcal{P} subject to normalization
 752 $\int \mathcal{P} = 1$. The corresponding Lagrangian is

$$754 \quad \mathcal{L}(\mathcal{P}, \lambda) = \mathbb{E}_{\mathcal{P}} \left[\sum_{t \in \mathcal{T}} \Phi_t(\mathbf{x}_t; \mathbf{y}_t) + \beta \log \frac{\mathcal{P}}{\mathcal{Q}} \right] + \lambda \left(\int \mathcal{P} - 1 \right).$$

756 **Stationary point.** Taking the functional derivative w.r.t. \mathcal{P} gives
 757

$$\frac{\delta \mathcal{L}}{\delta \mathcal{P}} = \sum_{t \in \mathcal{T}} \Phi_t(\mathbf{x}_t; \mathbf{y}_t) + \beta \left(1 + \log \frac{\mathcal{P}}{\mathcal{Q}} \right) + \lambda.$$

760 Setting this derivative to zero yields
 761

$$\log \mathcal{P} = \log \mathcal{Q} - \frac{1}{\beta} \sum_{t \in \mathcal{T}} \Phi_t(\mathbf{x}_t; \mathbf{y}_t) - \frac{\lambda + \beta}{\beta}.$$

764 **Closed form.** Exponentiating both sides gives
 765

$$\mathcal{P}^*(\mathbf{x}_{0:T}) \propto \mathcal{Q}(\mathbf{x}_{0:T}) \exp \left(-\frac{1}{\beta} \sum_{t \in \mathcal{T}} \Phi_t(\mathbf{x}_t; \mathbf{y}_t) \right),$$

768 which is exactly the tilted distribution in Eq. 2.
 769

770 C ACTIVE OBSERVATION SELECTOR

773 We maintain a preview buffer containing all observations from \mathcal{T} that lie within a fixed lookahead
 774 horizon Λ from index t_0 . Each entry in the buffer is represented as a triplet $(\mathbf{y}_j, \mathbf{M}_j, \Delta_j)$, where
 775 (i) $j \in \mathcal{T}$ is the physical time index of the observation; (ii) \mathbf{y}_j is the observed signal, lifted to full
 776 resolution when necessary; (iii) \mathbf{M}_j is an auxiliary mask (see App. A), while for other operators \mathbf{M}_j
 777 may be ignored or replaced with suitable metadata; and (iv) $\Delta_j = j - t + 1$ is the lead time relative
 778 to the current forecast step t .

779 At each forecast step t , the active preview is defined as the nearest available future observation within
 780 the lookahead window

$$\mathcal{W}_{t|t_0} \triangleq \{ j \in \mathcal{T} : t+1 \leq j \leq t_0 + \Lambda \}.$$

781 The chosen preview is then

$$\mathbf{w}_{t|t_0} = (\mathbf{y}_{j^*}, \mathbf{M}_{j^*}, \Delta_{t,j^*}), \quad j^* = \arg \min_{j \in \mathcal{W}_{t|t_0}} \{ \Delta_{t,j} : \Delta_{t,j} \geq 0 \}.$$

785 In words, at each step the selector activates the nearest previewed observation within the anchored
 786 preview window, along with its associated metadata and lead time. More details on how the selector
 787 works in the training and inference process can be found in App. D.

788 D TRAINING AND SAMPLING ALGORITHM

791 **Algorithm 1** Preview-aware controlled DDIM one-step ($\mathbf{x}_t \rightarrow \mathbf{x}_{t+1}$)

792 **Input:** current state \mathbf{x}_t ; preview $\omega_{t|t_0} = \{(\mathbf{y}_j, \mathbf{M}_j, \Delta_{t,j}) : j \in \mathcal{W}_{t|t_0}\}$ (see App. C); pretrained
 793 ARDM kernels q ; control policy $\mathbf{u}_\psi(\cdot)$; step $\gamma > 0$

794 **Output:** next state \mathbf{x}_{t+1} and (if applicable) arrival-time cost ℓ_{t+1}

795 1: Sample parent latent $\mathbf{z}_{t+1}^{(S)} \sim p_S$ ▷ DDIM sub-steps
 796 2: $\ell_{t+1} \leftarrow 0$
 797 3: **for** $s = S - 1, S - 2, \dots, 0$ **do**
 798 4: $\mathbf{u}_{t+1}^{(s)} \leftarrow \mathbf{u}_\psi(\mathbf{x}_t, \mathbf{z}_{t+1}^{(s+1)}; \omega_{t|t_0}, s)$
 799 5: $\tilde{\mathbf{z}} \leftarrow \mathbf{z}_{t+1}^{(s+1)} + \gamma \mathbf{u}_{t+1}^{(s)}$
 800 6: **if** $t+1 \in \mathcal{T}$ **then**
 801 7: $\ell_{t+1} += \Phi(\mathbb{E}[\mathbf{z}_{t+1}^{(0)} | \tilde{\mathbf{z}}]; \mathbf{y}_{t+1})$
 802 8: **end if**
 803 9: $\mathbf{z}_{t+1}^{(s)} \sim q(\cdot | \tilde{\mathbf{z}}; \mathbf{x}_t)$
 804 10: **end for**
 805 11: $\mathbf{x}_{t+1} \leftarrow \mathbf{z}_{t+1}^{(0)}$
 806 12: **if** $t+1 \in \mathcal{T}$ **then** ▷ Eq. 3 with $\beta = 0$
 807 13: $\ell_{t+1} += \Phi_{t+1}(\mathbf{x}_{t+1}; \mathbf{y}_{t+1})$
 808 14: **end if**
 809 15: **return** $\mathbf{x}_{t+1}, \ell_{t+1}$

810 **Algorithm 2** Training the *controller* network

811 **Input:** pretrained ARDM kernel q ; stream $\{\mathbf{y}_j\}_{j \in \mathcal{T}}$; preview horizon Λ ; strength $\beta > 0$; optimizer
 812 for ψ ; *controller* network $\mathbf{u}_\psi(\cdot)$; step $\gamma > 0$
 813 **Output:** trained parameters ψ
 814 1: **repeat**
 815 2: Sample rollout start t_0 and initial $\mathbf{x}_{t_0} \sim p_0$
 816 3: $\mathcal{A}_{t_0, \Lambda} \leftarrow \mathcal{T} \cap [t_0+1, t_0+\Lambda]$, $\hat{\mathcal{C}} \leftarrow 0$
 817 4: **for** $t = t_0, t_0+1, \dots, t_0+\Lambda-1$ **do**
 818 5: $\mathcal{W}_{t|t_0} \leftarrow \{j \in \mathcal{T} : t+1 \leq j \leq t_0+\Lambda\}$ ▷ anchored preview; see App. C
 819 6: Build $\omega_{t|t_0}$ from $\mathcal{W}_{t|t_0}$ ▷ see App. C
 820 7: $(\mathbf{x}_{t+1}, \ell_{t+1}) \leftarrow \text{CONTROLLEDSTEP}(\mathbf{x}_t, \omega_{t|t_0}, q, \mathbf{u}_\psi, \gamma)$ ▷ Alg. 1
 821 8: $\mathbf{x}_t \leftarrow \mathbf{x}_{t+1}$; $\hat{\mathcal{C}} \leftarrow \hat{\mathcal{C}} + \ell_{t+1} \mathbf{1}\{t+1 \in \mathcal{A}_{t_0, \Lambda}\}$
 822 9: **end for**
 823 10: $\hat{\mathcal{C}} \leftarrow \hat{\mathcal{C}} / \max\{|\mathcal{A}_{t_0, \Lambda}|, 1\}$ ▷ arrival normalization
 824 11: $\mathcal{L}(\psi) \leftarrow \hat{\mathcal{C}}$
 825 12: Update ψ by descending $\nabla_\psi \mathcal{L}(\psi)$
 826 13: **until** convergence

828
829
830 **Algorithm 3** Preview-aware forecasting with Λ -chunk anchoring

831 **Input:** pretrained ARDM kernel q_θ ; trained \mathbf{u}_ψ ; initial \mathbf{x}_{t_0} ; forecast horizon H ; preview horizon Λ ;
 832 stream $\{\mathbf{y}_j\}_{j \in \mathcal{T}}$; step $\gamma > 0$
 833 **Output:** forecast $\mathbf{x}_{1:H} = (\mathbf{x}_{t_0+1}, \dots, \mathbf{x}_{t_0+H})$
 834 1: $C \leftarrow \lceil H/\Lambda \rceil$
 835 2: **for** $c = 0, 1, \dots, C-1$ **do** ▷ chunk index
 836 3: $t_0^{(c)} \leftarrow t_0 + c\Lambda$
 837 4: $\Lambda_c \leftarrow \min\{\Lambda, H - c\Lambda\}$ ▷ last chunk may be shorter
 838 5: **for** $t = t_0^{(c)}, \dots, t_0^{(c)} + \Lambda_c - 1$ **do**
 839 6: $\mathcal{W}_{t|t_0^{(c)}} \leftarrow \{j \in \mathcal{T} : t+1 \leq j \leq t_0^{(c)} + \Lambda_c\}$ ▷ anchored preview; see App. C
 840 7: Build $\omega_{t|t_0^{(c)}}$ from $\mathcal{W}_{t|t_0^{(c)}}$ ▷ see App. C
 841 8: $\mathbf{x}_{t+1} \leftarrow \text{CONTROLLEDSTEP}(\mathbf{x}_t, \omega_{t|t_0^{(c)}}, \{q_\theta^{(s)}\}, \mathbf{u}_\psi, \gamma).STATE$
 842 9: **end for**
 843 10: // autoregressive handoff: last state becomes next chunk's initial condition
 844 11: $\mathbf{x}_{t_0^{(c+1)}} \leftarrow \mathbf{x}_{t_0^{(c)} + \Lambda_c}$ ▷ only if $c+1 < C$
 845 12: **end for**
 846 13: **return** $\mathbf{x}_{1:H}$

849
850
851 **E DATA AND EVALUATION**

852

853 **Dataset.** The KS equation is a fourth-order nonlinear PDE modeling flame front instabilities and
 854 solidification dynamics, with dynamics $\partial_\tau u + u \partial_x u + \partial_x^2 u + \nu \partial_x^4 u = 0$, where $\nu > 0$ denotes the
 855 viscosity. We solve it on a periodic domain with 256 spatial points and a fixed time step $\Delta\tau = 0.2$.
 856 Training trajectories span $140\Delta\tau$, while validation and test trajectories extend to $640\Delta\tau$. The
 857 generation strategy and data splits follow [Shysheya et al. \(2024\)](#); [Brandstetter et al. \(2022\)](#).
 858

859 Kolmogorov flow is a 2D variant of the incompressible Navier–Stokes equations, describing the
 860 dynamics of an incompressible fluid: $\partial_\tau u + u \cdot \nabla u - \nu \nabla^2 u + \frac{1}{\rho} \nabla p - f = 0$, $\nabla \cdot u = 0$, with velocity
 861 field u , viscosity ν , density ρ , pressure p , and f an external forcing term. Trajectories span 64 states
 862 for training and 180 states for test and validation, each represented on a 64×64 grid, with $\Delta\tau = 0.2$.
 863 Data generation and splits follow [Shysheya et al. \(2024\)](#); [Rozet & Louppe \(2023\)](#). Evaluation is
 864 carried out on the scalar vorticity field $\Omega = \partial_x u_y - \partial_y u_x$, which captures rotational structures.

864 **Evaluation Metrics.** HCT is defined as the last index ℓ_{\max} for which the Pearson correlation
 865 $\rho(\ell)$ between forecast and ground truth remains above a fixed threshold ϕ (we use $\phi = 0.9$):
 866 $\ell_{\max} = \max\{\ell : \rho(\ell) \geq \phi\}$, $t_{\max} = \ell_{\max} \Delta t$.
 867

868 To assess physical fidelity beyond pointwise errors, we include two domain-specific diagnostics. For
 869 the 1D Kuramoto–Sivashinsky system, where $z(\xi)$ denotes the state field over space ξ , we report
 870 the *total variation* (TV), $\text{TV}(z) = \int |\partial_\xi z(\xi)| d\xi$, which quantifies spatial oscillations and the
 871 sharpness of evolving patterns. For the 2D Kolmogorov flow, $z(\xi, \eta)$ denotes the streamfunction,
 872 with (ξ, η) the spatial coordinates. We measure the *dissipation rate*, $\varepsilon = \nu \int \|\nabla z(\xi, \eta)\|_2^2 d\xi d\eta$.
 873 This canonical diagnostic quantifies the rate at which kinetic energy is dissipated at small scales.
 874

875 F PRETRAINING ARDM

877 **Implementation details.** We adapt the 1D and 2D diffusion implementations from
 878 lucidrains/denoising-diffusion-pytorch¹ into an autoregressive diffusion model
 879 (ARDM) tailored for PDE forecasting. Each ARDM transition corresponds to one-step forecasting
 880 via a DDIM sampler with $S=3$ denoising steps, v -parameterization, and a sigmoid schedule for α .
 881

882 The backbone is a residual U-Net with multi-resolution attention and learned sinusoidal time embeddings:
 883

```
884     dim = 64,  

  885     dim_mults = (1, 2, 4, 8),  

  886     learned_sinusoidal_dim = 128
```

887 Attention layers are applied at intermediate and coarse resolutions, while residual blocks follow the
 888 standard Conv–Norm–SiLU design.
 889

890 **Training configuration.** Models are trained with mixed precision (FP16) and exponential moving
 891 average (EMA). The configuration is:
 892

```
893     train_batch_size = 32  

  894     train_lr = 3.2e-4  

  895     train_num_steps = 1000000  

  896     gradient_accumulate_every = 1  

  897     ema_decay = 0.995  

  898     ema_every = 10
```

900 G CONTROL NETWORK ARCHITECTURE

902 **Overview.** The *controller* network \mathbf{u}_ψ produces controls $\mathbf{u}_t^{(s)}$ used at each denoising sub-step.
 903 In the rollout, we write $\mathbf{u}_{t+1}^{(s)} = \mathbf{u}_\psi(\cdot)$ for brevity; here we provide a detailed description of the
 904 architecture and conditioning.
 905

906 **Inputs.** At each sub-step, the network receives five spatial tensors concatenated along channels: (i)
 907 the current latent $\mathbf{z}_{t+1}^{(s)}$, (ii) the previous state \mathbf{x}_t , (iii) the preview observation \mathbf{y}_t^* , (iv) the auxiliary
 908 mask \mathbf{M}_t^* , and (v) the previous control \mathbf{u}_{prev} . In addition, it conditions on scalar metadata: the
 909 preview lag Δ_t^* , the local frame index τ within the preview window, and the current log SNR(s)
 910 from the DDIM schedule.
 911

912 **Backbone encoder.** The concatenated inputs are passed through a shallow convolutional encoder
 913 with two 3×3 layers and group normalization. A downsample/upsample path provides limited
 914 multi-scale context: features are reduced to half resolution, then upsampled and fused back with the
 915 original resolution. A 1×1 fusion convolution followed by group normalization yields the encoded
 916 representation.
 917

¹<https://github.com/lucidrains/denoising-diffusion-pytorch>

918 **FiLM conditioning.** Each scalar input is normalized to $[0, 1]$ and embedded via a two-layer MLP
 919 of dimension hid . The three embeddings (lag, frame index, SNR) are concatenated and mapped to
 920 (γ, β) coefficients through a linear layer. These coefficients modulate the encoded features in a FiLM
 921 style, $\text{feat} \mapsto \text{feat} \cdot (1 + \gamma) + \beta$.
 922

923 **Residual head.** A 3×3 convolutional head outputs the control increment Δ_ψ . This is added to a
 924 normalized copy of the previous control \mathbf{u}_{prev} , producing $\mathbf{u}_t^{(s)} = \text{GroupNorm}(\mathbf{u}_{\text{prev}}) + \Delta_\psi$. At the
 925 first denoising step, \mathbf{u}_{prev} is set to zero.
 926

927 **Configuration.** In our experiments we instantiate the control network as $\text{hid}=768$, with group
 928 normalization (8 groups), hidden dimension hid for the encoder, and FiLM embeddings of dimension
 929 hid . The architecture is lightweight relative to the ARDM UNet (App. F) but sufficiently expressive
 930 to incorporate preview information into the denoising dynamics.
 931

932 **Training details.** Gradients flow only into ψ (the UNet θ is frozen). We use gradient checkpointing
 933 at each UNet call and detach \mathbf{u}_{prev} within a frame to avoid deep denoising-step recurrences; memory
 934 scales with the number of checkpoints.
 935

936 H HCT METRIC

938 Tab. 3 reports the HCT metric for all our experiments.
 939

940 Table 3: Quantitative comparison (HCT \uparrow) between our method and competitive baselines across
 941 six observation regimes (see Sec. 4). We evaluate both 1D and 2D PDE benchmarks—Kolmogorov
 942 (60/180 steps) and Kuramoto–Sivashinsky (140/640 steps)—under short and long horizons. Our
 943 method consistently outperforms alternatives. In ablations, removing amortization (TTO-DA) or
 944 using simple heuristic selection (BoN) leads to significant degradation.
 945

	DS-2		DS-4		DS-8		MS-2		MS-4		MS-8	
	short	long										
Kolmogorov												
CADA (ours)	60	180	60	180	50	50	60	180	60	180	60	70
Joint AAO	60	180	60	180	50	180	60	173	25	25	10	18
Joint AR	60	180	60	180	50	180	60	177	60	62	13	13
Plain Amortized	60	64	41	45	13	17	38	42	32	33	31	32
Universal Amortized	37	13	17	17	8	8	50	50	32	32	28	28
TTO-DA	60	73	60	180	37	40	60	60	48	40	27	25
BoN	40	40	32	26	21	26	40	26	32	26	32	27
Kuramoto–Sivashinsky												
CADA (ours)	140	640										
Joint AAO	140	640	139	640	139	640	140	640	140	640	129	633
Joint AR	139	639	139	639	139	639	139	639	139	639	139	639
Plain Amortized	140	211	140	147	76	56	140	253	140	264	140	242
Universal Amortized	140	262	140	168	62	62	140	286	140	217	140	274
TTO-DA	140	218	140	640	139	633	140	638	140	637	140	634
BoN	140	260	140	250	140	240	140	243	140	250	140	246

959 I ADDITIONAL RESULTS

960 We present some additional qualitative and quantitative results to further validate the efficacy of
 961 CADA.
 962

963 To begin with, Fig.5 illustrates the superiority of our model on the 1D Kuramoto–Sivashinsky dataset
 964 under the long horizon regime, where despite being trained on $\Lambda = 54$, inference shows stability on
 965 horizon length (640) that is more than ten times larger. While other methods start diverging from the
 966 ground truth at around $t = 200$, CADA sustains the long inference process without any substantial
 967 degradation from ground truth, denoting long term stability.
 968

969 Next, to directly address relevance to weather forecasting, we add a compact ERA5 case study: DA
 970 for u/v wind components and temperature at a single pressure level (500 hPa) over North America
 971 (from 2006–2016). This intentionally modest setup (single level, single region) demonstrates that our
 972

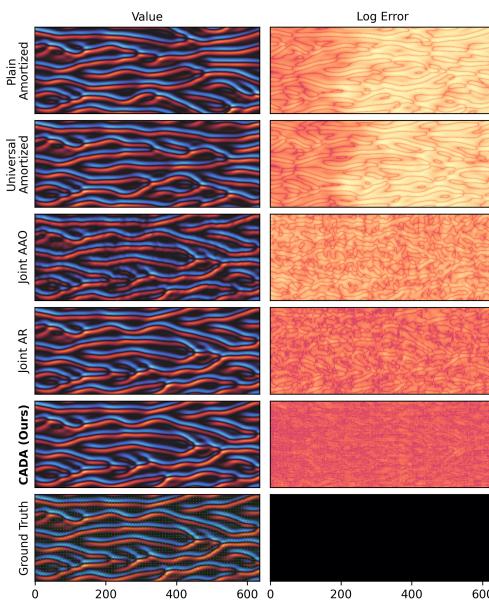


Figure 5: **Stability.** Our method yields superior long-horizon rollouts on the 1D Kuramoto–Sivashinsky PDE (horizon 640) under sparse spatiotemporal observations (green dots). Darker colors indicate lower forecast error.

Method	RMSE ↓
Plain Amortized	2.1
Universal Amortized	1.9
Joint AAO	2.3
Joint AR	2.4
TTo-AR	2.3
BoN	3.6
CADA (ours)	0.6

Table 4: RMSE in the MS-4 ERA5 regime. CADA achieves substantially lower error than conditional ARDM and joint-score baselines, with a $\sim 3.5\text{--}4\times$ improvement over the next-best method.

controller architecture transfers to an NWP-style surrogate and reanalysis-like observations while remaining computationally tractable. Tab. 4 reports RMSE in the MS-44 observation regime. CADA attains an RMSE of 0.6, compared to 1.9–2.4 for conditional ARDM and joint-score baselines, 2.3 for the test-time optimized control variant (TTO-DA), and 3.6 for the Best-of- n heuristic. Thus, even in this ERA5-based setting, amortized control yields a roughly 3.5–4 \times reduction in error over the next-best method, consistent with the trends observed on the canonical PDEs benchmarks. Qualitative comparisons on ERA5 can be found in Fig. 6 and Fig. 4.

To contextualize our diffusion-based methods relative to established data assimilation techniques, we additionally evaluate a standard Ensemble Kalman Filter (EnKF) implementation under the same observation operators and cadences used in our primary experiments. As shown in Tab. 5, EnKF performs well in lightly downsampling regimes (DS-2) but its accuracy deteriorates substantially under stronger spatial downsampling (DS-8) and spatially and temporally masked settings (MS). This behavior is expected: linear–Gaussian assumptions and reliance on second-order statistics limit EnKF’s ability to recover fine-scale nonlinear structures in chaotic PDE systems. By contrast, CADA maintains low RMSE across all regimes, highlighting the benefit of combining expressive diffusion surrogates with amortized control for non-Gaussian, intermittently observed dynamics. Fig. 7 details the qualitative comparison of this baseline with CADA.

Lastly, assessing robustness beyond structured downsampling and regular masking, we conduct an additional experiment using *irregular* spatial observations. Each grid point is independently revealed with probability $p = 0.125$, producing non-aligned, non-regular measurement patterns. Observations follow an irregular cadence, with a minimum separation of 2 time steps and a maximum of 6 time



Figure 6: **ERA5 temperature** assimilation under sparse MS-4 observations (500 hPa, North America). Each row shows forecast snapshots at selected timesteps, with the leftmost column displaying the observation pattern (dense or missing). Columns compare the ground truth (GT) against CADA and four strong baselines: Universal Amortized, Plain Amortized, Joint AR, and Joint AAO. The regime is extremely challenging—observations are spatially sparse and arrive intermittently—yet CADA yields markedly sharper and more coherent temperature structures. Autoregressive diffusion baselines drift or blur fine-scale features, and joint-score models hallucinate artifacts under missing observations. CADA remains stable across all shown times, faithfully tracking the evolution of synoptic-scale fronts and gradients. (see Tab. 4).

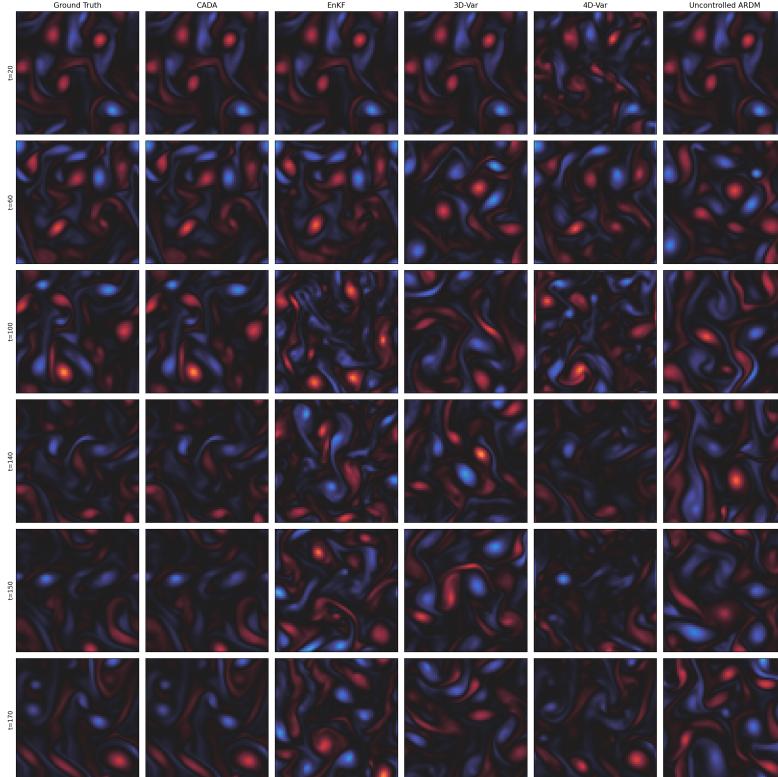
Table 5: Classical DA baselines (EnKF, 3DVar, 4DVar) RMSE across six observation regimes for the Kolmogorov and KS benchmarks. 4DVar is competitive across both downsampling and mixed-resolution (MR) regimes. Modern diffusion-based surrogates such as CADA still significantly outperform all three classical methods across all regimes (see Tab. 1).

Regime	EnKF ↓	3DVar ↓	4DVar ↓
DS-2	0.08	0.08	0.06
DS-4	0.09	0.11	0.18
DS-8	0.37	0.09	0.19
MR-2	0.31	0.38	0.26
MR-4	0.32	0.41	0.28
MR-8	0.35	0.42	0.33

steps between consecutive observations. As shown in Tab. 6, CADA attains the lowest RMSE by a wide margin (0.02), while conditional ARDM baselines experience substantial degradation. These results reinforce that preview-based amortized control remains stable even when observations deviate significantly from regular masks, and that no architectural changes are required to accommodate such irregular regimes.

1080
 1081 Table 6: RMSE under a randomized spatial-mask regime for Kolmogorov flow. Masks select each
 1082 grid point independently with probability $p = 0.125$. CADA remains robust under irregular, non-
 1083 grid-aligned observations, whereas conditional ARDM baselines degrade noticeably.
 1084

Method	RMSE ↓
Plain Amortized	0.28
Universal Amortized	0.26
Joint AAO	0.18
Joint AR	0.07
TTO-AR	0.13
BoN	0.32
CADA (ours)	0.02



1116 Figure 7: Kolmogorov flow assimilation under MS-4. CADA preserves coherent vortices and fine-
 1117 scale filamentation across long horizons, closely matching ground truth. EnKF shows increasing phase
 1118 and amplitude errors, 3D-Var and 4D-Var oversmooth or misalign small-scale structures under sparse
 1119 observations, and the uncontrolled ARDM rapidly drifts. These visual trends mirror quantitative
 1120 results in Tab. 5, where classical DA methods degrade significantly under mixed-resolution settings
 1121 while CADA remains stable.
 1122

J USE OF LARGE LANGUAGE MODELS

1123 LLMs were used to assist with editing and refining the manuscript text.
 1124

1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133