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Abstract

An image can be described with multiple captions, where the semantic meaning of each
caption can be highly different. Depending on the semantics of the caption it may be more
challenging to align it to an image. While contrastive learning, the dominant paradigm for
aligning image and captions, may prefer easy captions that are semantically overlapping
with the image, it is unclear how well contrastively trained vision-language models (VLMs)
scale to harder captions. In this work we introduce a dataset with diverse image captions
to benchmark a wide-range of VLM across caption difficulty levels. Our findings show that
existing VLM struggle with caption diversity, and scale poorly to challenging captions.

1 Introduction

Recently, vision-language models (VLMs) have drawn notable interest in the task of aligning images with
text through contrastive learning. Models like CLIP (Radford et al., 2021]) and ALIGN (Jia et al.,[2021]) have
shown impressive performance on downstream tasks such as image classification (Abdelfattah et al., [2024)),
visual grounding (Xiao et al.l [2024), and cross-modal retrieval (Yu et al., 2022a)), largely due to training
on massive, uncurated image-text datasets that mirror the diversity of human communication. However,
benchmark datasets like Flickr30k (Plummer et al., 2015) and MS-COCO (Lin et al. 2015 predominantly
feature descriptive captions closely tied to the images, limiting their ability to thoroughly evaluate the full
potential and limitations of VLMs. This narrow focus makes it challenging to assess how well VLMs scale to
diverse and semantically complex image-text pairs. To address this gap, it is essential to develop benchmarks
that push the limits of their performance and provide deeper insights into their understanding of real-world
image-text relationships.

In real-world data, an image often corresponds to multiple captions, each varying in semantic meaning—a
phenomenon known as image polysemy. This results in multiple valid image-text pairs, each reflecting a
different interpretation of the image. For instance, as shown in Figure[I]the image can be paired with captions
ranging from straigtforward captions like “Woman walking in the middle of a forest” to less descriptive
interpretations such as “The wandering soul embraced by nature’s tranquility”. This diversity challenges
VLMs trained with contrastive objectives, which tend to prioritize captions that directly mirror the visual
content. While humans can associate all these captions with the same image, it remains unclear how well
VLMs can generalize across such diverse semantic interpretations.

Obtaining diverse yet related captions for images is challenging. Human annotated datasets such as
Flickr30k (Plummer et al., [2015) and MS-COCO (Lin et al.| [2015]) have multiple captions per image, but their
strict annotation guidelines result in semantically homogeneous captions. While recent works (Parekh et al.,
2021; |Chun et al.} [2022)) have expanded MS-COCO with additional captions, the diversity of these datasets
remains limited. Conversely, web-scale datasets (Sharma et al., 2018} |Schuhmann et al. 2022 [Desai et al.)
2021; |Gadre et al.| 2023} |Thomee et al.,|2016) naturally contain highly diverse captions and interpretations,
i.e., polysemy - which we demonstrate with quantitative metrics using our proposed clustering-based method.
Here, following prior works (Sharma et al., [2018; |Gadre et al., |2023)), we refer to datasets as “web-scale”
to denote datasets harvested directly from large-scale internet sources, typically consisting of millions or
billions of uncurated image-text pairs. Yet, the lack of human verification in these datasets makes it difficult
to reliably evaluate caption diversity and quality. Hence, it is necessary to strike a balance between the
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. Woman walking in the middle of a forest.

Human agreement

A trail among the green lush is a journey to oneself

t The wandering soul embraced by nature's tranquility J
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Figure 1: Captions which pass human annotation have different levels of difficulty. Humans can
associate an image with semantically diverse captions, whereas vision-language models (VLMs) consistently
struggle with certain captions. We determine caption difficulty through a VLM voting process: easy (high
agreement), medium (partial agreement), and hard (low agreement)

reliable annotation of human-curated datasets and the semantic diversity of web-scale datasets for robustly
evaluating VLMs.

We address the lack of datasets that strike this balance by proposing a new dataset, Image Polysemy (IMP),
designed to test the alignment capabilities of VLMs for semantically diverse captions. IMP comprises 5K
images, each paired with five captions curated from web-scale datasets (Sharma et al., 2018; (Changpinyo
et al., 2021) and verified with human annotations. During dataset construction, we observed that web-
scale captions often include captions that are valid for humans but pose challenges for VLMs, particularly
when addressing diverse semantic interpretations. To quantify this challenge, we define caption difficulty as
the degree of misalignment between human and machine understanding, measured through an image-text
matching task over aggregated results from multiple VLMs. While the easy subset includes captions similar
to MS-COCOQ’s highly descriptive style, the harder subset reflects the semantic complexity and diversity
introduced by image polysemy, featuring captions that challenge the alignment capabilities of VLMs. To
confirm the validity of the hard subset we conducted an additional human survey, which confirms the validity
and quality of these image-text pairings.

To evaluate the challenges posed by diverse and semantically complex captions, we benchmark existing VLMs
on IMP using image-text matching and cross-modal retrieval tasks, as shown in Figure [[] Our evaluation
reveals that while VLMs perform well on simpler captions, their performance drops significantly as captions
become richer and more complex. These results underline the need for more diverse evaluation datasets
and emphasize the limitations of contrastive training objectives in handling real-world caption diversity. By
providing a challenging yet systematic framework for evaluating VLMs, IMP aims to drive future research
towards building models that generalize better across the spectrum of caption difficulty.

Our key contributions are as follows:

e Systematically Quantify Polysemy in Web-scale Datasets: We propose a clustering-based
method that enable us to demonstrate the presence of polysemy in widely used web-scale datasets.

e A Novel Dataset for Vision-Language Understanding: We introduce IMP, a benchmark
dataset designed to evaluate the ability of VLMs to align images with semantically rich captions,
curated through a combination of web-scale data and human annotation.

e Proxy-Based Difficulty Categorization: We propose a proxy method to categorize image-text
pairs into three difficulty levels of easy, medium, and hard, based on aggregated voting from state-
of-the-art VLMs on an image-text matching task.

e Comprehensive Evaluation of VLMs: We benchmark a wide range of state-of-the-art VLMs
on both image-text matching and cross-modal retrieval tasks, providing new insights into their
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performance across varying levels of caption complexity. Our analysis reveals significant gaps in
performance on semantically rich and complex captions.

2 Related work

2.1 Image Polysemy in Datasets

The challenge of modeling polysemy in VLMs is deeply tied to the structure and diversity of the datasets
used during training and evaluation. Existing datasets can be broadly categorized into human-annotated
datasets, web-scale datasets, and more recent specialized datasets that aim to address limitations in caption
diversity or which are constructed through metric-based filtering.

Human-annotated datasets such as Flickr30K (Plummer et al., [2015) and MS-COCO (Lin et al., [2015)
provide multiple captions per image, but these captions are often semantically similar, describing slightly
different aspects of the same objects in a scene. While this consistency simplifies annotation and ensures
reliability, it fails to capture the broader range of potential interpretations of real-world images. As a result,
models trained or fine-tuned on these datasets tend to focus on descriptive captions and struggle with more
abstract or subjective interpretations.

Web-scale datasets, such as Conceptual Captions (Sharma et al., 2018; |(Changpinyo et al. 2021) and Red-
Caps (Desai et al., 2021)), provide more diverse and abstract image-caption pairs by sourcing data directly
from the web. These datasets introduce a wider variety of caption styles and semantics, including emotional
and contextual nuances. However, most web-scale datasets (Schuhmann et al |2022; |Gadre et al., 2023)) rely
on a one-to-one mapping between each image and caption, limiting their ability to explicitly model polysemy.
Moreover, the lack of multiple captions per image makes it difficult to evaluate whether models can handle
different valid interpretations of the same image.

Several recent datasets have attempted to enhance caption diversity: CrissCrossed Captions (Parekh et al.,
2021)) augments MS-COCO with human-verified semantic similarity judgments, introducing additional intra-
and inter-modality relationships. However, it focuses on improving diversity across different image-caption
pairs, rather than explicitly modeling multiple interpretations of the same image. ECCV Caption (Chun
et al., 2022) aims to address false negatives by adding high-quality captions missed in the original annotation
process. While it helps models capture under-represented meanings, it focuses on correcting omissions rather
than expanding the interpretative scope of captions.

Datasets based on CLIPscore like LAION (Schuhmann et all 2022) and DataComp (Gadre et al., [2023)),
aim to improve dataset quality by filtering out noise. This approach enhances consistency in the dataset
by removing low-confidence pairs, making it easier for models to learn clear image-caption relationships.
However, the filtering process often eliminates “hard positives”™—valid but semantically challenging captions.
These hard positives are essential for training models that can handle polysemy, as they expose the model
to different facets of an image. HYPE (Kim et al., |2024), introduces a ranking-based metric that filters for
both multi-modal alignment and uni-modal specifity. HYPE emphasizes semantic accuracy while keeping
complex, diverse captions in the dataset, making it a valuable resource for studying models’ ability to
navigate multiple interpretations.

2.2 Evaluating Image Polysemy

Evaluating how well VLMs handle image polysemy is challenging due to the difficulty of quantifying the
semantic diversity of valid image-caption pairs. Current approaches can be categorized into human-based
evaluation, model-based metrics, and ensemble methods.

Human evaluation is the most reliable method for assessing polysemy, as it directly involves annotators
verifying whether multiple captions for an image are valid. This approach ensures high-quality judgments
but is expensive, time-consuming, and difficult to scale for large datasets. Moreover, human evaluations are
often subjective, with judgments varying across annotators. Despite these limitations, human evaluation
remains essential for validating dataset quality and identifying hard positives (Emam et al., [2021)).
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Model-based metrics offer a more scalable and cost-effective alternative to human evaluation. Popular metrics
include BERTScore (Zhang et al., |2020), which measures the semantic similarity between the embeddings
of predicted and reference captions, and cosine similarity within the shared embedding space of models like
CLIP. HYPE (Kim et al., 2024]), is similarly used as a model-based metric to evaluate model performance
on human-centered image-caption matching tasks. These metrics are easy to implement and inexpensive to
compute, but they come with limitations. They are often unable to distinguish between hard positives
(semantically diverse but valid captions) and noise (irrelevant or incorrect captions). As a result, while
they provide a quick way to gauge performance, they are less effective in cases where captions are valid but
semantically distant from the primary reference.

Ensemble-based methods aggregate outputs from multiple models to make a combined judgment on image-
caption pairs, which is frequently used for model fine-tuning (Bai et al., 2024; |Liu et all 2024) and dataset
filtering (Wu et al [2022; |Parekh et all 2021 |Chun et al., [2022). The underlying strategy is that multiple
models run on the same samples, and their outputs (e.g., cosine similarity scores) are aggregated to assess
the overall quality. This approach allows pooling the strengths of different models, potentially improving
robustness in filtering out noise or irrelevant captions. The aggregation process typically favors captions that
are consistently rated high by multiple models, which might overlook cases of legitimate semantic diversity.
On the other hand, the disagreement across different models can help identify misjudged pairs. For example,
CLIP-blind pairs (Tong et al.l [2024) are found by comparing the cosine similarity between CLIP and vision-
only self-supervised learning models like DINOv2 ((Oquab et al. 2024). These pairs show cases where CLIP
vision transformers mis-encoded images, verifying the validity of aggregating model outputs.

For our dataset we opt for a mixed approach, as we first rely on human evaluation to curate a polysemy-aware
dataset, ensuring that all captions associated with an image are valid and semantically diverse. Once this
dataset is established, we aggregate outputs from multiple models on this human-verified dataset to obtain
splits that allow for a more fine-grained analysis of a model’s ability to handle polysemy. By combining
human-validated data with model aggregation, this method provides a clear distinction between truly diverse
captions (hard positives) and noise, which is often missed by model-only methods. Moreover, instead of
aggregating outputs from multiple models directly, we split the dataset into subsets with different levels of
difficulty based on model agreement. The resulting IMP dataset provides a challenging new benchmark for
VLMs, featuring semantically diverse, human-verified captions.

3 Image Polysemy in Web-Scale Datasets

To demonstrate the presence of image polysemy in web-scale datasets we present an analysis of Conceptual
Captions (Changpinyo et al.,|2021]) (CC12M); a widely adopted dataset for vision-language learning due to its
scale and diversity. Unlike human-annotated datasets like MS-COCO, which are constrained by annotation
guidelines, captions in web-scale datasets exhibit great variability. However, the one-to-one mapping between
images and captions in these datasets makes it challenging to systematically measure polysemy—the presence
of multiple valid interpretations for a single image. In this section, we explore the limitations of traditional
metrics for measuring polysemy and propose a clustering-based approach to better reveal and quantify it.

3.1 Clustering to Identify Polysemy

To quantify polysemy in web-scale datasets, we propose a clustering-based approach to group visually similar
images and examine the diversity of captions dynamically within these clusters. We use DINOv2 (Oquab
et al.l 2024]) features for image representations to avoid the clip-pair-blindness issues described in (Tong
et al.l 2024). We clustering using HDBSCAN (Malzer & Baum, [2020) and reduce the dimensionality of
features with UMAP (Mclnnes et al, 12020) for efficient processing. We apply this approach to a randomly
sampled 5M subset of CC12M and the entire MS-COCO training set.

The one-to-one mapping in web-scale datasets limits our ability to directly evaluate the presence of polysemy.
Existing metrics for caption diversity, such as SentenceBERT (Reimers & Gurevych, |2019)) similarity or
BERTScore (Zhang et al.l |2020), are effective in measuring semantic similarity between pairs of captions,
but they cannot quantify polysemy when only one caption is available per image. To address this limitation,
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we consider the joint embedding space of CLIP with aligned image and text modality and compute the
geodesic distance [Fletcher et al| (2004)); |Oldfield et al. (2023) between the query image and all retrieved
captions as a valid metric. In this way, we treat the image embedding as the cluster centroid and the
retrieved captions as the cluster members. This allows us to measure the diversity among captions in the
cluster but also consider the relevance of the captions to the image. This clustering is similarly performed in
the low-dimensional space, however, all the metrics are computed in the original embedding space to ensure
accurate evaluation.

This clustering approach leverages the poor ability of VLM to handle polysemy to identify polysemy. In
particular, for the geodesic distance metric, we consider a set of visually similar images (in the CLIP em-
bedding space); if CLIP were able to well-handle polysemy then the captions for this set of images would
all be close to their respective images, and hence close to each other. However, we observe that (especially
for CC12M) the captions paired with these images are far away in CLIP embedding space, even when the
images are highly similar. By leveraging this mismatch in CLIP embedding space (i.e., images being similar
but their respective captions being dissimilar) we are thus able to identify polysemy.

3.2 Insights for IMP Construction

The clustering and diversity analysis directly informed the construction of IMP. The results of the clustering
analysis are visualized in Figure [3| for both the image-image similarity (DINOv2) and geodesic distance
(CLIP). The left y-axis shows the DINOv2 similarity, for wich image-image similarity is undefined at radius
(and thus zero) since only a single image is considered. From radius 5 onward, the image-image similarity
naturally decreases as the radius grows, as including more images gradually leads to incorporating visually
less similar images into the cluster. This drop occurs similarly for both datasets, but notably, CC12M
maintains higher similarity scores compared to MS-COCO across all radii. This is not merely due to dataset
size differences, but reflects inherent differences in visual embedding density. The image-caption geodesic
distance on the right y-axis measures the semantic diversity between a query image and captions of visually
similar images within the embedding radius. As the radius increases, we observe a substantial increase in
geodesic distance for CC12M, indicating rapidly increasing semantic diversity. In contrast, MS-COCO shows
minimal change, suggesting lower semantic diversity.

Within CC12M there are many more similar images as compared to MS-COCO. In particular, we observe
that for CC12M the image similarity at R = 100 is comparable to MS-COCO at R = 5. To further illustrate
the difference, when the radius is between 25 to 50, CC12M has an average image-image similarity around
0.75, Based on prior empirical results these can be considered as visually and semantically similar. On the
other hand, the image-image similarity of MS-COCO drops to 0.60 at R = 100, indicating that the images
are no longer similar for larger clusters. Notably, different from the one-to-one mapping case, the geodesic
distance of these large clusters within CC12M is much higher than in MS-COCO, which shows that whilst

(a) Table filled with food (b) The Secret Behind This (c) The mystery milky way (d) Highway to Heaven ...
from Creative Catering. Wine Club’s Success in the sky. like a shooting star.

Figure 2: Polysemic image-caption pairs from the Conceptual Captions dataset. While the images
are highly similar, their captions are semantically diverse. For such cases, it is undesirable to map all images
and captions close together in embedding space, yet contrastive learning aims to achieve this.
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the clustered CC12M images remain similar their captions are semantically diverse. Moreover, as illustrated
by the examples in Figure [2] these captions are valid pairings despite their semantic differences.

While increasing the cluster radius reveals polysemy, it also introduces noise in the form of irrelevant or
low-quality captions. At very large radius, clusters may include images that are only marginally related,
leading to captions that are no longer valid interpretations of the image. This highlights the need for careful
selection of an optimal cluster radius that balances the visual relevance with textual diversity whilst avoiding
noisy pairings. Through empirical analysis, we find that radius optimized for intermediate visual similarity
(e.g., 0.70-0.80 cosine similarity in DINOv2 space) achieve this balance effectively. These clusters retain
semantically diverse captions while minimizing the inclusion of irrelevant captions.

With our clustering analysis, we demonstrate that polysemy is implicitly but naturally present in web-scale
datasets, through the existence of large cluster of visually highly similar images, which are described with
semantically diverging captions. However, the consistent presence of noise and irrelevant texts alongside
polysemy highlights the need for human annotation.

4 IMP

4.1 IMP: Image Polysemy Dataset

We build a new benchmark dataset, IMP, to study the impact of polysemy on vision-language models by
leveraging the presence of polysemy in web-scaled datasets. An example is shown in Figure[d] To construct
IMP, we follow the structure of the MS-COCO test split, with 5K images and 5 captions per image. Through
our clustering-based approach and human labelling, we ensure that the captions for each image are relevant
and diverse.

We randomly sample a subset of 5K images from the Unsplash Lite Datasetﬂ as image source, which has
an open usage license, and high-quality images that have been re-used across the web. For each image, we
build a candidate pool of captions by using clustering-based approach in section [3| to retrieve captions from
similar images found in CC3M and a 7M subset of CC12M. Additional captions are retrieved from websites
where the images have been used. The candidate pool is then filtered through manual verification (by two
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Figure 3: Clustering results for CC12M (5M subset) and MS-COCO(Train).

The x-axis represents the radius of the cluster, the left y-axis represents the image-image similarity (DINOv2),
and the right y-axis represents the geodesic distance (CLIP) between the query image and captions belonging
to similar images. We can observe that for CC12M there is high textual diversity even for large clusters,
which despite their size still have high image similarity.
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Captions CLIP Similarity Score
A brown tree without leaves during night 0.3007
The branches will tell tales of resilience and time 0.2863
Even in the bare state, there's a stark beauty to admire 0.2367
Nature's sentinel, watching over the winter landscape 0.2318

Awaiting the warmth of spring to dress in a lush green again 0.1062

Figure 4: Example of an image from IMP with its five captions. The cosine similarity between the
image and captions is computed with CLIP; only the most descriptive caption obtains a similarity above 0.3.

annotators) to ensure valid pairings. From the remaining captions we select five captions with the lowest
pair-wise SentenceBert similarity, thereby maximizing the diversity of the captions.

We compare IMP with the MS-COCO test split by showing CLIP similarity density plots in Figure
We observe that the captions for each image (i.e., co-captions) within IMP have lower similarity than in
MS-COCO, which implies higher degree of diversity. Similarly, the distribution of IMP image-text pair
similarity is also shifted to the left, suggesting that IMP pairs are harder to match for vision-language
models. In Figure [4] we show an example image from IMP, where the captions are semantically diverse.
Moreover, only descriptive caption obtains a cosine similarity above 0.3 by CLIP, highlighting the difficulty
of IMP. Further details on the dataset construction process, more examples, and additional analysis of IMP
can be found in the Appendix [C]
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7~ . Mp
/\S‘ 3 Mscoco

o

~

Sample Density

Sample Density

08 09 10 035 0.40 0.45

03 04 05

2 030
Similarity

0.6 07
Similarity

(a) Similarity Density of Co-caption (b) Similarity Density of Image-Text Pair

Figure 5: Similarity Density of IMP and MS-COCO-test. On both metrics IMP shows lower similarity
scores, which implies greater diversity than MS-COCO. The x-axis represents the cosine similarity score and
the y-axis represents the density of the similarity score evaluated by CLIP.

4.2 IMP Division

To evaluate how effectively VLMs handle increasing semantic diversity, we divide IMP into splits of varying
difficulty using six variants of CLIP, ranging from RN50 to CLIP ViT-L/14-336, and include an additional,
more powerful model, CLIP ViT-g/14 trained on LAION-2B, as a tie-breaker in cases of disagreement.
Before proceeding with evaluation on IMP, we first establish a zero-shot image-text matching similarity
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threshold for each model. This is achieved by applying a precision-recall curve on a calibration dataset,
DataComp (Gadre et al., 2023)), because it is curated from web sources and filtered using CLIPScore, which
helps ensure a high quality of true image-text pairs while maintaining a diverse set of content.

Easy
Hard 25.4%
1.5%
Medium 17.7% Hard 19.4%
80.8%  Easy
55.2%
Medium

(a) MS-COCO Split (b) IMP Split

Figure 6: Pie chart of the Easy, Medium, and Hard subsets in MS-COCO and IMP. The Easy
subset is dominant in MS-COCO, while IMP has a more balanced distribution.

We sample a subset of 100k pairs from DataComp and, within each batch, treat the diagonal entries (matching
image-text pairs) as positives and all off-diagonal entries as negatives. For each model, we compute the
precision-recall curve and use the argmax of this curve to determine the optimal similarity threshold, which
maximizes the precision-recall balance for image-text matching. This threshold ensures that each model is
calibrated to distinguish between matching and non-matching pairs effectively in a zero-shot setting. The
thresholds of CLIP ViT-B/32 and ViT-L/14 are 0.26 and 0.22 respectively, refer to approximately 40%
fraction of the pool pairs (Gadre et all 2023). Once thresholds are established, we use these models to
evaluate the true positives in IMP by having each model “vote“ on whether it agrees with the given image-
caption pair. Based on the number of models that agree on the match, we classify samples from IMP into
Easy, Medium, and Hard subsets.

To validate the robustness of our caption difficulty definition, we performed an additional experiment using
a larger pool of 30 VLMs, with partial overlapping with CLIP models from Table ??7. Specifically, we
randomly selected subsets of 7 models from these 30 VLMs and repeated our caption difficulty assignment 10
times. We then computed the internal consistency across these difficulty assignments using Cohen’s Kappa,
a standard measure of inter-rater agreement. Across all repetitions, we obtained Cohen’s Kappa values
between 0.65 and 0.87. In standard interpretation, Cohen’s Kappa scores above 0.6 indicate substantial
agreement, while scores above 0.8 represent almost perfect agreement. The consistently high values in our
analysis clearly demonstrate that the caption difficulty assignment is robust and not overly sensitive to the
specific choice of VLMs. Furthermore, we observed that caption difficulty categorizations are most sensitive
to the accuracy extremes among the selected models—specifically, the strongest and weakest performers. For
instance, if the weakest model improves its accuracy, certain captions initially categorized as “easy” shift to
“medium”. Conversely, if the strongest model performs worse, captions initially categorized as “hard” can
shift to “medium”. Such shifts reflect the intuitive notion that caption difficulty is inherently linked to model
performance boundaries.

As a comparison, we also evaluate the MS-COCO test split using the same models and thresholds. As shown
in Figure [6] the MS-COCO split is dominated by the Easy subset, with 80% of the samples falling into this
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category. In contrast, IMP has the majority of its samples in the medium subset, and more than 20% of
the samples are classified as Hard. We argue that due to the saturation of Easy samples in MS-COCO,
there is limited room to continue benchmarking improved VLMs. IMP, on the other hand, provides a more
challenging and diverse dataset.

4.3 Qualitative Analysis on the Hard Subset

To give further insight into the challenging nature of IMP and the benefits of the splits, we qualitatively
analyze the hard subsets of both MS-COCO and IMP.

MS-COCO has 1.5% of its samples in the hard subset, which are cases where the model struggles to match
the image and caption. We observe that the hard subset in MS-COCO primarily contains “objectively
inaccurate" captions. These are cases where the caption does not describe the image accurately. Examples
are shown in Figure [7]

In contrast, 20% of the samples in IMP fall into the hard subset, which are cases where models struggle to
match the image and its polysemic caption. To verify the validity of these pairings we compare the results
of human-evaluation with VLMs. For the evaluation, we pick the 100 hardest pairs (i.e., the pairs with
lowest cosine similarity with CLIP embeddings) in the subset to investigate further. Based on these hard
pairs, we performed a user-study with 40 participants, where each participant is shown a random subset of
25 pairs. To eliminate potential bias, the participants are told that each image-text pair can be either good
or bad, and we added true negative distractor pairs to reinforce this. We report the results in Table [I] and
showcase two hard examples in Figure We observe that over 92% of the overall samples are rated as good
pairs, with no sample dropping below 85% agreement. This suggests that there exists a gap between the
way of VLMs and human to treat the polysemic captions and link them to images. For Figure |8a] the human
agreement is 100%, while the CLIP image-to-text similarity is only around 0.1. The second example [8b| has
90.32 % human agreement compared to 0.09 similarity score. Additionally, through human-evaluation, we
were able to verify that the hard samples are indeed polysemic, and not random noise or outliers. Notice
the difference between MS-COCO example in Figure [7h] and IMP example in Figure Ba] The former is an
inaccurate caption, while the later is a metaforic caption.

In addition to the survey, we evaluate the seven CLIP models on each splits of IMP by computing the
area under the precision-recall curve (AUPRC), the captions that failed to pass human annotation during
construction are used as the negative samples. In total 5K negative samples are used, with one true negative
for each image. We report the mean AUPRC and the error bars in Figure 2] This result shows that the
performance of models diverges more when the samples are harder. The error bars are larger for the hard
subset, which indicates the difficulty of the task.

=
\
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l 3

(a) Two black bags placed (b) Vegetables are displayed (c) A big tower that is sur- (d) Some animals are stand-
standing on the ground. in a wooden barrel outdoors. rounded by trees. ing out in the water.

Figure 7: Examples of imag-text pairs in MS-COCO hard subset. The inaccurate captions are
highlighted in red.
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CLIP Similarity: 0.10, Human evaluation: 100% CLIP Similarity: 0.09, Human evaluation: 90.32%

(a) A furry tide ebbs and flows across the green shore. (b) A windowpane’s temporary tattoos from the sky.

Figure 8: Examples of image-text pairs in IMP hard subset. Captions are polysemic and hard to
match with the image by VLMs, but are rated as good pairs by human-evaluation.

Table 2: AUPRC results.
We report the mean AUPRC of the seven models

Table 1: Human-evaluation results. on IMP with error bars.
We report the mean and minimum agreement of

the human-evaluation. The samples are equally

split into four subsets of size 25. The result shows 10
high agreement percentage.

Hard

Samples ‘ Mean Agreement ‘ Min Agreement %0-8
25 92.3% 87.1% 07
100 92.2% 860% 0.6 = Mean AUPRC

Mean + Std Dev

7 6 5 4 3 2 1 0
Difficulty Level (Easy to Hard)

5 Benchmarking Polysemy in Vision-Language Models

To evaluate how VLMs handle image polysemy, we benchmarked them on the IMP dataset. Our study focuses
on three key objectives: (1) Quantifying performance using cross-modal retrieval metrics (e.g., RecallQK,
median rank) and classification metrics (e.g., AUPRC); (2) Assessing their performance across IMP’s dif-
ficulty categories (easy, medium, hard); (3) Analyzing hard subset examples to identify failure points in
aligning semantically diverse captions.

5.1 Evaluation Metrics

We employed a combination of standard cross-modal retrieval metrics and binary classification metrics to
benchmark model performance, tailoring our approach to the challenges of image polysemy.

1. Cross-modal retrieval: We use RecallQK (RQK) with K = 1,5,10, which is the percentage of
queries that have at least one relevant item in the top-K retrieved items (Song & Soleymani, 2019;
. However, while RQK is a standard metric, it falls short in evaluating polysemy, as
retrieving even a single easy caption can result in high scores without reflecting the ranking quality
for other, more diverse captions. To address this, we include mean rank (meanR) and median rank
(medR), which provide a more holistic view of the overall ranking of all relevant captions, capturing
how well the model ranks diverse captions throughout the retrieval list (Parekh et al [2021)). In
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addition, we follow ECCV captions (Chun et al., |2022) and report mean average precision at recall
R (mAP@R), which focuses on the precision when the model retrieves a fixed number R of items,
emphasizing its ability to retrieve relevant items consistently.

2. Binary image-text classification: We use the area under the precision-recall curve (AUPRC)
as the evaluation metric to evaluate the model’s ability to distinguish between matching and non-
matching image-text pairs. AUPRC is particularly useful for polysemic captions, as it emphasizes
sensitivity to the positive class, making it suitable for evaluating performance on semantically diverse
datasets like IMP.

5.2 Cross-modal Retrieval Evaluation

We evaluate three groups of state-of-the-art vision-language models (VLMs), categorized based on their
architecture (Awais et al.| [2023):

e Dual-encoder VLMs: These models consist of separate encoders for images and text, with a
loss function computed between their outputs. Examples include CLIP (Radford et all [2021)),
ALIGN (Jia et al) |2021)), AItCLIP (Chen et all [2022), ConvNeXt-CLIP (Liu et al.) 2022),
GroupViT (Xu et all} [2022), and Siglip (Zhai et al., 2023]).

e Fusion VLMs: Fusion models incorporate a module that combines image and text features in
addition to dual encoders, enabling richer pre-training tasks. Examples include ALBEF(Li et al.
2021)), BLIP (Li et al.| [2022), FLAVA (Singh et al 2022), and COCA (Yu et al., [2022D)).

o Other VLMs: This group encompasses diverse architectures such as encoder-decoder models (EVA-
CLIP and EVA-02), models leveraging large language models as textual backbones (BLIP2), and
models trained on multiple modalities (ImageBind (Girdhar et al., 2023)).

As most of the VLMs use the same or a larger visual backbone than ViT-L/14, we use CLIP with the ViT-
L/14 pretrained on CLIP400M (Radford et al.l 2021) as the baseline for comparison. Table [3| summarizes
the zero-shot retrieval performance of all evaluated models on IMP, reporting key metrics such as RecallQK,
mean rank, median rank, and mAP@R. These metrics collectively provide insights into how well the models
rank semantically diverse captions and retrieve relevant image-text pairs without additional fine-tuning.

From the results, we observe that most VLMs exhibit significantly lower performance on the IMP dataset
compared to MSCOCO. For example, CLIP ViT-L/14 achieves RQK scores of [88.0, 98.7, 99.4] for image-
to-text and [68.7, 90.6, 95.2] for text-to-image on MSCOCO, but these scores drop drastically on IMP. This
underscores the increased difficulty of aligning images to semantically diverse captions in IMP. Among the
evaluated models, EVA02 achieves the highest overall performance on IMP, except for mAPQR on the text-
to-image task, where ImageBind slightly outperforms it. This suggests that while larger models like EVA02
can better handle polysemy, challenges still remain in retrieval consistency for semantically rich captions.

We observe that ALIGN achieves better image-to-text RQK scores than AltCLIP but performs worse in
mean rank (meanR) and median rank (medR), as well as in text-to-image retrieval. This disparity highlights
a potential limitation of ALIGN in ranking captions consistently across the entire spectrum of difficulty, even
if its top results are relevant. Similarly, inconsistencies are observed across BLIP2 variants: the version with
a ViT-L/14 backbone outperforms the ViT-g/14 variant overall, but fine-tuning on M-SCOCO negatively
affects its ability to retrieve diverse captions, as seen in lower meanR and medR despite higher Recall@K.
The gap between meanR and medR across most models further emphasizes that VLMs may treat polysemic
captions as outliers. While medR reflects the ranking of the closest relevant caption, the much higher meanR
indicates that other valid captions are often ranked far lower, leading to large discrepancies in retrieval quality.
These findings highlight the need for models that better capture the semantic breadth of polysemy without
over-prioritizing easier captions.

To further investigate the impact of model architecture, we benchmark three one-to-many approaches:
PVSE (Song & Soleymani, |2019), PCME (Chun et al., |2021)), and DivE (Kim et al., [2023)). These models
aim to address polysemy through specialized mechanisms. PVSE uses multiple local representations, while
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Table 3: Zero-shot cross-modal retrieval performance on IMP for SOTA models. The best results
within each column are highlighted with bold. The best results within each group of models are underlined.

Image-to-Text Text-to-Image
Method R@l R@5 R@I0 meanR medR mAPQR | R@l R@5 RQ@Q10 meanR medR mAPQ@GR
CLIP-ViT-L/14 15.8 30.9 38.8 2057 531 7.865 6.4 15.3 20.5 503 114 11.363
AltCLIP 17.3 33.1 42.4 1826 435 8.795 7.1 16.2 21.9 471 103 12.181
ALIGN 18.6 35.2 44.4 2292 580 8.331 6.2 15.0 20.1 536 125 11.101
ConvNeXt 15.3 31.2 40.2 2594 703 7.121 5.9 13.8 19.0 584 145 10.355
GroupViT 9.8 21.8 29.1 3773 1274 4.741 4.4 11.0 15.5 671 195 8.272
Siglip 20.3 377  46.8 2414 496 9.378 7.8 174 232 519 99 13.11
ALBEF 8.7 19.4 27.1 3811 1380 4.159 0.9 4.5 9.2 1933 1708 5.280
BLIP 13.3 27.8 36.0 3103 862 6.341 6.1 13.7 18.3 634 160 10.366
FLAVA 12.6 27.2 34.8 2692 824 6.122 6.3 14.8 20.4 503 115 11.134
COCA 196 369  46.2 1893 433 9.406 T 169 227 460 97 12.876
BLIP2-g 12.6 28.2 37.1 2627 616 6.751 5.6 13.9 18.9 563 138 10.283
BLIP2-ViT-L 16.6 33.3 42.1 2593 574 8.026 6.0 14.1 19.6 553 131 10.572
BLIP2-g-COCO | 14.8 31.6 40.5 2970 659 7.124 5.6 13.8 19.3 552 132 10.315
EVA-CLIP 18.7  35.7 44.7 1986 453 8.979 7.6 17.2 22.9 459 94 12.884
EVA02 20.6 38.1 48.2 1671 376 9.928 7.9 17.9 24.0 443 86 13.455
ImageBind 20.2 37.7 47.3 1813 402 9.650 8.3 17.8 23.6 451 88 13.565
CLIP-ViT-B/32 14.7 29.1 37.8 2084 566 7.341 6.0 14.1 19.3 515 121 10.611
PVSE(k =5) 14.9 29.7 38.0 2061 561 7.359 6.0 14.3 19.6 512 123 10.624
PCME 15.0 29.6 39.0 2041 556 7.385 5.8 14.3 19.7 511 121 10.628
DivE(k = 5) 154 300 385 1992 542 7.500 59  14.8  20.5 458 131 10.746

DivE introduces slot attention modules, and PCME employs probabilistic embeddings. We implemented
these approaches using an adapter (Upadhyay et al. [2023) with LoRA parameters (Hu et al., |2021)) on a
frozen CLIP ViT-B/32 backbone and trained them on a 5M subset of CC12M. Experiments across multiple
dataset scales (100K, 500K, and 5M) allowed us to compare their performance against the standard CLIP
model, with results for the 500K subset presented in Table [3]

The one-to-many models achieve slightly better overall results than the baseline CLIP ViT-B/32 but still
struggle to handle the full complexity of IMP. Among them, DivE demonstrates a marginal advantage, with
lower meanR and higher text-to-image medR, suggesting that slot attention mechanisms improve ranking
diversity. However, this improvement comes at the cost of increased text-to-image median rank, reflecting
difficulties in ranking highly diverse captions for a given image. These findings suggest that while one-to-
many approaches show promise for handling polysemy, further advancements are needed to balance diversity
and retrieval accuracy.

To better understand retrieval performance across the easy, medium, and hard categories of IMP, we evalu-
ated SOTA models by filtering retrieval results based on category. The results, summarized in Table ] show
Recall@5 (R@5) and median rank (medR).

The overall trends for the easy and medium categories are consistent with Table[3] Most models achieve low
medR for the easy category, reflecting strong performance for simpler captions. However, medR increases for
medium and hard categories, suggesting that ranking diverse or abstract captions poses greater challenges.
Siglip achieves the highest R@5 in the medium category, indicating relatively better performance in handling
captions of moderate complexity. For BLIP2, the ViT-g/14 variant fine-tuned on MSCOCO performs worse
than the ViT-L/14 backbone on easy captions but achieves higher R@5 on the medium category, showing
potential improvements for intermediate-level retrieval. On hard captions, while fine-tuned BLIP2 improves
R@5, its medR worsens, which suggests that it struggles to rank all valid captions consistently. Additionally,
FLAVA achieves the best medR for text-to-image retrieval in the hard category, though its R@Q5 remains low
overall, indicating that it may capture certain nuances but not as effectively as other models.
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Table 4: Zero-shot cross-modal retrieval performance on IMP for SOTA models per category.
The best results within each column are highlighted with bold.

Image-to-Text Text-to-Image
Easy Medium Hard Easy Medium Hard
Method R@5 medR R@5 medR R@5 medR | R@ medR R@5 medR RQ5 medR
CLIP-ViT-L/14 36.5 506 4.1 538 0.0 555 11.9 6 3.3 149 0.1 1129
AltCLIP 38.1 415 6.6 433 0.0 481 12.1 6 4.1 133 0.1 1035
ALIGN 34.5 550 9.8 578 0.2 640 10.3 10 4.5 150 0.1 1122
ConvNeXt 324 696 6.5 683 0.0 772 10.1 10 3.6 177 0.1 1279
GroupViT 21.3 1285 4.5 1241 0.0 1356 8.1 17 2.8 235 0.1 1328
Siglip 38.7 486 11.2 509 0.1 482 11.7 7 5.5 124 0.1 1076
ALBEF 18.3 1395 4.0 1354 0.0 1445 0.3 1185 0.1 1776 0.0 2271
BLIP 27.6 867 6.8 831 0.1 944 9.7 12 3.8 198 0.1 1261
FLAVA 26.4 805 7.0 825 0.1 852 10.2 10 4.4 142 0.1 936
COCA 41.1 427 8.5 429 0.0 465 12.2 6 4.6 121 0.1 1018
BLIP2-g 27.3 618 8.4 591 0.2 658 9.5 11 4.2 168 0.1 1090
BLIP2-ViT-L 33.5 567 9.1 549 0.1 652 10.0 10 4.0 164 0.1 1044
BLIP2-g-COCO | 28.9 666 9.6 633 0.3 717 9.2 12 4.5 159 0.2 1011
EVA-CLIP 39.9 439 7.7 453 0.0 482 12.5 6 4.6 119 0.1 1019
EVAO02 41.7 361 9.2 377 0.1 406 12.7 5 5.1 111 0.1 946
Imagebind 41.1 399 9.1 394 0.0 437 12.7 5 5.0 113 0.1 1020
CLIP-ViT-B/32 | 335 562 4.4 555 0.0 602 10.8 8 3.3 150 0.0 1291
PVSE(k =5) 34.5 551 5.2 540 0.0 591 10.9 8 3.3 148 0.0 1285
PCME 35.2 543 5.3 539 0.1 585 10.6 8 3.5 145 0.1 1277
DivE(k = 5) 35.7 538 5.3 535 0.1 576 10.7 8 3.5 141 0.1 1233

Another observation is the performance gap between image-to-text and text-to-image tasks across categories.
Most models perform better on image-to-text retrieval, particularly in the medium and hard categories, where
visual cues might more directly match captions. However, for text-to-image retrieval, the higher medR scores
across categories suggest that models often rank incorrect images higher than the target image, indicating a
potential gap in understanding the semantic connections from text to visuals.

5.3 Image-Text Binary Classification Evaluation

We evaluated the binary classification performance of SOTA models on IMP using the AUPRC metric,
which measures how effectively models distinguish between matching and non-matching pairs across the
easy, medium, and hard subsets. As shown in Table [5] models achieve near-perfect scores on the easy
subset but show a significant drop in performance on the hard subset. For example, EVA-02 achieves an
AUPRC of 1.00 on the easy subset but only 0.68 on the hard subset, demonstrating the challenge of handling
semantically diverse captions.

An important observation is the variability in performance across models on the hard subset. While models
often perform similarly on the easy and medium subsets, their scores diverge significantly on harder captions.
For instance, while both EVA-02 and ImageBind achieve identical scores (1.00) on the easy subset and nearly
identical scores (0.97) on the medium subset, EVA-02 outperforms ImageBind on the hard subset, scoring
0.68 compared to 0.65. This divergence highlights the limitations of current VLMs in generalizing to complex,
polysemic image-caption pairs.

The drop in AUPRC across categories, combined with the increased divergence in scores on the hard subset,
reflects the difficulty of handling semantically diverse captions. Figure 9 provides qualitative examples
illustrating these challenges. For instance, the caption “Nature’s painting with water on a canvas of rocks” is
correctly matched by ConvNeXt but not by EVA02, while the caption “Sunset captured on a single branch”
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Table 5: Binary image-text classification performance on IMP for SOTA models per category.
The best result within the hard category is highlighted with bold.

Method ‘ Easy ‘ Medium ‘ Hard
CLIP-ViT-L/14 1.00 0.96 0.63
AltCLIP 1.00 0.97 0.66
ALIGN 0.99 0.96 0.66
ConvNeXt 0.99 0.96 0.62
GroupViT 0.97 0.93 0.60
Siglip 0.99 0.96 0.66
ALBEF 0.73 0.80 0.52
BLIP 0.94 0.94 0.62
FLAVA 0.98 0.95 0.67
COCA 1.00 0.97 0.65
BLIP2-g 0.99 0.96 0.64
BLIP2-ViT-L 0.99 0.96 0.64
BLIP2-g-COCO | 0.98 0.95 0.63
EVA-CLIP 1.00 0.97 0.65
EVAO02 1.00 0.97 0.68
Imagebind 1.00 0.97 0.65

(a) Nature’s painting with water on a canvas of rocks. (b) Sunset captured on a single branch.
ConvNeXt: correct, EVA02: incorrect. ConvNeXt: incorrect, EVA02: correct.

Figure 9: Examples of image-text pairs in the IMP hard subset with model outputs.

is correctly matched by EVA02 but not by ConvNeXt. These examples demonstrate the variation we see
between models in which image-text pairs they match.

Additionally, to evaluate the impact of scale we benchmark CLIP across different model and pre-training
dataset sizes. We use six datasets of different scales, CC12M (Changpinyo et al., |2021)), YFCC15M (15M
subset of YFCC100M (Thomee et al., [2016)), CLIP400M (Radford et al., 2021), Commonpool
2023), DataComp (Gadre et al.,2023), and LAION (Schuhmann et al., 2022)). Commonpool and DataComp
datasets each have multiple size subsets: for Commonpool, s, m, [, and xl correspond to dataset sizes of
12.8M, 128M, 1.28B, and 12.8B pairs, respectively; for DataComp, s, m, [, and xl correspond to 1.4M, 14M,
140M, and 1B pairs. Across these datasets, models of varying sizes (expressed in parameter counts) were
evaluated. The results are presented in Table [6]

On each dataset, larger models consistently outperform smaller ones, demonstrating the impact of model
size and capacity. For example, on CLIP400M, the AUPRC on the hard subset increases from 0.58 for RN50
to 0.60 for ViT-B/32 and further to 0.63 for ViT-L/14. A similar pattern is observed on DataComp-zl,
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Table 6: Binary image-text classification performance on IMP for SOTA models per category.

Method ‘ # Params ‘ Easy ‘ Medium ‘ Hard Method ‘ # Params ‘ Easy ‘ Medium ‘ Hard

YFCC15M (Thomee et al.||2016) CC12M (Changpinyo et al.||2021)

RN50 102M | 095 | 091 | 059 RN50 | 102M | 096 | 092 | 058

RN101 102M 0.96 0.92 0.60 DataComp |Gadre et al.|(2023)

CLIP400M (Radford et al.||2021) ViT-B/32-s 150M 0.81 0.83 0.52

RN50 102M 100 | 096 | 0.58 V?T’B/?’z’”; 150M ) 0.95 | 0.91 | 0.59

RN101 120M 1.00 0.97 0.55 Xg'g/ ?zf igﬁ ;'gg g'gg 8'23

ViT-B/32 150M 1.00 0.96 0.60 - /16- , ’ ’ :

VIT-B/16 L50M Loo 097 060 ViT-B/16-x1 150M 1.00 0.96 0.64
! : ’ ’ ViT-L/14-zl 428M 1.00 0.97 0.65

ViT-L/14 428M 1.00 0.96 0.63

ViT—L/14—336 428M 1.00 0.97 0.64 LAION |Schuhmann et al.|(2022)

Commonpool [Gadre et al.|(2023) ViT-B/32-400M 150M 0.99 0.95 0.61

ViT-B/32-2B 150M 0.99 0.96 0.63

ViT-B/32-s 150M 0.86 0.86 0.53 ViT-B/16-400M 150M 0.99 0.96 0.61

ViT-B/32-m 150M 0.96 0.91 0.58 ViT-B/16-2B 150M 0.99 0.96 0.63

ViT-B/16-1 150M 1.00 0.95 0.61 ViT-L/14-400M 428M 0.99 0.96 0.63

ViT-L/14-zl 428M 1.00 0.97 0.65 ViT-L/14-2B 428M 0.99 0.97 0.64

where ViT-B/32 achieves 0.63, while ViT-L/14 improves to 0.65. These results indicate that larger models
are generally better at capturing semantic nuances, though the improvements are modest, particularly for
challenging subsets like IMP hard.

The performance of ViT-B/32 varies across the four datasets, highlighting the influence of dataset scale and
curation. On the hard subset, ViT-B/32 achieves an AUPRC of 0.58 on on Commonpool-m, improving
slightly to 0.60 on CLIP400M. In contrast, it scores 0.63 on DataComp-zl, which benefits from stricter
filtering applied to a curated subset of Commonpool, emphasizing the importance of dataset quality. These
results suggest that dataset curation plays a critical role in improving performance on semantically diverse
captions, and increasing dataset size alone is insufficient for consistent improvements.

5.4 Summary

Overall, our evaluations highlight the significant challenges posed by polysemy in vision-language tasks, with
performance consistently dropping on the hard subset compared to the easy and medium subsets. Dataset
quality emerged as a more critical factor than size, as curated datasets with better filtering and annotations
consistently outperformed larger but less curated ones. Similarly, larger models generally achieved better
results than smaller ones, but the improvements diminished on the hard subset, indicating that scaling
alone, whether in terms of dataset size or model parameters, is insufficient to address the challenges of
semantic diversity. These findings suggest that addressing polysemy effectively requires not just scale, but
also improved training strategies and architectures designed to better capture semantic nuances.

6 Discussion

6.1 Underlying Reasons for VLM struggles with Image Polysemy

Our analysis shows that VLMs struggle with image polysemy, we suspect this is due to the fundamental
assumptions embedded in their training objective (Radford et al., 2021} |Chen et al.| [2020]). Standard vision-
language contrastive losses implicitly assume semantic similarity among all captions paired with a single
image, encouraging embeddings for these captions to cluster closely. This assumption generally holds true for
descriptive datasets such as MS-COCO, where captions predominantly focus on observable visual elements.
However, image polysemy breaks this assumption, as a single image (or visually similar image set) may
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be validly described by multiple captions with significantly different semantics. Under ideal conditions,
embeddings for these captions would be distant to reflect semantic differences, yet simultaneously close due
to their visual association.

The standard contrastive loss cannot resolve this contradiction optimally. Instead, VLMs appear to favor
semantic coherence at the cost of embedding misalignment, effectively failing to align certain valid polysemic
captions correctly to their corresponding images. The IMP benchmark explicitly illustrates this phenomenon
and offers a rigorous basis for future exploration into polysemy.

6.2 Importance of Addressing Polysemy

Image polysemy is ubiquitous in natural human communication, yet it remains significantly understudied in
vision-language research. Addressing polysemy explicitly is crucial not only because of potential performance
gains in downstream tasks, but also—and perhaps primarily—for the development and evaluation of better
training datasets. Current large-scale vision-language dataset creation methods (e.g., DataComp

2023), LAION (Schuhmann et all, [2022))) heavily rely on filtering web-scale data using CLIP-based
similarity thresholds.

However, our analysis reveals critical limitations in this approach: as demonstrated by |Gadre et al| (2023),
adjusting the CLIP similarity threshold from 0.129 (discarding only 10% of pairs) to 0.384 (discarding 99%
of pairs) occurs within an extremely narrow similarity range, causing many genuinely polysemic and seman-
tically valid captions to be excluded unintentionally. Even at the most permissive threshold, annotator-
validated polysemic cases risk exclusion due to their inherently lower cross-modal similarity scores (e.g.,
Figure . Thus, current filtering mechanisms inadvertently limit the dataset’s diversity and richness, sig-
nificantly constraining the potential for larger models to naturally acquire the ability to handle semantic
diversity effectively, despite scaling to larger dataset sizes.

6.3 Potential Directions for Improving Model Handling of Polysemy

Given the limitations exposed by IMP, we propose several promising directions for future technical contri-
butions that explicitly address polysemy: (1) Polysemy-aware Training Objectives: Develop loss functions
specifically designed to handle multiple semantically valid positives, potentially using probabilistic embed-
dings or multi-instance embedding approaches. (2) Polysemy-aware Model Architectures: Extend traditional
contrastive models to explicitly represent and distinguish multiple plausible semantic alignments simultane-
ously, effectively modeling rich semantic diversity. (3) Novel Retrieval and Classification Metrics: Design
evaluation frameworks capable of explicitly addressing multiple valid image-caption alignments, going be-
yond traditional single-positive retrieval metrics. (4) Data filtering and Augmentation Strategies: Develop
more sophisticated filtering mechanisms that can effectively capture polysemic cases, potentially leveraging
human-in-the-loop approaches to ensure dataset validity. These directions all represent potential avenues for
improvements in handling polysemy, and where IMP may contribute as a benchmark.

7 Conclusion

This paper highlights the challenges posed by image polysemy in vision-language learning, in particular, in
how to align a single image to multiple possible interpretations. We proposed a clustering-based approach
to identify polysemy in web-scale datasets and explored the limitations of traditional metrics for measuring
polysemy. We introduced IMP, a novel benchmark dataset designed to evaluate the performance of VLMs on
semantically diverse image-caption pairs. Our comprehensive benchmarking reveals that while state-of-the-
art VLMs excel at handling straightforward image-text pairs, their performance deteriorates when increasing
semantic complexity. Our findings emphasize the need for new approaches that better account for polysemy
in vision-language tasks. By presenting a challenging yet systematic evaluation framework, this work aims
to guide future research toward building robust VLMs that well handle polysemy.
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A Appendix

B Ethical Impact Statement

An underlying ambition of exploring, and hopefully incorporating, polysemy in vision-language representa-
tion learning is to increase the potential for capturing underrepresented views and perspectives. This may
have the positive effect of increasing cultural and geographic diversity, however, it may also unearth poten-
tially undesirable views. Yet, we would argue that these views are already in the data, and may now imply
be affecting learned representations in unknown ways - and potentially leading to bias in downstream tasks.

Additionally, there are a number of potential (long term) ethical impacts related to polysemy.

1. Global cultural diversity: We aim to capture a diverse set of captions, however, the dataset
may still be biased towards certain cultures. For example, sunset images might be consider more
as romantic in some cultures, but tragic in others. Full image polysemy requires greater geographic
spread of the data.

2. Misinformation: Better understanding of the polysemous nature of images may be exploited to
create or spread misinformation. For example, visual memes, can carry subtextual meanings which
are not immediately apparent, but can lead to harmful political or social implications.

With regards to the dataset, we use images sampled from the Unsplash Lite dataset, which is granted by
Unsplash a non-exclusive, non-transferable, non-sublicensable license to download and store any photos,
images, or other data contained in the Lite Dataset, and internally use the commercial licenced data for
research purposes. We do not change the image in the dataset, and will not publish any portion of the
licensed data. We follow all terms and conditions of the Unsplash License.

The captions gathered from web-curation are from websites that are publicly accessible, and we use only the
website titles as the curated captions. We do not store any of the website content.

All participants for the human evaluation were recruited on a voluntary basis and compensated in the form
of chocolate and candy on completion of the task.

C IMP

C.1 Image Source

We select the Unsplash Lite Dataset as the image source, which consists of around 25k images. The dataset
is licensed under the Unsplash License, which allows us to use the images for free, including both commercial
and non-commercial purposes. The dataset is available at https://unsplash.com/data.

We sample a subset of 5k images from the Unsplash Lite Dataset, by first extract the visual embeddings of
the images using DINOv2 (Oquab et al., [2024) and project them into a 2D space using UMAP (McInnes
et al., [2020). We then select top 5k images by farthest point sampling in the UMAP space. The result can
be visualized in Figure [I0] The sampling prevents the dataset from containing very similar images which
might potentially lead to high correlation between non-paired images and captions.

C.2 Caption Source

There are two sources where captions are gathered, (1) through clustering in the Conceptual Datasets, and
(2) web-curation. We utilize the full Conceptual 3M (Sharma et al.| [2018) and a 7M subset of Conceptual
12M  (Changpinyo et al., |2021)) to perform the clustering-based caption gathering. By manually inspecting
the clustering results, we use a radius size of around 50 (MSCOCO), which equals to a clutser size between
800 to 3000 in the 3+7 M Conceptual dataset, depending on the image similarity threshold. Since the way
captions being used might vary from time, we also use the Google Vision API to search web-entities, which
will return a list of websites containing identical or visually similar images. We then use website titles as the
curated captions.
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Figure 10: A sample of 5k images from the Unsplash Lite Dataset.

C.3 Caption Cleaning

To ensure the quality of the captions, we perform a series of cleaning steps. We clean captions gathered from
source (2), which are often noisy, containing HTML tags, website names as suffixes or prefixes, hashtags in
website titles, a high rate of word repetation, and other irrelevant information. We use packages such as ftfy
to first clean those noise, and use token analysis to remove captions with high word repetition rate, which
are likely to be a list of keywords curated from internet. We also remove captions with no noun, verb or
adjective (Sharma et al.l [2018). The captions are cleaned by removing most of these noises while keeping
the sentences fluent and readable. Only caption which has at least 5 words are kept. The cleaned captions
along with captions from source (1) are merged into the candidate caption pool. To reduce the number of
captions to be annotated, we remove (nearly) duplicate captions by n-grams of each caption pool.

C.4 Annotation

Annotators are tasked with classifying each candidate caption as “good” , “bad”, or “unsure” based on
detailed guidelines to maximally capture the diversity of captions while ensuring minimal subjectivity. The
quality assurance process is conducted in two stages, interannotator agreement of which the same set of
images is annotated by multiple annotators, and review-feedback loop of which an initial set of annotations
is reviewed by head annotator and provide feedback to other annotators. The inter-annotator agreement
stage is used to ensure that the annotators are consistent in their judgments. The review-feedback loop is
used to ensure that the annotators were following the guidelines and to provide feedback on their annotations.

Parallel to the binary classification, a list of changes are made to improve the quality of captions. The
changes include but are not limited to:
1. Color: Change the color of the object in the caption to the actual color of the object in the image,

for example, “a blue flower” to “a red flower”.

2. Number: Change the wrong number of objects in the caption to the actual number of objects in
the image, for example, “a group of birds” to “a single bird”.

3. Object Name: Image objects such as animals and plants are often misidentified in the captions
due to the nature of image clustering. We correct the object name to the actual object in the image
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Figure 11: An exampke of using SentenceBERT, UMAP, and K-means to select diverse captions
from the candidate pool.

and allows certain level of generalization, for example, we keep “elk” which is the correct species of
the animal in the image, but change “Moose” to “deer”.

4. Person: We use <person> placeholder to replace unclear or irrelevant person names in the caption.

5. Location: We replace the detailed location in the caption to a more general location, for example,
“New York City” will be kept, but a specific building name will or replace by “a building”.

To further improve the quality of the dataset, we remove captions which are too generic, such as “beautiful
scene makes me happy”. Such captions are often regarded as “good” by the annotators, but can also be good
captions for many other images in the dataset.

C.5 Diverse Caption Selection

After the manual selection process, we have a pool of good captions for each image. Any of these captions can
be included in the final dataset. To maximize diversity, we employ SentenceBERT (Reimers & Gurevych)
2019) to extract textual features from the captions and project the textual features into 2D space using
UMAP (Mclnnes et al., 2020). We then perform K-means clustering with K = 5 to group caption into five
clusters. One caption is randomly selected from each cluster to create a diverse set of five captions for each
image. An example is shown in Figure [T1]

C.6 Data Leakage

We ensure that there is no overlap (identical image) between samples from Unsplash and the 347 M Con-
ceptual dataset. We cannot verify this when consider larger datasets, such as CLIP400M (Radford et al.,
2021) or DataComplB (Gadre et al.} |2023)), but the impact of data leakage is reduced by the way we gather
and annotate captions.

D Experimental Details

All models evaluated in this work are implemented with PyTorch (Paszke et al., [2019). We perform the
zero-shot evaluation on most state-of-the-art models by using the pre-trained weights provided by Hugging-
face (Wolf et al.l |2020) and OpenClip (Ilharco et all 2021)). The evaluation on ImageBind is done by using
the original codebase (Girdhar et al., [2023)).
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Evaluation on one-to-many approaches, namely, PVSE (Song & Soleymani, 2019), PCME (Chun et al.,
2021), and DivE (Kim et al.| [2023)), is done by using the official codebase provided by the authors. We
use the modules that are relevant to each model as the adapter, with the CLIP ViT-B/32 pre-trained on
CLIP400M (Radford et al., |2021) as the backbone (Wolf et al., 2020). We also use the training loss and

evaluation metrics from the original codebase for each model.

We use the same hyperparameters (except for learning rate) and setup following previous work (Radford
et al.} 2021} Dong et al.,|2022)). We use le-4 as the base-learning rate, which is selected by grid sear ch ranging
from le-3 to le-6. We adopt the default hyperparameters for LoRA (Hu et al., 2021; |[Sourab Mangrulkar
et all [2022). All models are trained for 6 epochs with batch size 1024 and cosineannealing learning rate
scheduler. We follow the DivE setting (Kim et al.| [2023), and the learning rates for both image encoder and

text encoder are scaled with 0.05 and 0.5, respectively.

All experiments are done with two NVIDIA A6000 PCle GPUs with 48GB memory.

E Additional Experimental Results

E.1 Additional Results on One-to-Many Models

Table 7: One-to-many models as adapter added to CLIP ViT-B/32 with trainable LoRA pa-
rameters, evaluated on IMP. The best results within each recall are highlighted with bold. 100K, 500K,

and 5M refer to the number of image-text pairs in the pre-training dataset.

Image-to-Text

Text-to-Image

Method R@1 R@5 R@10 meanR medR mAPQR | R@Ql R@5 R@10 meanR medR mAPQR
CLIP | base | 147 291 378 2084 566 7341 | 60 141 193 515 121 10.611
100K
PVSE | base | 13.8 205 378 2082 579 6.920 59 143  20.0 510 127 10.618
PVSE | k=1 | 139 295 382 2073 583 6.900 58 143 198 509 125 10.556
PVSE | k=2 | 139 203 380 2051 581 6.880 58 142  19.8 502 123 10.524
PVSE | k=5 | 13.9 294  37.8 2037 545 6.880 58 142  19.8 502 121 10.532
PCME | base | 13.9 293  37.9 2072 577 6.875 58 142  19.7 505 129 10.538
DivE | k=2 | 144 296 378 2043 548 7.000 59 144 199 533 134 10.630
DivE | k=5 | 144 296 37.9 2022 552 6.919 6.0 143  20.0 541 136 10.607
500K
PVSE | base | 149 297  38.0 2061 561 7.359 6.0 143 196 512 123 10.624
PVSE | k=1 | 150 295 385 2053 562 7.363 6.1 143 198 514 123 10.612
PVSE | k=2 | 150 295  38.3 2044 560 7.369 6.0 143  19.7 512 125 10.627
PVSE | k=5 | 150 297  38.3 2037 558 7.380 6.1 143 199 500 119 10.712
PCME | base | 150 296  39.0 2041 556 7.385 58 143 197 511 121 10.628
DivE | k=2 | 15.4 301 385 2002 540 7.504 59 14.8 20.5 459 130 10.748
DivE | k=5 | 15.4 30.0 385 1992 542 7.500 59 14.8 20.5 458 131 10.746
5M
PVSE | base | 141 28.1 368 2072 555 6.737 58 140 193 538 165 10.365
PVSE | k=1 | 14.2 284 375 2018 564 6.850 59 141  19.6 533 150 10.457
PVSE | k=2 | 141 289 379 1989 568 6.877 59 142  19.6 528 131 10.516
PVSE | k=5 | 141 201  38.0 1970 558 6.895 6.0 142  19.7 528 131 10.549
PCME | base | 141 290  38.0 1968 578 6.914 57 140  19.5 526 127 10.550
DivE | k=2 | 147 296 386 1967 575 6.916 56 145  20.0 526 125 10.553
DivE | k=5 | 147 30.2 39.1 1952 570 6.950 56 145 203 522 123 10.658

We report the additional results on fine-tuning the one-to-many models with different pre-training data
size in Table We observe that with 500k pre-training data, the performance of all three one-to-many
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Table 8: One-to-many models as adapter added to CLIP ViT-B/32 with trainable LoRA pa-
rameters, evaluated on IMP. The best results within each recall are highlighted with bold. Scores lower
than CLIP are highlighted in red.

Image-to-Text Text-to-Image
Method R@Q1 R@5 R@Q10 meanR medR mAP | R@l R@5 R@I0 meanR medR mAP
CLIP ‘ base ‘ 14.7 29.1 37.8 2084 566 7.341 6.0 14.1 19.3 515 121 10.611
PVSE base 14.9 29.7 38.0 2061 561 7.359 6.0 14.3 19.6 512 123 10.624
PVSE k=1 15.0 29.5 38.5 2053 562 7.363 6.1 14.3 19.8 514 123 10.612
PVSE k=2 15.0 29.5 38.3 2044 560 7.369 6.0 14.3 19.7 512 125 10.627
PVSE k=5 | 15.0 29.7 38.3 2037 558 7.380 6.1 14.3 19.9 509 119 10.712
PCME ‘ base ‘ 15.0 29.6 39.0 2041 556 7.385 5.8 14.3 19.7 511 121 10.628
DivE k=2 15.4 30.1 38.5 2002 540 7.504 5.9 14.8 20.5 459 130 10.748
DivE k=5 15.4 30.0 38.5 1992 542 7.500 5.9 14.8 20.5 458 131 10.746

models improves over zero-shot CLIP. When the data size drops to 100k, there is a clear gap between the
performance of these models and CLIP on the RQ1 and mAP@QR scores. We notice that with the same
data size, the meanR and medR scores decrease consistantly with the increase of k£ for PVSE and DivE.
Same trend can be seen when the data size increases to 5M, where DivE with k£ = 5 achieves the best R@Q5
and R@10 and lowest meanR. However, we also observe that DivE has a performance drop on text-to-image
meanR and medR after trained on either 100K or 5M data.

E.2 Additional Results on Model Scales and Dataset Sizes

We report the additional results on the performance of VLM with model variants and dataset sizes in
Table [
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Table 9: Performance for VLM with model variants and dataset size. Where s, m,[ after model
names are scale factors for the corresponding dataset size.

Image-to-Text

Text-to-Image
Method variant ‘ R@l R@5 R@I0 meanR medR mAPQR

R@Q1 R@5 R@10 meanR medR mAPQR
CC12M |Changpinyo et al.
RN50 | quickgelu | 7.4 174 245 4150 1609 3609 | 33 85 121 849 300 6.454
YFCC15M Thomee et al.
RN50 quickgelu | 5.1 142  19.9 4475 1842 2.823 28 76 114 841 319 5.747
RN101 quickgelu | 5.6 153  21.5 4333 1732 3.086 29 79 116 825 302 6.023
CLIP400M |Radford et al.
RN50 quickgelu | 14.8 205  37.2 2198 595 7.197 54 132 184 537 135 9.929
RN50 x4 148 301 379 2095 546 7.435 6.0 142 19.3 529 127 10.707
RN50 x16 155 311 398 2073 533 7.746 6.4 149 204 508 118 11.240
RN50 x64 164 320 406 2056 517 8.087 7.0 156  20.9 487 106 11.826
RN101 quickgelu | 14.2  20.0 374 2160 574 7.150 54 133 186 546 134 10.013
ViT-B-32 quickgelu | 14.7  29.1  37.8 2085 566 7.342 6.0 141  19.3 514 121 10.612
Commonpool |Gadre et al
ViT-B-32-5 clip 0.7 36 5.6 7145 5098 0.672 04 15 2.5 1410 972 1.329
ViT-B-32-5 image 05 1.9 3.3 8570 6795 0.417 03 1.0 1.7 1676 1301 0.952
ViT-B-32-5 text 08 3.1 5.4 7172 5125 0.677 03 13 2.3 1435 989 1.206
ViT-B-32-5 basic 06 23 4.3 7185 5165 0.544 02 12 2.2 1453 1034 1.117
ViT-B-32-m clip 6.2 157 217 4253 1851 3.119 20 6.0 8.9 894 377 4.562
ViT-B-32-m image 6.6 17.1  23.9 3972 1647 3.28 21 65 9.5 861 332 4.831
ViT-B-32-m. text 6.9 166  23.2 4218 1880 3.189 19 58 8.8 923 386 4.457
ViT-B-32-m. basic 6.0 159 222 4113 1748 2.992 1.8 55 8.7 878 350 4.360
ViT-B-16-1 clip 143 288 378 2790 835 6.500 47 119 165 636 179 8.840
ViT-B-16-1 image 152 309 396 2495 678 6.958 52 131 181 597 151 9.670
ViT-B-16-1 text 144 205 379 2735 786 6.431 47 118 162 666 182 8.796
ViT-B-16-1 basic 131 275 358 2642 758 6.252 48 122 17.0 631 166 9.085
DataComp |Gadre et al. -
ViT-L-14 CLIPA | 198 379 463 2138 498 8.991 73 166 223 505 106 12.478
ViT-L-14-336 CLIPA | 19.7 374 465 2120 486 9.039 75 171 226 501 105 12.681
ViT-H-14 CLIPA | 202 381 477 1935 431 9.509 79 179 236 467 93 13.285
ViT-H-14-336 CLIPA | 211 389 481 1897 428 9.669 82 181  23.9 457 89 13.629
ViT-H-14-336 CLIPA | 202 37.9 476 1922 421 9.556 80 180  23.7 464 91 13.398
ViT-bigG-14 CLIPA | 21.5 383 478 1845 396 9.978 83 183  24.0 467 91 13.671
ViT-bigG-14-336 | CLIPA | 20.9 388 488 1830 389 10.018 85 185 244 467 90 13.931
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Table 10: Performance for VLM with increasing parameter size and across varying dataset size.
The best results within each column are highlighted with bold. Where s, m, [, zl after model names are scale
factors for the corresponding dataset size.

Image-to-Text Text-to-Image
Method Para ‘ R@l R@5 R@10 meanR medR mAPQR | R@1 R@5 R@10 meanR medR mAPQR
CC12M |Changpinyo et al.|(2021)
RN50 ‘ 102M ‘ 7.6 18.3 24.9 4407 1746 3.670 ‘ 3.1 8.1 11.6 879.3 320 6.152
YFCC15M |Thomee et al.|(2016)
RN50 102M 6.1 15.1 21.1 4482 1814 3.125 2.5 7.3 10.9 853 331 5.519
RN101 120M 6.1 16.0 22.5 4285 1683 3.303 2.8 7.5 11.1 830 313 5.796
CLIP400M [Radford et al.|(2021)
RN50 102M 14.8 29.4 37.2 2198 595 7.196 5.4 13.2 18.4 538 135 9.928
RN101 120M 14.2 29.0 37.4 2160 574 7.149 5.4 13.3 18.6 547 134 10.013
ViT-B/32 150M 14.7 29.1 37.8 2084 566 7.341 6.0 14.1 19.3 515 121 10.611
ViT-B/16 150M 15.3 30.1 38.6 2039 539 7.724 6.2 14.7 20.0 502 115 10.989
ViT-L/14 428M 15.8 30.9 38.8 2057 531 7.865 6.4 15.3 20.5 503 114 11.363
ViT-L/14-336 | 428M 17.0 32.8 41.8 1908 472 8.512 7.0 16.0 21.5 478 105 12.029
Commonpool |Gadre et al.|(2023)
ViT-B/32-s 150M 0.8 3.6 5.6 7145 5099 0.673 0.4 1.5 2.5 1410 972 1.329
ViT-B/32-m 150M 6.3 15.8 21.7 4252 1851 3.125 2.0 6.0 8.9 895 377 4.562
ViT-B/16-1 150M 14.3 28.8 37.7 2789 836 6.498 4.7 11.9 16.5 636 179 8.837
ViT-L/14-zl 428M 18.8 36.0 44.8 2057 489 8.962 7.3 16.3 21.8 484 104 12.312
DataComp |Gadre et al.|(2023)
ViT-B/32-s 150M 0.5 1.9 3.3 8571 6796 0.419 0.3 1.0 1.7 1677 1302 0.952
ViT-B/32-m 150M 6.1 14.3 20.0 4659 2227 2.840 1.9 5.6 8.3 970 438 4.308
ViT-B/32-zl 150M 17.8 34.2 42.9 2340 599 8.136 6.2 14.7 19.7 547 127 10.972
ViT-B/16-1 150M 15.2 30.0 38.6 2693 768 6.838 5.3 12.8 17.6 612 163 9.599
ViT-B/16-zl 150M 18.7 35.0 43.4 2249 562 8.499 6.7 15.6 21.2 525 117 11.698
ViT-L/14-zl 428M 19.7 37.0 45.6 1951 454 9.289 7.7 17.0 22.8 467 96 12.851
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F Additional Qualitative Results

We report more qualitative examples of image-text pairs with low CLIP similarity but high human agreement

in Figure [I2 and Figure [I3]

(a) The kind of day when coffee and a
g06d book are mandatory.
CLIP:0.068, Human: 92.9%

(d) BEach step a brushstroke in the
painting of their day.
CLIP:0.100, Human: 92.9%

(g) The calm before the coconut’s
playful tumble.
CLIP:0.104, Human: 100%

(b) Not all treasures glitter. some are (C) In a room full of art, I would still
cast in stone. stare at it.
CLIP:0.080, Human: 89.5% CLIP:0.081, Human: 90.9%

(e) The white knight rests before the (f) A furry tide ebbs and fows across
next adventure. thé green shore.

CLIP:0.107, Human: 100% CLIP:0.102, Human: 100%

| - r

(l) The quiet before the storm of
autumn tapestry. thoughts inside <person>’s head.

(h) A majestic stroll through nature’s

CLIP:0.105, Human: 94.1% CLIP:0.106, Human: 85.7%

Figure 12: Examples of false negative image-text pair.
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(a) Awaiting the warmth of spring to
dress in a lush green again.
CLIP:0.106, Human: 100%

(b) This wasn’t the frosting tutorial
we ‘were expecting.
CLIP:0.106, Human: 92.3%

“,.

==

Tk

Sl
AML; NN Kél

Lok

(c) The lone sentinel standing guard
in an ocean of sand.
CLIP:0.107, Human: 94.1%

(d) Nature’s mirror, reflecting the
beauty of an endless sky.
CLIP:0.113, Human: 100%

(g) A golden curtain before the night’s
performance.
CLIP:0

(J) A tapestry woven with wings and
wax, humming with life.
CLIP:0.129, Human: 100%

(e) Energy-saving mode has been acti-
vated.
CLIP:0.094, Human: 100%

I

L
i

(h) An artificial mountain, steeped in
human dreams.
CLIP:0.110, Human: 90.9%

. e -

(k) A quiet conversation with the old-
est inhabitants of the earth.
CLIP:0.131, Human: 90.9%

(f) For those who believe in moving
fast and living faster.
CLIP:0.106, Human: 86.7%

(1) Not all traffic jams happen on the
highway.
CLIP:0.128, Human: 92.3%

(1) The sun takes a bow, exiting stage
west.
CLIP:0.116, Human: 100%

Figure 13: Examples of false negative image-text pair (2).

29



Under review as submission to TMLR

G Top-k Retrieval Results

We report additional top-k retrieval of random samples from IMP, the original captions and the image
corresponding to the retrieved text.

Retrieved text: blue ones are from original capti

Rain dancing on the pavement, illuminated by the glow of vehicle headlights
landscape photo of asphalt road while raini

Glistening droplets on a dark commute, each headlight a star in the storm
silhouette of person walking on wet road during night time

silhouette of person standing on road during rain

A streak of rain, a lane of lights, a tale of the night

time-lapse photography of man jumping in a road while raining

Through a drizzly lens, the city's lights flicker like distant stars fallen on the road
Each droplet captures a fleeting moment of urban twilight

Even on the wettest roads, adventure calls and headlights answer

Late-night drives where the world seems to stand sti

A baptism by rain for every vehicle caught in the storn's embrace

How to feel the rain without getting wet: a study in droplets

timelapse photography of cars

As the rain falls, the line between strangers and friends blurs

Original Captions:

The lone traveler, with only the sound of the rain and the road ahead
Glistening droplets on a dark commute, each headlight a star in the storm
Headlights carve a path through the night, a beacon for the lost

Rain dancing on the pavement, illuminated by the glow of vehicle headlights
Even on the wettest roads, adventure calls and headlights answer

Rain dancing on the pavement, illuminated by the glow of vehicle headlights

silhouette of person standing on road during rain

landscape photo of asphalt road while raining silhouette of person walking on wet road during night time
time-lapse photography of man jumping in a road while raining

Each droplet captures a fleeting moment of urban twilight

A streak of

. a lane of lights, a tale of the night
Late-night d

Through a drizzly lens, the city's lights flicker like distant stars fallen on the road
s where the world seems to stand still How to feel the rain without getting wet: a study in droplets

Even on the wettest roads, adventure calls and headlights answe
As the rain falls, the line between strangers and friends blurs

A baptism by rain for every vehicle caught in the storm's embrace

timelapse photography of cars

Figure 14: Example of top-k retrieval of random samples (1) from IMP.
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Retrieved text: blue ones are from original captions
When the world sleeps, the stars keep watch over this alpine retreat

An alpine paradise frozen in time

Every ripple tells a story in this alpine sanctuary

When the mountain calls, this cabin answers

Discover the charm of dockside meditation in alpine surroundings

Frozen in time: These cabins offer a silent snowy sanctuary

Anidst craggy peaks, a rustic retreat silently witnesses the day

Where nature meets nurture: a tranquil retreat amidst alpine giants

A picture-perfect moment where architecture meets the wilderness

Find your adventure, or your serenity, within these cabins

This snowy peak under the blue sky is every photographer's dream

A timeless journey into the embrace of alpine serenity

Where warmth embraces cold: a wooden sanctuary on snow

Not just a snow-covered land, but a playground for the adventurous spirit
An icy paradise, inviting the adventurous at heart to explore its secrets

When the world sleeps, the stars keep watch over this alpine retreat

Every ripple tells a story in this alpine sanctuary

Original Captions:

When you want neighbors, but only the non-human kind

Twilight descends on the mountain pass, veiling the homestead in mystery
The perfect spot for those looking to whisper to the stars

Solitude whispers in the crisp mountain air circling the snow-covered cabin
A wooden gem tucked away in nature's vast pocket

Discover the charm of dockside meditation in alpine surroundings

An alpine paradise frozen in time
Amidst craggy peaks, a rustic retreat silently witnesses the day

Frozen in time: These cabins offer a silent snowy sanctua
This snowy peak under the blue sky is every photographer's dream

A timeless journey into the embrace of alpine serenity

When the mountain calls, this cabin answers
A picture-perfect moment where architecture meets the wildemness

Find your adventure, or your serenity, within these cabins
An icy paradise, inviting the adventurous at heart to explore its secrets

Not just a sn dland, but a playg for the ad is spirit

Figure 15: Example of top-k retrieval of random samples (2) from IMP.
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Retrieved text: blue ones are from original captions

Maple leaves in autumn: nature's fleeting gold

As the seasons turn, these leaves cling to branches like nature's own
confetti, ready for the year-end gala

selective focus photography of brown trees

Red and yellow leaves: the Earth's way of applauding summer's end
Enveloped in autumn's embrace, a journey through the lens begins
Nature's gradient: from fall's fiery cloak to winter's icy diadem
The vibrant duality of life, captured in a maple's hues

Through the tilt-shift lens, even fallen leaves find their spotlight
A picture-perfect pause between autumn's departure and winter's reign
low-angle photography of brown leafed tree at daytime

As summer fades, this leaf shows us how to bow out in style
Sun—kissed leaves tell stories of growth and survival

The forgotten characters of autumn, in a focused snapshot

The forgotten tales of fall, captured in a single frame

A testament to the fleeting beauty of fall

Maple leaves in autumn: nature's fleeting gold

The vibrant duality of life, captured in a maple’s hues

Nature's gradient: from fall's fiery cloak to winter's icy diadem

As summer fades, this leaf shows us how to bow out in style

selective focus photography of brown trees

As the seasons turn, these leaves cling to branches like nature's own confetti, ready for the yRe-and galbw leaves: the Earth's way of applauding summer's end

Through the tilt-shift lens, even fallen leaves find their spotlight

The forgotten characters of autumn, in a focused snapshot

Original Captions:

in the gallery of autumn

A picture-perfect pause between autumn’s departure and winter's reign

The forgotten tales of fall, captured in a single frame

whispering tales of summer's end

Sunset captured on a single branch

The sky plays backdrop to a symphony of colors as the

leaves perform their seasonal swan song

Veins of life stand out in every leaf, each a small masterpiece

As the seasons turn, these leaves cling
own confetti, ready for the year-end ga

to branches like nature's
la

low-angle photography of brown leafed tree at daytime

A testament to the fleeting beauty of fall

Figure 16: Example of top-k retrieval of random samples (3) from IMP.
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Retrieved text: blue ones are from original captions
A harmony of elements: rock, lake, and sky in a silent symphony of calm
Alone but not lonely: a rock's quiet companionship with the lake under a calming sky,
A serene moment captured, where rock meets lake under a peaceful sky
Not all classrooms have four walls: lessons by the lakeside mountains
time-lapse photography of lake during daytime
A snapshot of tranquility: rock steadfast in a serene lake under a gentle sky
landscape photography of lake near pine trees
Evening settles over a serene mountain lake, the sky painted with pastel clouds
landscape photography of body of water and mountains
landscape photography of lake
Escape the hustle: find peace beside these quiet mountain waters
The lake: nature's pause amidst the earth's dialogue
As the world turns gold, the lake quietly reflects on change

ape

In nature's palette, brown and gray paint a serene landsc:
The stillness of the lake presents a perfect reflection of a monolithic boulder

Original Captions:
Monuments to human ingenuity, dividing the mighty waters with quiet dignity
Ink stains on a watery canvas, the groynes sketch the coastline's edge
The paradox of tranquility and turmoil, captured where water meets these guardians

Evening settles over a serene mountain lake, the sky painted with pastel clouds
A dance of strength and endurance: black groynes under a brooding sky

time-lapse photography of lake during daytime

A harmony of elements: rock, lake, and sky in a silent symphony of calm A serene moment captured, where rock meets lake under a peaceful sky

Alone but not lonely: a rock's quiet companionship with the lake under a calming Blog all classrooms have four walls: lessons by the lakeside mountains

landscape photography of lake near pine trees landscape photography of body of water and mountains

landscape photography of lake

A snapshot of tranquility: rock steadfast in a serene lake under a gentleBkgning settles over a serene mountain lake, the sky painted with pastel clouds

The

Escape the hustle: find peace beside these quiet mountain waters As the world turns gold, the lake quietly reflects on change stillness of the lake presents a perfect reflection of a monolithic boulder

The lake: nature's pause amidst the earth's dialogue In nature's palette, brown and gray paint a serene landscape

Figure 17: Example of top-k retrieval of random samples (4) from IMP.
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Retrieved text: blue ones are from original captions

Nature's corridor: inviting, mysterious, and beautifully captured from above

The eerie beauty of a forgotten path unveiled

This spiral road, a journey through the trees

A journey through the shadows, guided by the golden spirals of light within the tunnel
A tunnel where every breath turns to mist

This road, with its natural tunnel of trees, looks like a scene from a dream
This cavernous path seems to whisper tales of the elements sculpting it over eons
Solace found in the arms of a leafy tunnel

Nature's maze: where every turn reveals a new, hidden beauty

A path less traveled, leading to the secrets of the earth

The forest's secret passage awaits the solitary wanderer

brown and black tunnel close-up photography

This verdant tunnel leads not just to places, but to new perspectives

A hidden path for those who dare to explore

The winding road through autumn's gallery

Nature's corridor: inviting, mysterious, and beautifully captured from above This spiral road, a journey through the trees

This cavernous path seems to whisper tales of the elements sculpting it over eons

This road, with its natural tunnel of trees, looks like a scene from a dream
The forest's secret passage awaits the solitary wanderer

Original Captions:

Where daylight dances through the leaves' embrace
Where nature's giants guide your solitary stroll
A mythical journey begins on this forested trail
empty way of tall trees

A golden passage through the heart of the forest

A tunnel where every breath turns to mist

The eerie beauty of a forgotten path unveiled A journey through the shadows, guided by the golden spirals of light within the tunnel
Nature's maze: where every tum reveals a new, hidden beauty

A path less traveled, leading to the secrets of the ¢
The winding road through autumn’s gallery

brown and black tunnel close-up photography A hidden path for those who dare to explore

Figure 18: Example of top-k retrieval of random samples (5) from IMP.
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H Qualitative Examples Comparison across Datasets

We report additional qualitative examples comparing examples from IMP with MS-COCO, Flickr30k, Con-
ceptualCaptions, and Redcaps.

Many different vases lined up on a shelf.

a close up of a number of vases on a table

A table topped with lots of vases sitting next to a bench. . X

some vases sitting on a window ledge on a sunny day i am totally going to make a terrarium
Several glass vases sitting on a shelf near a window.

Delicate ecosystems, perfectly encased in geometric simplicity

The delicate dance of light and life within a glass sanctuary

From the desert to the desktop: A journey in miniature

Gaze upon this glass-enclosed garden, where succulents bask in a self-contained
paradise

Nature's artistry, meticulously maintained in a transparent dome

first attempt at a terrarium. moss and rocks are all locally sourced!

Figure 19: Examples from IMP (top-left), CC3M (top-right), MS-COCO (bottom-left), and Redcaps
(bottom-right).

35



Under review as submission to TMLR

In the distance, a group of riders adds life to the quiet domain at the mountain's base taking a break - mountain biking
United with the wind, each stride a symphony of power and grace

A journey back in time, riding the trails of history

Galloping towards the horizon, where earth meets sky

A celebration of heritage and the simple joy of being together

A man riding on the back of a brown horse through a lush green field.

Two men are horse racing in front of a huge crowd. world first cold desert...skardu
a number of people on horses playing polo

There are some people riding horses on a field

A group of polo players on a field with horses next to a hill

Figure 20: Examples from IMP (top-left), CC3M (top-right), MS-COCO (bottom-left), and Redcaps
(bottom-right).
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Nature's monochrome ballet: a black and white performer pirouettes on water

A single ibis in an expanse of water, a minimalist's dream in black and white

Amidst the whispers of water, a black and white spectacle unfolds in silent majesty short story by the sea
The art of stillness, as a black and white avian grace adorns the tranquil waters

Navigating the calm waters, a striking visitor contrasts the serene landscape

single bird standing on the beach by the water

white bird standing on beach with water coming in.

large white bird on a beach in the water.

white bird is standing at the water's edge.

bird stands at the edge of the water at the beach. good crop for minimalism?

>>> >0

Figure 21: Examples from IMP (top-left), CC3M (top-right), MS-COCO (bottom-left), and Redcaps
(bottom-right).
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Nightfall brings a sparkle, city lights mimicking the stars

Echoes of footsteps, whispers of the high-rise

The geometric beauty of urban sprawl

Night falls, and the city's heartbeat is captured in lights and reflections
Nighttime cityscape by the bay, where the urban glow meets the sea

turn on the lights ~

Busy city street with traffic and pedestrians at night.

Downtown at night with a lot of lights and people. what i imagine when i see hong kong's skyline
A busy city street bright with lights at night 9 9 9 Y
Traffic is going down a city street at night.

Large city with a lot of lights and vehicles in Asian.

Figure 22: Examples from IMP (top-left), CC3M (top-right), MS-COCO (bottom-left), and Redcaps
(bottom-right).
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I SentenceBERT and BERTscore Density Plots

We report the density of the sentenceBERT similarity and BERTscore of co-captions in IMP, MS-COCO,

and Flickr30k.

Sample Density

084 0.86 088 0.90

BERTscore

(a) BERTscore density

3 IMP
=3 MsCoco
[ Flickr30k

092

plot.

J VQAscore and CLIPscore Evaluation

Sample Density

-

=3 IMP
=3 MscCoco
[ Flickr30k

06
SentenceBert Similarity

(b) SentenceBERT density plot.

Although decoder-based VLMs (such as LLaVA with VQAscore) are not within the primary scope of this
paper, we acknowledge their relevance. To this end, we evaluated IMP using both CLIPscore and VQAscore
metrics across all difficulty splits and report the result in Table[II} We chose CLIP-flant5-x1 as the VQAscore
model, and CLIP-ViT/B-32 (trained on CLIP400M) as the CLIPscore model.

Table 11: CLIPscore and VQAscore evaluated on IMP dataset across difficulty categories.

Category CLIPscore VQAscore
Full IMP 0.25£0.03 0.66+0.17
Easy 0.284+0.02 0.73£0.16
Medium 0.25+0.02 0.66 £0.16
Hard 0.224+0.02 0.58+0.17

We report the visualization of VQAscores and CLIPscores, and show case an example.

Normalized Score Distributions
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(a) Distribution of normalized
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Scatter Plot of Scores
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(b) Scatter Plot of normalized
VQAscores and CLIPscores
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Caption
Gaze upon this glass-enclosed garden, where succulents bask in a self-contained paradise

Delicate ecosystens, perfectly encased in geometric simplicity
Nature's artistry, meticulously maintained in a transparent dome
The delicate dance of light and life within a glass sanctuary
ron the desert to the desktop: A journey in miniature

ClipScore
0.296146
0.272422
0.259204
0.257697
0.236752

VoAScore  Category
7855

2
0.788751 1
0.915861 2
0.788751 1
0.483568 )

Caption
Solitude whispers in the crisp mountain air circling the snow-covered cabin
A vooden gen tucked away in nature's vast pocket

Twilight descends on the mountain pass, veiling the homestead in mystery
The perfect spot for those looking to whisper to the stars

When you want neighbors, but only the non-human kind

Figure 25: Examples from IMP with VQAscores and CLIPscores
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ClipScore
0.267368
0.250143
0.227913
0.215104
0.185647

VAScore  Category
8763

0.908734
0.334958
0.560949
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