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ABSTRACT

We study the implicit bias of gradient flow (i.e., gradient descent with infinitesi-
mal step size) on linear neural network training. We propose a tensor formulation
of neural networks that includes fully-connected, diagonal, and convolutional net-
works as special cases, and investigate the linear version of the formulation called
linear tensor networks. With this formulation, we can characterize the conver-
gence direction of the network parameters as singular vectors of a tensor defined
by the network. For L-layer linear tensor networks that are orthogonally decom-
posable, we show that gradient flow on separable classification finds a stationary
point of the `2/L max-margin problem in a “transformed” input space defined by
the network. For underdetermined regression, we prove that gradient flow finds a
global minimum which minimizes a norm-like function that interpolates between
weighted `1 and `2 norms in the transformed input space. Our theorems subsume
existing results in the literature while removing standard convergence assump-
tions. We also provide experiments that corroborate our analysis.

1 INTRODUCTION

Overparametrized neural networks have infinitely many solutions that achieve zero training error,
and such global minima have different generalization performance. Moreover, training a neural
network is a high-dimensional nonconvex problem, which is typically intractable to solve. However,
the success of deep learning indicates that first-order methods such as gradient descent or stochastic
gradient descent (GD/SGD) not only (a) succeed in finding global minima, but also (b) are biased
towards solutions that generalize well, which largely has remained a mystery in the literature.

To explain part (a) of the phenomenon, there is a growing literature studying the convergence of
GD/SGD on overparametrized neural networks (e.g., Du et al. (2018a;b); Allen-Zhu et al. (2018);
Zou et al. (2018); Jacot et al. (2018); Oymak & Soltanolkotabi (2020), and many more). There are
also convergence results that focus on linear networks, without nonlinear activations (Bartlett et al.,
2018; Arora et al., 2019a; Wu et al., 2019; Du & Hu, 2019; Hu et al., 2020). These results typically
focus on the convergence of loss, hence do not address which of the many global minima is reached.

Another line of results tackles part (b), by studying the implicit bias or regularization of gradient-
based methods on neural networks or related problems (Gunasekar et al., 2017; 2018a;b; Arora
et al., 2018; Soudry et al., 2018; Ji & Telgarsky, 2019a; Arora et al., 2019b; Woodworth et al., 2020;
Chizat & Bach, 2020; Gissin et al., 2020). These results have shown interesting progress that even
without explicit regularization terms in the training objective, algorithms such as GD applied on
neural networks have an implicit bias towards certain solutions among the many global minima.
However, in proving such results, many results rely on convergence assumptions such as global
convergence of loss to zero and/or directional convergence of parameters and gradients. Ideally,
such convergence assumptions should be removed because they cannot be tested a priori and there
are known examples where GD does not converge to global minima under certain initializations
(Bartlett et al., 2018; Arora et al., 2019a).

∗Based on work performed during internship at Google Research
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Figure 1: Gradient descent trajectories of linear coefficients of linear fully-connected, diagonal, and
convolutional networks on a regression task, initialized with different initial scales α = 0.01, 1.
Networks are initialized at the same coefficients (circles on purple lines), but follow different trajec-
tories due to implicit biases of networks induced from their architecture. The figures show that our
theoretical predictions on limit points (circles on yellow line, the set of global minima) agree with
the solution found by GD. For details of the experimental setup, see Section 6.

1.1 SUMMARY OF OUR CONTRIBUTIONS

We study the implicit bias of gradient flow (GD with infinitesimal step size) on linear neural net-
works. Following recent progress on this topic, we consider classification and regression problems
that have multiple solutions with zero training error. Our analyses apply to a general class of net-
works, and prove both convergence and implicit bias, providing a more complete characterization
of the algorithm trajectory without relying on convergence assumptions.

• We propose a general tensor formulation of nonlinear neural networks which includes many
network architectures considered in the literature. In this paper, we focus on the linear version
of this formulation (i.e., no nonlinear activations), called linear tensor networks.

• For linearly separable classification, we prove that linear tensor network parameters converge
in direction to singular vectors of a tensor defined by the network. As a corollary, we show that
linear fully-connected networks converge to the `2 max-margin solution (Ji & Telgarsky, 2020).

• For separable classification, we further show that if the linear tensor network is orthogonally
decomposable (Assumption 1), the gradient flow finds the `2/depth max-margin solution in the
singular value space, leading the parameters to converge to the top singular vectors of the tensor
when depth = 2. This theorem subsumes known results on linear convolutional networks and
diagonal networks proved in Gunasekar et al. (2018b), without using convergence assumptions.

• For underdetermined linear regression, we study the limit points of gradient flow on orthogo-
nally decomposable networks (Assumption 1), and provide a full characterization of the limit
points. This theorem covers results on deep matrix sensing (Arora et al., 2019b) as a special
case, and extends a similar recent result (Woodworth et al., 2020) to a broader class of networks.

• For underdetermined linear regression with deep linear fully-connected networks, we prove that
the network converges to the minimum `2 norm solutions as we scale the initialization to zero.

• Lastly, we present simple experiments that corroborate our theoretical analysis. Figure 1 shows
that our predictions of limit points match with solutions found by GD.

2 PROBLEM SETTINGS AND RELATED WORKS

We first define notation used in the paper. Given a positive integer a, let [a] := f1, . . . , ag. We use
Id to denote the d� d identity matrix. Given a matrixA, we use vec(A) to denote its vectorization,
i.e., the concatenation of all columns ofA. For two vectors a and b, let a
b be their tensor product,
a�b be their element-wise product, and a�k be the element-wise k-th power of a. Given an order-
L tensor A 2 Rk1×···×kL , we use [A]j1,...,jL

to denote the (j1, j2, . . . , jL)-th element of A, where
jl 2 [kl] for all l 2 [L]. In element indexing, we use � to denote all indices in the corresponding
dimension, and a : b to denote all indices from a to b. For example, for a matrixA, [A]·,4:6 denotes a
submatrix that consists of 4th–6th columns ofA. The square bracket notation for indexing overloads
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with [a] when a 2 N, but they will be distinguishable from the context. Since element indices start
from 1, we re-define the modulo operation a mod d := a � ba−1

d cd 2 [d] for a > 0. We use ekj
to denote the j-th stardard basis vector of the vector space Rk. Lastly, we define the multilinear
multiplication between a tensor and linear maps, which can be viewed as a generalization of left-
and right-multiplication on a matrix. Given a tensor A 2 Rk1×···×kL and linear maps Bl 2 Rpl×kl

for l 2 [L], we define the multilinear multiplication � between them as

A � (BT
1 ,B

T
2 , . . . ,B

T
L ) =

X
j1,...,jL

[A]j1,...,jL
(ek1
j1

 � � � 
 ekL

jL
) � (BT

1 , . . . ,B
T
L )

:=
X

j1,...,jL

[A]j1,...,jL
(B1e

k1
j1

 � � � 
BLe

kL
jL

) 2 Rp1×···×pL .

2.1 PROBLEM SETTINGS

We are given a dataset f(xi, yi)gni=1, where xi 2 Rd and yi 2 R. We let X 2 Rn×d and y 2
Rn be the data matrix and the label vector, respectively. We study binary classification and linear
regression in this paper, focusing on the settings where there exist many global solutions. For binary
classification, we assume yi 2 f�1g and that the data is separable: there exists a unit vector z and a
constant γ > 0 such that yixTi z � γ for all i 2 [n]. For regression, we consider the underdetermined
case (n � d) where there are many parameters z 2 Rd such that Xz = y. Throughout the paper,
we assume thatX has full row rank.

We use f(�; �) : Rd ! R to denote a neural network parametrized by �. Given the network
and the dataset, we consider minimizing the training loss L(�) :=

Pn
i=1 `(f(xi; �), yi) over �.

Following previous results (e.g., Lyu & Li (2020); Ji & Telgarsky (2020)), we use the exponential
loss `(ŷ, y) = exp(�ŷy) for classification problems. For regression, we use the squared error loss
`(ŷ, y) = 1

2 (ŷ�y)2. On the algorithm side, we minimizeL using gradient flow, which can be viewed
as GD with infinitesimal step size. The gradient flow dynamics is defined as d

dt� = �r�L(�).

2.2 RELATED WORKS

Gradient flow/descent in separable classification. For linear models f(x; z) = xTz with sep-
arable data, Soudry et al. (2018) show that the GD run on L drives kzk to 1, but z converges in
direction to the `2 max-margin classifier. The limit direction of z is aligned with the solution of

minimizez∈Rd kzk subject to yix
T
i z � 1 for i 2 [n], (1)

where the norm in the cost is the `2 norm. Nacson et al. (2019b;c); Gunasekar et al. (2018a); Ji &
Telgarsky (2019b;c) extend these results to other (stochastic) algorithms and non-separable settings.

Gunasekar et al. (2018b) study the same problem on linear neural networks and show that GD
exhibits different implicit bias depending on the architecture. The authors show that the linear
coefficients of the network converges in direction to the solution of (1) with different norms: `2 norm
for linear fully-connected networks, `2/L (quasi-)norm for diagonal networks, and DFT-domain
`2/L (quasi-)norm for convolutional networks with full-length filters. Here, L denotes the depth.
We note that Gunasekar et al. (2018b) assume that GD globally minimizes the loss, and the network
parameters and the gradient with respect to the linear coefficients converge in direction. Subsequent
results (Ji & Telgarsky, 2019a; 2020) remove such assumptions for linear fully-connected networks.

A recent line of results (Nacson et al., 2019a; Lyu & Li, 2020; Ji & Telgarsky, 2020) studies general
homogeneous models and show divergence of parameters to infinity, monotone increase of smoothed
margin, directional convergence and alignment of parameters (see Section 4 for details). Lyu & Li
(2020) also characterize the limit direction of parameters as the KKT point of a nonconvex max-
margin problem similar to (1), but this characterization does not provide useful insights for the
functions f(�; �) represented by specific architectures, because the formulation is in the parameter
space �. Also, these results require that gradient flow/descent has already reached 100% training
accuracy. Although we study a more restrictive set of networks (i.e., deep linear), we provide a
more complete characterization of the implicit bias for the functions f(�; �), without assuming
100% training accuracy.

Gradient flow/descent in linear regression. It is known that for linear models f(x; z) = xTz,
GD converges to the global minimum that is closest in `2 distance to the initialization (see e.g.,
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Gunasekar et al. (2018a)). However, relatively less is known for deep networks, even for linear
networks. This is partly because the parameters do not diverge to infinity, hence making limit points
highly dependent on the initialization; this dependency renders analysis difficult. A related problem
of matrix sensing aims to minimize

Pn
i=1(yi � hAi,W1 � � �WLi)2 over W1, . . . ,WL 2 Rd×d. It

is shown in Gunasekar et al. (2017); Arora et al. (2019b) that if the sensor matrices Ai commute
and we initialize allWl’s to αI , GD finds the minimum nuclear norm solution as α! 0.

Chizat et al. (2019) show that if a network is zero at initialization, and we scale the network output
by a factor of α!1, then the GD dynamics enters a “lazy regime” where the network behaves like
a first-order approximation at its initialization, as also seen in results studying kernel approximations
of neural networks and convergence of GD in the corresponding RKHS (e.g., Jacot et al. (2018)).

Woodworth et al. (2020) study linear regression with a diagonal network of the form
f(x;w+,w−) = xT (w�L+ � w�L− ), where w+ and w− are identically initialized w+(0) =
w−(0) = α �w. The authors show that the global minimum reached by GD minimizes a norm-
like function which interpolates between (weighted) `1 norm (α ! 0) and `2 norm (α ! 1). In
our paper, we consider a more general class of orthogonally decomposable networks, and obtain
similar results interpolating between weighted `1 and `2 norms. We also remark that our results
include the results in Arora et al. (2019b) as a special case, and we do not assume convergence to
global minima, as done in Gunasekar et al. (2017); Arora et al. (2019b); Woodworth et al. (2020).

3 TENSOR FORMULATION OF NEURAL NETWORKS

In this section, we present a general tensor formulation of neural networks. Given an input x 2 Rd,
the network uses a linear map M that maps x to an order-L tensor M(x) 2 Rk1×···×kL , whereL � 2.
Using parameters vl 2 Rkl and activation φ, the network computes its layers as the following:

H1(x) = φ (M(x) � (v1, Ik2 , . . . , IkL
)) 2 Rk2×···×kL ,

Hl(x) = φ
�
Hl−1(x) � (vl, Ikl+1

, . . . , IkL
)
�
2 Rkl+1×...,kL , for l = 2, . . . , L� 1,

f(x; �) = HL−1(x) � vL 2 R.
(2)

We use � to denote the collection of all parameters (v1, . . . ,vL). We call M(x) the data tensor.
Although this new formulation may look a bit odd in the first glance, it is general enough to capture
many network architectures considered in the literature, including fully-connected networks, diago-
nal networks, and circular convolutional networks. We formally define these architectures below.

Diagonal networks. An L-layer diagonal network is written as

fdiag(x; �diag) = φ(� � �φ(φ(x�w1)�w2) � � � �wL−1)TwL, (3)

wherewl 2 Rd for l 2 [L]. The representation of fdiag as the tensor form (2) is straightforward. Let
Mdiag(x) 2 Rd×···×d have [Mdiag(x)]j,j,...,j = [x]j , while all the remaining entries of Mdiag(x) are
set to zero. We can set vl = wl for all l, and M = Mdiag to verify that (2) and (3) are equivalent.

Circular convolutional networks. The tensor formulation (2) includes convolutional networks

fconv(x; �conv) = φ(� � �φ(φ(x ?w1) ?w2) � � � ?wL−1)TwL, (4)

wherewl 2 Rkl with kl � d and kL = d, and ? defines the circular convolution: for any a 2 Rd and
b 2 Rk (k � d), we have a ? b 2 Rd defined as [a ? b]i =

Pk
j=1[a](i+j−1) mod d[b]j , for i 2 [d].

Define Mconv(x) 2 Rk1×···×kL as [Mconv(x)]j1,j2,...,jL
= [x](

PL
l=1 jl−L+1) mod d for jl 2 [kl],

l 2 [L]. Setting vl = wl and M = Mconv, we can verify that (2) and (4) are identical.

Fully-connected networks. An L-layer fully-connected network is defined as

ffc(x; �fc) = φ(� � �φ(φ(xTW1)W2) � � �WL−1)wL, (5)

where Wl 2 Rdl×dl+1 for l 2 [L � 1] (we use d1 = d) and wL 2 RdL . One can represent ffc

as the tensor form (2) by defining parameters vl = vec(Wl) for l 2 [L � 1] and vL = wL, and
constructing the tensor Mfc(x) by a recursive “block diagonal” manner. For example, if L = 2, we
can define Mfc(x) 2 Rd1d2×d2 to be the Kronecker product of Id2 and x. For deeper networks, we
defer the full description of Mfc(x) to Appendix B.
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Our focus: linear tensor networks. Throughout this section, we have used the activation φ to
motivate our tensor formulation (2) for neural networks with nonlinear activations. For the remaining
of the paper, we study the case whose activation is linear, i.e., φ(t) = t. In this case,

f(x; �) = M(x) � (v1,v2, . . . ,vL). (6)

We will refer to (6) as linear tensor networks, where “linear” is to indicate that the activation is linear.
Note that as a function of parameters v1, . . . ,vL, f(x; �) is in fact multilinear. We also remark that
when depth L = 2, the data tensor M(x) is a k1�k2 matrix and the network formulation boils down
to f(x; �) = vT1 M(x)v2.

Since the data tensor M(x) is a linear function of x, the linear tensor network is also a linear function
of x. Thus, the output of the network can also be written as f(x; �) = xT�(�), where �(�) 2 Rd
denotes the linear coefficients computed as a function of the network parameters �. Since the linear
tensor network f(x; �) is linear in x, the expressive power of f is at best a linear model x 7! xTz.
However, even though the models have the same expressive power, their architectural differences
lead to different implicit biases in training, which is the focus of our investigation in this paper.
Studying separable classification and underdetermined regression is useful for highlighting such
biases because there are infinitely many coefficients that perfectly classify or fit the dataset.

For our linear tensor network, the evolution of the parameters vl via gradient flow reads

_vl = �rvl
L(�) = �

Xn

i=1
`′(f(xi; �), yi)M(xi) � (v1, . . . ,vl−1, Ikl

,vl+1, . . . ,vL)

= M(�XTr) � (v1, . . . ,vl−1, Ikl
,vl+1, . . . ,vL), 8l 2 [L],

where we initialize vl(0) = α�vl, for l 2 [L]. We refer to α and �vl as the initial scale and initial
direction, respectively. We note that we do not restrict �vl’s to be unit vectors, in order to allow
different scaling (at initialization) over different layers. The vector r 2 Rn is the residual vector,
and each component of r is defined as

[r]i = `′(f(xi; �), yi) =

�
�yi exp(�yif(xi; �)) for classification,
f(xi; �)� yi for regression.

(7)

4 IMPLICIT BIAS OF GRADIENT FLOW IN SEPARABLE CLASSIFICATION

In this section, we present our results on the implicit bias of gradient flow in binary classification
with linearly separable data. Recent papers (Lyu & Li, 2020; Ji & Telgarsky, 2020) on this separable
classification setup prove that after 100% training accuracy has been achieved by gradient flow
(along with other technical conditions), the parameters ofL-homogeneous models diverge to infinity,
while converging in direction that aligns with the direction of the negative gradient. Mathematically,

lim
t→∞

k�(t)k =1, lim
t→∞

�(t)
‖�(t)‖ = �∞, lim

t→∞
�(t)T∇ΘL(�(t))
‖�(t)‖‖∇ΘL(�(t))‖ = �1.

Since the linear tensor network satisfies the technical assumptions in the prior works, we apply these
results to our setting and develop a new characterization of the limit directions of the parameters.
Here, we present theorems on separable classification with general linear tensor networks. Corollar-
ies for specific networks are deferred to Appendix A.

4.1 LIMIT DIRECTIONS OF PARAMETERS ARE SINGULAR VECTORS

Consider the singular value decomposition (SVD) of a matrixA =
Pm
j=1 sj(uj 
 vj), where m is

the rank of A. Note that the tuples (uj ,vj , sj) are solutions to the system of equations su = Av
and sv = ATu. Lim (2005) generalizes this definition of singular vectors and singular values
to higher-order tensors: given an order-L tensor A 2 Rk1×···×kL , we define the singular vectors
u1,u2, . . . ,uL and singular value s to be the solution of the following system of equations:

sul = A � (u1, . . . ,ul−1, Ikl
,ul+1, . . . ,uL), for l 2 [L]. (8)

Using the definition of the singular vectors of tensors, we can characterize the limit direction of
parameters after reaching 100% training accuracy. In Appendix C, we prove the following:
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Theorem 1. Assume that the gradient flow satisfies L(�(t0)) < 1 for some t0 � 0 and XTr(t)

converges in direction, say u∞ := limt→∞
XT r(t)
‖XT r(t)‖2

. Then, v1, . . . ,vL converge to the singular
vectors of M(�u∞).

For this theorem, we make some convergence assumptions, because the network is fully general;
this is the only result where we assume convergence. It fact, for the special case of linear fully-
connected networks, the directional convergence assumption is not required, and the linear coef-
ficients �fc(�fc) converge in direction to the `2 max-margin classifier. We state this corollary in
Appendix A.1; this result also appears in Ji & Telgarsky (2020), but we provide an alternative proof.

4.2 LIMIT DIRECTIONS FOR ORTHOGONALLY DECOMPOSABLE NETWORKS

Admittedly, Theorem 1 is not a full characterization of the limit directions, because there are usu-
ally multiple solutions that satisfy (8). For example, in case of L = 2, the data tensor M(�u∞)
is a matrix and the number of possible limit directions (up to scaling) of (v1,v2) is at least the
rank of M(�u∞). Singular vectors of high order tensors are much less understood than the ma-
trix counterparts, and are much harder to deal with. Although their existence is implied from the
variational formulation (Lim, 2005), they are intractable to compute. Testing if a given number is
a singular value, approximating the corresponding singular vectors, and computing the best rank-1
approximation are all NP-hard (Hillar & Lim, 2013); let alone orthogonal decompositions.

Given this intractability, it might be reasonable to make some assumptions on the “structure” of
the data tensor M(x), so that they are easier to handle. The following assumption defines a class
of orthogonally decomposable data tensors, which includes linear diagonal networks and linear
full-length convolutional networks as special cases (for the proof, see Appendix D.2 and D.3).
Assumption 1. For the data tensor M(x) 2 Rk1×···×kL of a linear tensor network (6), there exist
a full column rank matrix S 2 Cm×d (d � m � minl kl) and matrices U1 2 Ck1×m, . . . ,UL 2
CkL×m such that UH

l Ul = Im for all l 2 [L], and the data tensor M(x) can be written as

M(x) =
Xm

j=1
[Sx]j([U1]·,j 
 [U2]·,j 
 � � � 
 [UL]·,j). (9)

In this assumption, we allowU1, . . . ,UL and S to be complex matrices, although M(x) and param-
eters vl stay real, as defined earlier. For a complex matrix A, we use A∗ to denote its entry-wise
complex conjugate, AT to denote its transpose (without conjugating), and AH to denote its conju-
gate transpose. In case of L = 2, Assumption 1 requires that the data tensor M(x) (now a matrix)
has singular value decomposition M(x) = U1 diag(Sx)UT

2 ; i.e., the left and right singular vectors
are independent of x, and the singular values are linear in x. Using Assumption 1, the following
theorem characterizes the limit directions.
Theorem 2. Suppose a linear tensor network satisfies Assumption 1. If there exists λ > 0 such that
the initial directions �v1, . . . , �vL of the network parameters satisfy j[UT

l �vl]j j2�j[UT
L �vL]j j2 � λ for

all l 2 [L � 1] and j 2 [m], then �(�(t)) converges in a direction that aligns with ST�∞, where
�∞ 2 Cm denotes a stationary point of the following optimization problem

minimize�∈Cm k�k2/L subject to yix
T
i S

T� � 1, 8i 2 [n].

If S is invertible, then �(�(t)) converges in a direction that aligns with a stationary point z∞ of

minimizez∈Rd kS−Tzk2/L subject to yix
T
i z � 1, 8i 2 [n].

Theorem 2 shows that the gradient flow finds sparse �∞ that minimizes the `2/L norm in the “sin-
gular value space,” where the data points xi are transformed into vectors Sxi consisting of singular
values of M(xi). Also, the proof of Theorem 2 reveals that in case of L = 2, the parameters vl(t) in
fact converge to the top singular vectors of the data tensor M(�XTr); thus, compared to Theorem 1,
we have a more complete characterization of “which” singular vectors to converge to.

The proof of Theorem 2 is in Appendix D. Since the orthogonal decomposition (Assumption 1) of
M(x) tells us that the singular vectors M(x) in U1, . . . ,UL are independent of x, we can transform
the network parameters vl to UT

l vl and show that the network behaves similar to a linear diagonal
network. This observation comes in handy in the characterization of limit directions.
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Remark 1 (Necessity of initialization assumptions). In order to remove the assumption that the loss
converges to zero, at least some condition on initialization is necessary, because there are exam-
ples showing non-convergence of gradient flow for certain initializations (Bartlett et al., 2018; Arora
et al., 2019a). In our theorems, we pose assumptions on initial directions �vl that are sufficient con-
ditions for the loss L(�(t)) to converge to zero. Although such sufficient conditions are “stronger”
than assuming L(�(t))! 0, they are useful because they can be easily checked a priori, i.e., before
running gradient flow. We note an important fact that in Theorems 2 and onwards, the conditions
on initialization are used solely to prove convergence of the loss to zero, and our statements on
the implicit bias hold whenever the loss converges to zero, even for initializations that do not
satisfy our conditions. In addition, we argue that our assumptions are not too restrictive; λ can be
arbitrarily small, so the conditions are satisfied with probability 1 if we set �vL = 0 and randomly
sample other �vl’s. Setting one layer to zero to prove convergence is also studied in Wu et al. (2019).
Lastly, the condition that �vL is “small” can be replaced with any layer; e.g., convergence still holds
if j[UT

l �vl]j j2 � j[UT
1 �v1]j j2 � λ for all l = 2, . . . , L and j 2 [m].

Remark 2 (Comparison to existing results). Theorem 2 leads to corollaries (stated in Appendix A.2)
on linear diagonal and full-length convolutional networks, showing that diagonal (or convolutional)
networks converge to the stationary point of the max-margin problem with respect to the `2/L norm
(or DFT-domain `2/L norm). Theorem 2 recovers the results in Gunasekar et al. (2018b) without
relying on assumptions such as directional convergence of parameters and gradients.
Remark 3 (Implications to architecture design). Theorem 2 shows that the gradient flow finds a
solution that is sparse in a “transformed” input space where all data points are transformed with S.
This implies something interesting about architecture design: if the sparsity of the solution under a
certain linear transformation T is needed, one can design a network using Assumption 1 by setting
S = T . Training such a network will give us a solution that has the desired sparsity property.

Other than Assumption 1, there is another setting where we can prove a full characterization of limit
directions: when there is one data point (n = 1) and the network is 2-layer (L = 2). This “extremely
overparametrized” case is motivated by an experimental paper (Zhang et al., 2019) which studies
generalization performance of different architectures when there is only one training data point.
Theorem 3. Suppose we have a 2-layer linear tensor network (6) and a single data point (x, y).
Consider the compact SVD M(x) = U1 diag(s)UT

2 , where U1 2 Rk1×m, U2 2 Rk2×m, and
s 2 Rm for m � minfk1, k2g. Let �∞ 2 Rm be a solution of the following optimization problem

minimize�∈Rm k�k1 subject to ysT� � 1.

Assume that there exists λ > 0 such that the initial directions �v1, �v2 of the network parameters
satisfy [UT

1 �v1]2j � [UT
2 �v2]2j � λ for all j 2 [m]. Then, v1 and v2 converge in direction to U1�

∞
1

and U2�
∞
2 , where j�∞1 j = j�∞2 j = j�∞j�1/2, and sign(�∞1 ) = sign(y)� sign(�∞2 ).

The proof of Theorem 3 can be found in Appendix E. Since �∞ is the minimum `1 norm solution in
the singular value space, the parameters v1 and v2 converge in direction to the top singular vectors.
We would like to emphasize that this theorem can be applied to any network architecture that can
be represented as a linear tensor network. Recall that the previous result (Gunasekar et al., 2018b)
only considers full-length filters (k1 = d), hence providing limited insights on networks with small
filters, e.g., k1 = 2. In light of this, we present a corollary in Appendix A.3 showing that linear
coefficients of convolutional networks converge in direction to a “filtered” version of x.

5 IMPLICIT BIAS OF GRADIENT FLOW IN UNDERDETERMINED REGRESSION

In Section 4, the limit directions of parameters we characterized do not depend on initialization.
This is due to the fact that the parameters diverge to infinity in separable classification problems, so
that the initialization becomes unimportant in the limit. This is not the case in regression setting,
because parameters do not diverge to infinity. As we show in this section, the limit points are closely
tied to initialization, and our analyses characterize the dependency between them.

5.1 LIMIT POINT CHARACTERIZATION FOR ORTHOGONALLY DECOMPOSABLE NETWORKS

For the orthogonally decomposable networks satisfying Assumption 1 with real S and Ul’s, we
consider how limit points of gradient flow change according to initialization. We consider a specific

7
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initialization scheme that, in the special case of diagonal networks, corresponds to setting wl(0) =
α �w for l 2 [L� 1] and wL(0) = 0. We use the following lemma on a relevant system of ODEs:
Lemma 4. Consider the system of ODEs, where p, q : R! R:

_p = pL−2q, _q = pL−1, p(0) = 1, q(0) = 0.

Then, the solutions pL(t) and qL(t) are continuous on their maximal interval of existence of the
form (�c, c) � R for some c 2 (0,1]. Define hL(t) = pL(t)L−1qL(t); then, hL(t) is odd and
strictly increasing, satisfying limt↑c hL(t) =1 and limt↓−c hL(t) = �1.

Using the function hL(t) from Lemma 4, we can obtain the following theorem that characterizes the
limit points as the minimizer of a norm-like function QL,α,�̄ among the global minima.
Theorem 5. Suppose a linear tensor network satisfies Assumption 1. Assume further that the matri-
cesU1, . . . ,UL and S from Assumption 1 are all real matrices. For some λ > 0, choose any vector
�� 2 Rm satisfying [ ��]2j � λ for all j 2 [m], and choose initial directions �vl = Ul �� for l 2 [L� 1]

and �vL = 0. Then, the linear coefficients �(�(t)) converge to ST�∞, where �∞ is the solution of

minimize�∈Rm QL,α,�̄(�) := α2
Xm

j=1
[ ��]2jHL

�
[�]j

αL|[�̄]j |L

�
subject to XST� = y,

where QL,α,�̄ : Rm ! R is a norm-like function defined using HL(t) :=
R t

0
h−1
L (τ)dτ . If S is

invertible, then �(�(t)) converges to the solution z∞ of

minimizez∈Rd QL,α,�̄(S−Tz) subject to Xz = y.

The proofs of Lemma 4 and Theorem 5 are deferred to Appendix F.
Remark 4 (Interpolation between `1 and `2). It can be checked that HL(t) grows like the absolute
value function if t is large, and grows like a quadratic function if t is close to zero. This means that

lim
α→0

QL,α,�̄(�) /
Xm

j=1

|[�]j |
|[�̄]j |L�2 , lim

α→∞
QL,α,�̄(�) /

Xm

j=1

[�]2j

[�̄]2L�2
j

,

so QL,α,�̄ interpolates between the weighted `1 and weighted `2 norms of �. Also, the weights
in the norm are dependent on the initialization direction �� unless L = 2 and α ! 0. In general,
QL,α,�̄ interpolates the standard `1 and `2 norms only if j[ ��]j j is the same for all j 2 [m]. This
result is similar to the observations made in Woodworth et al. (2020) which considers a diagonal
network with a “differential” structure f(x;w+,w−) = xT (w�L+ �w�L− ). In contrast, our results
apply to a more general class of networks, without the need to have the differential structure. In
Appendix A.4, we state corollaries of Theorem 5 for linear diagonal networks and linear full-length
convolutional networks with even data points. There, we also show that deep matrix sensing with
commutative sensor matrices (Arora et al., 2019b) is a special case of our setting.

Next, we present the regression counterpart of Theorem 3, for 2-layer linear tensor networks with
a single data point. For this extremely overparametrized setup, we can fully characterize the limit
points as functions of initialization v1(0) = α�v1 and v2(0) = α�v2, for any linear tensor networks
including linear convolutional networks with filter size smaller than input dimension.
Theorem 6. Suppose we have a 2-layer linear tensor network (6) and a single data point (x, y).
Consider the compact SVD M(x) = U1 diag(s)UT

2 , where U1 2 Rk1×m, U2 2 Rk2×m, and
s 2 Rm for m � minfk1, k2g. Assume that there exists λ > 0 such that the initial directions �v1, �v2

of the network parameters satisfy [UT
1 �v1]2j � [UT

2 �v2]2j � λ for all j 2 [m]. Then, gradient flow
converges to a global minimizer of the loss L, and v1(t) and v2(t) converge to the limit points:

v∞1 =αU1

�
UT

1 �v1 � cosh
�
g−1

� y
α2

�
s
�

+UT
2 �v2 � sinh

�
g−1

� y
α2

�
s
��

+α(Ik1 �U1U
T
1 )�v1,

v∞2 =αU2

�
UT

1 �v1 � sinh
�
g−1

� y
α2

�
s
�

+UT
2 �v2 � cosh

�
g−1

� y
α2

�
s
��

+α(Ik2 �U2U
T
2 )�v2,

where g−1 is the inverse of the following strictly increasing function

g(ν) =
Xm

j=1
[s]j

�
[UT

1 v̄1]2j +[UT
2 v̄2]2j

2 sinh(2[s]jν) + [UT
1 �v1]j [U

T
2 �v2]j cosh(2[s]jν)

�
.

The proof can be found in Appendix G. We can observe that as α ! 0, we have g−1
�
y
α2

�
! 1,

which results in exponentially faster growth of the sinh(�) and cosh(�) for the top singular values.
As a result, the top singular vectors dominate the limit points v∞1 and v∞2 as α ! 0, and they do
not depend on the initial directions �v1, �v2. Experiment results in Section 6 support this observation.
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5.2 IMPLICIT BIAS IN FULLY-CONNECTED NETWORKS: THE α! 0 LIMIT

We state our last theoretical element of this paper, which proves that the linear coefficients �fc(�fc)
of deep linear fully-connected networks converge to the minimum `2 norm solution as α ! 0. We
assume for simplicity that d1 = d2 = � � � = dL = d in this section, but we can extend it for dl � d
without too much difficulty. Recall ffc(x; �fc) = xTW1 � � �WL−1wL. We minimize the training
loss L with initializationWl(0) = α �Wl for l 2 [L� 1] and wL(0) = α �wL.

Theorem 7. Assume that initial directions �W1, . . . , �WL−1, �wL satisfy (1) �W T
l

�Wl � �Wl+1
�W T
l+1

for l 2 [L�2], and (2) there exists λ > 0 such that �W T
L−1

�WL−1� �wL �wT
L � λId. Then, the gradient

flow converges to a global minimum, and limα→0 limt→∞ �fc(�fc(t)) = XT (XXT )−1y.

The proof is presented in Appendix H. Theorem 7 shows that in the limit α ! 0, linear fully-
connected networks have bias towards the minimum `2 norm solution, regardless of the depth.
This is consistent with the results shown for classification. We also note that the convergence to
a global minimum holds for any α > 0, and our sufficient conditions ( �W T

l
�Wl � �Wl+1

�W T
l+1 and

�W T
L−1

�WL−1 � �wL �wT
L � λId) for global convergence is a generalization of the zero-asymmetric

initialization scheme ( �W1 = � � � = �WL−1 = Id and �wL = 0) proposed in Wu et al. (2019).

6 EXPERIMENTS

Regression. To fully visualize the trajectory of linear coefficients, we run simple experiments
with 2-layer linear fully-connected/diagonal/convolutional networks with a single 2-dimensional
data point (x, y) = ([1 2], 1). For this dataset, the minimum `2 norm solution (corresponding to
fully-connected networks) of the regression problem is [0.2 0.4], whereas the minimum `1 norm
solution (corresponding to diagonal) is [0 0.5] and the minimum DFT-domain `1 norm solution
(corresponding to convolutional) is [0.33 0.33]. We randomly pick four directions �z1, . . . �z4 2 R2,
and choose initial directions of the network parameters in a way that their linear coefficients at
initialization are exactly �(�(0)) = α2 �zj . With varying initial scales α 2 f0.01, 0.5, 1g, we run
GD with small step size η = 10−3 for large enough number of iterations T = 5�103. Figures 1 and
2 plot the trajectories of �(�) (appropriately clipped for visual clarity) as well as the predicted limit
points (Theorem 6). We observe that even though the networks start at the same linear coefficients
α2 �zj , they evolve differently due to different architectures. Note that the prediction of limit points
is accurate, and the solution found by GD is less dependent on initial directions when α is small.

Classification. It is shown in the existing works as well as in Section 4 that the limit directions
of linear coefficients are independent of the initialization. Is this also true in practice? To see this,
we run a set of toy experiments on classification with two data points (x1, y1) = ([1 2],+1) and
(x2, y2) = ([0 �3],�1). One can check that the max-margin classifiers for this problem are in
the same directions to the corresponding min-norm solutions in the regression problem above. We
use the same networks as in regression, and the same set of initial directions satisfying �(�(0)) =
α2 �zj . With initial scales α 2 f0.01, 0.5, 1g, we run GD with step size η = 5 � 10−4 for T =
2 � 106 iterations. All experiments reached L(�) . 10−5 at the end. The trajectories are plotted
in Figure 2 in the Appendix. We find that, in contrast to our theoretical characterization, the actual
coefficients are quite dependent on initialization, because we do not train the network all the way
to zero loss. This observation is also consistent with a recent analysis (Moroshko et al., 2020) for
diagonal networks, and suggests that understanding the behavior of iterates after a finite number of
steps is an important future work.

7 CONCLUSION

This paper studies the implicit bias of gradient flow on training linear tensor networks. Under a
general tensor formulation of linear networks, we provide theorems characterizing how the network
architectures and initializations affect the limit directions/points of gradient flow. Our work provides
a unified framework that connects multiple existing results on implicit bias of gradient flow as special
cases.
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Figure 2: Gradient descent trajectories of linear coefficients of linear fully-connected, diagonal, and
convolutional networks on a regression task with initial scale α = 0.5 (top left), and networks on
a classification task with initial scales α = 0.01, 0.5, 1 (rest). Networks are initialized at the same
coefficients (circles on purple lines), but follow different trajectories due to different implicit biases
of networks induced from their architecture. The top left figure shows that our theoretical predictions
on limit points (circles on yellow line, the set of global minima) agree with the solution found by
GD. For details of the experimental setup, please refer to Section 6.

A COROLLARIES ON SPECIFIC NETWORK ARCHITECTURES

We present corollaries obtained by specializing the theorems in the main text to specific network
architectures. We briefly review the linear neural network architectures studied in this section.

Linear fully-connected networks. An L-layer linear fully-connected network is defined as

ffc(x; �fc) = xTW1 � � �WL−1wL, (10)
whereWl 2 Rdl×dl+1 for l 2 [L� 1] (we use d1 = d) and wL 2 RdL .

Linear diagonal networks. An L-layer linear diagonal network is written as

fdiag(x; �diag) = (x�w1 � � � � �wL−1)TwL, (11)

where wl 2 Rd for l 2 [L].

Linear (circular) convolutional networks. An L-layer linear convolutional network is written as

fconv(x; �conv) = (� � � ((x ?w1) ?w2) � � � ?wL−1)TwL, (12)

where wl 2 Rkl with kl � d and kL = d, and ? defines the circular convolution: for any a 2 Rd
and b 2 Rk (k � d), we have a?b 2 Rd defined as [a?b]i =

Pk
j=1[a](i+j−1) mod d[b]j , for i 2 [d].

In case of kl = d for all l 2 [L], we refer to this network as full-length convolutional networks.

Deep matrix sensing. The deep matrix sensing problem considered in Gunasekar et al. (2017);
Arora et al. (2019b) aims to minimize the following problem

minimize
W1,...,WL∈Rd�d

Lms(W1 � � �WL) :=
Xn

i=1
(yi � hAi,W1 � � �WLi)2, (13)

where the sensor matrices A1, . . . ,An 2 Rd×d are symmetric. Following Gunasekar et al. (2017);
Arora et al. (2019b), we consider sensor matrices A1, . . . ,An 2 Rd×d that commute. To make the
problem underdetermined, we assume that n � d, andAi’s are linearly independent.
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A.1 COROLLARY OF THEOREM 1

Corollary 1. Consider an L-layer linear fully-connected network (10). If the training loss satisfies
L(�fc(t0)) < 1 for some t0 � 0, then �fc(�fc(t)) converges in a direction that aligns with the
solution of the following optimization problem

minimizez∈Rd kzk22 subject to yix
T
i z � 1, 8i 2 [n].

Corollary 1 shows that whenever the network separates the data correctly, the linear coefficients
�fc(�fc) convergence in direction to the `2 max-margin classifier. Note that this corollary does
not require the directional convergence of XTr, which is different from Theorem 1. In fact, this
corollary also appears in Ji & Telgarsky (2020), but we provide an alternative proof based on our
tensor formulation. The proof of Corollary 1 can be found in Appendix C.

A.2 COROLLARIES OF THEOREM 2

Corollary 2. Consider an L-layer linear diagonal network (11). If there exists λ > 0 such that the
initial directions �w1, . . . , �wL of the network parameters satisfy [ �wl]

2
j�[ �wL]2j � λ for all l 2 [L�1]

and j 2 [d], then �diag(�diag(t)) converges in a direction that aligns with a stationary point z∞ of

minimizez∈Rd kzk2/L subject to yix
T
i z � 1, 8i 2 [n].

For full-length convolutional networks, we define F 2 Cd×d to be the matrix of discrete Fourier
transform basis [F ]j,k = 1√

d
exp(�

√
−1·2π(j−1)(k−1)

d ). Note that F ∗ = F−1, and both F and F ∗

are symmetric, but not Hermitian.
Corollary 3. Consider an L-layer linear full-length convolutional network (12). If there exists
λ > 0 such that the initial directions �w1, . . . , �wL of the network parameters satisfy j[F �wl]j j2 �
j[F �wL]j j2 � λ for all l 2 [L � 1] and j 2 [d], then �conv(�conv(t)) converges in a direction that
aligns with a stationary point z∞ of

minimizez∈Rd kFzk2/L subject to yix
T
i z � 1, 8i 2 [n].

Corollary 2 shows that in the limit, linear diagonal network finds a sparse solution z that is a sta-
tionary point of the `2/L max-margin classification problem. Corollary 3 has a similar conclusion
except that the standard `2/L norm is replaced with DFT-domain `2/L norm. By specifying mild
conditions on initialization (see Remark 1), these corollaries remove the convergence assumptions
required in Gunasekar et al. (2018b). The proofs of Corollaries 2 and 3 are in Appendix D.

A.3 COROLLARY OF THEOREM 3

Recall that Theorem 3 can be applied to any 2-layer networks that can be represented as linear
tensor networks. Examples include the convolutional networks that are not full-length (i.e., filter
size k1 < d), which are not covered by the previous result (Gunasekar et al., 2018b). Here, we
present the characterization of convergence directions of �conv(�conv(t)) for small-filter cases:
k1 = 1 and k1 = 2.
Corollary 4. Consider a 2-layer linear convolutional network (12) with k1 = 1 and a single data
point (x, y). If there exists λ > 0 such that the initial directions �w1 and �w2 of the network parame-
ters satisfy kxk2 �v2

1 � (xT �v2)2 � kxk2 λ, then �conv(�conv(t)) converges in direction that aligns
with yx.

Consider a 2-layer linear convolutional network (12) with k1 = 2 and a single data point (x, y).
Let  �x := [[x]2 � � � [x]d [x]1], and �!x := [[x]d [x]1 � � � [x]d−1]. If there exists λ > 0
such that the initial directions �w1 and �w2 of the network parameters satisfy

([�v1]1 + [�v1]2)2 � ((x+ �x )T �v2)2

kxk22 + xT �x
� λ, and ([�v1]1 � [�v1]2)2 � ((x� �x )T �v2)2

kxk22 � xT
 �x
� λ,

then �conv(�conv(t)) converges in a direction that aligns with a filtered version of x:

lim
t→∞

�conv(�conv(t))

k�conv(�conv(t))k2
/
�

2yx+ y �x + y�!x if xT �x > 0,

2yx� y �x � y�!x if xT �x < 0.
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Corollary 4 shows that if the �lter size isk1 = 1 , then the limit direction of� conv (� conv ) is always
the`2 max-margin classi�er. Note that this is quite different from the casek1 = d which converges
to the DFT-domaiǹ1 max-margin classi�er. However, for1 < k 1 < d , it is dif�cult to characterize
the limit direction as the max-margin classi�er of some common norms. Rather, the limit directions
of � conv (� conv ) correspond to a “�ltered” version of the data point, and the weights of the �lter
depend on the data pointx . Fork1 = 2 , the �lter is a low-pass �lter if the autocorrelationx T  � x of
x is positive, and high-pass if the autocorrelation is negative. Fork1 > 2, the �lter weights are more
complicated to characterize in terms ofx , and the �lter length increases ask1 increases. We prove
Corollary 4 in Appendix E.

A.4 COROLLARIES OFTHEOREM 5

In this subsection, we apply Theorem 5 to linear diagonal networks, linear full-length convolutional
networks with even data, and deep matrix sensing. The proofs of the corollaries can be found in
Appendix F.
Corollary 5. Consider anL-layer linear diagonal network(11). For some� > 0, choose any vector
�w 2 Rd satisfying[ �w ]2j � � for all j 2 [d], and choose initial directions�w l = �w for l 2 [L � 1]
and �wL = 0. Then, the linear coef�cients� diag (� diag (t)) converge to the solutionz1 of

minimizez 2 Rd QL;�; �w (z) := � 2
X d

j =1
[ �w ]2j HL

�
[z ]j

� L j [ �w ]j jL

�
subject to Xz = y :

Recall that the original statement of Assumption 1 allows the matricesS; U1; : : : ; UL to be com-
plex, but Theorem 5 poses another assumption that these matrices are real. In applying Theo-
rem 2 to convolutional networks to get Corollary 3, we used the fact that the data tensorMconv (x )
of a linear full-length convolutional network satis�es Assumption 1 withS = d

L � 1
2 F and

U1 = � � � = UL = F � , whereF 2 Cd� d is the matrix of discrete Fourier transform basis
[F ]j;k = 1p

d
exp(�

p
� 1�2� ( j � 1)( k � 1)

d ) and F � is the complex conjugate ofF . Note that these
are complex matrices, so one cannot directly apply Theorem 5 to convolutional networks. However,
it turns out that if the data and initialization are even, we can derive a corollary for convolutional
networks.

We say that a vector isevenwhen it satis�es the even symmetry, as in even functions. More con-
cretely, a vectorx 2 Rd is even if[x ]j +2 = [ x ]d� j for j = 0 ; : : : ; bd� 3

2 c; i.e., the vector has the
even symmetry around its “origin”[x ]1. From the de�nition of the matrixF 2 Cd� d, it is straight-
forward to check that ifx is real and even, then its DFTF x is also real and even (see Appendix F.4
for details).
Corollary 6. Consider anL-layer linear full-length convolutional network(12). Assume that the
data pointsf x i gn

i =1 are all even. For some� > 0, choose any even vector�w satisfying[F �w ]2j � �
for all j 2 [d], and choose initial directions�w l = �w for l 2 [L � 1] and �wL = 0. Then, the linear
coef�cients� conv (� conv (t)) converge to the solutionz1 of

minimize
z 2 Rd ; even

QL;�; F �w (F z ) := � 2
X d

j =1
[F �w ]2j HL

�
[F z ]j

� L j [F �w ]j jL

�
subject to Xz = y :

Corollaries 5 and 6 show that the interpolation between minimum weighted`1 and weighted̀ 2 so-
lutions occurs for diagonal networks, and also for convolutional networks (in DFT domain, with the
restriction of even symmetry). The conclusion of Corollary 5 is similar to the results in Woodworth
et al. (2020), but the network architecture (11) considered in our corollary is a slightly different from
the “differential” networkf (x ; w+ ; w � ) = x T (w � L

+ � w � L
� ) in Woodworth et al. (2020).

As mentioned in the main text, we can actually show that the matrix sensing result in Arora et al.
(2019b) is a special case of our Theorem 5. Given any symmetric matrixM 2 Rd� d, let eig(M ) 2
Rd be thed-dimensional vector of eigenvalues ofM .
Corollary 7. Consider the depth-L deep matrix sensing problem(13). LetA i 's be symmetric, and
assumeA 1; : : : ; A n commute. For� > 0, choose initializationW l (0) = � I d for l 2 [L � 1] and
W L (0) = 0. Then, the productW L (t) � � � W 1(t) converge to the solutionM 1 of

minimize
M 2 Rd � d ; symmetric

QL;� (eig(M )) := � 2
X d

j =1
HL

�
[eig( M )] j

� L

�
subject to L ms(M ) = 0 :
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Under an additional assumption thatA i 's are positive semide�nite, Theorem 2 in Arora et al.
(2019b) studies the initializationW l (0) = � I d for all l 2 [L ], and shows that the limit point of
W L : : : W 1 converges to the minimum nuclear norm solution as� ! 0. We remove the assumption
of positive de�niteness ofA i 's and letW L (0) = 0, to show a complete characterization of the so-
lution found by gradient �ow, which interpolates between the minimum nuclear norm (i.e., Schatten
1-norm) solution (when� ! 0) and the minimum Frobenius norm (i.e., Schatten 2-norm) solution
(when� ! 1 ).

B TENSOR REPRESENTATION OF FULLY-CONNECTED NETWORKS

In Section 3, we only de�ned the data tensorMfc (x ) of fully-connected networks forL = 2 . Here,
we describe an iterative procedure constructing the data tensor for deep fully-connected networks.

We start withT1(x ) := x 2 Rd1 . Next, de�ne a block diagonal matrixT2(x ) 2 Rd1 d2 � d2 where
the “diagonals”[T2(x )]d1 ( j � 1)+1: d1 j;j = T1(x ) for j 2 [d2], while all the other entries are �lled
with 0. We continue this “block diagonal” procedure, as the following. Having de�nedTl � 1(x ) 2
Rd1 d2 ����� dl � 2 dl � 1 � dl � 1 ,

1. De�ne Tl (x ) 2 Rd1 d2 ����� dl � 1 dl � dl .

2. Set[Tl (x )] � ;:::; � ;d l � 1 ( j � 1)+1: dl � 1 j;j = Tl � 1(x ); 8j 2 [dl ].

3. Set all the remaining entries ofTl (x ) to zero.

We repeat this process forl = 2 ; : : : ; L , and setMfc (x ) := TL (x ). By de�ning the parameters
of the tensor formulationv l = vec(W l ) for l 2 [L � 1] and vL = wL , and using the tensor
M(x ) = Mfc (x ), we can check the equivalence of (2) and (5).

C PROOFS OFTHEOREM 1 AND COROLLARY 1

C.1 PROOF OFTHEOREM 1

The proof of Theorem 1 is outlined as follows. First, using the directional convergence and align-
ment results in Ji & Telgarsky (2020), we prove that each of our network parametersv l converges
in direction, and it aligns with its corresponding negative gradient�r v l L . Then, we prove that the

directions ofv l 's are actually singular vectors ofM(� u 1 ), whereu 1 := lim t !1
X T r ( t )

kX T r ( t )k2
.

Since a linear tensor network is anL-homogeneous polynomial ofv1; : : : ; vL , it satis�es the as-
sumptions required for Theorems 3.1 and 4.1 in Ji & Telgarsky (2020). These theorems imply that
if the gradient �ow satis�esL (� (t0)) < 1 for somet0 � 0, then� (t) converges in direction, and
the direction aligns with�r � L (� (t)) ; that is,

lim
t !1

k� (t)k2 = 1 ; lim
t !1

� (t)
k� (t)k2

= � 1 ; lim
t !1

� (t)T r � L (� (t))
k� (t)k2kr � L (� (t))k2

= � 1: (14)

For linear tensor networks (6), the parameter� is the concatenation of all parameter vectors
v1; : : : ; vL , so (14) holds for� =

�
vT

1 : : : vT
L

� T
.

Now, recall that by the de�nition of the linear tensor network, we have the following gradient �ow

_v l = M(� X T r ) � (v1; : : : ; v l � 1; I k l ; v l +1 ; : : : ; vL ):

Note that we can apply this to calculate the rate of growth ofkvl k2
2:

d
dt

kv l k2
2 = 2vT

l _v l = 2vT
l M(� X T r ) � (v1; : : : ; v l � 1; I k l ; v l +1 ; : : : ; vL )

= 2M(� X T r ) � (v1; : : : ; v l � 1; v l ; v l +1 ; : : : ; vL )

=
d
dt

kv l 0k2
2 for anyl0 2 [L ],
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so the rate at whichkv l k2
2 grows over time is the same for all layersl 2 [L ]. By the de�nition of �

and (14), we have

k� k2
2 =

LX

l =1

kv l k2
2 ! 1 ;

which then implies

lim
t !1

kv l (t)k2 ! 1 ; lim
t !1

k� (t)k2

kv l (t)k2
=

s
k� (t)k2

2

kv l (t)k2
2

=
p

L;

for all l 2 [L ]. Now, let I l be the set of indices that correspond to the components ofv l in � . It
follows from (14) that

lim
t !1

v l (t)
kv l (t)k2

= lim
t !1

v l (t)
k� (t)k2

k� (t)k2

kv l (t)k2
= lim

t !1

[� (t)]I l

k� (t)k2

k� (t)k2

kv l (t)k2
=

p
L[� 1 ]I l ;

thus showing the directional convergence ofv l 's.

Next, it follows from directional convergence of� and its alignment with�r � L (� ) (14) that
r � L (� ) also converges in direction, in the opposite direction of� . By comparing the components
in I l 's, we get thatr v l L (� ) converges in the opposite direction ofv l .

For anyl 2 [L ], now letv1
l := lim t !1

v l ( t )
kv l ( t )k2

. Also recall the assumption thatX T r (t) converges

in direction; let the unit vectoru 1 := lim t !1
X T r ( t )

kX T r ( t )k2
be the limit direction. By the gradient

�ow dynamics ofv l , we have

v1
l / �r v l L (� 1 ) = M(� u 1 ) � (v1

1 ; : : : ; v1
l � 1; I k l ; v1

l +1 ; : : : ; v1
L );

for all l 2 [L ]. Note that this equation has the same form as (8), the de�nition of singular vectors in
tensors. So this proves that(v1

1 ; : : : ; v1
L ) are singular vectors ofM(� u 1 ).

C.2 PROOF OFCOROLLARY 1

The proof proceeds as follows. First, we will show using the structure of the data tensorMfc that the
limit direction of linear coef�cients� fc (� 1

fc ) is proportional tocu 1 , wherec is a nonzero scalar
andu 1 is the limit direction ofX T r . Then, through a closer look atu 1 andc, we will prove
that � fc (� 1

fc ) is in fact a conic combination of the support vectors (i.e., the data points with the
minimum margins). Finally, we will compare� fc (� 1

fc ) with the KKT conditions of thè 2 max-
margin classi�cation problem and conclude that� fc (� 1

fc ) must be in the same direction as the`2
max-margin classi�er.

Due to the way how the data tensorMfc is constructed for fully-connected networks (Appendix B),
we always have

�r v 1 L (� fc ) = Mfc (� X T r ) � (I k1 ; v2; : : : ; vL ) 2 span

8
>><

>>:

2

6
6
4

X T r
0
...
0

3

7
7
5 ;

2

6
6
4

0
X T r

...
0

3

7
7
5 ; : : : ;

2

6
6
4

0
0
...

X T r

3

7
7
5

9
>>=

>>;
:

From Theorem 1, we have directional convergence ofv1 and its alignment with�r v 1 L (� fc ). This
means that the limit directionv1

1 , which is a �xed vector, must be also in the span of vectors written

above. This implies thatX T r must also converge to some direction, sayu 1 := lim t !1
X T r ( t )

kX T r ( t )k2
.

Now recall the de�nition ofv1 in case of the fully-connected network:v1 = vec(W 1). So, by
reshapingv1

1 into its originald1 � d2 matrix formW 1
1 , we have

W 1
1 / u 1 qT ;

for someq 2 Rd2 . This implies that the linear coef�cients� fc (� fc ) of the network converge in
direction to

� fc (� 1
fc ) = W 1

1 W 1
2 : : : W 1

L � 1w 1
L / u 1 qT W 1

2 : : : W 1
L � 1w 1

L = cu 1 ; (15)
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wherec is some nonzero real number.

Let us now take a closer look at the vectoru 1 , the limit direction ofX T r . Recall from Section 2.1
that for anyi 2 [n],

[r ]i = � yi exp(� yi f fc (x i ; � fc )) = � yi exp(� yi x T
i � fc (� fc )) ;

in case of classi�cation. Recall thatk� fc (� fc (t))k2 ! 1 while converging to a certain direction
� fc (� 1

fc ). This means that if

yj x T
j � fc (� 1

fc ) > y i x T
i � fc (� 1

fc )

for anyi; j 2 [n], then

lim
t !1

exp(� yj x T
j � fc (� fc (t)))

exp(� yi x T
i � fc (� fc (t)))

= 0 : (16)

Take i to be the index of any support vector, i.e., anyi that attains the minimumyi xT
i � fc (� 1

fc )
among all data points. Using such ani , the observation (16) implies thatlim t !1 [r (t)] j = 0 for any
x j that is not a support vector. Thus, by the argument above,u 1 can in fact be written as

u 1 = lim
t !1

P n
i =1 x i [r (t)] i

k
P n

i =1 x i [r (t)] i k2

= �
nX

i =1

� i yi x i ; (17)

where� i � 0 for all i 2 [n], and� j = 0 for x j 's that arenot support vectors. Combining (17) and
(15),

� fc (� 1
fc ) / � c

nX

i =1

� i yi x i : (18)

Recall that we do not yet know whetherc, introduced in (15), is positive or negative; we will now
show thatc has to be negative. From Lyu & Li (2020), we know thatL (� fc (t)) ! 0, which implies
thatyi x T

i � fc (� 1
fc ) > 0 for all i 2 [n]. However, ifc > 0, then (18) implies that� fc (� 1

fc ) is inside
a coneK de�ned as

K :=

(
nX

i =1

 i yi x i j  i � 0; 8i 2 [n]

)

:

Note that the polar cone ofK, denoted asK � , is

K � :=
�

z j � T z � 0; 8� 2 K
	

= f z j yi x T
i z � 0; 8i 2 [n]g:

It is known thatK \ K � = f 0g for any convex coneK and its polar coneK � . Therefore, having
c > 0 implies that� fc (� 1

fc ) 2 K n K � , which means that there exists somei 2 [n] such that
yi x T

i � fc (� 1
fc ) < 0; this contradicts the fact that the loss goes to zero ast ! 1 . Therefore,c in

(15) and (18) must be negative:

� fc (� 1
fc ) /

nX

i =1

� i yi x i ; (19)

for � i � 0 for all i 2 [n] and� j = 0 for all x j 's that are not suport vectors.

Finally, compare (19) with the KKT conditions of the following optimization problem:

minimize
z

kzk2
2 subject to yi x T

i z � 1; 8i 2 [n]:

The KKT conditions of this problem are

z =
nX

i =1

� i yi x i ; and � i � 0; � i (1 � yi x T
i z) = 0 for all i 2 [n];

where� 1; : : : ; � n are the dual variables. Note that this is (up to scaling) satis�ed by� fc (� 1
fc ) (19),

if we replace� i 's with � i 's. This �nishes the proof that� fc (� 1
fc ) is aligned with thè 2 max-margin

classi�er.
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D PROOFS OFTHEOREM 2 AND COROLLARIES 2 & 3

D.1 PROOF OFTHEOREM 2

D.1.1 CONVERGENCE OF LOSS TO ZERO

Since Theorem 2 does not assume the existence oft0 � 0 satisfyingL (� (t0)) < 1, we need to �rst
show that given the conditions on initialization, the training lossL (� (t)) converges to zero. Recall
from Section 2.1 that

_v l = �r v l L (� ) = M(� X T r ) � (v1; : : : ; v l � 1; I k l ; v l +1 ; : : : ; vL ):

Applying the structure (9) in Assumption 1, we get

_v l = M(� X T r ) � (v1; : : : ; v l � 1; I k l ; v l +1 ; : : : ; vL )

= �
mX

j =1

[SX T r ]j (vT
1 [U1]� ;j 
 � � � 
 vT

l � 1[U l � 1]� ;j 
 [U l ]� ;j 
 vT
l +1 [U l +1 ]� ;j 
 � � � 
 vT

L [UL ]� ;j )

= �
mX

j =1

[SX T r ]j

� Y

k6= l

[U T
k vk ]j

�
[U l ]� ;j :

Left-multiplying U H
l (the conjugate transpose ofU l ) to both sides, we get

U H
l _v l = � SX T r �

Y �

k6= l
U T

k vk ; (20)

where
Q � denotes the product using entry-wise multiplication� .

Now consider the rate of growth for the absolute value squared of thej -th component ofU T
l v l :

d
dt

j[U T
l v l ]j j2 =

d
dt

[U T
l v l ]j [U T

l v l ]�j =
d
dt

[U T
l v l ]j [U H

l v l ]j

= [ U T
l _v l ]j [U H

l v l ]j + [ U H
l _v l ]j [U T

l v l ]j

= 2 Re
�
[U H

l _v l ]j [U T
l v l ]j

�

= 2 Re
�

� [SX T r ]j
Y L

k=1
[U T

k vk ]j

�

=
d
dt

j[U T
l 0 v l 0]j j2 for anyl0 2 [L ],

so for anyj 2 [m], the squared absolute value of thej -th components inU T
l v l grow at the same

rate for each layerl 2 [L ]. This means that the gap between any two different layers stays constant
for all t � 0. Combining this with our conditions on initial directions, we have

j[U T
l v l (t)] j j2 � j [U T

L vL (t)] j j2 = j[U T
l v l (0)] j j2 � j [U T

L vL (0)] j j2

= � 2j[U T
l �v l ]j j2 � � 2j[U T

L �vL ]j j2 � � 2�;
(21)

for anyj 2 [m], l 2 [L � 1], andt � 0. This inequality also implies

j[U T
l v l (t)] j j2 � j [U T

L vL (t)] j j2 + � 2� � � 2�: (22)

Let us now consider the time derivative ofL (� (t)) . We have the following chain of upper bounds
on the time derivative:

d
dt

L (� (t)) = r � L (� (t))T _� (t) = �kr � L (� (t))k2
2

� �kr v L L (� (t))k2
2 = �k _vL (t)k2

2

(a)
� �k U H

L _vL (t)k2
2

(b)
= �



 SX T r (t) �

Y �

k6= L
U T

k vk (t)




2

2

= �
X m

j =1
j[SX T r (t)] j j2

Y

k6= L
j[U T

k vk (t)] j j2

18
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(c)
� � � 2L � 2� L � 1

X m

j =1
j[SX T r (t)] j j2

= � � 2L � 2� L � 1kSX T r (t)k2
2

(d)
� � � 2L � 2� L � 1smin (S)2kX T r (t)k2

2; (23)

where (a) used the fact thatk _vL (t)k2
2 � k UL U H

L _vL (t)k2
2 because it is a projection onto a subspace,

andkUL U H
L _vL (t)k2

2 = kU H
L _vL (t)k2

2 becauseU H
L UL = I kL ; (b) is due to (20); (c) is due to (22);

and (d) used the fact thatS 2 Cm � d is a matrix that has full column rank, so for anyz 2 Cd, we
can usekSzk2 � smin (S)kzk2 wheresmin (S) is the minimum singular value ofS.

We now prove a lower bound on the quantitykX T r (t)k2
2. Recall from Section 2.1 the de�nition of

[r (t)] i = � yi exp(� yi f (x i ; � (t))) for classi�cation problems. Also, recall the assumption that the
dataset is linearly separable, which means that there exists a unit vectorz 2 Rd such that

yi x T
i z �  > 0

holds for alli 2 [n], for some > 0. Using these,

kX T r (t)k2
2 = k

X n

i =1
yi x i exp(� yi f (x i ; � (t))) k2

2

� [zT
X n

i =1
yi x i exp(� yi f (x i ; � (t)))] 2

�  2[
X n

i =1
exp(� yi f (x i ; � (t)))] 2 =  2L (� (t))2:

Combining this with (23), we get

d
dt

L (� (t)) � � � 2L � 2� L � 1smin (S)2 2L (� (t))2;

which implies

L (� (t)) �
L (� (0))

1 + � 2L � 2� L � 1smin (S)2 2t
:

Therefore,L (� (t)) ! 0 ast ! 1 .

D.1.2 CHARACTERIZING THE LIMIT DIRECTION

Since we proved thatL (� (t)) ! 0, the argument in the proof of Theorem 1 applies to this case,
and shows that the parametersv l converge in direction and align with_v l = �r v l L (� ). Let v1

l :=
lim t !1

v l ( t )
kv l ( t )k2

be the limit direction ofv l .

The remaining steps of the proof are as follows. We �rst prove thatSX T r (t) converges in direc-
tion u 1 . Using thisu 1 , we derive a number of conditions that has to be satis�ed by the limit
directions of the parameters. Finally, we compare these conditions with the KKT conditions of the
minimization problem, and �nish the proof.

By Assumption 1, we have

f (x ; � ) = M(x ) � (v1; : : : ; vL ) =
mX

j =1

[Sx ]j
LY

l =1

[U T
l v l ]j

=
� mX

j =1

� LY

l =1

[U T
l v l ]j

�
[S]j; �

�
x = x T ST

� Y �

l 2 [L ]
U T

l v l

�
= x T ST � :

Here, we de�ned� :=
Q �

l 2 [L ] U T
l v l 2 Cm . Since the linear coef�cients must be real, we have

ST � 2 Rd for any realv l 's. Sincev l 's converge in direction,� also converges in direction, to
� 1 :=

Q �
l 2 [L ] U T

l v1
l . So we can express the limit direction of� (� ) as

� (� 1 ) / ST
� Y �

l 2 [L ]
U T

l v1
l

�
= ST � 1 : (24)
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From (20) and alignment ofv l and _v l , we have

lim
t !1

U H
l v l (t) = lim

t !1
(U T

l v l (t)) � / � lim
t !1

SX T r (t) �
Y �

k6= l
U T

k vk (t): (25)

Since all vectorsU T
l v l (t) converge in direction, the termSX T r (t) should also converge in direc-

tion. Let u 1 := lim t !1
SX T r ( t )

kSX T r ( t )k2
. One can use the same argument as in Appendix C.2, more

speci�cally (16) and (17), to show thatu 1 can be written as

u 1 = lim
t !1

S
P n

i =1 x i [r (t)] i

kS
P n

i =1 x i [r (t)] i k2

= � S
nX

i =1

� i yi x i ; (26)

where� i � 0 for all i 2 [n], and� j = 0 for x j 's that arenot support vectors, i.e., those satisfying
yj x T

j ST � 1 > min i 2 [n ] yi x T
i ST � 1 .

Usingu 1 , we can rewrite (25) as

U H
l v1

l / � u 1 �
Y �

k6= l
U T

k v1
k ;

for all l 2 [L ]. Element-wise multiplyingU T
l v1

l to both sides gives

U T
l v1

l � U H
l v1

l = jU T
l v1

l j � 2 / � u 1 �
Y �

k2 [L ]
U T

k v1
k = � u 1 � � 1 ; (27)

wherea � b denotes element-wiseb-th power of the vectora. Since the LHS of (27) is a positive real
number, we have

arg(j[U T
l v l ]j j2) = 0 = arg([ � u 1 ]j ) + arg([ � 1 ]j ); (28)

so using this, (27) becomes
jU T

l v1
l j � 2 / j u 1 j � j � 1 j: (29)

Now element-wise multiply (29) for alll 2 [L ], then we get

j� 1 j � 2 / j u 1 j � L � j � 1 j � L : (30)

A close look at (30) reveals that ifL � 2, � 1 andu 1 must satisfy that

j[� 1 ]j j 6= 0 = ) j [u 1 ]j j / j [� 1 ]j j
2
L � 1; (31)

for all j 2 [m]. There is another condition that has to be satis�ed whenL = 2 :

j[� 1 ]j j = 0 ; j[� 1 ]j 0j 6= 0 = ) j [u 1 ]j j � j [u 1 ]j 0j; (32)

for anyj; j 0 2 [m]; let us prove why. First, consider the time derivative of[� ]j = [ U T
1 v1]j [U T

2 v2]j .

d
dt

[� (t)] j = [ U T
1 v1(t)] j

d
dt

[U T
2 v2(t)] j + [ U T

2 v2(t)] j
d
dt

[U T
1 v1(t)] j

(a)
= � [SX T r (t)] �

j (j[U T
1 v1(t)] j j2 + j[U T

2 v2(t)] j j2); (33)

where (a) used (20). Now consider
�
� d

dt [� (t)] j
�
�

kSX T r (t)k2j[� (t)] j j
=

j[SX T r (t)] j j
kSX T r (t)k2

j[U T
1 v1(t)] j j2 + j[U T

2 v2(t)] j j2

j[� (t)] j j
: (34)

We want to compare this quantity for differentj; j 0 2 [m]. Before we do that, we take a look at the
last term in the RHS of (34). Recall from (21) that

j[U T
1 v1(t)] j j2 = j[U T

2 v2(t)] j j2 + j[U T
1 v1(0)] j j2 � j [U T

2 v2(0)] j j2: (35)

For simplicity, let � j := j[U T
1 v1(0)] j j2 � j [U T

2 v2(0)] j j2, which is a positive number due to our
assumption on initialization. Then, we can use (35) andj[� (t)] j j = j[U T

1 v1(t)] j jj [U T
2 v2(t)] j j to

show that

j[U T
1 v1(t)] j j2 + j[U T

2 v2(t)] j j2

j[� (t)] j j
=

2j[U T
2 v2(t)] j j2 + � j

j[U T
2 v2(t)] j j

p
j[U T

2 v2(t)] j j2 + � j
� 2;
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lim
t !1

j[U T
1 v1(t)] j j2 + j[U T

2 v2(t)] j j2

j[� (t)] j j
= 2 if lim

t !1
j[U T

2 v2(t)] j j = 1 :

Recall that we want to prove that (32) should necessarily hold. For the sake of contradiction, suppose
that there existsj 2 [m] that satis�esj[� 1 ]j j = 0 but j[u 1 ]j j > j[u 1 ]j 0j, for somej 0 2 [m]
satisfyingj[� 1 ]j 0j 6= 0 . Note that havingj[� 1 ]j j = 0 andj[� 1 ]j 0j 6= 0 implies thatj[� (t)] j 0j ! 1
and j [� ( t )] j j

j [� ( t )] j 0j ! 0. We now want to compare the ratio of (34) forj andj 0. First, note that

lim
t !1

j[SX T r (t)] j j=kSX T r (t)k2

j[SX T r (t)] j 0j=kSX T r (t)k2
=

j[u 1 ]j j
j[u 1 ]j 0j

> 1: (36)

Next, using j [� ( t )] j j
j [� ( t )] j 0j ! 0 and the fact thatx 7! 2x 2 + �

x
p

x 2 + �
is a decreasing function ofx � 0 for any

� > 0, we have

(j[U T
1 v1(t)] j j2 + j[U T

2 v2(t)] j j2)=j[� (t)] j j
(j[U T

1 v1(t)] j 0j2 + j[U T
2 v2(t)] j 0j2))=j[� (t)] j 0j

� 1; (37)

for anyt � t0, whent0 is large enough. Combining (36) and (37) to compare the ratio of (34) forj
andj 0, we get that there exists somet0

0 � 0 such that for anyt � t0
0, we have

�
� d

dt [� (t)] j
�
� =j[� (t)] j j

�
� d

dt [� (t)] j 0

�
� =j[� (t)] j 0j

> 1: (38)

This implies that the ratio of the absolute value of time derivative of[� (t)] j to the absolute value
of current value of[� (t)] j is strictly bigger than that of[� (t)] j 0. Moreover, we saw in (33) that the
phase of d

dt [� (t)] j converges to that of� [u 1 ]�j . Since this holds for allt � t0
0, (38) results in a

growth ofj[� (t)] j j that is exponentially faster than that ofj[� (t)] j 0j, so[� (t)] j becomes a dominant
component in� (t) ast ! 1 . This contradicts that[� 1 ]j = 0 , hence the condition (32) has to be
satis�ed.

So far, we have characterized a number of conditions (26), (28), (31), (32) that have to be satis�ed
by the limit directionsu 1 and� 1 of X T r and� . We now consider the following optimization
problem and prove that these conditions are in fact the KKT conditions of the optimization problem.
Consider

minimize
� 2 Cm

k� k2=L subject to yi x T
i ST � � 1; 8i 2 [n]: (39)

The KKT conditions of this problem are

@k� k2=L 3 S �
nX

i =1

� i yi x i ; and � i � 0; � i (1 � yi x T
i ST � ) = 0 for all i 2 [n];

where� 1; : : : ; � n are the dual variables. The symbol@k�k2=L denotes the (local) subdifferential of
the`2=L norm1, which can be written as

@k� k1 = f u 2 Cm j j [u ]j j � 1 for all j 2 [m]; and[� ]j 6= 0 = ) [u ]j = exp(
p

� 1 arg([� ]j ))g;

if L = 2 (in this case@k� k1 is the global subdifferential), and

@k� k2=L =
�

u 2 Cm j [� ]j 6= 0 = ) [u ]j =
2
L

j[� ]j j
2
L � 1 exp(

p
� 1 arg([� ]j ))

�
;

if L > 2. By replacing� i 's with � i 's de�ned in (26), we can check from (26), (28), (31), (32) that the
that� 1 andu 1 satisfy the KKT conditions up to scaling. Therefore, by (24),� (� (t)) converges in
direction aligned withST � 1 , where� 1 is again aligned with a stationary point (global minimum
in case ofL = 2 ) of the optimization problem (39).

If S is invertible, we can getS � T � (� 1 ) / � 1 . Plugging this into the optimization problem (39)
gives the last statement of the theorem.

1the de�nition of subdifferentials used here is taken from Gunasekar et al. (2018b).
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D.2 PROOF OFCOROLLARY 2

It suf�ces to prove that linear diagonal networks satisfy Assumption 1, withS = I d. The proof
is very straightforward, sinceMdiag (x ) 2 Rd����� d has[Mdiag (x )] j;j;:::;j = [ x ]j while all the
remaining entries are zero. It is straightforward to verify thatMdiag (x ) satis�es Assumption 1 with
S = U1 = � � � = UL = I d. A direct substitution into Theorem 2 gives the corollary.

D.3 PROOF OFCOROLLARY 3

For full-length convolutional networks (k1 = � � � = kL = d), we will prove that they satisfy
Assumption 1 withS = d

L � 1
2 F andU1 = � � � = UL = F � , whereF 2 Cd� d is the matrix

of discrete Fourier transform basis[F ]j;k = 1p
d

exp(�
p

� 1�2� ( j � 1)( k � 1)
d ) andF � is the complex

conjugate ofF .

For simplicity of notation, de�ne = exp( �
p

� 1�2�
d ). With such matricesS andU1; : : : ; UL , we

can writeM (x ) as

M(x ) =
dX

j =1

[Sx ]j ([U1]� ;j 
 [U2]� ;j 
 � � � 
 [UL ]� ;j )

=
dX

j =1

"

d
L � 2

2

dX

k=1

[x ]k  ( j � 1)( k � 1)

#

2

6
6
6
6
6
4

 0=
p

d
 � ( j � 1) =

p
d

 � 2( j � 1) =
p

d
...

 � (d� 1)( j � 1) =
p

d

3

7
7
7
7
7
5


 L

;

wherea 
 L denotes theL-times tensor product ofa. We will show thatM(x ) = Mconv (x ).

For anyj 1; : : : ; j L 2 [d],

[M(x )] j 1 ;:::;j L =
1
d

dX

l =1

"
dX

k=1

[x ]k  ( l � 1)( k � 1)

#

 � ( l � 1)(
P L

q=1 j q � L )

=
1
d

dX

k=1

[x ]k
dX

l =1

 ( l � 1)( k � 1�
P L

q=1 j q + L ) :

Recall that
dX

l =1

 ( l � 1)( k � 1�
P L

q=1 j q + L ) =

(
d if k � 1 �

P L
q=1 j q + L is a multiple ofd;

0 otherwise:

Using this, we have

[M(x )] j 1 ;:::;j L =
1
d

dX

k=1

[x ]k
dX

l =1

 ( l � 1)( k � 1�
P L

q=1 j q + L )

= [ x ]P L
q=1 j q � L +1 mod d = [ Mconv (x )] j 1 ;:::;j L :

Hence, linear full-length convolutional networks satisfy Assumption 1 withS = d
L � 1

2 F . A direct
substitution into Theorem 2 and then using the fact thatj[F z ]j j = j[F � z]j j for any real vector
z 2 Rd gives the corollary.

E PROOFS OFTHEOREM 3 AND COROLLARY 4

E.1 PROOF OFTHEOREM 3

E.1.1 CONVERGENCE OF LOSS TO ZERO

Since Theorem 3 does not assume the existence oft0 � 0 satisfyingL (� (t0)) < 1, we need to �rst
show that given the conditions on initialization, the training lossL (� (t)) converges to zero. Since
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L = 2 andM(x ) = U1 diag(s)U T
2 , we can write the gradient �ow dynamics from Section 2.1 as

_v1 = � M(X T r ) � (I k1 ; v2) = � r U1 diag(s)U T
2 v2;

_v2 = � M(X T r ) � (v1; I k2 ) = � r U2 diag(s)U T
1 v1;

(40)

wherer (t) = � y exp(� yf (x ; � (t))) is the residual of the data point(x ; y). From (40) we get

U T
l _v1 = � r s � U T

2 v2; U T
2 _v2 = � r s � U T

1 v1: (41)

Now consider the rate of growth for thej -th component ofU T
1 v1 squared:

d
dt

[U T
1 v1]2j = 2[U T

1 v1]j [U T
1 _v1]j = � 2r [s]j [U T

1 v1]j [U T
2 v2]j =

d
dt

[U T
2 v2]2j : (42)

So for anyj 2 [m], [U T
1 v1]2j and[U T

2 v2]2j grow at the same rate. This means that the gap between
the two layers stays constant for allt � 0. Combining this with our conditions on initial directions,

[U T
1 v1(t)]2

j � [U T
2 v2(t)]2

j = [ U T
1 v1(0)]2

j � [U T
2 v2(0)]2

j

= � 2[U T
1 �v1]2j � � 2[U T

2 �v2]2j � � 2�;
(43)

for anyj 2 [m] andt � 0. This inequality implies

[U T
1 v1(t)]2

j � [U T
2 v2(t)]2

j + � 2� � � 2�: (44)

Let us now consider the time derivative ofL (� (t)) . We have the following chain of upper bounds
on the time derivative:

d
dt

L (� (t)) = r � L (� (t))T _� (t) = �kr � L (� (t))k2
2

� �kr v 2 L (� (t))k2
2 = �k _v2(t)k2

2

(a)
� �k U T

2 _v2(t)k2
2

(b)
= � r (t)2


 s � U T

1 v1(t)

 2

2

= � r (t)2
X m

j =1
[s]2j [U T

1 v1(t)]2
j

(c)
� � � 2�r (t)2

X m

j =1
[s]2j

= � � 2� ksk2
2L (� (t))2;

where (a) used the fact thatk _v2(t)k2
2 � k U2U T

2 _v2(t)k2
2 because it is a projection onto a subspace,

andkU2U T
2 _vL (t)k2

2 = kU T
2 _v2(t)k2

2 becauseU T
2 U2 = I k2 ; (b) is due to (41); (c) is due to (44).

From this, we get

L (� (t)) �
L (� (0))

1 + � 2� ksk2
2t

:

Therefore,L (� (t)) ! 0 ast ! 1 .

E.1.2 CHARACTERIZING THE LIMIT DIRECTION

Since we proved thatL (� (t)) ! 0, the argument in the proof of Theorem 1 applies to this case,
and shows that the parametersv l converge in direction and align with_v l = �r v l L (� ). Let v1

l :=
lim t !1

v l ( t )
kv l ( t )k2

be the limit direction ofv l . As done in the proof of Theorem 2, de�ne� (t) =

U T
1 v1(t) � U T

2 v2(t) and� 1 = U T
1 v1

1 � U T
2 v1

2 .

It follows from r (t) = � y exp(� yf (x ; � (t))) that we havesign(r (t)) = � sign(y). Using this,
(41), and alignment ofv l and _v l , we have

U T
1 v1

1 / ys � U T
2 v1

2 ; U T
2 v1

2 / ys � U T
1 v1

1 : (45)

Element-wise multiplyingU T
l v1

l to both sides gives

(U T
1 v1

1 ) � 2 / ys � � 1 ; (U T
2 v1

2 ) � 2 / ys � � 1 : (46)
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Since the LHSs are positive ands is positive, the following equations have to be satis�ed for all
j 2 [m]:

sign(y) = sign([ � 1 ]j ): (47)

Now, multiplying both sides of the two equations (46), we get

(� 1 ) � 2 / s� 2 � (� 1 ) � 2: (48)

From (48),� 1 must satisfy that

[� 1 ]j 6= 0 ; [� 1 ]j 0 6= 0 = ) j [s]j j = j[s]j 0j; (49)

for all j; j 0 2 [m]. As in the proof of Theorem 2, there is another condition that has to be satis�ed:

[� 1 ]j = 0 ; [� 1 ]j 0 6= 0 = ) j [s]j j � j [s]j 0j; (50)

for anyj; j 0 2 [m]; let us prove why. First, consider the time derivative of[� ]j = [ U T
1 v1]j [U T

2 v2]j .

d
dt

[� (t)] j = [ U T
1 v1(t)] j

d
dt

[U T
2 v2(t)] j + [ U T

2 v2(t)] j
d
dt

[U T
1 v1(t)] j

(a)
= � r (t)[s]j ([U T

1 v1(t)]2
j + [ U T

2 v2(t)]2
j );

where (a) used (41). Now consider
�
� d

dt [� (t)] j
�
�

jr (t)jj [� (t)] j j
= j[s]j j

[U T
1 v1(t)]2

j + [ U T
2 v2(t)]2

j

j[� (t)] j j
: (51)

We want to compare this quantity for differentj; j 0 2 [m]. Before we do that, we take a look at the
last term in the RHS of (51). Recall from (43) that

[U T
1 v1(t)]2

j = [ U T
2 v2(t)]2

j + [ U T
1 v1(0)]2

j � [U T
2 v2(0)]2

j : (52)

For simplicity, let� j := [ U T
1 v1(0)]2

j � [U T
2 v2(0)]2

j , which is a positive number due to our assump-
tion on initialization. Then, we can use (52) andj[� (t)] j j = j[U T

1 v1(t)] j jj [U T
2 v2(t)] j j to show

that

[U T
1 v1(t)]2

j + [ U T
2 v2(t)]2

j

j[� (t)] j j
=

2[U T
2 v2(t)]2

j + � j

j[U T
2 v2(t)] j j

q
[U T

2 v2(t)]2
j + � j

� 2;

lim
t !1

[U T
1 v1(t)]2

j + [ U T
2 v2(t)]2

j

j[� (t)] j j
= 2 if lim

t !1
j[U T

2 v2(t)] j j = 1 :

Recall that we want to prove that (50) should necessarily hold. For the sake of contradiction, suppose
that there existsj 2 [m] that satis�es[� 1 ]j = 0 but j[s]j j > j[s]j 0j, for somej 0 2 [m] satisfying
[� 1 ]j 0 6= 0 . Note that having[� 1 ]j = 0 and [� 1 ]j 0 6= 0 implies thatj[� (t)] j 0j ! 1 and
j [� ( t )] j j
j [� ( t )] j 0j ! 0. We now want to compare the ratio of (51) forj andj 0. Using j [� ( t )] j j

j [� ( t )] j 0j ! 0 and the

fact thatx 7! 2x 2 + �
x

p
x 2 + �

is a decreasing function ofx � 0 for any� > 0, we have

([U T
1 v1(t)]2

j + [ U T
2 v2(t)]2

j )=j[� (t)] j j

([U T
1 v1(t)]2

j 0 + [ U T
2 v2(t)]2

j 0))=j[� (t)] j 0j
� 1; (53)

for anyt � t0, whent0 is large enough. Combiningj [s]j j
j [s]j 0j > 1 and (53) to compare the ratio of (51)

for j andj 0, there exists somet0 � 0 such that for anyt � t0, we have
�
� d

dt [� (t)] j
�
� =j[� (t)] j j

�
� d

dt [� (t)] j 0

�
� =j[� (t)] j 0j

> 1: (54)

This implies that the ratio of the absolute value of time derivative of[� (t)] j to the absolute value of
current value of[� (t)] j is strictly bigger than that of[� (t)] j 0. Moreover, by the de�nition ofr (t),
d
dt [� (t)] j does not change sign over time. Since this holds for allt � t0, (54) results in a growth of
j[� (t)] j j that is exponentially faster than that ofj[� (t)] j 0j, so[� (t)] j becomes a dominant component
in � (t) ast ! 1 . This contradicts that[� 1 ]j = 0 , hence the condition (50) has to be satis�ed.
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So far, we have characterized some conditions (47), (49), (50) that have to be satis�ed by the limit
direction � 1 of � . We now consider the following optimization problem and prove that these
conditions are in fact the KKT conditions of the optimization problem. Consider

minimize
� 2 Rm

k� k1 subject to ysT � � 1: (55)

The KKT condition of this problem is
@k� k1 3 ys;

where the global subdifferential@k�k1 is de�ned as

@k� k1 = f u 2 Rm j j [u ]j j � 1 for all j 2 [m]; and[� ]j 6= 0 = ) [u ]j = sign([ � ]j )g:

We can check from (47), (49), (50) that the that� 1 satis�es the KKT condition up to scaling.

Now, how do we characterizev1
1 andv1

2 in terms of� 1 ? Let� 1
1 := U T

1 v1
1 and� 1

2 := U T
2 v1

2 .
Then,v1

l = U l � 1
l = U l U T

l v1
l holds because any component orthogonal to the column space of

U l stays unchanged while the component in the column space ofU l diverges to in�nity. By (42),
j� 1

1 j = j� 1
2 j = j� 1 j � 1=2. By (45), we havesign(� 1

1 ) = sign( y) � sign(� 1
2 ).

E.2 PROOF OFCOROLLARY 4

The proof of Corollary 4 boils down to characterizing the SVD ofMconv (x ).

E.2.1 THE k1 = 1 CASE

First, it is straightforward to check that forL = 2 andk1 = 1 , we have

� conv (� conv ) = v1v2:

For k1 = 1 , the data tensor is simplyMconv (x ) = x T . Thus, we haveU1 = 1 , U2 = x
kx k2

,
ands = kx k2. SubstitutingU1 andU2 to the theorem gives the condition on initial directions in
Corollary 4. Also, the theorem implies us that the limit directionv1

2 of v2 satis�esv1
2 / yv1

1 x .
Using this, it is easy to check that

� conv (� 1
conv ) / v1

1 v1
2 / yx :

E.2.2 THE k1 = 2 CASE

First, it is straightforward to check that forL = 2 andk1 = 2 , we have

� conv (� conv ) =

2

6
6
6
6
6
6
4

[v1]1 0 0 � � � 0 [v1]2
[v1]2 [v1]1 0 � � � 0 0

0 [v1]2 [v1]1 � � � 0 0
...

...
...

...
...

...
0 0 0 � � � [v1]1 0
0 0 0 � � � [v1]2 [v1]1

3

7
7
7
7
7
7
5

v2: (56)

Fork1 = 2 , by de�nition, the data tensor is

Mconv (x ) =
�

x T

 � x T

�
;

and it is straightforward to check that the SVD of this matrix is

Mconv (x ) =
�

x T

 � x T

�
=

�
1=

p
2 1=

p
2

1=
p

2 � 1=
p

2

�
2

4

q
kx k2

2 + x T  � x 0

0
q

kx k2
2 � x T  � x

3

5

2

4
x T +  � x T

p
2
p

kx k2
2 + x T  � x

x T �  � x T
p

2
p

kx k2
2 � x T  � x

3

5 ;

so

U1 =
�

1=
p

2 1=
p

2
1=

p
2 � 1=

p
2

�
; U2 =

h
x +  � xp

2
p

kx k2
2 + x T  � x

x �  � xp
2
p

kx k2
2 � x T  � x

i
; s =

2

4

q
kx k2

2 + x T  � x
q

kx k2
2 � x T  � x

3

5 :
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SubstitutingU1 andU2 to the theorem gives the conditions on initial directions. Also, note that the
maximum singular value depends on the sign ofx T  � x . Consider the optimization problem in the
theorem statement:

minimize� 2 Rm k� k1 subject to ysT � � 1:

If x T  � x > 0, then the solution� 1 to this problem is in the direction of[y 0]. Therefore, the limit
directionsv1

1 andv1
2 will be of the form

v1
1 / c1

�
1
1

�
; v1

2 / c2(x +  � x );

wheresign(c1) sign(c2) = sign( y). Using (56), it is straightforward to check that

� conv (� 1
conv ) / y

2

6
6
6
6
6
6
4

1 0 0 � � � 0 1
1 1 0 � � � 0 0
0 1 1 � � � 0 0
...

...
...

...
...

...
0 0 0 � � � 1 0
0 0 0 � � � 1 1

3

7
7
7
7
7
7
5

(x +  � x ) = y(2x +  � x + �! x ):

Similarly, if x T  � x < 0, then the solution� 1 is in the direction of[0 y]. Using (56), we have

� conv (� 1
conv ) / y

2

6
6
6
6
6
6
4

1 0 0 � � � 0 � 1
� 1 1 0 � � � 0 0
0 � 1 1 � � � 0 0
...

...
...

...
...

...
0 0 0 � � � 1 0
0 0 0 � � � � 1 1

3

7
7
7
7
7
7
5

(x �  � x ) = y(2x �  � x � �! x ):

F PROOFS OFTHEOREM 5, COROLLARIES 5, 6 & 7, AND LEMMA 4

F.1 PROOF OFLEMMA 4

In this subsection, we restate Lemma 4 and prove it.

Lemma 4. Consider the system of ODEs, wherep; q : R ! R:

_p = pL � 2q; _q = pL � 1; p(0) = 1 ; q(0) = 0 :

Then, the solutionspL (t) and qL (t) are continuous on their maximal interval of existence of the
form (� c; c) � R for somec 2 (0; 1 ]. De�ne hL (t) = pL (t)L � 1qL (t); then, hL (t) is odd and
strictly increasing, satisfyinglim t " c hL (t) = 1 andlim t #� c hL (t) = �1 .

Proof First, continuity (and also continuous differentiability) ofp(t) andq(t) is straightforward
because the RHSs of the ODEs are differentiable inp andq. Next, de�ne ~p(t) = p(� t) and~q(t) =
� q(� t). Then, one can show that~p and~q are also the solution of the ODE because

d
dt

~p(t) =
d
dt

p(� t) = � _p(� t) = � p(� t)L � 2q(� t) = ~p(t)L � 2 ~q(t);

d
dt

~q(t) = �
d
dt

q(� t) = _q(� t) = p(� t)L � 1 = ~p(t)L � 1:

However, by the Picard-Lindelöf theorem, the solution has to be unique; this means thatp(t) =
~p(t) = p(� t) andq(t) = ~q(t) = � q(� t), which proves thatp is even andq is odd and also implies
that the domain ofp andq has to be of the form(� c; c) (i.e. symmetric around the origin) and
h = pL � 1q is odd.

To show thath is strictly increasing, it suf�ces to show thatp andq are both strictly increasing on
[0; c). To this end, we show thatp(t) � 1 for all t 2 [0; c). First, due to the initial conditionp(0) = 1
and continuity ofp, there exists� 1 > 0 such thatp(t) > 0 for all t 2 [0; � 1) =: I 1. This implies
that _q(t) = p(t)L � 1 > 0 for t 2 I 1 n f 0g, soq is strictly increasing onI 1. Sinceq(0) = 0 , we
haveq(t) > 0 for t 2 I 1 n f 0g, which then implies that_p(t) = p(t)L � 2q(t) > 0. Therefore,p is
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also strictly increasing onI 1; this then meansp(t) � 1 for t 2 [0; � 1] becausep(0) = 1 . Now, due
to p(� 1) � 1 and continuity ofp, there exists� 2 > � 1 such thatp(t) > 0 for all t 2 [� 1; � 2) =: I 2.
Using the argument above forI 2 results inp(t) � 1 for t 2 [0; � 2]. Repeating this until the end of
the domain, we can show thatp(t) � 1 holds for allt 2 [0; c). By p � 1, we have_q = pL � 1 � 1
on [0; c), soq is strictly increasing on[0; c). Also, q(t) > 0 on (0; c), so _p = pL � 2q > 0 on (0; c)
andp is also strictly increasing on[0; c). This proves thath is strictly increasing on[0; c), and also
on (� c; c) by oddity ofh.

Finally, it is left to showlim t " c h(t) = 1 andlim t #� c h(t) = �1 . If c < 1 , then this together
with monotonicity implies that the limits hold. To see why, supposec < 1 andlim t " c h(t) < 1 .
Then,p andq can be extended beyondt � c, which contradicts the fact that(� c; c) is the maximal
interval of existence of the solution. Next, consider the casec = 1 . From p(t) � 1, we have
_q(t) � 1 for t � 0. This implies thatq(t) � t for t � 0. Now, _p(t) � p(t)L � 2q(t) � t, which gives
p(t) � t 2

2 + 1 for t � 0. Therefore, we have

lim
t !1

h(t) = lim
t !1

p(t)L � 1q(t) � lim
t !1

�
t2

2
+ 1

� L � 1

t = 1 ;

hence �nishing the proof.

F.2 PROOF OFTHEOREM 5

F.2.1 CONVERGENCE OF LOSS TO ZERO

We �rst show that given the conditions on initialization, the training lossL (� (t)) converges to zero.
Recall from Section 2.1 that

_v l = �r v l L (� ) = M(� X T r ) � (v1; : : : ; v l � 1; I k l ; v l +1 ; : : : ; vL ):

Applying the structure (9) in Assumption 1, we get

_v l = M(� X T r ) � (v1; : : : ; v l � 1; I k l ; v l +1 ; : : : ; vL )

= �
mX

j =1

[SX T r ]j (vT
1 [U1]� ;j 
 � � � 
 vT

l � 1[U l � 1]� ;j 
 [U l ]� ;j 
 vT
l +1 [U l +1 ]� ;j 
 � � � 
 vT

L [UL ]� ;j )

= �
mX

j =1

[SX T r ]j

� Y

k6= l

[U T
k vk ]j

�
[U l ]� ;j :

Left-multiplying U T
l to both sides, we get

U T
l _v l = � SX T r �

Y �

k6= l
U T

k vk ; (57)

where
Q � denotes the product using entry-wise multiplication� .

Now consider the rate of growth for the second power of thej -th component ofU T
l v l :

d
dt

[U T
l v l ]2j = 2[U T

l _v l ]j [U T
l v l ]j = � 2[SX T r ]j

Y L

k=1
[U T

k vk ]j =
d
dt

j[U T
l 0 v l 0]j j2

for anyl0 2 [L ]. Thus, for anyj 2 [m], the second power of thej -th components inU T
l v l grow at

the same rate for each layerl 2 [L ]. This means that the gap between any two different layers stays
constant for allt � 0. Combining this with our conditions on initial directions, we have

[U T
l v l (t)]2

j � [U T
L vL (t)]2

j = [ U T
l v l (0)]2

j � [U T
L vL (0)]2

j = � 2[ �� ]2j � � 2�;

for anyj 2 [m], l 2 [L � 1], andt � 0. This inequality also implies

[U T
l v l (t)]2

j � [U T
L vL (t)]2

j + � 2� � � 2�: (58)
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Let us now consider the time derivative ofL (� (t)) . We have the following chain of upper bounds
on the time derivative:

d
dt

L (� (t)) = r � L (� (t))T _� (t) = �kr � L (� (t))k2
2

� �kr v L L (� (t))k2
2 = �k _vL (t)k2

2

(a)
� �k U T

L _vL (t)k2
2

(b)
= �



 SX T r (t) �

Y �

k6= L
U T

k vk (t)




2

2

= �
X m

j =1
[SX T r (t)]2

j

Y

k6= L
[U T

k vk (t)]2
j

(c)
� � � 2L � 2� L � 1

X m

j =1
[SX T r (t)]2

j

= � � 2L � 2� L � 1kSX T r (t)k2
2

(d)
� � � 2L � 2� L � 1smin (S)2smin (X )2kr (t)k2

2;

= � 2� 2L � 2� L � 1smin (S)2smin (X )2L (� (t)) ; (59)

where (a) used the fact thatk _vL (t)k2
2 � k UL U T

L _vL (t)k2
2 because it is a projection onto a subspace,

andkUL U T
L _vL (t)k2

2 = kU T
L _vL (t)k2

2 becauseU T
L UL = I kL ; (b) is due to (57); (c) is due to (58);

and (d) used the fact thatS 2 Rm � d andX T 2 Rd� n are matrices that have full column rank, so for
anyz 2 Cn , we can usekSX T zk2 � smin (S)smin (X )kzk2 wheresmin (�) denotes the minimum
singular value of a matrix.

From (59), we get

L (� (t)) � L (� (0)) exp(� 2� 2L � 2� L � 1smin (S)2smin (X )2t); (60)

so thatL (� (t)) ! 0 ast ! 1 .

F.2.2 CHARACTERIZING THE LIMIT POINT

Now, we move on to characterize the limit points of the gradient �ow. First, by de�ning a “trans-
formed” version of the parameters� l (t) := U T

l v l (t) and using (57), one can de�ne an equivalent
system of ODEs:

_� l = � SX T r �
Y �

k6= l
� k for l 2 [L ];

� l (0) = � �� for l 2 [L � 1]; � L (0) = 0:
(61)

Using Lemma 4, it is straightforward to verify that the solution to (61) has the following form. For
oddL , we have

� l (t) = � �� � pL

�
� � L � 2j �� j � L � 2 � SX T

Z t

0
r (� )d�

�
for l 2 [L � 1];

� L (t) = � j �� j � qL

�
� � L � 2j �� j � L � 2 � SX T

Z t

0
r (� )d�

�
:

(62)

Similarly, for evenL , the solution for (61) satis�es

� l (t) = � �� � pL

�
� � L � 2 �� � L � 2 � SX T

Z t

0
r (� )d�

�
for l 2 [L � 1];

� L (t) = � �� � qL

�
� � L � 2 �� � L � 2 � SX T

Z t

0
r (� )d�

�
:

(63)

Now that we know how the solutions� l look like, let us see how these relate to the linear coef�cients
of the network. By Assumption 1, we have

f (x ; � ) = M(x ) � (v1; : : : ; vL ) =
mX

j =1

[Sx ]j
LY

l =1

[U T
l v l ]j
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=
� mX

j =1

� LY

l =1

[� l ]j

�
[S]j; �

�
x = x T ST

� Y �

l 2 [L ]
� l

�
= x T ST � :

Here, we de�ned� :=
Q �

l 2 [L ] � l 2 Rm . Therefore, the linear coef�cients of the network can be
written as� (� (t)) = ST � (t). From the solutions (62) and (63), we can write

� (t) =
LY

i =1

� l (t) = � L j �� j � L � hL

�
� � L � 2j �� j � L � 2 � SX T

Z t

0
r (� )d�

�
;

wherehL := pL � 1
L qL , de�ned in Lemma 4. By the convergence of the loss to zero (60), we have

lim t !1 X� (� (t)) = y . Therefore,

XS T
�

� L j �� j � L � hL

�
� � L � 2j �� j � L � 2 � SX T

Z 1

0
r (� )d�

��

| {z }
=: � 1

= y : (64)

Next, we will show that� 1 is in fact the solution of the following optimization problem

minimize
� 2 Rm

QL;�; �� (� ) subject to XS T � = y ; (65)

whereQL;�; �� : Rm ! R is a norm-like function de�ned usingHL (t) :=
Rt

0 h� 1
L (� )d� :

QL;�; �� (� ) = � 2
mX

j =1

[ �� ]2j HL

�
[� ]j

� L j[ �� ]j jL

�
:

Note that the KKT conditions for (65) are

XS T � = y ; r � QL;�; �� (� ) = SX T � ;

for some� 2 Rn . It is clear from (64) that� 1 satis�es the �rst condition (primal feasibility), so let
us check the other one. Through a straightforward calculation, we get

r � QL;�; �� (� ) = � 2� L j �� j � 2� L � h� 1
L

�
� � L j �� j � ( � L ) � �

�
:

Equating this withSX T � gives

� 2� L j �� j � 2� L � h� 1
L

�
� � L j �� j � ( � L ) � �

�
= SX T �

, h� 1
L

�
� � L j �� j � ( � L ) � �

�
= � L � 2j �� j � L � 2 � SX T �

, � = � L j �� j � L � hL
�
� L � 2j �� j � L � 2 � SX T �

�
:

Hence, by setting� = �
R1

0 r (� )d� , � 1 satis�es this condition as well. Also, ifS is invertible, we
can substitute� = S � T z to (65) to get the last statement of the theorem. This �nishes the proof.

F.3 PROOF OFCOROLLARY 5

The proof is a direct consequence of the fact that Assumption 1 holds withS = U1 = � � � =
UL = I d for linear diagonal networks. Hence, the proof is the same as Corollary 2, proved in
Appendix D.2.

F.4 PROOF OFCOROLLARY 6

We start by showing the DFT of a real and even vector is also real and even. Suppose thatx 2 Rd

is real and even. First,

[F x ]j =
1

p
d

dX

k=1

[x ]k exp
�

�

p
� 1 � 2� (j � 1)(k � 1)

d

�
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=
1

p
d

dX

k=1

[x ]k cos
�

�
2� (j � 1)(k � 1)

d

�
+

p
� 1

p
d

dX

k=1

[x ]k sin
�

�
2� (j � 1)(k � 1)

d

�

=
1

p
d

dX

k=1

[x ]k cos
�

�
2� (j � 1)(k � 1)

d

�
2 R;

for all j 2 [d]. To prove thatF x is even, forj = 0 ; : : : ; bd� 3
2 c, we have

[F x ]j +2 =
1

p
d

dX

k=1

[x ]k cos
�

�
2� (j + 1)( k � 1)

d

�

=
1

p
d

dX

k=1

[x ]k cos
�

2� (k � 1) �
2� (j + 1)( k � 1)

d

�

=
1

p
d

dX

k=1

[x ]k cos
�

2� (d � j � 1)(k � 1)
d

�

=
1

p
d

dX

k=1

[x ]k cos
�

�
2� (d � j � 1)(k � 1)

d

�

= [ F x ]d� j :

It is proved in Appendix D.3 that linear full-length convolutional networks (k1 = � � � = kL = d)
satisfy Assumption 1 withS = d

L � 1
2 F andU1 = � � � = UL = F � , whereF 2 Cd� d is the matrix

of discrete Fourier transform basis[F ]j;k = 1p
d

exp(�
p

� 1�2� ( j � 1)( k � 1)
d ) andF � is the complex

conjugate ofF .

The proof of convergence of loss to zero in Appendix F.2.1 is written for real matrices
S; U1; : : : ; UL , but we can actually apply the same argument as in Appendix D.1.1 and prove that
the loss converges to zero, even in the case whereS; U1; : : : ; UL are complex.

Next, sinceU l 's are complex, we can write the system of ODE as (see (20) for its derivation)

F _w l = � d
L � 1

2 F X T r �
Y �

k6= l
F � w k ; (66)

Since all data pointsx i and initializationw l (0) are real and even, we have thatF X T r is real and
even, andF � w l (0) = F w l (0)'s are real and even. By (66), we see that the time derivatives ofF w l
are also real and even. Thus, the parametersw l (t) are all real and even for allt � 0. From this
observation, we can de�ne� l (t) := F w l (t), �� := F �w , andS := d

L � 1
2 Re(F ), which are all real

by the even symmetry. Then, starting from (61), the proof goes through.

F.5 PROOF OFCOROLLARY 7

Since the sensor matricesA 1; : : : ; A n commute, they are simultaneously diagonalizable with a real
unitary matrixU 2 Rd� d, i.e., U T A i U 's are diagonal matrices. From the deep matrix sensing
problem (13), we can computer W l L ms , which gives the gradient �ow dynamics ofW l .

_W l = �r W l L ms = � W T
l � 1 � � � W T

1 (
X n

i =1
r i A i )W T

L � � � W T
l +1 ;

wherer i = hA i ; W 1 � � � W L i � yi is the residual for thei -th sensor matrix. If we left-multiplyU T

and right-multiplyU to both sides, we get

U T _W l U = � U T W T
l � 1U � � � U T W T

1 U (
X n

i =1
r i U T A i U )U T W T

L U � � � U T W T
l +1 U : (67)

If U T W T
k U is a diagonal matrix for allk 6= l, thenU T _W l U is also a diagonal matrix. Note also

that, sinceW l (0) = � I d = � UU T for l 2 [L � 1], the productU T W l U is a diagonal matrix at
initialization. These observations imply thatW l (t)'s are all diagonalizable withU for all t � 0.
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Now, de�ne v l (t) = eig( W l (t)) , i.e., U T W l U = diag( v l ). Also, let x i = eig(A i ). Then, (67)
can be written as

_v l = � (
X n

i =1
r i x i ) �

Y �

k6= l
vk :

Therefore, this is equivalent to the regression problem with linear diagonal networks, initialized at
v l (0) = � 1 for l 2 [L � 1] andvL (0) = 0. Given this equivalence, Corollary 7 can be implied from
Corollary 5.

G PROOF OFTHEOREM 6

G.1 CONVERGENCE OF LOSS TO ZERO

We �rst show that given the conditions on initialization, the training lossL (� (t)) converges to zero.
SinceL = 2 andM(x ) = U1 diag(s)U T

2 , we can write the gradient �ow dynamics from Section 2.1
as

_v1 = � M(X T r ) � (I k1 ; v2) = � r U1 diag(s)U T
2 v2;

_v2 = � M(X T r ) � (v1; I k2 ) = � r U2 diag(s)U T
1 v1;

(68)

wherer (t) = f (x ; � (t)) � y is the residual of the data point(x ; y). From (68) we get

U T
l _v1 = � r s � U T

2 v2; U T
2 _v2 = � r s � U T

1 v1: (69)

Now consider the rate of growth for thej -th component ofU T
1 v1 squared:

d
dt

[U T
1 v1]2j = 2[U T

1 v1]j [U T
1 _v1]j = � 2r [s]j [U T

1 v1]j [U T
2 v2]j =

d
dt

[U T
2 v2]2j :

So for anyj 2 [m], [U T
1 v1]2j and[U T

2 v2]2j grow at the same rate. This means that the gap between
the two layers stays constant for allt � 0. Combining this with our conditions on initial directions,

[U T
1 v1(t)]2

j � [U T
2 v2(t)]2

j = [ U T
1 v1(0)]2

j � [U T
2 v2(0)]2

j

= � 2[U T
1 �v1]2j � � 2[U T

2 �v2]2j � � 2�;

for anyj 2 [m] andt � 0. This inequality implies

[U T
1 v1(t)]2

j � [U T
2 v2(t)]2

j + � 2� � � 2�: (70)

Let us now consider the time derivative ofL (� (t)) . We have the following chain of upper bounds
on the time derivative:

d
dt

L (� (t)) = r � L (� (t))T _� (t) = �kr � L (� (t))k2
2

� �kr v 2 L (� (t))k2
2 = �k _v2(t)k2

2

(a)
� �k U T

2 _v2(t)k2
2

(b)
= � r (t)2


 s � U T

1 v1(t)

 2

2

= � r (t)2
X m

j =1
[s]2j [U T

1 v1(t)]2
j

(c)
� � � 2�r (t)2

X m

j =1
[s]2j

= � 2� 2� ksk2
2L (� (t)) ;

where (a) used the fact thatk _v2(t)k2
2 � k U2U T

2 _v2(t)k2
2 because it is a projection onto a subspace,

andkU2U T
2 _vL (t)k2

2 = kU T
2 _v2(t)k2

2 becauseU T
2 U2 = I k2 ; (b) is due to (69); (c) is due to (70).

From this, we get
L (� (t)) � L (� (0)) exp(� 2� 2� ksk2

2t): (71)

Therefore,L (� (t)) ! 0 ast ! 1 .
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G.2 CHARACTERIZING THE LIMIT POINT

Now, we move on to characterize the limit points of the gradient �ow. First, note that any changes
made inv l over time are in the subspace spanned by the columns ofU l . Therefore, any component
in the initializationv l (0) = � �v l that is orthogonal to the column space ofU l stays constant.

So, we can focus on the evolution ofv l in the column space ofU l ; this can be done by de�ning
a “transformed” version of the parameters� l (t) := U T

l v l (t) and using (69), one can de�ne an
equivalent system of ODEs:

_� 1 = � r s � � 2; _� 2 = � r s � � 1;
� 1(0) = � �� 1; � 2(0) = � �� 2;

(72)

where �� 1 := U T
1 �v1, �� 2 := U T

2 �v2. It is straightforward to verify that the solution to (72) has the
following form.

� 1(t) = � �� 1 � cosh
�

� s
Z t

0
r (� )d�

�
+ � �� 2 � sinh

�
� s

Z t

0
r (� )d�

�
;

� 2(t) = � �� 1 � sinh
�

� s
Z t

0
r (� )d�

�
+ � �� 2 � cosh

�
� s

Z t

0
r (� )d�

�
:

(73)

By the convergence of the loss to zero (71), we havelim t !1 f (x ; � (t)) = y. Note thatf (x ; � (t))
can be written as

f (x ; � (t)) = M(x ) � (v1(t); v2(t)) = v1(t)T M(x )v2(t)

= v1(t)T U1 diag(s)U T
2 v2(t) = sT (� 1(t) � � 2(t)) :

Therefore,

lim
t !1

f (x ; � (t)) = lim
t !1

sT (� 1(t) � � 2(t))

= � 2sT
�
( �� � 2

1 + �� � 2
2 ) � cosh

�
� s

Z 1

0
r (� )d�

�
� sinh

�
� s

Z 1

0
r (� )d�

�

+ ( �� 1 � �� 2) �
�

cosh� 2
�

� s
Z 1

0
r (� )d�

�
+ sinh � 2

�
� s

Z 1

0
r (� )d�

�� �

= � 2sT
�

�� � 2
1 + �� � 2

2

2
� sinh

�
� 2s

Z 1

0
r (� )d�

�
+ ( �� 1 � �� 2) � cosh

�
� 2s

Z 1

0
r (� )d�

� �

= � 2
mX

j =1

[s]j

 
[ �� 1]2j + [ �� 2]2j

2
sinh (2[s]j � ) + [ �� 1]j [ �� 2]j cosh (2[s]j � )

!

= y; (74)

where we de�ned� := �
R1

0 r (� )d� . Consider the function� 7! a sinh(� ) + bcosh(� ). This is a
strictly increasing function ifa > jbj. Note also that

[ �� 1]2j + [ �� 2]2j
2

� j [ �� 1]j [ �� 2]j j; (75)

which holds with equality if and only ifj[ �� 1]j j = j[ �� 2]j j. However, recall from our assumptions on
initialization that[ �� 1]2j � [ �� 2]2j � � > 0, so (75) can only hold with strict inequality. Therefore,

g(� ) :=
mX

j =1

[s]j

 
[ �� 1]2j + [ �� 2]2j

2
sinh(2[s]j � ) + [ �� 1]j [ �� 2]j cosh(2[s]j � )

!

is a strictly increasing (hence invertible) function because it is a sum ofm strictly increasing func-
tion. Using thisg(� ), (74) can be written as� 2g(� ) = y, and by using the inverse ofg, we have

� = �
Z 1

0
r (� )d� = g� 1

� y
� 2

�
: (76)
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Plugging (76) into (73), we get

lim
t !1

v1(t)

= U1 lim
t !1

� 1(t) + � (I k1 � U1U T
1 ) �v1

= � U1

�
�� 1 � cosh

�
g� 1

� y
� 2

�
s
�

+ �� 2 � sinh
�

g� 1
� y

� 2

�
s
��

+ � (I k1 � U1U T
1 ) �v1;

lim
t !1

v2(t)

= U2 lim
t !1

� 2(t) + � (I k2 � U2U T
2 ) �v2

= � U2

�
�� 1 � sinh

�
g� 1

� y
� 2

�
s
�

+ �� 2 � cosh
�

g� 1
� y

� 2

�
s
��

+ � (I k2 � U2U T
2 ) �v2:

This �nishes the proof.

H PROOF OFTHEOREM 7

H.1 CONVERGENCE OF LOSS TO ZERO

We �rst show that given the conditions on initialization, the training lossL (� (t)) converges to zero.
Recall from (10) that the linear fully-connected network can be written as

f fc (x ; � fc ) = x T W 1W 2 � � � W L � 1wL :

From the de�nition of the training lossL , it is straightforward to check that the gradient �ow dy-
namics read

_W l = �r W l L (� fc ) = � W T
l � 1 � � � W T

1 X T rw T
L W T

L � 1 � � � W T
l +1 for l 2 [L � 1];

_wL = �r w L L (� fc ) = � W T
L � 1 � � � W T

1 X T r ;

W l (0) = � �W l for l 2 [L � 1];
wL (0) = � �wL ;

(77)

wherer 2 Rn is the residual vector satisfying[r ]i = f fc (x i ; � fc ) � yi , as de�ned in Section 2.1.
From (77), we have

W T
l

_W l = _W l +1 W T
l +1 = � W T

l � � � W T
1 X T rw T

L W T
L � 1 � � � W T

l +1 ;
_W T

l W l = W l +1
_W T

l +1 = � W l +1 � � � W L � 1wL r T XW 1 � � � W l ;

for anyl 2 [L � 2]. From this, we have

d
dt

W T
l W l =

d
dt

W l +1 W T
l +1 ;

and thus

W l (t)T W l (t) � W l +1 (t)W l +1 (t)T = W l (0)T W l (0) � W l +1 (0)W l +1 (0)T

= � 2 �W T
l

�W l � � 2 �W l +1
�W T

l +1 ;
(78)

for anyl 2 [L � 2]. Similarly, we have

W L � 1(t)T W L � 1(t) � wL (t)wL (t)T = W L � 1(0)T W L � 1(0) � wL (0)wL (0)T

= � 2 �W T
L � 1

�W L � 1 � � 2 �wL �w T
L :

(79)

Let us now consider the time derivative ofL (� fc (t)) . We have the following chain of upper bounds
on the time derivative:

d
dt

L (� fc (t)) = r � fc L (� fc (t))T _� fc (t) = �kr � fc L (� fc (t))k2
2

� �kr w L L (� fc (t))k2
2 = �k _wL (t)k2

2

= �k W T
L � 1 � � � W T

1 X T r k2
2: (80)
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Note from (80) that ifW T
L � 1 � � � W T

1 is full-rank, its minimum singular value is positive, and one
can bound

kW T
L � 1 � � � W T

1 X T r k2 � � min (W T
L � 1 � � � W T

1 )kX T r k2: (81)

We now prove that the matrixW T
L � 1 � � � W T

1 is full-rank, and its minimum singular value is bounded
from below by� L � 1� (L � 1)=2 for anyt � 0. To show this, it suf�ces to show that

W T
L � 1 � � � W T

1 W 1 � � � W L � 1 � � 2L � 2� L � 1I d: (82)

Now,

W T
L � 1 � � � W T

2 W T
1 W 1W 2 � � � W L � 1

(a)
= W T

L � 1 � � � W T
2 (W 2W T

2 + � 2 �W T
1

�W 1 � � 2 �W 2
�W T

2 )W 2 � � � W L � 1

(b)
� W T

L � 1 � � � W T
3 W T

2 W 2W T
2 W 2W 3 � � � W L � 1

(a)
= W T

L � 1 � � � W T
3 (W 3W T

3 + � 2 �W T
2

�W 2 � � 2 �W 3
�W T

3 )2W 3 � � � W L � 1

(b)
� W T

L � 1 � � � W T
3 (W 3W T

3 )2W 3 � � � W L � 1

= � � � � (W T
L � 1W L � 1)L � 1;

where equalities marked in (a) used (78), and inequalities marked in (b) used the initialization con-
ditions �W T

l
�W l � �W l +1

�W T
l +1 . Next, it follows from (79) that

(W T
L � 1W L � 1)L � 1 = ( wL w T

L + � 2 �W T
L � 1

�W L � 1 � � 2 �wL �w T
L )L � 1

� � 2L � 2( �W T
L � 1

�W L � 1 � �wL �w T
L )L � 1

(c)
� � 2L � 2� L � 1I d:

where (c) used the assumption that�W T
L � 1

�W L � 1 � �wL �w T
L � � I d. This proves (82). Applying (82)

to (80) then gives

d
dt

L (� fc (t)) � �k W T
L � 1 � � � W T

1 X T r k2
2

� � � min (W T
L � 1 � � � W T

1 )2kX T r k2
2

� � � 2L � 2� L � 1kX T r k2
2

(d)
� � � 2L � 2� L � 1� min (X )2kr k2

2

= � � 2L � 2� L � 1� min (X )2L (� fc (t)) ;

where (d) used the fact thatX T is a full column rank matrix to apply a bound similar to (81). From
this, we get

L (� fc (t)) � L (� fc (0)) exp(� � 2L � 2� L � 1� min (X )2t);

hence provingL (� fc (t)) ! 0 ast ! 1 .

H.2 CHARACTERIZING THE LIMIT POINT: � ! 0 CASE

Now, we move on to characterize the limit points of the gradient �ow, for the “active regime” case
� ! 0. This part of the proof is motivated from the analysis in Ji & Telgarsky (2019a).

Let u l andv l be the top left and right singular vectors ofW l , for l 2 [L � 1]. Note that sinceW l
varies over time, the singular vectors and singular value also vary over time. Similarly, letsl be the
largest singular value ofW l . We will show that the linear coef�cients� fc (� fc ) = W 1 � � � W L � 1wL
align with u 1 as� ! 0, andu 1 is in the subspace ofrow(X ) in the limit � ! 0, hence proving
that� fc (� fc ) is the minimum̀ 2 norm solution in the limit� ! 0.

First, note from (78) and (79) that if we take trace of both sides, we get

kW l k
2
F � k W l +1 k2

F = � 2(

 �W l


 2

F �

 �W l +1


 2

F ) for l 2 [L � 2];
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kWL−1k2F � kwLk
2
2 = α2(

 �WL−1

2

F
� k �wLk22).

Summing the equations above for l, l + 1, . . . , L� 1, we get

kWlk2F � kwLk
2
2 = α2(

 �Wl

2

F
� k �wLk22). (83)

Next, consider the operator norms (i.e., the maximum singular values), denoted as k�k2, of the
matrices.

kWlk22 � u
T
l+1W

T
l Wlul+1

(e)
= uTl+1Wl+1W

T
l+1ul+1 + α2uTl+1( �W T

l
�Wl � �Wl+1

�W T
l+1)ul+1

= kWl+1k22 + α2uTl+1( �W T
l

�Wl � �Wl+1
�W T
l+1)ul+1

� kWl+1k22 � α
2k �W T

l
�Wl � �Wl+1

�W T
l+1k2 for l 2 [L� 2],

kWL−1k22 �
wL
kwLk2

W T
L−1WL−1

wL
kwLk2

(f)
=

wL
kwLk2

wLw
T
L

wL
kwLk2

+ α2 wL
kwLk2

( �W T
L−1

�WL−1 � �wL �wT
L)

wL
kwLk2

� kwLk22 � α
2k �W T

L−1
�WL−1 � �wL �wT

Lk2.
where (e) used (78) and (f) used (79). Summing the inequalities gives

kWlk22 � kwLk
2
2 � α

2
L−1X
k=1

k �W T
k

�Wk � �Wk+1
�W T
k+1k2. (84)

From (83) and (84), we get a bound on the gap between the second powers of the Frobenius norm
(or the `2 norm of singular values) and operator norm (or the maximum singular value sl) ofWl:

kWl(t)k2F � kWl(t)k22 � α
2(
 �Wl

2

F
� k �wLk22) + α2

L−1X
k=l

k �W T
k

�Wk � �Wk+1
�W T
k+1k2, (85)

which holds for any t � 0. The gap (85) implies that eachWl, for l 2 [L� 1], can be written as

Wl(t) = sl(t)ul(t)vl(t)
T +O(α2). (86)

Next, we show that the “adjacent” singular vectors vl and ul+1 align with each other as α! 0. To
this end, we will get lower and upper bounds for a quantity vTl Wl+1W

T
l+1vl.

vTl Wl+1W
T
l+1vl = vTl W

T
l Wlvl � α2vTl

�W T
l

�Wlvl + α2vTl
�Wl+1

�W T
l+1vl

� kWlk22 � α
2
 �W T

l
�Wl � �Wl+1

�W T
l+1


2

= s2
l � α2

 �W T
l

�Wl � �Wl+1
�W T
l+1


2
, (87)

vTl Wl+1W
T
l+1vl = vTl (s2

l+1ul+1u
T
l+1 +Wl+1W

T
l+1 � s2

l+1ul+1u
T
l+1)vl

= s2
l+1(vTl ul+1)2 + vTl (Wl+1W

T
l+1 � s2

l+1ul+1u
T
l+1)vl

� s2
l+1(vTl ul+1)2 + kWl+1k2F � kWl+1k22 . (88)

Combining (87), (88), and (85), we get

s2
l � s2

l+1(vTl ul+1)2 + α2
 �W T

l
�Wl � �Wl+1

�W T
l+1


2

+ kWl+1k2F � kWl+1k22

� s2
l+1(vTl ul+1)2 + α2(

 �Wl+1

2

F
� k �wLk22) + α2

L−1X
k=l

k �W T
k

�Wk � �Wk+1
�W T
k+1k2. (89)

Next, by a similar reasoning as (87), we have

s2
l � uTl+1W

T
l Wlul+1 � s2

l+1 � α2
 �W T

l
�Wl � �Wl+1

�W T
l+1


2
. (90)

Combining (89) and (90) and dividing both sides by s2
l+1, we get

(vl(t)
Tul+1(t))2 � 1� α2 Gl

sl+1(t)2
(91)
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for t � 0, where

Gl :=
 �W T

l
�Wl � �Wl+1

�W T
l+1


2

+ (
 �Wl+1

2

F
� k �wLk22) +

L−1X
k=l

k �W T
k

�Wk � �Wk+1
�W T
k+1k2.

By a similar argument, we can also get

(vL−1(t)TwL(t))2

kwL(t)k22
� 1� α2 GL−1

kwL(t)k22
, (92)

where

GL−1 := 2
 �W T

L−1
�WL−1 � �wL �wT

L


2
.

From (91) and (92), we can note that as α ! 0, the inner product between the adjacent singular
vectors converges to �1, unless s2, . . . , sL−1, kwLk2 also diminish to zero. So it is left to show
that the singular values do not diminish to zero as α ! 0. To this end, recall that we proved in the
previous subsection that

lim
t→∞

XW1(t) � � �WL−1(t)wL(t) = y.

A necessary condition for this to hold is that

kyk2
kXk2

� lim
t→∞

kW1(t) � � �WL−1(t)wL(t)k2 � lim
t→∞

L−1Y
l=1

sl(t) kwL(t)k2 .

This means that after converging to the global minimum solution of the problem (i.e., t ! 1),
the product of the singular values must be at least greater than some constant independent of α.
Moreover, we can see from (87) and (90) that the gap between singular values squared of adjacent
layers is bounded byO(α2), for all t � 0; so the maximum singular values become closer and closer
to each other as α diminishes. This implies that

lim
α→0

lim
t→∞

sl(t) �
kyk1/L2

kXk1/L2

for l 2 [L� 1], lim
α→0

lim
t→∞

kwL(t)k2 �
kyk1/L2

kXk1/L2

.

Therefore, we have the alignment of singular vectors at convergence as α! 0:

lim
α→0

lim
t→∞

(vl(t)
Tul+1(t))2 = 1, for l 2 [L� 2], lim

α→0
lim
t→∞

(vL−1(t)TwL(t))2

kwL(t)k22
= 1. (93)

So far, we saw from (86) that Wl(t)’s become rank-1 matrices as α ! 0, and from (93) that the
top singular vectors align with each other as t ! 1 and α ! 0. These imply that, as t ! 1 and
α! 0, �fc(�fc) is a scalar multiple of the u1, the top left singular vector ofW1:

lim
α→0

lim
t→∞

�fc(�fc(t)) = c � lim
α→0

lim
t→∞

u1(t), (94)

for some c 2 R.

In light of (94), it remains to take a close look at u1(t). Note from the gradient flow dynamics ofW1

that _W1 is always a rank-1 matrix whose columns are in the row space ofX , sinceXTr 2 row(X).
This implies that, if we decompose W1 into two orthogonal components W⊥

1 and W ‖
1 so that the

columns in W ‖
1 are in row(X) and the columns in W⊥

1 are in the orthogonal subspace row(X)⊥,
we have

_W⊥
1 = 0, _W

‖
1 = _W1.

That is, any component W⊥
1 (0) orthogonal to row(X) remains unchanged for all t � 0, while the

componentW ‖
1 changes by the gradient flow. Since we haveW⊥

1 (t)


F
=
W⊥

1 (0)


F
� α

 �Wl


F
,

the component in W1 that is orthogonal to row(X) diminishes to zero as α ! 0. This means that
at the limit α! 0, the columns ofW1 are entirely from row(X), which also means that

lim
α→0

lim
t→∞

�fc(�fc(t)) 2 row(X).

However, recall that there is only one unique global minimum of Xz = y in row(X): namely,
z = XT (XXT )−1y, the minimum `2 norm solution. This finishes the proof.
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