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ABSTRACT

We study the implicit bias of gradient flow (i.e., gradient descent with infinitesi-
mal step size) on linear neural network training. We propose a tensor formulation
of neural networks that includes fully-connected, diagonal, and convolutional net-
works as special cases, and investigate the linear version of the formulation called
linear tensor networks. With this formulation, we can characterize the conver-
gence direction of the network parameters as singular vectors of a tensor defined
by the network. For L-layer linear tensor networks that are orthogonally decom-
posable, we show that gradient flow on separable classification finds a stationary
point of the {57, max-margin problem in a “transformed” input space defined by
the network. For underdetermined regression, we prove that gradient flow finds a
global minimum which minimizes a norm-like function that interpolates between
weighted ¢ and /5 norms in the transformed input space. Our theorems subsume
existing results in the literature while removing standard convergence assump-
tions. We also provide experiments that corroborate our analysis.

1 INTRODUCTION

Overparametrized neural networks have infinitely many solutions that achieve zero training error,
and such global minima have different generalization performance. Moreover, training a neural
network is a high-dimensional nonconvex problem, which is typically intractable to solve. However,
the success of deep learning indicates that first-order methods such as gradient descent or stochastic
gradient descent (GD/SGD) not only (a) succeed in finding global minima, but also (b) are biased
towards solutions that generalize well, which largely has remained a mystery in the literature.

To explain part (a) of the phenomenon, there is a growing literature studying the convergence of
GD/SGD on overparametrized neural networks (e.g., Du et al. (2018a;b); Allen-Zhu et al. (2018);
Zou et al. (2018); Jacot et al. (2018); Oymak & Soltanolkotabi (2020), and many more). There are
also convergence results that focus on linear networks, without nonlinear activations (Bartlett et al.,
2018; Arora et al., 2019a; Wu et al., 2019; Du & Hu, 2019; Hu et al., 2020). These results typically
focus on the convergence of loss, hence do not address which of the many global minima is reached.

Another line of results tackles part (b), by studying the implicit bias or regularization of gradient-
based methods on neural networks or related problems (Gunasekar et al., 2017; 2018a;b; Arora
etal., 2018; Soudry et al., 2018; Ji & Telgarsky, 2019a; Arora et al., 2019b; Woodworth et al., 2020;
Chizat & Bach, 2020; Gissin et al., 2020). These results have shown interesting progress that even
without explicit regularization terms in the training objective, algorithms such as GD applied on
neural networks have an implicit bias towards certain solutions among the many global minima.
However, in proving such results, many results rely on convergence assumptions such as global
convergence of loss to zero and/or directional convergence of parameters and gradients. Ideally,
such convergence assumptions should be removed because they cannot be tested a priori and there
are known examples where GD does not converge to global minima under certain initializations
(Bartlett et al., 2018; Arora et al., 2019a).

*Based on work performed during internship at Google Research
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Regression Task; Initial scale (alpha) = 0.01 ]

Figure 1: Gradient descent trajectories of linear coefficients of linear fully-connected, diagonal, and
convolutional networks on a regression task, initialized with different initial scales « = 0.01,1.
Networks are initialized at the same coefficients (circles on purple lines), but follow different trajec-
tories due to implicit biases of networks induced from their architecture. The figures show that our
theoretical predictions on limit points (circles on yellow line, the set of global minima) agree with
the solution found by GD. For details of the experimental setup, see Section 6.

1.1 SUMMARY OF OUR CONTRIBUTIONS

We study the implicit bias of gradient flow (GD with infinitesimal step size) on linear neural net-
works. Following recent progress on this topic, we consider classification and regression problems
that have multiple solutions with zero training error. Our analyses apply to a general class of net-
works, and prove both convergence and implicit bias, providing a more complete characterization
of the algorithm trajectory without relying on convergence assumptions.

« We propose a general tensor formulation of nonlinear neural networks which includes many
network architectures considered in the literature. In this paper, we focus on the linear version
of this formulation (i.e., no nonlinear activations), called linear tensor networks.

« For linearly separable classification, we prove that linear tensor network parameters converge
in direction to singular vectors of a tensor defined by the network. As a corollary, we show that
linear fully-connected networks converge to the ¢ max-margin solution (Ji & Telgarsky, 2020).

« For separable classification, we further show that if the linear tensor network is orthogonally
decomposable (Assumption 1), the gradient flow finds the £3/4cptn Max-margin solution in the
singular value space, leading the parameters to converge to the top singular vectors of the tensor
when depth = 2. This theorem subsumes known results on linear convolutional networks and
diagonal networks proved in Gunasekar et al. (2018b), without using convergence assumptions.

« For underdetermined linear regression, we study the limit points of gradient flow on orthogo-
nally decomposable networks (Assumption 1), and provide a full characterization of the limit
points. This theorem covers results on deep matrix sensing (Arora et al., 2019b) as a special
case, and extends a similar recent result (Woodworth et al., 2020) to a broader class of networks.

« For underdetermined linear regression with deep linear fully-connected networks, we prove that
the network converges to the minimum ¢5 norm solutions as we scale the initialization to zero.

« Lastly, we present simple experiments that corroborate our theoretical analysis. Figure 1 shows
that our predictions of limit points match with solutions found by GD.

2 PROBLEM SETTINGS AND RELATED WORKS

We first define notation used in the paper. Given a positive integer a, let [a] := f1,... ag. We use
I; to denote the d  d identity matrix. Given a matrix A, we use Vec(A) to denote its vectorization,
i.e., the concatenation of all columns of A. For two vectors @ and b, let a b be their tensor product,
a b be their element-wise product, and a®* be the element-wise k-th power of a. Given an order-
L tensor A 2 RF1xkL we use [A]j, ... j, to denote the (j1, j2, - - -, jr)-th element of A, where
J1 2 [ky] for all I 2 [L]. In element indexing, we use to denote all indices in the corresponding
dimension, and a : b to denote all indices from a to b. For example, for a matrix A, [A]. 4.¢ denotes a
submatrix that consists of 4th—6th columns of A. The square bracket notation for indexing overloads
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with [a] when a 2 N, but they will be distinguishable from the context. Since element indices start
from 1, we re-define the modulo operation a mod d := a  b%Ztcd 2 [d] for a > 0. We use e¥

to denote the j-th stardard basis vector of the vector space R*. Lastly, we define the multilinear
multiplication between a tensor and linear maps, which can be viewed as a generalization of left-
and right-multiplication on a matrix. Given a tensor A 2 RF1X*kL and linear maps B; 2 RP1*#
for [ 2 [L], we define the multilinear multiplication between them as
>
T T Ty — k k T T
A (B;,B;,....BL) = Al (85 e;r) (Bi,....BL)

1551

R i . k1 kL pP1 X Xp
= Al (Brey Bre;) 2 R77Pe.

2.1 PROBLEM SETTINGS

We are given a dataset F(X;, y;)g" ;, where X; 2 R? and y; 2 R. We let X 2 R"*4 andy 2
R"™ be the data matrix and the label vector, respectively. We study binary classification and linear
regression in this paper, focusing on the settings where there exist many global solutions. For binary
classification, we assume y; 2 T 19 and that the data is separable: there exists a unit vector Z and a
constanty > O such thaty;x?'z  ~ foralli 2 [n]. For regression, we consider the underdetermined
case (n  d) where there are many parameters Z 2 R? such that Xz = y. Throughout the paper,
we assume that X has full row rank.

We use f(; ) : R?Y T R to denote a neural network parametrizgd by . Given the network
and the dataset, we consider minimizing the training loss L( ) := [ £(f(X;; ), y:) over

Following previous results (e.g., Lyu & Li (2020); Ji & Telgarsky (2020)), we use the exponential
loss £(),y) = exp( {fy) for classification problems. For regression, we use the squared error loss
L9,y) = %(0 y)?. On the algorithm side, we minimize L using gradient flow, which can be viewed

as GD with infinitesimal step size. The gradient flow dynamics is defined as % = r L().

2.2 RELATED WORKS

Gradient flow/descent in separable classification. For linear models f(x;z) = x”z with sep-
arable data, Soudry et al. (2018) show that the GD run on L drives kzk to 1, but z converges in
direction to the ¢ max-margin classifier. The limit direction of z is aligned with the solution of

minimize,cga  kzk subjectto  y;x'z  1fori 2 [n], (1)

where the norm in the cost is the /5 norm. Nacson et al. (2019b;c); Gunasekar et al. (2018a); Ji &
Telgarsky (2019b;c) extend these results to other (stochastic) algorithms and non-separable settings.

Gunasekar et al. (2018b) study the same problem on linear neural networks and show that GD
exhibits different implicit bias depending on the architecture. The authors show that the linear
coefficients of the network converges in direction to the solution of (1) with different norms: ¢5 norm
for linear fully-connected networks, £5,;, (quasi-)norm for diagonal networks, and DFT-domain
¢5/1, (quasi-)norm for convolutional networks with full-length filters. Here, L denotes the depth.
We note that Gunasekar et al. (2018b) assume that GD globally minimizes the loss, and the network
parameters and the gradient with respect to the linear coefficients converge in direction. Subsequent
results (Ji & Telgarsky, 2019a; 2020) remove such assumptions for linear fully-connected networks.

A recent line of results (Nacson et al., 2019a; Lyu & Li, 2020; Ji & Telgarsky, 2020) studies general
homogeneous models and show divergence of parameters to infinity, monotone increase of smoothed
margin, directional convergence and alignment of parameters (see Section 4 for details). Lyu & Li
(2020) also characterize the limit direction of parameters as the KKT point of a nonconvex max-
margin problem similar to (1), but this characterization does not provide useful insights for the
functions f(; ) represented by specific architectures, because the formulation is in the parameter
space . Also, these results require that gradient flow/descent has already reached 100% training
accuracy. Although we study a more restrictive set of networks (i.e., deep linear), we provide a
more complete characterization of the implicit bias for the functions f(; ), without assuming
100% training accuracy.

Gradient flow/descent in linear regression. It is known that for linear models f(x;z) = x7z,
GD converges to the global minimum that is closest in ¢ distance to the initialization (see e.g.,
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Gunasekar et al. (2018a)). However, relatively less is known for deep networks, even for linear
networks. This is partly because the parameters do not diverge to infinity, hence making limit points
highly dependent on the initializatiojothis dependency renders analysis difficult. A related problem
of matrix sensing aims to minimize [, (y; hA;,W;  Wri)? over Wy,..., W 2 R¥4 Tt
is shown in Gunasekar et al. (2017); Arora et al. (2019b) that if the sensor matrices A; commute
and we initialize all W;’s to al,, GD finds the minimum nuclear norm solution as o ¥ 0.

Chizat et al. (2019) show that if a network is zero at initialization, and we scale the network output
by afactorof & ¥ 711, then the GD dynamics enters a “lazy regime” where the network behaves like
a first-order approximation at its initialization, as also seen in results studying kernel approximations
of neural networks and convergence of GD in the corresponding RKHS (e.g., Jacot et al. (2018)).

Woodworth et al. (2020) study linear regression with a diagonal network of the form
fOGwe,wo) = XT(W_?L w®E), where w, and w_ are identically initialized w, (0) =
w_(0) = aw. The authors show that the global minimum reached by GD minimizes a norm-
like function which interpolates between (weighted) /1 norm (o« ¥ 0) and 5 norm (o« ¥ 1). In
our paper, we consider a more general class of orthogonally decomposable networks, and obtain
similar results interpolating between weighted ¢; and /5 norms. We also remark that our results
include the results in Arora et al. (2019b) as a special case, and we do not assume convergence to
global minima, as done in Gunasekar et al. (2017); Arora et al. (2019b); Woodworth et al. (2020).

3 TENSOR FORMULATION OF NEURAL NETWORKS

In this section, we present a general tensor formulation of neural networks. Given an input X 2 R,
the network uses a linear map M that maps X to an order-L tensor M(X) 2 R¥2X**L where L 2.
Using parameters V; 2 R* and activation ¢, the network computes its layers as the following:

Hi() = o (M) (V1, bk, - -, Bg ) 2 RE2X 2R
Hi(X) = ¢ Hi—1(X) (Vi biyuys -y D) 2RMCke - fori=2 L 1, (2
fO )=Hr_1(X) vr2R.
We use  to denote the collection of all parameters (V1,...,Vy). We call M(X) the data tensor.
Although this new formulation may look a bit odd in the first glance, it is general enough to capture

many network architectures considered in the literature, including fully-connected networks, diago-
nal networks, and circular convolutional networks. We formally define these architectures below.

Diagonal networks. An L-layer diagonal network is written as
faiag(X;  diag) = @( d(P(X wWi1) W) wr-1)"wp, 3)

where w; 2 R for [ 2 [L]. The representation of fqiae as the tensor form (2) is straightforward. Let
Maiag(X) 2 R4 %4 have [Miag (X)];.5,....; = [X];, while all the remaining entries of Miag(X) are
set to zero. We can set V; = W for all [, and M = Mg, to verify that (2) and (3) are equivalent.

Circular convolutional networks. The tensor formulation (2) includes convolutional networks
fCOnV(X; conv) = ¢( ¢(¢(X *Wl) *WQ) *WL—I)TWLa (4)

where w; 2 R¥ with k; dand k;, = d, and x defines the ciligllar convolution: for any a 2 R? and
b2 RF(k d), wehave axb 2 R? defined as [a « b]; = ?:1[a](i+j—1) mod d[P];, for i 2 [d].
Define Mconv(x) 2 Rhvxxh as [Mconv(x)]jl,jzw..,]]_ = [X](pL j1—L+1) mod d for jl 2 [k’l],

1=1

1 2 [L]. Setting v; = w; and M = Mq,,y, we can verify that (2) and (4) are identical.

Fully-connected networks. An L-layer fully-connected network is defined as

fre(X 1) =0( S(O(XTWW2) Wy _)wy, 5

where W; 2 RU4*di+1 for | 2 [ 1] (we use d; = d) and Wy, 2 RY. One can represent fi.
as the tensor form (2) by defining parameters v; = vec(W,;) for [ 2 [L 1] and v, = Wy, and
constructing the tensor M. (X) by a recursive “block diagonal” manner. For example, if L = 2, we
can define M. (X) 2 R%2%4z (o be the Kronecker product of 14, and X. For deeper networks, we
defer the full description of M¢.(X) to Appendix B.
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Our focus: linear tensor networks. Throughout this section, we have used the activation ¢ to
motivate our tensor formulation (2) for neural networks with nonlinear activations. For the remaining
of the paper, we study the case whose activation is linear, i.e., ¢(t) = t. In this case,

JOG ) =MX) (v, V2., VL) (6)
We will refer to (6) as linear tensor networks, where “linear” is to indicate that the activation is linear.
Note that as a function of parameters Vq, ..., Vy, f(X; ) isin fact multilinear. We also remark that

when depth L = 2, the data tensor M(X) isa k1 ko matrix and the network formulation boils down
to f(X; ) =VIMX)V,.

Since the data tensor M(X) is a linear function of X, the linear tensor network is also a linear function
of X. Thus, the output of the network can also be writtenas f(x; ) =x” ( ),where ( )2R?
denotes the linear coefficients computed as a function of the network parameters . Since the linear
tensor network f(X; ) is linear in X, the expressive power of f is at best a linear model X A x7'z.
However, even though the models have the same expressive power, their architectural differences
lead to different implicit biases in training, which is the focus of our investigation in this paper.
Studying separable classification and underdetermined regression is useful for highlighting such
biases because there are infinitely many coefficients that perfectly classify or fit the dataset.

For our linear tensor network, the evolution of the parameters V; via gradient flow reads

V= r-VIL( ): Zzlgl(f(xﬂ )ayl)M(X’L) (V17"'7vl—17Ik|7Vl+17"'7vL)
=M( XTr) (vi,...,vie1, Wy, Vigt, ..., vr), 8121,

where we initialize v;(0) = avy, for [ 2 [L]. We refer to o and V; as the initial scale and initial
direction, respectively. We note that we do not restrict V;’s to be unit vectors, in order to allow
different scaling (at initialization) over different layers. The vector r 2 R™ is the residual vector,
and each component of r is defined as

y;exp( v f(X;; )) for classification,
fi ) i for regression.

rli = 0(f(Xi; ),ui) = (7

4 IMPLICIT BIAS OF GRADIENT FLOW IN SEPARABLE CLASSIFICATION

In this section, we present our results on the implicit bias of gradient flow in binary classification
with linearly separable data. Recent papers (Lyu & Li, 2020; Ji & Telgarsky, 2020) on this separable
classification setup prove that after 100% training accuracy has been achieved by gradient flow
(along with other technical conditions), the parameters of L-homogeneous models diverge to infinity,
while converging in direction that aligns with the direction of the negative gradient. Mathematically,

: _ LW s g (Ve (1)
Jimk k=21, Nm —gp ==, lim —gmoezcon = 1

Since the linear tensor network satisfies the technical assumptions in the prior works, we apply these
results to our setting and develop a new characterization of the limit directions of the parameters.
Here, we present theorems on separable classification with general linear tensor networks. Corollar-
ies for specific networks are deferred to Appendix A.

4.1 LIMIT DIRECTIONS OF PARAMETERS ARE SINGULAR VECTORS

Consider the singular value decomposition (SVD) of a matrix A = P;.n:l sj(u;  vj), where m is
the rank of A. Note that the tuples (u;,V;, s;) are solutions to the system of equations su = Av
and sv. = ATu. Lim (2005) generalizes this definition of singular vectors and singular values
to higher-order tensors: given an order-L tensor A 2 RF1X*kL we define the singular vectors
U1, Us, ..., Uy and singular value s to be the solution of the following system of equations:

suy=A (uy,..., U1, g, Uppr,...,ug), forl 2 [L]. (8)

Using the definition of the singular vectors of tensors, we can characterize the limit direction of
parameters after reaching 100% training accuracy. In Appendix C, we prove the following:
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Theorem 1. Assume that the gradient flow satisfies L( (t9)) < 1 for some ty 0 and XTr(t)
. T

converges in direction, say U™ = lim;_, M Then, V1, ...,V converge to the singular
vectors of M( U>®).

For this theorem, we make some convergence assumptions, because the network is fully general;
this is the only result where we assume convergence. It fact, for the special case of linear fully-
connected networks, the directional convergence assumption is not required, and the linear coef-
ficients ¢( g ) converge in direction to the ¢ max-margin classifier. We state this corollary in
Appendix A.1; this result also appears in Ji & Telgarsky (2020), but we provide an alternative proof.

4.2 LIMIT DIRECTIONS FOR ORTHOGONALLY DECOMPOSABLE NETWORKS

Admittedly, Theorem 1 is not a full characterization of the limit directions, because there are usu-
ally multiple solutions that satisfy (8). For example, in case of L. = 2, the data tensor M( u®°)
is a matrix and the number of possible limit directions (up to scaling) of (V1,Vs) is at least the
rank of M( u®). Singular vectors of high order tensors are much less understood than the ma-
trix counterparts, and are much harder to deal with. Although their existence is implied from the
variational formulation (Lim, 2005), they are intractable to compute. Testing if a given number is
a singular value, approximating the corresponding singular vectors, and computing the best rank-1
approximation are all NP-hard (Hillar & Lim, 2013); let alone orthogonal decompositions.

Given this intractability, it might be reasonable to make some assumptions on the “structure” of
the data tensor M(X), so that they are easier to handle. The following assumption defines a class
of orthogonally decomposable data tensors, which includes linear diagonal networks and linear
full-length convolutional networks as special cases (for the proof, see Appendix D.2 and D.3).

Assumption 1. For the data tensor M(X) 2 R¥1%"XFu of g linear tensor network (6), there exist

a full column rank matrix S 2 C™*4 (d m  min; k;) and matrices U; 2 CF>™ Uy 2
CkXm such that UF U, = 1, for all | 2 [L), and the data tensor M(X) can be written as
X/fn
M(x) = jzl[sx]j([ull-,j [U2]. (ULl /). €)
In this assumption, we allow Uy, ..., U and S to be complex matrices, although M(X) and param-

eters V; stay real, as defined earlier. For a complex matrix A, we use A* to denote its entry-wise
complex conjugate, A’ to denote its transpose (without conjugating), and A to denote its conju-
gate transpose. In case of L = 2, Assumption 1 requires that the data tensor M(X) (now a matrix)
has singular value decomposition M(x) = U, diag(Sx)UJ; i.e., the left and right singular vectors
are independent of X, and the singular values are linear in X. Using Assumption 1, the following
theorem characterizes the limit directions.

Theorem 2. Suppose a linear tensor network satisfies Assumption 1. If there exists A > 0 such that

the initial directions V1, . .. ,\V, of the network parameters satisfy jlU vi];i* j[UFvL];i? A for

alll 2 [L 1land j 2 [m], then ( (t)) converges in a direction that aligns with ST °°, where
°° 2 C™ denotes a stationary point of the following optimization problem

minimize ccm k kg subjectto yx;ST 1, 8i2[n].
If' S is invertible, then ( (t)) converges in a direction that aligns with a stationary point Z*° of

minimize,cga kS~ 7zky/;  subjectto  y;xjz 1, 8i2[n].

Theorem 2 shows that the gradient flow finds sparse °° that minimizes the £5,7, norm in the “sin-
gular value space,” where the data points X; are transformed into vectors SX; consisting of singular
values of M(X;). Also, the proof of Theorem 2 reveals that in case of L = 2, the parameters V;(t) in
fact converge to the top singular vectors of the data tensor M( X 7'r); thus, compared to Theorem 1,
we have a more complete characterization of “which” singular vectors to converge to.

The proof of Theorem 2 is in Appendix D. Since the orthogonal decomposition (Assumption 1) of
M(X) tells us that the singular vectors M(X) in Uy, ..., Uy are independent of X, we can transform
the network parameters v; to U lTVl and show that the network behaves similar to a linear diagonal
network. This observation comes in handy in the characterization of limit directions.
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Remark 1 (Necessity of initialization assumptions). In order to remove the assumption that the loss
converges to zero, at least some condition on initialization is necessary, because there are exam-
ples showing non-convergence of gradient flow for certain initializations (Bartlett et al., 2018; Arora
et al., 2019a). In our theorems, we pose assumptions on initial directions V; that are sufficient con-
ditions for the loss L (¢)) to converge to zero. Although such sufficient conditions are “stronger”
than assuming L (¢)) ¥ 0, they are useful because they can be easily checked a priori, i.e., before
running gradient flow. We note an important fact that in Theorems 2 and onwards, the conditions
on initialization are used solely to prove convergence of the loss to zero, and our statements on
the implicit bias hold whenever the loss converges to zero, even for initializations that do not
satisfy our conditions. In addition, we argue that our assumptions are not too restrictive; A can be
arbitrarily small, so the conditions are satisfied with probability 1 if we set vy, = 0 and randomly
sample other v;’s. Setting one layer to zero to prove convergence is also studied in Wu et al. (2019).
Lastly, the condition that v, is “small” can be replaced with any layer; e.g., convergence still holds
if jlUfv,);5%  j[Ufvi];j2  Aforalll=2,...,Landj 2 [m].

Remark 2 (Comparison to existing results). Theorem 2 leads to corollaries (stated in Appendix A.2)
on linear diagonal and full-length convolutional networks, showing that diagonal (or convolutional)
networks converge to the stationary point of the max-margin problem with respect to the /5,7, norm
(or DFT-domain /5,7, norm). Theorem 2 recovers the results in Gunasekar et al. (2018b) without
relying on assumptions such as directional convergence of parameters and gradients.

Remark 3 (Implications to architecture design). Theorem 2 shows that the gradient flow finds a
solution that is sparse in a “transformed” input space where all data points are transformed with S.
This implies something interesting about architecture design: if the sparsity of the solution under a
certain linear transformation T is needed, one can design a network using Assumption 1 by setting
S = T. Training such a network will give us a solution that has the desired sparsity property.

Other than Assumption 1, there is another setting where we can prove a full characterization of limit
directions: when there is one data point (n = 1) and the network is 2-layer (L = 2). This “extremely
overparametrized” case is motivated by an experimental paper (Zhang et al., 2019) which studies
generalization performance of different architectures when there is only one training data point.

Theorem 3. Suppose we have a 2-layer linear tensor network (6) and a single data point (X, y).
Consider the compact SVD M(X) = U, diag(s)U], where U; 2 Rkaxm U, 2 Rkzxm and
S2R™ form minfky, kog. Let °° 2 R™ be a solution of the following optimization problem

minimize cgm k k; subjectto ys® 1.

Assume that there exists A\ > 0 such that the initial directions V1,Vs of the network parameters
satisfy [UlTvl]? [UQTVQ]f Aforall j 2 [m]. Then, Vi and Va converge in direction to U; {°

and Uy 3, wherej =] i =] 2 andsign( ) =sign(y) sign( 5.

The proof of Theorem 3 can be found in Appendix E. Since °° is the minimum ¢; norm solution in
the singular value space, the parameters V; and Vs converge in direction to the top singular vectors.
We would like to emphasize that this theorem can be applied to any network architecture that can
be represented as a linear tensor network. Recall that the previous result (Gunasekar et al., 2018b)
only considers full-length filters (k; = d), hence providing limited insights on networks with small
filters, e.g., k1 = 2. In light of this, we present a corollary in Appendix A.3 showing that linear
coefficients of convolutional networks converge in direction to a “filtered” version of X.

5 IMPLICIT BIAS OF GRADIENT FLOW IN UNDERDETERMINED REGRESSION

In Section 4, the limit directions of parameters we characterized do not depend on initialization.
This is due to the fact that the parameters diverge to infinity in separable classification problems, so
that the initialization becomes unimportant in the limit. This is not the case in regression setting,
because parameters do not diverge to infinity. As we show in this section, the limit points are closely
tied to initialization, and our analyses characterize the dependency between them.

5.1 LIMIT POINT CHARACTERIZATION FOR ORTHOGONALLY DECOMPOSABLE NETWORKS

For the orthogonally decomposable networks satisfying Assumption 1 with real S and U;’s, we
consider how limit points of gradient flow change according to initialization. We consider a specific
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initialization scheme that, in the special case of diagonal networks, corresponds to setting w;(0) =
aw for[ 2 [L 1] and wg,(0) = 0. We use the following lemma on a relevant system of ODEs:

Lemma 4. Consider the system of ODEs, where p,q : R ¥ R:

p=p""?q¢, ¢=p""", p0)=1 ¢(0)=0.
Then, the solutions pr,(t) and qr(t) are continuous on their maximal interval of existence of the
form ( c,c¢) R for some ¢ 2 (0, ). Define hy(t) = pr()*1qr(t); then, hip(t) is odd and
strictly increasing, satisfying limychr(t) = L andlimy_.hr(t) = 1.

Using the function Ay, (t) from Lemma 4, we can obtain the following theorem that characterizes the
limit points as the minimizer of a norm-like function @)y, ., - among the global minima.

Theorem 5. Suppose a linear tensor network satisfies Assumption 1. Assume further that the matri-
ces Uy, ..., UL and S from Assumption 1 are all real matrices. For some \ > 0, choose any vector

2 R™ satisfying | ]3 A for all j 2 [m], and choose initial directions v; = U; forl 2 [L 1]
and vy, = 0. Then, the linear coefficients ( (t)) converge to ST >, where  is the solution of

minimize crm  Qr.a.-( ) = a? ’_"1[ BH, i subjectto XST =y,
i

R
where Q.- - R™ ¥ R is a norm-like function defined using Hp (t) := Ochl(T)dT. IfS is
invertible, then ( (t)) converges to the solution 2> of

minimize,cga  Qr.o.-(S~7z) subjectto Xz =y.

The proofs of Lemma 4 and Theorem 5 are deferred to Appendix F.

Remark 4 (Interpolation between ¢; and ¢5). It can be checked that Hp, (t) grows like the absolute
value function if ¢ is large, and %rgws like a quadratic function if ¢ is close to zero. This means that

m R . 2
limQra-()7 % liMm Qra,-()7 -
a—0 Jj=1 4 a—00

]
[7]J_2L 29

so (1., - interpolates between the weighted ¢; and weighted /5 norms of . Also, the weights
in the norm are dependent on the initialization direction unless L = 2 and o ¥ 0. In general,
QLo - interpolates the standard ¢; and ¢ norms only if j[ ];j is the same for all j 2 [m]. This
result is similar to the observations made in Woodworth et al. (2020) which considers a diagonal
network with a “differential” structure f(X;w,,w_) = XT(WEL w®L). In contrast, our results
apply to a more general class of networks, without the need to have the differential structure. In
Appendix A.4, we state corollaries of Theorem 5 for linear diagonal networks and linear full-length
convolutional networks with even data points. There, we also show that deep matrix sensing with
commutative sensor matrices (Arora et al., 2019b) is a special case of our setting.

Next, we present the regression counterpart of Theorem 3, for 2-layer linear tensor networks with
a single data point. For this extremely overparametrized setup, we can fully characterize the limit
points as functions of initialization v1(0) = av; and V2(0) = aVa, for any linear tensor networks
including linear convolutional networks with filter size smaller than input dimension.

Theorem 6. Suppose we have a 2-layer linear tensor network (6) and a single data point (X, y).
Consider the compact SVD M(X) = U, diag(s)U], where U; 2 Rkt*™ U, 2 RFX™  and
S 2R™ form minfky, koQ. Assume that there exists A > 0 such that the initial directions V1, Vs
of the network parameters satisfy [U{ Vl]? uf Vg]? Aforall j 2 [m]. Then, gradient flow
converges to a global minimizer of the loss L, and V1(t) and V2 (t) converge to the limit points:

v*=aU; Ufv, cosh ¢! % s +UJv, sinh ¢! % s +a(l, UUD)vy,
(6% (6%
v=aU, U{v; sinh ¢! % s +UJv, cosh ¢! % s +a(ly, UUl)v,,

where g1

gy =" [s); YL sinh(fs]; ) + [UT VAL, [UF Vel cosh(2ls]v)

is the inverse of the following strictly increasing function

The proof can be found in Appendix G. We can observe that as « ¥ 0, we have ¢! 5 1,
which results in exponentially faster growth of the sinh(') and cosh() for the top singular values.
As a result, the top singular vectors dominate the limit points V{® and v5§° as o« ¥ 0, and they do
not depend on the initial directions V1, Vo. Experiment results in Section 6 support this observation.



Published as a conference paper at ICLR 2021

5.2 IMPLICIT BIAS IN FULLY-CONNECTED NETWORKS: THE o ¥ O LIMIT

We state our last theoretical element of this paper, which proves that the linear coefficients ¢.( )
of deep linear fully-connected networks converge to the minimum ¢, norm solution as & ¥ 0. We
assume for simplicity that d; = dy = = d;, = d in this section, but we can extend it for d; d
without too much difficulty. Recall fi.(X; ) =X W; W, _1W;. We minimize the training
loss L with initialization W;(0) = aW,; for [ 2 [L 1] and w(0) = aw/..

Theorem 7. Assume that initial directions W1, ... ,Wr,_1, Wy, satisfy (1) WlTWl Wl+1Wlf_1
forl 2 [L 2], and (2) there exists \ > O suchthat W1 Wpr_1 wrwl X1, Then, the gradient
flow converges to a global minimum, and liMa_0 liM 00 t( () = XT(XXT) 1y.

The proof is presented in Appendix H. Theorem 7 shows that in the limit &« ¥ 0, linear fully-
connected networks have bias towards the minimum ¢; norm solution, regardless of the depth.
This is consistent with the results shown for classification. We also note that the convergence to
a global minimum holds for any o > 0, and our sufficient conditions (W W, ~ W;; W/, and

W/ Wi 1 wrw? ) for global convergence is a generalization of the zero-asymmetric
initialization scheme (W = =W_._; = lzand wy = 0) proposed in Wu et al. (2019).

6 EXPERIMENTS

Regression.  To fully visualize the trajectory of linear coefficients, we run simple experiments
with 2-layer linear fully-connected/diagonal/convolutional networks with a single 2-dimensional
data point (X,y) = ([1 2],1). For this dataset, the minimum ¢, norm solution (corresponding to
fully-connected networks) of the regression problem is [0.2 0.4], whereas the minimum ¢; norm
solution (corresponding to diagonal) is [0 0.5] and the minimum DFT-domain #; norm solution
(corresponding to convolutional) is [0.33 0.33]. We randomly pick four directions Z1, ...z, 2 R?,
and choose initial directions of the network parameters in a way that their linear coefficients at
initialization are exactly ( (0)) = a?z;. With varying initial scales o 2 f0.01, 0.5, 1g, we run
GD with small step size 7 = 1073 for large enough number of iterations T =5 10%. Figures 1 and
2 plot the trajectories of () (appropriately clipped for visual clarity) as well as the predicted limit
points (Theorem 6). We observe that even though the networks start at the same linear coefficients
a?z;, they evolve differently due to different architectures. Note that the prediction of limit points
is accurate, and the solution found by GD is less dependent on initial directions when « is small.

Classification. It is shown in the existing works as well as in Section 4 that the limit directions
of linear coefficients are independent of the initialization. Is this also true in practice? To see this,
we run a set of toy experiments on classification with two data points (X1,%1) = ([1 2],+1) and
(X2,y52) = ([0 3], 1). One can check that the max-margin classifiers for this problem are in
the same directions to the corresponding min-norm solutions in the regression problem above. We
use the same networks as in regression, and the same set of initial directions satisfying ( (0)) =
«?z;. With initial scales o 2 0.01,0.5,1g, we run GD with step size n =5 107% for T =
2 106 iterations. All experiments reached L( ) < 107 at the end. The trajectories are plotted
in Figure 2 in the Appendix. We find that, in contrast to our theoretical characterization, the actual
coefficients are quite dependent on initialization, because we do not train the network all the way
to zero loss. This observation is also consistent with a recent analysis (Moroshko et al., 2020) for
diagonal networks, and suggests that understanding the behavior of iterates after a finite number of
steps is an important future work.

7 CONCLUSION

This paper studies the implicit bias of gradient flow on training linear tensor networks. Under a
general tensor formulation of linear networks, we provide theorems characterizing how the network
architectures and initializations affect the limit directions/points of gradient flow. Our work provides
aunified framework that connects multiple existing results on implicit bias of gradient flow as special
cases.
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Figure 2: Gradient descent trajectories of linear coefficients of linear fully-connected, diagonal, and
convolutional networks on a regression task with initial scale « = 0.5 (top left), and networks on
a classification task with initial scales &« = 0.01,0.5,1 (rest). Networks are initialized at the same
coefficients (circles on purple lines), but follow different trajectories due to different implicit biases
of networks induced from their architecture. The top left figure shows that our theoretical predictions
on limit points (circles on yellow line, the set of global minima) agree with the solution found by

GD. For details of the experimental setup, please refer to Section 6.

A COROLLARIES ON SPECIFIC NETWORK ARCHITECTURES

We present corollaries obtained by specializing the theorems in the main text to specific network
architectures. We briefly review the linear neural network architectures studied in this section.

Linear fully-connected networks. An L-layer linear fully-connected network is defined as
fe(G ) =Wy Wp_ywy, (10)
where W; 2 R4 *di+1 for [ 2 [ 1] (we use d; = d) and wy, 2 R,
Linear diagonal networks. An L-layer linear diagonal network is written as
faiag(X;  diag) = (X W, wr 1) wy, (11)
where w; 2 R? for [ 2 [L].
Linear (circular) convolutional networks. An L-layer linear convolutional network is written as
Jeonv (< conv) = ( ((XxwW1) xWa)  *wp 1) wy, (12)
where w; 2 R* with k; d and k;, = d, and % defines the Brcular convolution: for any a 2 R

andb 2 R* (k  d), we have axb 2 R? defined as [axb]; = ?:1[a](i+j—1) mod alb); fori 2 [d].
In case of k; = d for all [ 2 [L], we refer to this network as full-length convolutional networks.

Deep matrix sensing. The deep matrix sensing problem considered in Gunasekar et al. (2017);
Arora et al. (2019b) aims to minimize the following p&cé)lem

minimize  Loo(Wi  Wi1):i=  (y hALW;, Wi (13)

Wl,...,WLERd d =1
where the sensor matrices A, ..., A, 2 R?*¢ are symmetric. Following Gunasekar et al. (2017);
Arora et al. (2019b), we consider sensor matrices A1, ..., A, 2 R?*? that commute. To make the

problem underdetermined, we assume that n  d, and A;’s are linearly independent.

12
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A.1 COROLLARY OF THEOREM 1

Corollary 1. Consider an L-layer linear fully-connected network (10). If the training loss satisfies
L( (%)) < 1 for somety O, then ( (t)) converges in a direction that aligns with the
solution of the following optimization problem

minimize,cgs  kzk, subjectto yix'z 1, 8i2[n].

Corollary 1 shows that whenever the network separates the data correctly, the linear coefficients

tc( ) convergence in direction to the £5 max-margin classifier. Note that this corollary does
not require the directional convergence of XTr, which is different from Theorem 1. In fact, this
corollary also appears in Ji & Telgarsky (2020), but we provide an alternative proof based on our
tensor formulation. The proof of Corollary 1 can be found in Appendix C.

A.2 COROLLARIES OF THEOREM 2

Corollary 2. Consider an L-layer linear diagonal network (11). If there exists A > 0 such that the
initial directions W1, . . . , W, of the network parameters satisfy [Wl]? [WL]? Aforalll 2 [L 1]
and j 2 [d], then qiag(  diag(t)) converges in a direction that aligns with a stationary point > of

minimize,cra  kzky,; subjectto y;x;z 1, 8i2[n].

For full-length convolutional networks, we define F 2 C?*9 to be the matrix of discrete Fourier
transform basis [F]; . = ﬁ exp( w). Note that F* = F !, and both F and F *
are symmetric, but not Hermitian.

Corollary 3. Consider an L-layer linear full-length convolutional network (12). If there exists
A > 0 such that the initial directions W1, ..., Wy, of the network parameters satisfy j[F w;];j>
iIFwp);j? Aforalll 2 [L 1]and j 2 [d), then conv(  conv(t)) converges in a direction that
aligns with a stationary point Z>° of

minimize,cgra  kKFzky ;, subjectto y;x7z 1, 8i2[n].

Corollary 2 shows that in the limit, linear diagonal network finds a sparse solution z that is a sta-
tionary point of the /5, max-margin classification problem. Corollary 3 has a similar conclusion
except that the standard £5,;, norm is replaced with DFT-domain /5,7, norm. By specifying mild
conditions on initialization (see Remark 1), these corollaries remove the convergence assumptions
required in Gunasekar et al. (2018b). The proofs of Corollaries 2 and 3 are in Appendix D.

A.3 COROLLARY OF THEOREM 3

Recall that Theorem 3 can be applied to any 2-layer networks that can be represented as linear
tensor networks. Examples include the convolutional networks that are not full-length (i.e., filter
size k1 < d), which are not covered by the previous result (Gunasekar et al., 2018b). Here, we
present the characterization of convergence directions of conv(  cony(t)) for small-filter cases:
kl = 1andk1 =2.

Corollary 4. Consider a 2-layer linear convolutional network (12) with k1 = 1 and a single data
point (X, y). If there exists A\ > 0 such that the initial directions W1 and W- of the network parame-
ters satisfy kxk? vi  (XTvy)? kxk® \, then conv( conv (t)) converges in direction that aligns
with yX.

Consider a 2-layer linear convolutional nﬁtwork (12) with k1 = 2 and a single data point (X, y).
Let X = [[X]2 Xla Xh] and X = [[Xla [X} [X1a-1]. If there exists A > 0
such that the initial directions W1 and Wy, of the network parameters satisfy
((x+ x)"vs)? 2 (X x)"vy)?
\'% + |V 2 —_— 7 — A d V \'% —_—
([vili + [vil2) ok + X7 x , and ([vili  [val2) odd X x

then  conv( conv(t)) converges in a direction that aligns with a filtered version of X:

im e eom(@®) , 2px+yx +yXifxTx >0,
t=00 K conv( conv(t))Ka 2yx  yx yx ifxT'x <0.

13
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Corollary 4 shows that if the Iter size ik; = 1, then the limit direction of conv ( conv) is always
the , max-margin classi er. Note that this is quite different from the clase d which converges

to the DFT-domain; max-margin classi er. However, fat < k; < d, itis dif cult to characterize

the limit direction as the max-margin classi er of some common norms. Rather, the limit directions
of conv( conv) COrrespond to a “ Itered” version of the data point, and the weights of the lter
depend on the data poirt Fork; = 2, the Iter is a low-pass lter if the autocorrelatior™ x of

X is positive, and high-pass if the autocorrelation is negativekFor 2, the Ilter weights are more
complicated to characterize in termsxofand the lter length increases &g increases. We prove
Corollary 4 in Appendix E.

A.4 COROLLARIES OFTHEOREMbS

In this subsection, we apply Theorem 5 to linear diagonal networks, linear full-length convolutional
networks with even data, and deep matrix sensing. The proofs of the corollaries can be found in
Appendix F.

Corollary 5. Consider arL-layer linear diagonal networkl1). For some > 0, choose any vector
w 2 RY satisfying[w]j2 for all j 2 [d], and choose initial directions/; = w forl 2 [L 1]
andw_ = 0. Then, the linear coef cientsgiag ( diag (t)) COnverge to the solution! of

[z

X 4 .
minimize;op:  Qu; w(z):= * _ WIPHL —fHi— subjectto Xz =y:

plex, but Theorem 5 poses another assumption that these matrices are real. In applying Theo-
rem 2 to convolutional networks to get Corollary 3, we used the fact that the data Mgsp(x)

of a linear full-length convolutional network satis es Assumption 1 wih = d= F and
U, = = UL 5 F , whereF 2 CY 9 is the matrix of discrete Fourier transform basis
1

[Flx = vexp( —20 20 D) andF s the complex conjugate dF. Note that these

are complex matrices, so one cannot directly apply Theorem 5 to convolutional networks. However,
it turns out that if the data and initialization are even, we can derive a corollary for convolutional
networks.

We say that a vector isvenwhen it satis es the even symmetry, as in even functions. More con-
cretely, a vectox 2 R%is even if[x]j«2 = [x]q j forj =0;:::; desc; i.e., the vector has the
even symmetry around its “origirfx];. From the de nition of the matribf 2 CY 9, it is straight-
forward to check that ik is real and even, then its DFF X is also real and even (see Appendix F.4
for details).

Corollary 6. Consider anL -layer linear full-length convolutional networfd2). Assume that the
data pointsfx;gi., are all even. For some> 0, choose any even vectar satisfying[F W]j2
forall j 2 [d], and choose initial directions/; = w forl 2 [L  1]andw_ = 0. Then, the linear
coefcients conv ( conv (t)) converge to the solution® of

[Fz];

.. - x d
minimize Q. Fw(Fz)= 2 jzllFW]izHL THFwTT

subjectto Xz =vy:
z2RdY; even
Corollaries 5 and 6 show that the interpolation between minimum weightadd weighted, so-
lutions occurs for diagonal networks, and also for convolutional networks (in DFT domain, with the
restriction of even symmetry). The conclusion of Corollary 5 is similar to the results in Woodworth
et al. (2020), but the network architecture (11) considered in our corollary is a slightly different from

the “differential” networkf (x;w.;w )= xT(w," w ') in Woodworth et al. (2020).

As mentioned in the main text, we can actually show that the matrix sensing result in Arora et al.
(2019b) is a special case of our Theorem 5. Given any symmetric matrix RY 9, leteigM ) 2
RY be thed-dimensional vector of eigenvaluesdf .

Corollary 7. Consider the depth- deep matrix sensing proble¢h3). LetA;'s be symmetric, and
assumeéA q;:::; A, commute. For > 0, choose initializatiolV,(0) = I4forl 2 [L 1]and
W (0) = 0. Then, the produdtV, (t) W (t) converge to the solutiobl * of

. : X d [eig(M )], :
minimize Qu (eigM )= 2~ H. 7N subjectto Lmg(M)=0:

M 2Rd d: symmetric j=1
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Under an additional assumption thaf's are positive semide nite, Theorem 2 in Arora et al.
(2019b) studies the initializatiow/|(0) = 14 for all | 2 [L], and shows that the limit point of
W :::W converges to the minimum nuclear norm solution ds 0. We remove the assumption

of positive de niteness oA\ i's and letW (0) = 0, to show a complete characterization of the so-
lution found by gradient ow, which interpolates between the minimum nuclear norm (i.e., Schatten
1-norm) solution (when ! 0) and the minimum Frobenius norm (i.e., Schatten 2-norm) solution
(when 11 ).

B TENSOR REPRESENTATION OF FULLACONNECTED NETWORKS

In Section 3, we only de ned the data tenddy; (x) of fully-connected networks fdr = 2. Here,
we describe an iterative procedure constructing the data tensor for deep fully-connected networks.

We start withT,(x) := x 2 R%. Next, de ne a block diagonal matriX,(x) 2 R99 d2 where
the “diagonalsT2(X)]a,(; 1)+1: dijj = Ta(x) forj 2 [d2], while all the other entries are lled
with 0. We continue this “block diagonal” procedure, as the following. Having de fied (x) 2
Rd1d2 d 2d 1 d 1,

1. DeneT|(x) 2 R%dz  diad i

2. Set[Ti ()] i oy 1 D+ gy 4 = T 2(X): 8 2 [di].

3. Set all the remaining entries &f(x) to zero.

of the tensor formulatiov, = vec(W,) forl 2 [L 1]andv, = w_, and using the tensor
M(x) = Ms(X), we can check the equivalence of (2) and (5).

C PRrROOFS OFTHEOREM 1 AND COROLLARY 1

C.1 PROOF OFTHEOREM1

The proof of Theorem 1 is outlined as follows. First, using the directional convergence and align-
ment results in Ji & Telgarsky (2020), we prove that each of our network parameteosiverges
in direction, and it aligns with its corresponding negative gradient,, L. Then, we prove that the

et : ; 1 — XTr(t)
directions ofv,'s are actually singular vectors &4( u~ ), whereu= :=1lim XTIk
Since a linear tensor network is &rhomogeneous polynomial of;;:::;v,, it satis es the as-

sumptions required for Theorems 3.1 and 4.1 in Ji & Telgarsky (2020). These theorems imply that
if the gradient ow satis esL( (tg)) < 1for somety O, then (t) converges in direction, and
the direction aligns withr L ( (t)); that is,

. O a7 L)
ke k=150 e = I ok L )k

1. (14)

For linear tensor networks (6), the parameteris the concatenation of all parameter vectors
Vi;iiive,so(14) holdsfor = v o]

Now, recall that by the de nition of the linear tensor network, we have the following gradient ow

d
akV|k2:2V|TVJ:2V|TM( XTr) (vi;iinvr 1l Vier;iiive)

= %kvmkg foranyl®2 [L],
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so the rate at whickv k3 grows over time is the same for all layérg [L]. By the de nition of
and (14), we have
X
k k= kviki!l ;
I=1
which then implies
s
. .k (ke .k (1)K _ P
dm kiOke tL Mmoo, T ok -

forall 1 2 [L]. Now, letl| be the set of indices that correspond to the componenis iof . It
follows from (14) that

v o v k Ok L Ok (ke P g
M ok = I ok mok - I ok ok, - S0

thus showing the directional convergencesgs.

Next, it follows from directional convergence of and its alignment withr L( ) (14) that
r L( ) alsoconverges in direction, in the opposite direction ofBy comparing the components
inl's, we getthatr ,L( ) converges in the opposite directionwaf

Foranyl 2 [L], nowletvl :=1lim ¢y % Also recall the assumption th¥tT r (t) converges
in direction; let the unit vecton® := lim ¢ ﬁ be the limit direction. By the gradient
ow dynamics ofv,, we have

vilro L Yy=M(Cut) (vigoinvE v vl ),
forall | 2 [L]. Note that this equat|on has the same form as (8), the de nition of singular vectors in
tensors. So this proves that} ;:::;vl ) are singular vectors ofl( ul ).

C.2 PROOF OFCOROLLARY 1

The proof proceeds as follows. First, we will show using the structure of the data Mpdbat the

limit direction of linear coef cients «( %) is proportional tocu® , wherec is a nonzero scalar
andu? is the limit direction ofX Tr. Then, through a closer look att andc, we will prove

that «( ) is in fact a conic combination of the support vectors (i.e., the data points with the
minimum margins). Finally, we will compares( fc) with the KKT condmons of the , max-
margin classi cation problem and conclude that( 7 ) must be in the same direction as the
max-margin classi er.

Due to the way how the data tengdy. is constructed for fully-connected networks (Appendix B),
we always have

ngT 32 2 32
rovL( ©)= Me( XTr) (|k1,V2;21"VL)25pan § égx Z """ g 0 é;
0 XTr

From Theorem 1, we have directional convergence,adnd its alignment withr L ( ). This
means that the limit direction! , which is a xed vector, must be also in the span of vectors written

T
above. This implies that T r must also converge to some direction, say := lim ¢ ﬁ
2

Now recall the de nition ofv; in case of the fully-connected network; = vec(W31). So, by
reshaping/} into its originald;  d, matrix formwW { , we have

Wi/ ultql;

for someq 2 RY%. This implies that the linear coef cientsi( 1) of the network converge in
direction to

ol E)=WEWS owl w7 utg'wyoowlt o wl = et (15)
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wherec is some nonzero real number.
Let us now take a closer look at the vectdr , the limit direction ofX Tr . Recall from Section 2.1
that for anyi 2 [n],
rli= yiexp( Vife(Xi; ©)= yiexp( Yix] w( );
in case of classi cation. Recall th&t «( (t))ko ! 1  while converging to a certain direction
( #). This means that if

YijT el &) >Yix! el &)
foranyi;j 2 [n], then

lim exp( Y XjT c( (1)) -

i1 exp( yix;r fc( fc(t)))

Takei to be the index of any support vector, i.e., dnthat attains the minimurgi x| «( +)
among all data points. Using suchiarthe observation (16) implies thiam;  [r (t)]; = O forany
x; thatis not a support vector. Thus, by the argument ahovecan in fact be written as

P
p s Xilr(O _ X
k' oy Xi[r (D)]ik,

(16)

1

ut = lim X 17)
i=1
where ;  Oforalli 2 [n], and j = 0 for x;'s that arenot support vectors. Combining (17) and
(15),
N X
el )/ ¢ iYiXi: (18)

i=1

Recall that we do not yet know whetherintroduced in (15), is positive or negative; we will now
show thatc has to be negative. From Lyu & Li (2020), we know th&t «(t)) ! 0, which implies
thatyix{ «( #) > Oforalli 2 [n]. However, ifc > 0, then (18) implies that (& ) is inside
a coneK de ned as ( )

X

K:= iYiXij i 0,81 2 [n]

i=1

Note that the polar cone &, denoted aK , is

K== zj "z 0,8 2K =fzjyix{z 08i2[n]g

It is known thatKk \K = f0g for any convex con& and its polar con& . Therefore, having
c > Oimplies that ( %) 2 KnK , which means that there exists som@ [n] such that
Vix] w( &) < O; this contradicts the fact that the loss goes to zerblas . Thereforec in
(15) and (18) must be negative:

L X
e )/ iYiXi; (19)
i=1
for ;  Oforalli 2 [n]and ; =0 for all x; 's that are not suport vectors.
Finally, compare (19) with the KKT conditions of the following optimization problem:

minimize kzk5 subjectto yix{z 1; 8 2 [n]:

The KKT conditions of this problem are

X
z= ivixi; and ;O (1 vyix]z)=0 foralli2 [n];
i=1

if we replace j's with ;'s. This nishes the proof that s ( flc ) is aligned with the , max-margin
classi er.
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D PROOFS OFTHEOREM 2 AND COROLLARIES2 & 3

D.1 PROOF OFTHEOREM?2
D.1.1 CONVERGENCE OF LOSS TO ZERO

Since Theorem 2 does not assume the existentg of0 satisfyingL (  (to)) < 1, we need to rst
show that given the conditions on initialization, the training lb§s (t)) converges to zero. Recall
from Section 2.1 that

vi=r yL( )= M( XTr) (vi;iinovr 1l visn st v ):

Applying the structure (9) in Assumption 1, we get

xn
= [SXTr]j(VI[Ul];i VITl[U| iy (Uil V|T+1[UI+1];J' VE[UL]:J')
j=1

Y
= [SX Tr; U V] [Uil 5
j:_‘]_ k6|

Left-multiplying U (the conjugate transpose 0f) to both sides, we get

Y
Ufv = SXTr kelUkTvk; (20)

whereQ denotes the product using entry-wise multiplication
Now consider the rate of growth for the absolute value squared ¢ttheomponent o) v;:
d. . d d
al[UuTVI]jJ2 = a[UFVI]j UV = a[U,Tw],- U v
= [U i U+ TUF w [UT v
=2Re [U|H \ﬂ]j [U|T V|]j

T Tt T
=2Re [SX r]j k=1 [Uk Vk]j

= %j[ufovm]jjz foranyl®2 [L],

so for anyj 2 [m], the squared absolute value of fhh components itJ|" v, grow at the same
rate for each laydr2 [L]. This means that the gap between any two different layers stays constant
forallt 0. Combining this with our conditions on initial directions, we have

UL 0 U ve O 5% = Vi) 2§ U] v )2

. . . : (21)
= UTviniz o AU vz %
foranyj 2 [m],1 2 [L 1], andt 0. Thisinequality also implies
| (CHRVI(3) SN (SR (3) [T e 2 (22)

Let us now consider the time derivativelof (t)). We have the following chain of upper bounds
on the time derivative:
d
gt =1 L( M) =)= kr L (1)K
ke v L( ()K= k vi (K3
(

e UM 2O T Y . 2
CUfuOE? sxTre Ul

Xomo T oY ity T 2
= [ XL el

18
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(©) X m :
2L 2 L 1 i J[SX Tl’(t)]JJZ
= 2L 2L 1ksX Tr(t)k3
(d)

L2 L 19 (S)%kX Tr(t)k3; (23)
where (a) used the fact thiat, (t)k3 k U U" v, (t)k2 because it is a projection onto a subspace,
andkU_ U vy (k3 = kUM v, (t)k3 becaus&) U = 1, ; (b) is due to (20); (c) is due to (22);
and (d) used the fact th& 2 C™ 9 is a matrix that has full column rank, so for amy2 CY, we
can us&kSzky,  smin (S)kzk, wheresnin (S) is the minimum singular value &.

We now prove a lower bound on the quant®¥ T r (t)k3. Recall from Section 2.1 the de nition of
[rM]i = viexp( vif (xi; (1)) for classi cation problems. Also, recall the assumption that the
dataset is linearly separable, which means that there exists a unit ze2tB" such that

yixiz >0
holds for alli 2 [n], for some > 0. Using these,
X n
KX Tr(ks =k yixiexp( yif (xi; ()3
Xn
T yixiexp( it (xi; (D)]°

X n
" oexp( vt (ki ONI2= 2L( (1)

[z

[

Combining this with (23), we get
SLCa) 2 s (92 2L )

which implies
L(C (0) :
1+ 2L 2L 1g,.(S)2 2t

L(C (1)
ThereforeL ( (t))! Oast!1l

D.1.2 (HARACTERIZING THE LIMIT DIRECTION

Since we proved thdt( (t)) ! O, the argument in the proof of Theorem 1 applies to this case,
and shows that the parametgrconverge in direction and align with = r ,L( ). Letv{} =

limu "5 be the limit direction of.

The remaining steps of the proof are as follows. We rst prove 8%t r (t) converges in direc-

tion u' . Using thisu® , we derive a number of conditions that has to be satis ed by the limit
directions of the parameters. Finally, we compare these conditions with the KKT conditions of the
minimization problem, and nish the proof.

By Assumption 1, we have

hd i
cinve) = [Sx) o Ui

FOG )= M) (va;
j=1 1=1
x
= U'v]y [S]; x=x'ST U'vy, =x'sT
12[L]
j=1 1=1
Here, we de ned := le[L] Uv, 2 C™. Since the linear coef cients must be real, we have

ST Zd?d for any realv,'s. Sincev,'s converge in direction, also converges in direction, to
= T2 Ui Vi - So we can express the limit direction of ) as

Y
1 T T,,1 _ T 1.
( 1)/'s o UV =8 (24)
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From (20) and alignment aof, andv,, we have

lim Ui = fim (UTvi©) 1 Jim SX Tr () U vic(t): (25)

t ké |

Since all vectorsJ," v|(t) converge in direction, the ter@X Tr (t) should also converge in direc-

tion. Letu! :=lim kSSXXTT% One can use the same argument as in Appendix C.2, more
speci cally (16) and (17), to show that! can be written as
S. 1L, xilr (V) x
1 — | i=1 M [ - .
us = lim P = S iYiXi; (26)
i1 kS L xi[r (t)]ik, - S
where ;  Oforalli 2 [n], and j = O for x;'s that arenot support vectors, i.e., those satisfying
yix{ ST 1 > minizpyixf ST *.
Usingu?! , we can rewrite (25) as
Y
ufvt 1 u? Ugvi;

k61

forall| 2 [L]. Element-wise multiplyingJ," v} to both sides gives
Y
Ulvi Uy =juivij 27t kz[L]UI;rVI% = ut Y (27)
wherea P denotes element-wiseth power of the vectoa. Since the LHS of (27) is a positive real
number, we have
arg(Uvi}ij?)=0=arg( u'l)+arg( *}); (28)
so using this, (27) becomes

UV 2rjutyg (29)
Now element-wise multiply (29) for all2 [L], then we get
[ B VA B B B (30)
A close look at (30) reveals thatlif 2, * andu! must satisfy that
L1380 =)j Wi/ [t gic (31)
forallj 2 [m]. There is another condition that has to be satis ed when2:
L 0i=0500 Y 10j60 =) j [ut Jj i [u* Jei; (32)

for anyj;j ©2 [m]; let us prove why. First, consider the time derivativé df = [U{ v1]; [U] v2];.

d d d
a[ (M1 =[U{ va(D)]; a[Uvaz(t)]j +[ U3 v (1)]; E[val(t)]j

@ sX Tr (o) GIUT va ] 2 + VT va(); 2); (33)
where (a) used (20). Now consider
&L @) _ SX Tr ()] iU{ va()];? + U7 va(t)]; i (34)
kSX Tr(t)kaj[ (1)]j]  kSX Tr(t)kz it (O '

We want to compare this quantity for differgnt ©2 [m]. Before we do that, we take a look at the
last term in the RHS of (34). Recall from (21) that
U va(®]5% = j[U7 va()]j % + iU{ viO))ji® | [U; v20)];: (35)

For simplicity, let ; := jlU{ v1(0)];j? j [UJ v2(0)];j?, which is a positive number due to our
assumption on initialization. Then, we can use (35) gn)];j = jlU7 vi(t)];jj[U3 va(t)]jj to
show that
JUT Vi) + i[U7 va(1)]; 2 _ 2][U2Tp\(2(t)]il'2 t
il @] U VoL JIUZ V22 +
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im UL Va2 + JUF va(0); 2
th il M
Recall that we want to prove that (32) should necessarily hold. For the sake of contradiction, suppose
that there existg 2 [m] that satisesj[ * ];j = 0 butj[u? Jjj > jlu® Jjoj, for somej® 2 [m]
satisfyingj[ * ]joj 8 0. Note that having[ * J;j =0 andj[ * Jjoj & O implies thag[ (t)];oj ! 1

=2 if lim jlU7vo(0)]jj=1:

andjj[[ ((tt))]]" Ojj I 0. We now want to compare the ratio of (34) foandj °. First, note that
J
L JISXTr ()] j=kSX Tr (ke _ ju’ Jjj (36)
tL J[SX Tr(D]joj=kSX Tr(tkz  j[ut Jjoj
Next, usingjj[[ ((tt))]]j(fj I 0and the fact thax 7! P%% is a decreasing function of 0 for any
]
> 0, we have

(UL va@)i% + U7 V20 i3S ()] 1- (37)

(U Va0 + JUF V2 (D) 02) F (O);o]

for anyt to, whentg is large enough. Combining (36) and (37) to compare the ratio of (34) for
andj %, we get that there exists sortfe 0 such that for any  t$, we have

ol (O =0 O 1
sl o S0 (O]

This implies that the ratio of the absolute value of time derivativg ¢f)]; to the absolute value
of current value of (t)]; is strictly bigger than that df (t)]j.. Moreover, we saw in (33) that the
phase of%[ (t)]; converges to that of [u! Jj - Since this holds for alt tJ, (38) results in a
growth ofj[ (t)];] that is exponentially faster than thatjf (t)]; oj, so[ (t)]; becomes a dominant
componentin (t) ast ! 1 . This contradicts thet * J; = 0, hence the condition (32) has to be
satis ed.

(38)

So far, we have characterized a number of conditions (26), (28), (31), (32) that have to be satis ed
by the limit directionsu® and ' of X Tr and . We now consider the following optimization
problem and prove that these conditions are in fact the KKT conditions of the optimization problem.
Consider

minimize Kk k. subject to yix; ST 1, 8i 2 [n]: (39)

The KKT conditions of this problem are

X
@ k, 3S iyixi; and ;|  0; (1 yix7ST )=0 foralli 2 [n];
i=1

the,-. norm', which can be written as

o . P—
@k k,=fu2C™jjluljj 1forallj 2 [m]; and[ J; 60 =) [u]; =exp( larg([ i) o
if L =2 (in this case@k kK, is the global subdifferential), and

@ ko = u2CTj[]60=) W)= il it tew( Targ((])

if L> 2. Byreplacing ;'s with ;'s de ned in (26), we can check from (26), (28), (31), (32) that the
that ! andu?! satisfy the KKT conditions up to scaling. Therefore, by (24), (t)) converges in
direction aligned wittST 1 , where ! is again aligned with a stationary point (global minimum
in case ofL = 2) of the optimization problem (39).

If S isinvertible, wecanges T ( 1)/ ! .Plugging this into the optimization problem (39)
gives the last statement of the theorem.

Ythe de nition of subdifferentials used here is taken from Gunasekar et al. (2018b).
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D.2 PROOF OFCOROLLARY 2

It suf ces to prove that linear diagonal networks satisfy Assumption 1, Bitk | 4. The proof
is very straightforward, sinc®lgiag (Xx) 2 R?Y 9 has[Mgiag (X)]jj=j = [X]; while all the

.....

remaining entries are zero. It is straightforward to verify fiatg (x) satis es Assumption 1 with
S=U;= = UL = | 4. Adirect substitution into Theorem 2 gives the corollary.

D.3 PrROOF OFCOROLLARY 3

For full-length convolutional networksk{ = = k. = d), we will prove that they satisfy
Assumption 1 withS = d“z°F andU; = = U_ = F ,whereF 2 CY 9is the matrix
of discrete Fourier transform bagBJjx = pl—a exp( %) andF is the complex
conjugate of .

For simplicity of notation, de ne = exp( %). With such matrice$ andUq;:::;U_, we
can writeM (x) as
xd
M(x) = [Sx] (Uil  [Ua]; [ULly)
j=1
2 O:pzb 3L
" # G =g
o, | 2 1Pd
= dz [X]k (- 1(k 1) J = d ;
j=1 k=1 :
@ v nP d

wherea “ denotes thé -times tensor product @f. We will show thatM(x) = Mcony (X).

" #
1xd | 1)(k 1 I 1 P L
MO i, = 5 P
=1 k=1
xd xd
- 1 [X ]k ( 1)k 1 P;:l ja+L).
dkzl 1=1
Recall that P
(1 1k 1 P Ly jatLl) = d ifk 1 cL1=1 jq + L isamultiple ofd;
=1 0 otherwise
Using this, we have
1 (I 1)(k1pL iq*tL)
MO 15 0 = d [X ]k a=1 1d
k=1 1=1
=[x]P. L g L+lmod d = [Mconv(x)]jl;:::;j L

q=

Hence, linear full-length convolutional networks satisfy Assumption 1 Bith d“= F. A direct
substitution into Theorem 2 and then using the fact jffaz];j = j[F z];j for any real vector
z 2 RY gives the corollary.

E PrROOFS OFTHEOREM 3 AND COROLLARY 4

E.1 PROOF OFTHEOREM3

E.1.1 (QONVERGENCE OF LOSS TO ZERO

Since Theorem 3 does not assume the existentg of0 satisfyingL (  (tg)) < 1, we need to rst
show that given the conditions on initialization, the training Ibgs (t)) converges to zero. Since
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L =2 andM(x) = U, diag(s)U, , we can write the gradient ow dynamics from Section 2.1 as
vi= MXXTr) (l;v2)= rUrdiag(s)U; ve;
V2= M(XTr) (vil,) = rUzdiag(s)uy vs;
wherer (t) =  yexp( yf(x; (t))) isthe residual of the data poifit;y). From (40) we get

(40)

UTvi= rs Ujvy Ujvo= s Ufvg: (41)
Now consider the rate of growth for tfieth component o) | v, squared:
d d
a[UIvllj =2[U{ vi]i[Uf vy = 2r[s] [U] va][U3 V2] = a[uzTVz]jzi (42)

So foranyj 2 [m], [U{ v1]? and[U; v,]? grow at the same rate. This means that the gap between
the two layers stays constant for lll 0. Combining this with our conditions on initial directions,

[ULvi(®]] Uz v2(D)]F = [UL Va0 [UZ v2(0))f

(43)
= [U{viff UgvlE %
foranyj 2 [m]andt 0. This inequality implies
[UIvi®FF U7 va(O)]F+ 2 2. (44)

Let us now consider the time derivativelof (t)). We have the following chain of upper bounds
on the time derivative:

d
gt =1 LC )" 0=k L( K
ki v,L( (0)k3= k va(t)k3

(a) (b) 2
k Uva(Dk = r()” s Ufva() ,

= ()2 J.ml [SIFIU{ va(t)]f
(c) 2, (t)2 jm:l [3]12

= 2 ksk3L( ()%

where (a) used the fact thiat>(t)k3 k U,UJ v,(t)k3 because it is a projection onto a subspace,
andkU,UJ v, (1)k3 = kU] vo(t)k3 becausdJ] U, = Iy, ; (b) is due to (41); (c) is due to (44).
From this, we get

LC (O)

LCO) 757 kskat’

ThereforelL ( (t))! Oast!1l

E.1.2 (HARACTERIZING THE LIMIT DIRECTION

Since we proved thdt( (t)) ! 0, the argument in the proof of Theorem 1 applies to this case,
and shows that the parametgrconverge in direction and align with = r ,L( ). Letv{} =
limgi kv"l'((tt))kz be the limit direction ofv,. As done in the proof of Theorem 2, de ngqt) =
Ufvi(t) UJve(t)and * =uUfvi UJvi.

It follows fromr(t) = yexp( yf(x; (1)) that we havesign(r(t)) = sign(y). Using this,
(41), and alignment of, andv,, we have

Ujvi / ys UJvi; UJvi/ys Ufvi: (45)
Element-wise multiplyingJ," v to both sides gives

(Ufvi) 27 ys 1 (Uivz) 2/ ys 1 (46)
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Since the LHSs are positive arsdis positive, the following equations have to be satis ed for all

j 2 [ml: _ o
sign(y) = sign([ ~ ;): (47)
Now, multiplying both sides of the two equations (46), we get
(*)?2rs? ()= (48)
From (48), ' must satisfy that
[ 1] 60;[ *]060 =) j [s]j= jlshei; (49)
forallj;j 2 [m]. As in the proof of Theorem 2, there is another condition that has to be satis ed:
[ *]=0;[ * 1060 =) [s}i i [sci: (50)

for anyj;j ©2 [m]; let us prove why. First, consider the time derivativé df = [U{ v1]; [UJ v2]; .

d d d
a[ (M1 =[U] va()]; a[Uvaz(t)]j +[ U3 v (1)]; a[UlTvl(t)]j

€ r(s] (U v + [V va01);

where (a) used (41). Now consider
sl O _ j[S]_J.[val(t)]f+[U2TVz(t)]j2_
r@iil 1] ' it )

We want to compare this quantity for differgnt ©2 [m]. Before we do that, we take a look at the
last term in the RHS of (51). Recall from (43) that

(UL va@If = [UZ v +[U] v1(0)}  [UZ v2(0)];: (52)

(51)

For simplicity, let ; := [UlTvl(O)]j2 [UZTVZ(O)]J-Z, which is a positive number due to our assump-
tion on initialization. Then, we can use (52) ajjd(t)]jj = j[U{ vi(t)]jji[U] v2(t)];j to show
that

[UT Vi) + [UF V2] _ 2UT V(O + | ,

i O] IUIvOL) V0P +
TP +[UIva 0P o
i Loy 2 Tlmiuzve®l= 1

Recall that we want to prove that (50) should necessarily hold. For the sake of contradiction, suppose
that there exist 2 [m] that satises[ * J; = 0 butj[s];j > j[s]joj, for somej ® 2 [m] satisfying

[ 110 6 0. Note that havind * J; = 0 and[ ® Jjo 8 O implies thatj[ (t)joj ! 1 and
LWL

jj[[ ((tt))]]_jojj I 0. We now want to compare the ratio of (51) foand; °. Usingj[ oo 0 and the
] ]

fact thatx 7! ?%% is a decreasing function af Oforany > 0, we have

(U Vi@ + U3 v2(OID)FL (0]
(UL va (O + [UFv2@OI)FL (0)];0]

foranyt tg, whentg is large enough. Combinin%f]]%j > 1 and (53) to compare the ratio of (51)
]
forj andj? there exists somigy  0such that for any to, we have

al (O =0 O 1
sl (o S0 (O]

This implies that the ratio of the absolute value of time derivative ¢f)]; to the absolute value of
current value of (t)]; is strictly bigger than that of (t)]jo. Moreover, by the de nition of (t),
(f—t[ (t)]; does not change sign over time. Since this holds far alltg, (54) results in a growth of
il (1)]jj thatis exponentially faster than thatjpf(t)]; o}, so[ (t)]; becomes a dominant component
in (t)ast!1 . Thiscontradictsthdt ! ]j = 0, hence the condition (50) has to be satis ed.

(53)

(54)
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So far, we have characterized some conditions (47), (49), (50) that have to be satis ed by the limit
direction * of . We now consider the following optimization problem and prove that these
conditions are in fact the KKT conditions of the optimization problem. Consider

minimize  k k;  subject to ys' 1: (55)
The KKT condition of this problem is

@ k; 3ys;
where the global subdifferenti@k k, is de ned as

@ k,=fu2R™jjluljj 1forallj 2 [m]; and[ j 60 =) [u], =sign( Jj)o:
We can check from (47), (49), (50) that the that satis es the KKT condition up to scaling.

Now, how do we characterizgt andv} intermsof * 2 Let {1 := UJv} and } = UJv}.
Thenyv! = U; ! = UUTvl holds because any component orthogonal to the column space of
U, stays unchanged while the component in the column spatk dfverges to in nity. By (42),
jii=i3i=1i"%]j ' By(45), wehaveign( i )=sign(y) sign( 3 ).

E.2 PROOF OFCOROLLARY 4

The proof of Corollary 4 boils down to characterizing the SVIM§ny (X).

E.2.1 THEKk; =1 CASE
First, it is straightforward to check that far= 2 andk; = 1, we have

conv( conv) = Vi1Va!
Fork, = 1, the data tensor is simpMcon (X) = xT. Thus, we havdJ; = 1, U, = kxXTz

ands = kxkj. SubstitutingU; andU, to the theorem gives the condition on initial directions in
Corollary 4. Also, the theorem implies us that the limit directigh of v, satisesv} / yvi x.
Using this, it is easy to check that

conv( él:'onv)/ V]J: V% / yX:
E.2.2 THEKk; =2 CASE

First, it is straightforward to check that far= 2 andk; = 2, we have

2 [vi]1 O 0 0 [V1]23
Vil [vili O 0 0
0  [vil2 [vilh 0 0
conv( conv) = . . . . . . Vo! (56)
0 0 0 [V]_]]_ 0
0 0 0 Vilo  [vilh

Fork; =2, by de nition, the data tensor is

XT
Mecony (X) = XT;
and it is straightforward to check that the SVD of this matrix is
2q27 32 Ty T 3
T 5 123 kxks + xT x 0 5 T
X =37 =3 X kxk2+xT
Mconv (X) = xT = iP5 15 4 2 q2754 2 e 2X+Tx S,
0 kx K3 xT x 2 kxk3 xT x
SO
2
_ ]fji 15)5 . _h n X+ X p X X I. -4 ka§+XTX5
Up = 15 123 Uz = Vfrkxk§+xTx Vfrkxkg xTx 'S= q

kxks  xT x
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SubstitutingU,; andU, to the theorem gives the conditions on initial directions. Also, note that the
maximum singular value depends on the signxbfx . Consider the optimization problem in the
theorem statement:

minimize ;rm  k k; subjectto ys' 1;

If xT x > 0, then the solution ! to this problem is in the direction ¢§ 0]. Therefore, the limit
directionsv} andv3} will be of the form

vi /o i Vs [ oc(x + X);

wheresign(c; ) sign(cz) = sign(y). Using (56), it is straightforward to check that

21 00 0 13
110 0 O
L 11 0 |
conv( o)/ VB, L L L Z(xF x)= Y@+ x FX):
0 0O 1
0 0O 11
Similarly, if xT x < 0, then the solution?® is in the direction of0 y]. Using (56), we have
2 1 0 O 0 13
1 1 0 0O O
N 0 11 0O O |
COHV( conv)/ y : : : .. : : (X X): Y(ZX X ’ X):
0O 0 O 1 0
0O 0 O 1 1

F ProOOFSs OFTHEOREMD5, COROLLARIESS5, 6 & 7, AND LEMMA 4

F.1 PROOF OFLEMMA 4

In this subsection, we restate Lemma 4 and prove it.
Lemma 4. Consider the system of ODEs, where: R! R:
p=p" %q; g=p" % p0)=1; ¢0)=0:
Then, the solutiong, (t) and g_(t) are continuous on their maximal interval of existence of the

form( c;0 R forsomec 2 (0;1]. Denehy(t) = p. (1) g (t); then,h (t) is odd and
strictly increasing, satisfyingm¢-ch_ (t) = 1 andlimy ch ()= 1 .

Proof  First, continuity (and also continuous differentiability) mft) andq(t) is straightforward
because the RHSs of the ODEs are differentiableamdq. Next, de nep(t) = p( t) andeg(t) =
d( t). Then, one can show thatande are also the solution of the ODE because

Sp= SpC 0= B = p( O 0 H=p0" ()

Sen= Ja n=a D=p( 0" T=p0" "

However, by the Picard-Lindét theorem, the solution has to be unique; this meanspfiat=
p(t) = p( t) andq(t) = g(t)= qg( t), which proves thap is even andjis odd and also implies
that the domain op andq has to be of the fornf c;c) (i.e. symmetric around the origin) and
h=p- 1qgisodd.

To show that is strictly increasing, it suf ces to show thatandq are both strictly increasing on
[0; ©). Tothis end, we show tha(t) 1forallt 2 [0; c). First, due to the initial conditiop(0) = 1
and continuity ofp, there exists; > 0 such thafp(t) > Oforallt 2 [0; ;) =: 1. This implies
thatq(t) = p(t)- * > Ofort 2 1, nf0g, soqis strictly increasing on. Sinceq(0) = 0, we
haveq(t) > 0fort 2 11 nf0Og, which then implies thap(t) = p(t)- 2q(t) > 0. Thereforep is
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also strictly increasing ohy; this then meanp(t) 1fort 2 [0; 1] becausg(0) = 1. Now, due
top( 1) 1and continuity ofp, there exists, > 1 such thap(t) > Oforallt 2 [ 1; 2) = I,.
Using the argument above fog results inp(t) 1 fort 2 [0; »]. Repeating this until the end of
the domain, we can show thptt) 1 holds for allt 2 [0;c). Byp 1,wehaveg=p- ! 1
on[0; ¢), soqis strictly increasing off0; ¢). Also, g(t) > 0on(0;c), sop= p- 2q > 00on(0;¢)
andp is also strictly increasing of®; ¢). This proves thah is strictly increasing of0; c), and also
on( c;c by oddity ofh.

Finally, it is left to showlim-ch(t) = 1 andlim ch(t) = 1 . If c < 1, then this together
with monotonicity implies that the limits hold. To see why, suppose 1 andlim-ch(t) < 1.

Then,p andq can be extended beyond c, which contradicts the fact thét c; ¢) is the maximal
interval of existence of the solution. Next, consider the case 1 . Fromp(t) 1, we have
qt) 1fort 0. Thisimpliesthag(t) tfort 0. Now,p(t) p(t)- 2q(t) t, which gives

p(t) % +1 fort 0. Therefore, we have

t2 L 1
H N L 1 ; — .
tI]|lm h(t) = Hgn p(t)- “q(t) tI!|lm E+1 t=1;

hence nishing the proof. O

F.2 PROOF OFTHEOREMS5
F.2.1 (GONVERGENCE OF LOSS TO ZERO

We rst show that given the conditions on initialization, the training lbgs (t)) converges to zero.
Recall from Section 2.1 that

1
<
—~
X
—
-
~
~
<
=
__<.
=
~
.._<.
+
=
..<.
-
~

Vi

xXn
[SXTr]j(VI[Ul];j v 4[U il (Uil V|T+1[UI+1];J' VE[UL];j)
j=1

Y
[SX Trl; U v Uil
j=1 ke

Left-multiplying U," to both sides, we get

Y
U'vi= SXTr k6|u,jvk; (57)

WhereQ denotes the product using entry-wise multiplication
Now consider the rate of growth for the second power ofj ttie component otJ," v, :
E[UTv]- =2[U v [UTvi]i = 2[SX Tr]; v [UJv = g'[UTVO]- 2
gt Vil = P valitYy Vil = i e PR Vil = Gl Vil
for anyl®2 [L]. Thus, for any 2 [m], the second power of thjeth components iJ," v, grow at
the same rate for each layle? [L]. This means that the gap between any two different layers stays
constant for alt 0. Combining this with our conditions on initial directions, we have
Ui U ve@F=[Uvi@F UveO)Ff= [ F ?;
foranyj 2 [m],1 2 [L 1],andt O. This inequality also implies
UV Uive@®p+ 2 2. (58)
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Let us now consider the time derivativelof (t)). We have the following chain of upper bounds
on the time derivative:

%L( M)=r L O =k L ()
ke v L( ()K= kv (k3

2 (B)

@ T T
k UTvi k22 sxTr()

2
]
oL UV

_ X m T 2Y T 2
= T sXTrOR | U )

© X
2L 2 L1 jm_l [SX Tr(t)]JZ

= 2 2L ks Tr(t)k3

(d)
2L 1Smin (S)zsmin (X )zkr (t)kz;

= 2% 25 Isuin (S)?smin (X )?L( (1) (59)
where (a) used the fact thiag; (t)k3 k U, U v, (t)k3 because itis a projection onto a subspace,
andkU_ U v (H)k3 = kUTv; (t)k3 becausdJ TU_ = I, ; (b) is due to (57); (c) is due to (58);
and (d) used the fact thgt2 R™ 9andX T 2 RY " are matrices that have full column rank, so for

anyz 2 C", we can us&SX TzKo  Smin (S)Smin (X Ykzks wheresyin () denotes the minimum
singular value of a matrix.

From (59), we get
LC (@) L ( ©O)exp( 2 2% 25 150 (S)?Smin (X )21); (60)
sothatL( (t))! Oast!l

F.2.2 QHARACTERIZING THE LIMIT POINT

Now, we move on to characterize the limit points of the gradient ow. First, by de ning a “trans-
formed” version of the parameters(t) := U,"v,(t) and using (57), one can de ne an equivalent
system of ODEs:

Y
— T .
1= SX'r 61 k forl 2 [L];
1(0) = forl2[L 1], L(0)= O:

(61)

Using Lemma 4, it is straightforward to verify that the solution to (61) has the following form. For
oddL, we have
Zt
1(t) = pL L2jjt2 sxT () forl2[L 1J
2, (62)
L= Jj a L2J'J'LZSXTOr()d

Similarly, for evenL, the solution for (61) satis es
Y4

t
1(t) = pL L2 L2 gxT r()d forl2[L 1]
" (63)

(= a4 b2 b2 osxT r()d
0

Now that we know how the solutions look like, let us see how these relate to the linear coef cients
of the network. By Assumption 1, we have

X ¥
Fxi )= M) (vaizisive) = [Sx]; U],
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Y
_ ) ) _ yTeT _ yTeT
= [1] [Sl; x=x'S oy T XS
j=1 1=1
Here, we de ned := le[L] | 2 R™. Therefore, the linear coef cients of the network can be
writtenas ( (t)) = ST (t). From the solutions (62) and (63), we can write
¥ Z
= = it h SEG R osXT or()d
i=1 0

whereh = pt 1q , de ned in Lemma 4. By the convergence of the loss to zero (60), we have

limyr X (0 (t)) = y. Therefore,

XsT Ljbt n I I SXTer()d =y: (64)
| {z. ° }
Next, we will show that * is in fact the solution of the following optimization problem
minimize Qu; () subjectto XS T =y (65)
whereQ... :R™ ! Risanorm-like function de ned usingl, (t) := Ré h, H)d

.. = 2 2H Lt
R A O T

Note that the KKT conditions for (65) are
XsT =y; r Qu: ()= SXT

forsome 2 R". Itis clear from (64) that! satis es the rst condition (primal feasibility), so let
us check the other one. Through a straightforward calculation, we get

rQu, ()= 2%j2" ht b
Equating this witlSX T gives
2Ljj2L pto oLy —gx T
’hLl Ljj (b = L2jL2 gxT
' = Lt oh tZjL2osxT

R
Hence, by setting = 01 r( )d , ! satis es this condition as well. Also, B is invertible, we

can substitute = S Tz to (65) to get the last statement of the theorem. This nishes the proof.

F.3 PROOF OFCOROLLARY 5

The proof is a direct consequence of the fact that Assumption 1 holdsSwith U; = =
U_ = Iy for linear diagonal networks. Hence, the proof is the same as Corollary 2, proved in
Appendix D.2.

F.4 PROOF OFCOROLLARY 6

We start by showing the DFT of a real and even vector is also real and even. Suppose tRét
is real and even. First,

xd P— .
Fx) = ps e ——— 0 D
k=1
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xd . P— .
= pJ% [X]k coSs M + ﬁjl [X]k sin M
d, _ d d,_ d
k=1 k=1
= p]% [X]k cos M 2 R;
d d
k=1
forallj 2 [d]. To prove thaF x is even,foj =0;:::; bd73c, we have
1 X 2 (j+1)(k 1
[FxJj+2 = p= [xlkcos 20Dk 1)
dyey d
xd .
= p]% [X]k cos 2 (k 1) M
dyey d
xd .
- pli X« oS 2 (d ] - Dk 1)
dyoy
xd .
- pli X« coS 2 (d j dl)(k 1)
dyey
= [FX ]d j-
It is proved in Appendix D.3 that linear full-length convolutional networks € = k. = d)
satisfy Assumption 1 witls = d“=°F andU; = = U, = F ,whereF 2 CY s the matrix

of discrete Fourier transform badsJjx = pl—a exp( W) andF is the complex
conjugate of- .

The proof of convergence of loss to zero in Appendix F.2.1 is written for real matrices

Next, sincelU,'s are complex, we can write the system of ODE as (see (20) for its derivation)

L 1 Y
Fw,= dz FXr o1 T Wi (66)

Since all data pointg; and initializationw, (0) are real and even, we have thaX Tr is real and
even, and= w,(0) = Fw,(0)'s are real and even. By (66), we see that the time derivativeof
are also real and even. Thus, the paramete(s$) are all real and even for al 0. From this

observation, we can de ne(t) .= Fw,(t), := Fw,andS = d=" Re(F ), which are all real
by the even symmetry. Then, starting from (61), the proof goes through.

F.5 PROOF OFCOROLLARY 7
unitary matrixU 2 RY 9 j.e.,UTA;U's are diagonal matrices. From the deep matrix sensing
problem (13), we can computew, L s, Which gives the gradient ow dynamics &Y.
X n
Wy=r1 wlms= W, W/( L nADW - W, ;

wherer; = PA;;W1 Wi v; is the residual for thé-th sensor matrix. If we left-multiply T
and right-multiplyU to both sides, we get

X
ut™w,u= u'w,",u UuUTwu( I”l nUTA; L) UTW U UTw ] U: (67)
If UTW U is a diagonal matrix for ak 6 |, thenU "W, U is also a diagonal matrix. Note also

that, sincew,(0) = lq= UUT forl 2 [L 1], the producU TW,U is a diagonal matrix at
initialization. These observations imply that, (t)'s are all diagonalizable witkd forallt 0.
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Now, de ne v, (t) = eig(W,(t)), i.e., UTW, U = diag(v,). Also, letx; = eig(A;). Then, (67)
can be written as X v
n

rixi) Vi

w= kel

i=1
Therefore, this is equivalent to the regression problem with linear diagonal networks, initialized at
vi(0)= 1forl2[L 1]andv, (0) = 0. Given this equivalence, Corollary 7 can be implied from
Corollary 5.

G PRrROOF OFTHEOREMG

G.1 CONVERGENCE OF LOSS TO ZERO

We rst show that given the conditions on initialization, the training lbgs (t)) converges to zero.
SinceL =2 andM(x) = U, diag(s)U, , we can write the gradient ow dynamics from Section 2.1
as

vi= M(XXTr) (lx,;v2)= rU;diag(s)uU; va;

) o (68)
Vo= M(X 'r) (vi;lk,)= rUzdiag(s)U; vi;
wherer (t) = f(x; (t)) vy isthe residual of the data poift;y). From (68) we get
U'vi= rs UJvy Ujvo= rs Ufvg: (69)

Now consider the rate of growth for theth component ob) | v; squared:
d d
E[vallj =2[Ufva] [Ufva) = 2r[s][U{ va][U; V2] = a[uzTVz]JZ:

So foranyj 2 [m], [U{ v1]? and[U; v,]? grow at the same rate. This means that the gap between
the two layers stays constant for all 0. Combining this with our conditions on initial directions,

UL v [UZ v2(OIf = [UL Va0 [UZ v2(0)f
= Uival? PUgvelf %
for anyj 2 [m]andt 0. This inequality implies
[Uvi®F  [UZva(OIf + 2 2. (70)

Let us now consider the time derivativelof (t)). We have the following chain of upper bounds
on the time derivative:

%L( M)=r L @) )=k L( (K3

ke wL( )K= Kk va()k3

(a)
k UJw0K? r®? s Ulv)

m
= r(t)? i=1 [SIF[U{ va(D)]f
() X m
2 2 2
r(t) =1 [s];
= 22 ksk3L( (1);
where (a) used the fact thiat,(t)k3 k U,UJ vo(t)k3 because it is a projection onto a subspace,
andkU,UJ vy (1)k3 = kU] vo(t)k3 becausdJ]) U, = Iy, ; (b) is due to (69); (c) is due to (70).
From this, we get
L( (1) L ( (0)exp( 2 ? kskat): (71)

ThereforelL ( (t))! Oast!1
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G.2 CHARACTERIZING THE LIMIT POINT

Now, we move on to characterize the limit points of the gradient ow. First, note that any changes
made inv, over time are in the subspace spanned by the columbs.ofherefore, any component
in the initializationv|(0) = v, that is orthogonal to the column spacelhfstays constant.

So, we can focus on the evolution wf in the column space dfl;; this can be done by de ning
a “transformed” version of the parametergt) := U"v,(t) and using (69), one can de ne an
equivalent system of ODEs:

4= TS 2, 2= IS 13
10)= 15 20)= 2

where ; := Ufvy, »:= UJv,. Itis straightforward to verify that the solution to (72) has the
following form.

(72)

Z, Z,
1(t) = 1 cosh s r() d + 5, sinh s r()d ;
z° Z°, (73)

2t)= 1 sinh s r()d + , cosh s r()d
0 0

By the convergence of the loss to zero (71), we Hame, f (x; (t)) = y. Note thaff (x; (1))
can be written as

f(x; ()= M) (va(t);va(t) = vi(t)T M(Xx)va(t)
= vy(t)TUrdiag(s)U; va(t) = sT( 1(t)  2(t):

Therefore,
Dm f0G @)= lim sT( 1) 2(1)
. . z 1 z 1
= 2T (,?+ ,% cosh s r( )d sinh s r( )d
o 5 ) o 5 .
+( 1 2) cosh? s r() +sinh 2 s r()d
0 0
2, 2 Z, Z,
= 2T 1L 5 2_ sinh 2s r()d +( 1 ) cosh 2s r( )d
0 ( 0
x [P+ 2F '
= 2 [y —L5—Lsinh(2s] )+[ 1]l 2] cosh (2B} )
j=1
_y. (74)
R
where we de ned := 01 r( )d . Consider the function 7! asinh( )+ bcosh( ). Thisis a
strictly increasing function i& > jbj. Note also that
[+ 2 . .
——— [l 2k (75)

2

which holds with equality if and only iff 1]jj = j[ 2]jj. However, recall from our assumptions on
initialization that[ 1]j2 [ 2]j2 > 0, so (75) can only hold with strict inequality. Therefore,

[
[

X +[ o
o( )= s 5 —sinhs] )+[ ][ 2l cosh(2B]; )

j=1
is a strictly increasing (hence invertible) function because it is a sum sifrictly increasing func-
tion. Using thisg( ), (74) can be written as?g( ) = y, and by using the inverse gf we have
z 1
y

= 0r()d:gl—z: (76)
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Plugging (76) into (73), we get

w0

=Uglim 1O+ (I, UUf)vs

= U; . coshg'!l lz s + , sinh gt lz s + (lxy, UiUl)vy;
i ve()

= Uz lim o)+ (I UoUJ vz

= U, , sinh gt lz s + , coshgt lz s + (lx, UsUj)vy:

This nishes the proof.

H PROOF OFTHEOREM7

H.1 CONVERGENCE OF LOSS TO ZERO

We rst show that given the conditions on initialization, the training lbgs (t)) converges to zero.
Recall from (10) that the linear fully-connected network can be written as

fre(X; ©)= XTW1Wo W qwi:
From the de nition of the training losk, it is straightforward to check that the gradient ow dy-
namics read
Wy=r1 wl( )= W', W/ XTw/ W', Wl forl2[L 1]
Wi =1 o L( w)= WLTl WJ.TXTr;
W, (0) W, forl 2 [L 1]
wi(0) = wy;

(77)

wherer 2 R" is the residual vector satisfyirfgli = fw(Xi; ) Vi, as dened in Section 2.1.
From (77), we have

WIwW = W W = owTow T fw T, ow
W)W = Wiaa Wl = Wi W oqwir TXW Wy
foranyl 2 [L  2]. From this, we have
d d

aWFWI = awlﬂ W|T+1 ;

and thus
W) TWi(t) Wi (Wi (1)T

Wi(0)'W(0) Wit (O)Wi41 (0)7

(78)
2WTW AW W

foranyl 2 [L  2]. Similarly, we have

Wi ()WL 1 (1) we (w7

Wi 1(0)"WL 1(0) wi (0)w (0)7 (79)
= ZWJ 1W|_ 1 2W|_WE:

Let us now consider the time derivativelof (t)). We have the following chain of upper bounds
on the time derivative:

CSLCem= 1 L RO = kL L( @)K
@ L )K= K w (DK
= kW', W/ XTrks: (80)
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Note from (80) that ilw " , W is full-rank, its minimum singular value is positive, and one
can bound

KW, ;. WXTrks min(W.[ ;  W)kX Trka: (81)
We now prove thatthe matrw/," ; W/ is full-rank, and its minimum singular value is bounded
frombelowby - 1t (& D=2foranyt 0. To show this, it suf ces to show that
w', wiw;, w_, 2 2Lt 4, (82)
Now,
W, WIWIWiW, W

Dwr ., WIWWT+ 2WIw,  2WoW[ )W, W,

(b)
W, WIWIWLWSWoWs W

DwT, wIwswy+ 2wlw, 2Wawl)Pws W,

(b)
W WS (WsWJ)2PWs W

= W W )t b
where equalities marked in (a) used (78), and inequalities marked in (b) used the initialization con-
ditionsW "W, W3 W%, . Next, it follows from (79) that
W W )t = (wew! + 2w W Pwew) !
2L Z(WJ 1WL 1 WLWE)L 1

© 5 20 1
d-

where (c) used the assumption thidf” ;W 1w w/ | 4. This proves (82). Applying (82)
to (80) then gives

d

git( e®) kK W WX Trkg
mn (W[ 1 W[)ZkX Trk3
2L 2 L 1kX Trk%

(d)
2L 2 L 1 min (X )Zkrkg

= a2t min (X )ZL( fc(1));

where (d) used the fact thxt " is a full column rank matrix to apply a bound similar to (81). From
this, we get

L( (@) L ( eO)exp( 2 25 1 i (X)20);
hence provind ( «(t))! Oast!1l

H.2 CHARACTERIZING THE LIMIT POINT: | OCASE

Now, we move on to characterize the limit points of the gradient ow, for the “active regime” case
I 0. This part of the proof is motivated from the analysis in Ji & Telgarsky (2019a).

Letu; andv, be the top left and right singular vectors\&f|, forl 2 [L  1]. Note that sincéV
varies over time, the singular vectors and singular value also vary over time. Similagyblethe
largest singular value & . We will show that the linear coef cientsi ( ) = W1 WL 1w
alignwithu; as ! 0, andu; is in the subspace abw(X ) in the limit ! 0, hence proving
that i ( ¢) is the minimum'; norm solution in the limit ! 0.

First, note from (78) and (79) that if we take trace of both sides, we get

KWk k Wi k2= 2( W, 2 Wy o) forl2[L 2
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2
KWr_ikp  kwik; =a?( Wi o kwik3).
Summing the equations above for [,/ +1,..., L 1, we get
KWiKE  kwiks =a?( W, o kwikd). (83)

Next, consider the operator norms (i.e., the maximum singular values), denoted as kK k,, of the
matrices.

2 T T
lek2 ul+1Wl Wlul+1

@ 7 T 2T T T
- ul+1Wl+1Wl+1UZ+1 + « Ul+1(Wl Wl Wl+1Wl+1)u1+1

= kW, k] + Pul , (WIW, W W Du
kwmk2 a?kWIW, Wi W ke forl2[L 2],

Wr
— W/ wp ,—=—

KWi—1k; kwpk,

kWLk

O Wwg Wr 2
= wrw?t + « wl W Wi, W
kwrk, 0 Fkwik, kw Lk( LaWio1 WiWp)

kWLkg OszWE_le_l WLWLkg.

where (e) used (78) and (f) used (79). Summing the inequalities gives

kWLk

KWk kw k> 2%kWTW W, WL Kk 4
K, kwrk; o« & Wy k+1 Wi Ko. (84)
k=1

From (83) and (84), we get a bound on the gap between the second powers of the Frobenius norm
(or the ¢5 norm of singular values) and operator norm (or the maximum singular value s;) of W;:

Bt
kWi (ks kKW (DK a*( wli kwrkl) +a?  kKWIW, Wi W ko, (85)

k=l
which holds for any ¢ 0. The gap (85) implies that each Wy, for [ 2 [L 1], can be written as
Wi (1) = si®uitvi()” + 0(a?). (86)

Next, we show that the “adjacent” singular vectors Vv; and u; align with each otheras o ¥ 0. To
this end, we will get lower and upper bounds for a quantity VlTWl-s-lWl]jdVl-

T T — T\ T 2., T\py T 2,,T T
2 2 T
lek « W Wl Wl+1Wl+1 2
— 2 2 T
=5 « W Wi WiaWeo, o, &7)
T T — T T 2 T
VI W WV = V] (87 Ui Ul + W W 87 Ui U )V
— 2 T 2 T T 2 T
= s (Vi Uip1)” Vi Wi Wiy s Uil )V
2 T 2 2 2
SH—I(Vl Ul+1) + le+1kF le+1k2 . (88)
Combining (87), (88), and (85), we get
2 2 T 2 2
S 5l+1(Vl Ul+1) + « W W, Wl+1Wl+1 9 + kWH—lkF le+1k2

i
S (VTu)? + (Wit o kwrkd) +a? KWW, Wi W ke, (89)

k=1
Next, by a similar reasoning as (87), we have
st U W Wil sty o WIW Wi WY (90)
Combining (89) and (90) and dividing both sides by s? 1, We get
T 2 2 Gi
V(@) ua(@))” 1« 3 oD
si+1(1)
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fort 0, where

<
— 2 2
Gri= W/'W, Wi W+ (Wi kwikg) + KWW, Wi W k.
k=1
By a similar argument, we can also get

(Vi—1(t)"w(1))? s Gr_1

e 9
kwz, (K2 * kWL (K2 ©2)

where

GL,1 =2 nglWLfl WLWE -
From (91) and (92), we can note that as « ¥ 0, the inner product between the adjacent singular
vectors converges to 1, unless sg,...,sr—1,KwrK, also diminish to zero. So it is left to show
that the singular values do not diminish to zero as « ¥ 0. To this end, recall that we proved in the

previous subsection that
Jim XWi()  Wri(wr(t) =y.

A necessary condition for this to hold is that

kyk,
kXk,

byt
tlim kKWi(t) Wir_1(®)wr(t)k, tlim si(t) kwp (t)k, .
—00 —00
=1
This means that after converging to the global minimum solution of the problem (i.e., t ¥ 1),
the product of the singular values must be at least greater than some constant independent of a.
Moreover, we can see from (87) and (90) that the gap between singular values squared of adjacent
layers is bounded by O(a?), forallt  0; so the maximum singular values become closer and closer
to each other as v diminishes. This implies that
- kykL/ o kykl/L
lim lim si(t) 22 fori2[L 1, lim lim kwo()k, —22 .
a—0t—00 kX k;/ L

a—0 t—o0 ka;/L

Therefore, we have the alignment of singular vectors at convergence as « ¥ 0:

lim i (U(OTUL@F =1 forl2[L 2, lim tim Ve OTWL O

1. 93
a—0 t—o00 kWL(t)kg ©3)

So far, we saw from (86) that W (¢)’s become rank-1 matrices as « ¥ 0, and from (93) that the
top singular vectors align with each otheras¢ ¥ 1 and o ¥ 0. These imply that, as¢ ¥ 1 and
a ¥ 0, f( ¢)isascalar multiple of the Uy, the top left singular vector of W4 :

lim lim ( @) =c lim lim u.(?), (94)
a—0t—o0 a—0t—o0

for some ¢ 2 R.
In light of (94), it remains to take a close look at u; (¢). Note from the gradient flow dynamics of W1
that W1 is always a rank-1 matrix whose columns are in the row space of X, since X7'r 2 row(X).
This implies that, if we decompose W into two orthogonal components W~ and W1” so that the
columns in W1” are in row(X) and the columns in W - are in the orthogonal subspace row(X)=*,
we have

wit=0, W =w;.
That is, any component W-(0) orthogonal to row(X) remains unchanged for all ¢ 0, while the
component W1H changes by the gradient flow. Since we have

Wi () F- Wi (0) P Wi

the component in W that is orthogonal to row(>X) diminishes to zero as & ¥ 0. This means that
at the limit « ¥ 0, the columns of W are entirely from row(>X), which also means that

lim lim o ( () 2 row(X).
a—0t—o0
However, recall that there is only one unique global minimum of Xz = Yy in row(X): namely,

z = XT(XXT)~1y, the minimum ¢ norm solution. This finishes the proof.
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