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ABSTRACT

The objective for establishing dense correspondence between paired images con-
sists of two terms: a data term and a prior term. While conventional techniques
focused on defining hand-designed prior terms, which are difficult to formulate, re-
cent approaches have focused on learning the data term with deep neural networks
without explicitly modeling the prior, assuming that the model itself has the capacity
to learn an optimal prior from a large-scale dataset. The performance improvement
was obvious, however, they often fail to address inherent ambiguities of matching,
such as textureless regions, repetitive patterns, large displacements, or noises. To
address this, we propose DiffMatch, a novel conditional diffusion-based framework
designed to explicitly model both the data and prior terms for dense matching. This
is accomplished by leveraging a conditional denoising diffusion model that explic-
itly takes matching cost and injects the prior within generative process. However,
limited input resolution of the diffusion model is a major hindrance. We address
this with a cascaded pipeline, starting with a low-resolution model, followed by a
super-resolution model that successively upsamples and incorporates finer details to
the matching field. Our experimental results demonstrate significant performance
improvements of our method over existing approaches, and the ablation studies
validate our design choices along with the effectiveness of each component. Code
and pretrained weights are available at https://ku-cvlab.github.io/DiffMatch.

(a) Source (b) Target (c) GLU-Net (d) GOCor (e) DiffMatch (f) Ground-truth

Figure 1: Visualizing the effectiveness of the proposed DiffMatch: (a) source images, (b) target
images, and warped source images using estimated correspondences by (c-d) state-of-the-art ap-
proaches (Truong et al., 2020b;a), (e) our DiffMatch, and (f) ground-truth. Compared to previous
methods (Truong et al., 2020b;a) that discriminatively estimate correspondences, our diffusion-based
generative framework effectively learns the matching field manifold, resulting in better estimating
correspondences particularly at textureless regions, repetitive patterns, and large displacements.

1 INTRODUCTION

Establishing pixel-wise correspondences between pairs of images has been one of the crucial prob-
lems, as it supports a wide range of applications, including structure from motion (SfM) (Schonberger
& Frahm, 2016), simultaneous localization and mapping (SLAM) (Durrant-Whyte & Bailey, 2006;
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Bailey & Durrant-Whyte, 2006), image editing (Barnes et al., 2009; Cheng et al., 2010; Zhang
et al., 2020), and video analysis (Hu et al., 2018; Lai & Xie, 2019). In contrast to sparse correspon-
dence (Calonder et al., 2010; Lowe, 2004; Sarlin et al., 2020) which detects and matches only a
sparse set of key points, dense correspondence (Pérez et al., 2013; Rocco et al., 2017; Kim et al.,
2018; Cho et al., 2021) aims to match all the points between input images.

In the probabilistic interpretation, the objective for dense correspondence can be defined with a data
term, measuring matching evidence between source and target features, and a prior term, encoding
prior knowledge of correspondence. Traditional methods (Pérez et al., 2013; Drulea & Nedevschi,
2011; Werlberger et al., 2010; Lhuillier & Quan, 2000; Liu et al., 2010; Ham et al., 2016) explicitly
incorporated hand-designed prior terms to achieve smoother correspondence, such as total variation
(TV) or image discontinuity-aware smoothness. However, the formulation of the hand-crafted prior
term is notoriously challenging and may vary depending on the specific dense correspondence tasks,
such as geometric matching (Liu et al., 2010; Duchenne et al., 2011; Kim et al., 2013) or optical
flow (Weinzaepfel et al., 2013; Revaud et al., 2015).

Unlike them, recent approaches (Kim et al., 2017a; Sun et al., 2018; Rocco et al., 2017; 2020; Truong
et al., 2020b; Min & Cho, 2021; Kim et al., 2018; Jiang et al., 2021; Cho et al., 2021; 2022) have
focused on solely learning the data term with deep neural networks. However, despite demonstrating
certain performance improvements, these methods still struggle with effectively addressing the
inherent ambiguities encountered in dense correspondence, including challenges posed by textureless
regions, repetitive patterns, large displacements, or noises. We argue that it is because they concentrate
on maximizing the likelihood, which corresponds to learning the data term only, and do not explicitly
consider the matching prior. This limits their ability to learn ideal matching field manifold, and leads
to poor generalization.

On the other hand, diffusion models (Ho et al., 2020; Song et al., 2020a; Song & Ermon, 2019; Song
et al., 2020b) have recently demonstrated a powerful capability for learning posterior distribution and
have achieved considerable success in the field of generative models (Karras et al., 2020). Building
on these advancements, recent studies (Rombach et al., 2022; Seo et al., 2023; Saharia et al., 2022a;
Lugmayr et al., 2022) have focused on controllable image synthesis by leveraging external conditions.
Moreover, these advances in diffusion models have also led to successful applications in numerous
discriminative tasks, such as depth estimation (Saxena et al., 2023b; Kim et al., 2022; Duan et al.,
2023), object detection (Chen et al., 2022a), segmentation (Gu et al., 2022; Giannone et al., 2022),
and human pose estimation (Holmquist & Wandt, 2022).

Inspired by the recent success of the diffusion model (Ho et al., 2020; Song et al., 2020a; Song &
Ermon, 2019; Song et al., 2020b), we introduce DiffMatch, a conditional diffusion-based framework
designed to explicitly model the matching field distribution within diffusion process.

Unlike existing discriminative learning-based methods (Kim et al., 2017a; Jiang et al., 2021; Rocco
et al., 2017; 2020; Teed & Deng, 2020) that focus solely on maximizing the likelihood, DiffMatch
aims to learn the posterior distribution of dense correspondence. Specifically, this is achieved by
a conditional denoising diffusion model designed to learn how to generate a correspondence field
given feature descriptors as conditions. However, limited input resolution of the diffusion model
is a significant hindrance. To address this, we adopt a cascaded diffusion pipeline, starting with a
low-resolution diffusion model, and then transitioning to a super-resolution diffusion model that
successively upsamples the matching field and incorporates higher-resolution details.

We evaluate the effectiveness of DiffMatch using several standard benchmarks (Balntas et al., 2017;
Schops et al., 2017), and show the robustness of our model with the corrupted datasets (Hendrycks
& Dietterich, 2019; Balntas et al., 2017; Schops et al., 2017). We also conduct extensive ablation
studies to validate our design choices and explore the effectiveness of each component.

2 RELATED WORK

Dense correspondence. Traditional methods for dense correspondence (Horn & Schunck, 1981;
Lucas & Kanade, 1981) relied on hand-designed matching priors. Several techniques (Sun et al.,
2010; Brox & Malik, 2010; Liu et al., 2010; Taniai et al., 2016; Kim et al., 2017b; Ham et al.,
2016; Kim et al., 2013) introduced optimization methods, such as SIFT Flow (Liu et al., 2010),
which designed smoothness and small displacement priors, and DCTM (Kim et al., 2017b), which
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introduced a discontinuity-aware prior term. However, manually designing the prior term is difficult.
To address this, recent approaches (Dosovitskiy et al., 2015; Rocco et al., 2017; Shen et al., 2019;
Melekhov et al., 2019; Ranjan & Black, 2017; Teed & Deng, 2020; Sun et al., 2018; Truong et al.,
2020b; 2021; Jiang et al., 2021) have shifted to a learning paradigm, formulating an objective function
to solely maximize likelihood. This assumes that an optimal matching prior can be learned from a
large-scale dataset. DGC-Net (Melekhov et al., 2019) and GLU-Net (Truong et al., 2020b) proposed
a coarse-to-fine framework using a feature pyramid, while COTR (Jiang et al., 2021) employed
a transformer-based network. GOCor (Truong et al., 2020a) developed a differentiable matching
module to learn spatial priors, addressing matching ambiguities. PDC-Net+(Truong et al., 2023)
presented dense matching using a probabilistic model, estimating a flow field paired with a confidence
map. DKM (Edstedt et al., 2023) introduced a kernel regression global matcher to find accurate
global matches and their certainty.

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) have been exten-
sively researched due to their powerful generation capability. The Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020) proposed a diffusion model in which the forward and reverse
processes exhibit the Markovian property. The Denoising Diffusion Implicit Models (DDIM) (Song
et al., 2020a) accelerated DDPM by replacing the original diffusion process with non-Markovian
chains to enhance the sampling speed. Building upon these advancements, conditional diffusion
models that leverage auxiliary conditions for controlled image synthesis have emerged. Palette (Sa-
haria et al., 2022a) proposed a general framework for image-to-image translation by concatenating
the source image as an additional condition. Similarly, InstructPix2Pix (Brooks et al., 2023) trains
a conditional diffusion model using a paired image and text instruction, specifically tailored for
instruction-based image editing. On the other hand, several studies (Ho et al., 2022; Saharia et al.,
2022b; Ryu & Ye, 2022; Balaji et al., 2022) have turned their attention to resolution enhancement,
as the Cascaded Diffusion Model (Ho et al., 2022) adopts a cascaded pipeline to progressively
interpolate the resolution of synthesized images using the diffusion denoising process.

Diffusion model for discriminative tasks. Recently, the remarkable performance of the diffusion
model has been extended to solve discriminative tasks, including image segmentation (Chen et al.,
2022b; Gu et al., 2022; Ji et al., 2023), depth estimation (Saxena et al., 2023b; Kim et al., 2022; Duan
et al., 2023; Ji et al., 2023), object detection (Chen et al., 2022a), and pose estimation (Tevet et al.,
2022; Holmquist & Wandt, 2022). These approaches have demonstrated noticeable performance
improvement using diffusion models. Our method represents the first application of the diffusion
model to the dense correspondence task.

3 PRELIMINARIES

Probabilistic interpretation of dense correspondence. Let us denote a pair of images, i.e., source
and target, as Isrc and Itgt that represent visually or semantically similar images, and feature
descriptors extracted from Isrc and Itgt as Dsrc and Dtgt, respectively. The objective of dense
correspondence is to find a correspondence field F that is defined at each pixel i, which warps Isrc
towards Itgt such that Itgt(i) ∼ Isrc(i+ F (i)) or Dtgt(i) ∼ Dsrc(i+ F (i)).

This objective can be formulated within probabilistic interpretation (Simoncelli et al., 1991; Sun
et al., 2008; Ham et al., 2016; Kim et al., 2017b), where we seek to find F ∗ that maximizes the
posterior probability of the correspondence field given a pair of feature descriptors Dsrc and Dtgt,
i.e., p(F |Dsrc, Dtgt). According to Bayes’ theorem (Joyce, 2003), the posterior can be decomposed
such that p(F |Dsrc, Dtgt) ∝ p(Dsrc, Dtgt|F ) · p(F ). To find the matching field F ∗ that maximizes
the posterior, we can use the maximum a posteriori (MAP) approach (Greig et al., 1989):

F ∗ = argmax
F

p(F |Dsrc, Dtgt) = argmax
F

p(Dsrc, Dtgt|F ) · p(F )

= argmax
F

{log p(Dsrc, Dtgt|F )︸ ︷︷ ︸
data term

+ log p(F )︸ ︷︷ ︸
prior term

}. (1)

In this probabilistic interpretation, the first term, referred to as data term, represents the matching
evidence between feature descriptors Dsrc and Dtgt, and the second term, referred to as prior term,
encodes prior knowledge of the matching field F .
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Figure 2: Overall network architecture of DiffMatch. Given source and target images, our
conditional diffusion-based network estimates the dense correspondence between the two images.
We leverage two conditions: the initial correspondence Finit and the local matching cost Cl, which
finds long-range matching and embeds local pixel-wise interactions, respectively.

Conditional diffusion models. The diffusion model is a type of generative model, and can be
divided into two categories: unconditional models (Sohl-Dickstein et al., 2015; Ho et al., 2020) and
conditional models (Batzolis et al., 2021; Dhariwal & Nichol, 2021). Specifically, unconditional
diffusion models learn an explicit approximation of the data distribution, denoted as p(X). On the
other hand, conditional diffusion models estimate the data distribution given a certain condition K,
e.g., text prompt (Dhariwal & Nichol, 2021), denoted as p(X|K).

In the conditional diffusion model, the data distribution is approximated by recovering a data sample
from the Gaussian noise through an iterative denoising process. Given a sample X0, it is transformed
to Xt through the forward diffusion process at a time step t ∈ {T, T − 1, . . . , 1}, which consists of
Gaussian transition at each time step q(Xt|Xt−1) := N (

√
1− βtXt−1, βtI). The forward diffusion

process follows the pre-defined variance schedule βt such that

Xt =
√
αtX0 +

√
1− αtZ, Z ∼ N (0, I), (2)

where αt =
∏t

i=1(1− βi). After training, we can sample data from the learned distribution through
iterative denoising with the pre-defined range of time steps, called the reverse diffusion process,
following the non-Markovian process of DDIM (Song et al., 2020a), which is parametrized as another
Gaussian transition pθ(Xt−1 | Xt) := N (Xt−1;µθ(Xt, t), σθ(Xt, t)I). To this end, the diffusion
network Fθ(Xt, t;K) predicts the denoised sample X̂0,t given Xt, t and K. One step in the reverse
diffusion process can be formulated such that

Xt−1 =
√
αt−1Fθ(Xt, t;K) +

√
1− αt−1 − σ2

t√
1− αt

(
Xt −

√
αtFθ(Xt, t;K)

)
+ σtZ (3)

where σt is the covariance value of Gaussian distribution at time step t.

This iterative denoising process can be viewed as finding X∗ = argmaxX log p(X|K) through the
relationship between the conditional sampling process of DDIM (Song et al., 2020a) and conditional
score-based generative models (Batzolis et al., 2021).

4 METHODOLOGY

4.1 MOTIVATION

Recent learning-based methods (Kim et al., 2017a; Sun et al., 2018; Rocco et al., 2017; 2020;
Truong et al., 2020b; Min & Cho, 2021; Kim et al., 2018; Jiang et al., 2021; Cho et al., 2021;
2022) have employed deep neural networks F(·) to directly approximate the data term, i.e.,
argmaxF log p(Dsrc, Dtgt|F ), without explicitly considering the prior term. For instance, GLU-
Net (Truong et al., 2020b) and GOCor (Truong et al., 2020a) construct a cost volume along candidates
F between source and target features Dsrc and Dtgt, and regresses the matching fields F ∗ within
deep neural networks, which might be analogy to argmaxF log p(Dsrc, Dtgt|F ). In this setting,
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Figure 3: Visualization of the reverse diffusion process in DiffMatch: (from left to right) source
and target images, and warped source images by estimated correspondences as evolving time steps.
The source image is progressively warped into the target image through an iterative denoising process.

dense correspondence F ∗ is estimated as follows:

F ∗ = Fθ(Dsrc, Dtgt) ≈ argmax
F

log p(Dsrc, Dtgt|F )︸ ︷︷ ︸
data term

, (4)

where Fθ(·) and θ represent a feed-forward network and its parameters, respectively.

These approaches assume that the matching prior can be learned within the model architecture by
leveraging the high capacity of deep networks (Truong et al., 2020b; Jiang et al., 2021; Cho et al.,
2021; 2022; Min & Cho, 2021) and the availability of large-scale datasets. While there exists obvious
performance improvement, they typically focus on the data term without explicitly considering the
matching prior. This can restrict ability of the model to learn the manifold of matching field and
result in poor generalization.

4.2 FORMULATION

To address these limitations, for the first time, we explore a conditional generative model for dense
correspondence to explicitly learn both the data and prior terms. Unlike previous discriminative
learning-based approaches (Pérez et al., 2013; Drulea & Nedevschi, 2011; Werlberger et al., 2010;
Kim et al., 2017a; Sun et al., 2018; Rocco et al., 2017), we achieve this by leveraging a conditional
generative model that jointly learns the data and prior through optimization of the following objective
that explicitly learn argmaxF p(F |Dsrc, Dtgt):

F ∗ = Fθ(Dsrc, Dtgt) ≈ argmax
F

p(F |Dsrc, Dtgt)

= argmax
F

{log p(Dsrc, Dtgt|F )︸ ︷︷ ︸
data term

+ log p(F )︸ ︷︷ ︸
prior term

}. (5)

We leverage the capacity of a conditional diffusion model, which generates high-fidelity and diverse
samples aligned with the given conditions, to search for accurate matching within the learned
correspondence manifold.

Specifically, we define the forward diffusion process for dense correspondence as the Gaussian
transition such that q(Ft|Ft−1) := N (

√
1− βtFt−1, βtI), where βt is a predefined variance schedule.

The resulting latent variable Ft can be formulated as Eq. 2:

Ft =
√
αtF0 +

√
1− αtZ, Z ∼ N (0, I), (6)

where F0 is the ground-truth correspondence. In addition, the neural network Fθ(·) is subsequently
trained to reverse the forward diffusion process. During the reverse diffusion phase, the initial latent
variable FT is iteratively denoised following the sequence FT−1, FT−2, . . . , F0, using Eq. 3:

Ft−1 =
√
αt−1Fθ(Xt, t;Dsrc, Dtgt)+

√
1− αt−1 − σ2

t√
1− αt

(
Xt−

√
αtFθ(Ft, t;Dsrc, Dtgt)

)
+σtZ,

(7)
where Fθ(Ft, t;Dsrc, Dtgt) directly predicts the denoised correspondence F̂0,t with source and target
features, Dsrc and Dtgt, as conditions.

The objective of this denoising process is to find the optimal correspondence field F ∗ that satisfies
argmaxF log p(F |Dsrc, Dtgt). The detailed explanation of the objective function of the denoising
process will be explained in Section 4.5.
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4.3 NETWORK ARCHITECTURE

In this section, we discuss how to design the network architecture Fθ(·). Our goal is to find accurate
matching fields given feature descriptors Dsrc and Dtgt from Isrc and Itgt, respectively, as conditions.
An overview of our proposed architecture is provided in Figure 2.

Cost computation. Following conventional methods (Rocco et al., 2020; Truong et al., 2020a), we
first compute the matching cost by calculating the pairwise cosine similarity between localized deep
features from the source and target images. Given image features Dsrc and Dtgt, the matching cost is
constructed by taking scalar products between all locations in the feature descriptors, formulated as:

C(i, j) =
Dsrc(i) ·Dtgt(j)

∥Dsrc(i)∥∥Dtgt(j)∥
, (8)

where i ∈ [0, hsrc)× [0, wsrc), j ∈ [0, htgt)× [0, wtgt), and ∥ · ∥ denotes l-2 normalization.

Forming the global matching cost by computing all pairwise feature dot products is robust to long-
range matching. However, it is computationally unfeasible due to its high dimensionality such that
C ∈ Rhsrc×wsrc×htgt×wtgt . To alleviate this, we can build the local matching cost by narrowing down
the target search region j within a neighborhood of the source location i, constrained by a search
radius R. Compared to the global matching cost, the local matching cost Cl ∈ Rhsrc×wsrc×R×R is
suitable for small displacements and, thanks to its constrained search range of R, is more feasible
for large spatial sizes and can be directly used as a condition for the diffusion model. Importantly,
the computational overhead remains minimal, with the only significant increase being R×R in the
channel dimension.

Conditional denoising diffusion model. As illustrated in Figure 2, we introduce a modified U-Net
architecture based on (Nichol & Dhariwal, 2021). Our aim is to generate an accurate matching field
that aligns with the given conditions. A direct method to condition the model is simply concatenating
Dsrc and Dtgt with the noisy flow input Ft. However, this led to suboptimal performance in our tests.
Instead, we present two distinct conditions for our network: the initial correspondence and the local
matching cost.

First, our model is designed to learn the residual of the initially estimated correspondence, which leads
to improved initialization and enhanced stability. Specifically, we calculate the initial correspondence
Finit using the soft-argmax operation (Cho et al., 2021) based on the global matching cost C between
Dsrc and Dtgt. This assists the model to find long-range matches. Secondly, we integrate pixel-wise
interactions between paired images. For this, each pixel i in the source image is mapped to i′ in
the target image through the estimated initial correspondence Finit. We then compute the local
matching cost Cl as an additional condition with Finit. This local cost guides the model to focus
on the neighborhood of the initial estimation, helping to find a more refined matching field. With
these combined, our conditioning strategies enable the model to precisely navigate the matching field
manifold while preserving its generative capability. Finally, under the conditions Finit and Cl, the
noised matching field Ft at time step t passes through the modified U-net (Nichol & Dhariwal, 2021),
which comprises convolution and attention, and generates the denoised matching field F̂t,0 aligned
with the given conditions.

4.4 FLOW UPSAMPLING

The inherent input resolution limitations of the diffusion model is a major hindrance. Inspired by
recent super-resolution diffusion models (Ho et al., 2022; Ryu & Ye, 2022), we propose a cascaded
pipeline tailored for flow upsampling. Our approach begins with a low-resolution denoising diffusion
model, followed by a super-resolution model, successively upsampling and adding fine-grained
details to the matching field. To achieve this, we simply finetune the pre-trained conditional denoising
diffusion model, which was trained at a coarse resolution. Specifically, instead of using Finit from
the global matching cost, we opt for a downsampled ground-truth flow field as Finit. This simple
modification effectively harnesses the power of the pretrained diffusion model for flow upsampling.
The efficacy of our flow upsampling model is demonstrated in Table 4.
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Table 1: Quantitative evaluation on HPatches (Balntas et al., 2017) and ETH3D (Schops et al.,
2017) with common corruptions from ImageNet-C (Hendrycks & Dietterich, 2019). All results
are evaluated at corruption severity 5. For simplicity, we denote GLU-Net-GOCor as GOCor (Truong
et al., 2020a).

Dataset Algorithm Noise Blur Weather Digital Avg.Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

HPatches

GLU-Net (Truong et al., 2020b) 34.96 32.60 34.18 25.74 25.71 63.26 90.75 46.16 66.63 47.81 25.28 37.45 32.85 44.31 26.94 42.31
GOCor (Truong et al., 2020a) 27.35 27.21 26.63 23.54 20.75 57.75 88.35 39.84 63.55 36.98 21.44 23.65 28.40 33.67 22.20 36.09
PDCNet (Truong et al., 2021) 30.00 29.97 29.36 25.94 24.06 56.96 85.44 42.31 56.87 40.98 23.16 23.29 29.52 34.10 23.55 37.03
PDCNet+ (Truong et al., 2023) 29.82 27.23 28.31 21.97 19.15 48.29 81.73 35.00 82.84 35.34 17.85 21.90 27.19 33.00 22.70 35.49

DiffMatch 31.10 28.21 29.14 21.96 19.56 38.16 97.22 37.49 50.74 35.66 20.21 27.22 27.43 37.17 21.63 34.86

ETH3D

GLU-Net (Truong et al., 2020b) 29.20 27.51 29.11 14.18 13.16 36.90 77.73 47.11 65.22 37.75 13.89 24.52 19.11 21.25 17.77 31.63
GOCor (Truong et al., 2020a) 27.45 25.56 26.44 11.39 10.98 33.73 73.56 43.24 66.49 39.11 10.98 18.34 15.54 16.47 15.20 28.96
PDCNet (Truong et al., 2021) 28.60 24.94 27.90 10.63 10.00 37.93 76.18 45.08 69.50 35.90 10.16 17.46 15.86 16.69 15.62 29.50
PDCNet+ (Truong et al., 2023) 30.49 26.18 28.08 8.99 8.32 33.40 68.79 39.14 65.35 31.50 8.59 8.59 14.55 14.55 13.28 27.11

DiffMatch 25.11 23.36 24.61 8.62 5.48 36.47 72.67 41.48 64.82 25.68 8.13 15.32 12.86 17.32 14.86 26.45

(a) Source (b) Target (c) GLU-Net (d) GOCor (e) PDCNet+ (f) DiffMatch (g) GT

Figure 4: Qualitative results on HPatches (Balntas et al., 2017) using motion blur in Hendrycks
& Dietterich (2019). The source images are warped to the target images using predicted correspon-
dences.

4.5 TRAINING

In training phase, the denoising diffusion model, as illustrated in Section 4.3, learns the prior
knowledge of the matching field with the initial correspondence Finit to give a matching hint and the
local matching cost Cl to provide additional pixel-wise interactions. In other words, we redefine the
network Fθ(Ft, t;Dsrc, Dtgt) as Fθ(Ft, t;Finit, C

l), given that Finit and Cl are derived from Dsrc

and Dtgt as described in Section 4.3. The loss function for training diffusion model is defined as
follows:

L = EF0,t,Z∼N (0,I),Dsrc,Dtgt

[∥∥F0 −Fθ(Ft, t;Finit, C
l)
∥∥2] . (9)

Note that for the flow upsampling diffusion model, we finetune the pretrained conditional denoising
diffusion model with the downsampled ground-truth flow as Finit.

4.6 INFERENCE

During the inference phase, a Gaussian noise FT is gradually denoised into a more accurate matching
field F0 under the given features Dsrc and Dtgt as conditions through the diffusion reverse process. To
account for the stochastic nature of diffusion-based models, we propose utilizing multiple hypotheses
by computing the mean of the estimated multiple matching fields from multiple initializations FT ,
which helps to reduce stochasticity of model while improving the matching performance. Further
details and analyses are available in Appendix C.2.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

For the feature extractor backbone, we used VGG-16 (Chatfield et al., 2014) and kept all parameters
frozen throughout all experiments. Our diffusion network is based on (Nichol & Dhariwal, 2021)
with modifications to the channel dimension. The network was implemented using PyTorch (Paszke
et al., 2019) and trained with the AdamW optimizer (Loshchilov & Hutter, 2017) at a learning rate
of 1e−4 for the denoising diffusion model and 3e−5 for flow upsampling model. We conducted
comprehensive experiments in geometric matching for four datasets: HPatches (Balntas et al., 2017),
ETH3D (Schops et al., 2017), ImageNet-C (Hendrycks & Dietterich, 2019) corrupted HPatches and
ImageNet-C corrupted ETH3D. Following (Truong et al., 2020b;a; 2023), we trained our network
using DPED-CityScape-ADE (Ignatov et al., 2017; Cordts et al., 2016; Zhou et al., 2019) and
COCO (Lin et al., 2014)-augmented DPED-CityScape-ADE for evaluation on Hpatches and ETH3D,
respectively. For a fair comparison, we benchmark our method against PDCNet (Truong et al., 2021)
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Table 2: Quantitative evaluation on HPatches (Balntas et al., 2017) and ETH3D (Schops et al.,
2017). Lower AEPE indicates better performance. Higher scene labels or rates (e.g., V or 15)
comprise more challenging images with extreme geometric deformations. The best results are
highlighted in bold, and the second-best results are underlined. *: COTR (Jiang et al., 2021) is
examined separately since it provides only confident correspondences and evaluation is limited to
this subset. †: This indicates that a dense evaluation is performed without zoom-in techniques and
confidence thresholding for a fair comparison.

Methods
HPatches Original (Balntas et al., 2017) ETH3D (Schops et al., 2017)

AEPE ↓ AEPE ↓
I II III IV V Avg. rate=3 rate=5 rate=7 rate=9 rate=11 rate=13 rate=15 Avg.

COTR* (Jiang et al., 2021) - - - - - 7.75 1.66 1.82 1.97 2.13 2.27 2.41 2.61 2.12
COTR*+Interp. (Jiang et al., 2021) - - - - - 7.98 1.71 1.92 2.16 2.47 2.85 3.23 3.76 2.59

DGC-Net (Melekhov et al., 2019) 5.71 20.48 34.15 43.94 62.01 33.26 2.49 3.28 4.18 5.35 6.78 9.02 12.25 6.19
GLU-Net (Truong et al., 2020b) 1.55 12.66 27.54 32.04 52.47 25.05 1.98 2.54 3.49 4.24 5.61 7.55 10.78 5.17
GLU-Net-GOCor (Truong et al., 2020a) 1.29 10.07 23.86 27.17 38.41 20.16 1.93 2.28 2.64 3.01 3.62 4.79 7.80 3.72
DMP (Hong & Kim, 2021) 3.21 15.54 32.54 38.62 63.43 30.64 2.43 3.31 4.41 5.56 6.93 9.55 14.20 6.62
COTR† (Jiang et al., 2021) 19.65 33.81 45.81 62.03 66.28 45.52 8.76 9.86 11.23 12.44 13.77 14.94 16.09 12.44
PDCNet (Truong et al., 2021) 1.30 11.92 28.60 35.97 42.41 24.04 1.77 2.10 2.50 2.88 3.47 4.88 7.57 3.60
PDCNet+ (Truong et al., 2023) 1.44 8.97 22.24 30.13 31.77 18.91 1.70 1.96 2.24 2.57 3.04 4.20 6.25 3.14

DiffMatch 1.85 10.83 19.18 26.38 35.96 18.84 2.08 2.30 2.59 2.94 3.29 3.86 4.54 3.12

(a) Source (b) Target (c) GLU-Net (d) GOCor (e) DiffMatch (f) Ground-truth

Figure 5: Qualitative results on HPatches (Balntas et al., 2017). the source images are warped to
the target images using predicted correspondences.

and PDCNet+ (Truong et al., 2023), both trained on the same synthetic dataset. Note that we strictly
adhere to the training settings provided in their publicly available codebase. Further implementation
details can be found in Appendix A.

5.2 MATCHING RESULTS

Our primary aim is to develop a robust generative prior that can effectively address inherent ambigui-
ties in dense correspondence, such as textureless regions, repetitive patterns, large displacements, or
noises. To evaluate the robustness of the proposed diffusion-based generative prior in challenging
matching scenarios, we tested our approach against a series of common corruptions from ImageNet-
C (Hendrycks & Dietterich, 2019). This benchmark includes 15 types of algorithmically generated
corruptions, organized into four distinct categories. Additionally, we validate our method using the
standard HPatches and ETH3D datasets. Further details on the corruptions and explanations for each
evaluation dataset can be found in Appendix B.

ImageNet-C corruptions. In real-world matching scenarios, image corruptions such as weather vari-
ations or photographic distortions frequently occur. Therefore, it is crucial to establish robust dense
correspondence under these corrupted conditions. However, existing discriminative methods (Truong
et al., 2020b;a; 2021; 2023) solely rely on the correlation layer, focusing on point-to-point feature
relationships, resulting in degraded performance in harsh-corrupted settings. In contrast, our frame-
work learns not only the likelihood but also the prior knowledge of the matching field formation.
We evaluated the robustness of our approach against the aforementioned methods on ImageNet-C
corrupted scenarios (Hendrycks & Dietterich, 2019) of HPatches and ETH3D. As shown in Table 1,
our method exhibits outstanding performance in harsh corruptions, especially in noise and weather.
This is also visually evident in Figure 4. More qualitative results are available in Appendix D.

HPatches. We evaluated DiffMatch on five viewpoints of HPatches (Balntas et al., 2017). Table 2
summarizes the quantitative results and demonstrates that our method surpasses state-of-the-art
discriminative learning-based methods (Truong et al., 2020b;a; 2021; 2023). The qualitative result is
presented in Figure 5. The effectiveness of our approach is evident from the quantitative results in
Figure 1. This success can be attributed to the robust generative prior that learns a matching field
manifold, which effectively addresses challenges faced by previous discriminative methods, such as
textureless regions, repetitive patterns, large displacements or noises. More qualitative results are
available in Appendix D.
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ETH3D. As indicated in Table 2, our method demonstrates highly competitive performance compared
to previous discriminative works (Truong et al., 2020b;a; 2021; 2023) on ETH3D (Schops et al.,
2017). Notably, DiffMatch surpasses these prior works by a large margin, especially at interval rates
of 13 and 15, which represent the most challenging settings. Additional qualitative results can be
found in Appendix D.

5.3 ABLATION STUDY

Table 3: Results via different learn-
ing schemes.

Learning schemes HPatches ETH3D
AEPE ↓ AEPE ↓

DiffMatch w/o diffusion 23.34 3.96
DiffMatch 18.82 3.12

Effectiveness of generative prior. We aim to validate our
hypothesis that a diffusion-based generative prior is effective
for finding a more accurate matching field. To achieve this,
we train our network by directly regressing the matching field.
Then we compare its performance with our diffusion-based
method. As demonstrated in Table 3, our generative approach
outperforms the regression-based baseline, thereby emphasiz-
ing the efficacy of the generative prior in dense correspondence
tasks. The effectiveness of the generative matching prior is further analyzed in Appendix C.3.

Table 4: Ablations on components. C-ETH3D indi-
cates ImageNet-C corrupted ETH3D.

Components ETH3D C-ETH3D
AEPE ↓ AEPE ↓

(I) Conditional denoising diff. 3.44 26.89
(II) (I) w/o local cost 4.26 32.07
(III) (I) w/o init flow 10.28 80.81

(IV) (I) + Flow upsampling diff. (DiffMatch) 3.12 26.45

Component analysis. In this ablation study,
we provide a quantitative comparison between
different configurations. The results are sum-
marized in Table 4. (I) refers to the complete
architecture of the conditional denoising dif-
fusion model, as illustrated in Figure 2. (II)
and (III) denote the conditional denoising dif-
fusion model without the local cost and initial
flow conditioning, respectively. (IV) repre-
sents the flow upsampling diffusion model. Notably, (I) outperforms both (II) and (III), emphasizing
the effectiveness of the proposed conditioning method. The comparison between (I) and (IV) under-
lines the benefits of the flow upsampling diffusion model, which has only a minor increase in training
time as it leverages the pretrained (I) at a lower resolution.

Table 5: Ablations on time complex-
ity. C-ETH3D indicates ImageNet-C
corrupted ETH3D.

Method C-ETH3D Time
AEPE ↓ [ms]

PDCNet (Truong et al., 2021) 29.50 112
PDCNet+ (Truong et al., 2023) 27.11 112
DiffMatch (1 sample, 5 steps) 27.52 112
DiffMatch (2 samples, 5 steps) 27.41 123
DiffMatch (3 samples, 5 steps) 26.45 140

Time complexity. In this ablation study, we compare
the time consumption of our model against existing
works (Truong et al., 2021; 2023). As mentioned in
Sec. 4.6, our method employs multiple hypotheses dur-
ing inference, averaging them for the final output. Table 5
presents the computing times using 1, 2, and 3 samples for
multiple hypotheses. Note that we employ batch processing
for these multiple inputs instead of processing them sequen-
tially, improving time efficiency. With a fixed sampling
time step of 5, the time required for DiffMatch with a single
input is comparable to that of previous methods (Truong
et al., 2021; 2023), while ensuring comparable performance. Processing more samples leads to
enhanced performance with only a negligible increase in time. Additionally, this time complexity can
be further mitigated by decreasing the number of sampling time steps, as discussed in Appendix C.1.

6 CONCLUSION

In this paper, we propose DiffMatch, a novel diffusion-based framework for dense correspondence,
which jointly models the likelihood and prior distribution of matching fields. This is achieved by
the conditional denoising diffusion model, based on initial correspondence and local costs derived
from feature descriptors. To alleviate the resolution constraint, we further propose a flow upsampling
diffusion model that fine-tunes the pretrained denoising model, thereby injecting fine details into the
matching field with minimal optimization. For the first time, we highlight the power of the generative
prior in dense correspondence, achieving state-of-the-art performance on standard benchmarks.
We further emphasize the effectiveness of our generative prior in harshly corrupted settings of the
benchmarks. As a result, we demonstrate that our diffusion-based generative approach outperforms
discriminative approaches in addressing the inherent ambiguities present in dense correspondence.
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Appendix

In the following, we describe more comprehensive implementation details, additional analyses,
additional experimental results, limitations, future works, and broader impacts of our work.

A MORE IMPLEMENTATION DETAILS

Our baseline code is built upon the DenseMatching repository1. We implemented the network in
PyTorch (Paszke et al., 2019) and used the AdamW optimizer (Loshchilov & Hutter, 2017). All
our experiments were conducted on 6 24GB RTX 3090 GPUs. For diffusion reverse sampling, we
employed the DDIM sampler (Song et al., 2020a) and set the diffusion timestep T to 5 during both
the training and sampling phases. We set the default number of samples for multiple hypotheses to 4
for evaluations on ETH3D and to 3 for HPatches, respectively.

In our experiments, we trained two primary models: the conditional denoising diffusion model and
the flow upsampling diffusion model. For the denoising diffusion model, we train 121M modified
U-Net based on (Nichol & Dhariwal, 2021) with the learning rate to 1× 10−4 and trained the model
for 130,000 iterations with a batch size of 24. For the flow upsampling diffusion model, we used
a learning rate of 3× 10−5 and finetuned the pretrained conditional denoising diffusion model for
20,000 iterations with a batch size of 2.

For the feature extraction backbone, we employed VGG-16, as described in Truong et al. (2020b;a).
We resized the input images to H ×W = 512× 512 and extracted feature descriptors at Conv3-3,
Conv4-3, Conv5-3, and Conv6-1 with resolutions H

4 ×W
4 , H

8 ×W
8 , H

16×
W
16 , and H

32×
W
32 , respectively.

We used these feature descriptors to establish both global and local matching costs. The conditional
denoising diffusion model was trained at a resolution of 64, while the flow upsampling diffusion
model was trained at a resolution of 256 to upsample the flow field from 64 to 256.

B EVALUATION DATASETS

We evaluated DiffMatch on standard geometric matching benchmarks: HPatches (Balntas et al., 2017),
ETH3D (Schops et al., 2017). To further investigate the effectiveness of the diffusion generative
prior, we also evaluated DiffMatch under the harshly corrupted settings (Hendrycks & Dietterich,
2019) of HPatches (Balntas et al., 2017) and ETH3D (Schops et al., 2017). Here, we provide detailed
information about these datasets.

HPatches. We evaluated our method on the challenging HPatches dataset (Balntas et al., 2017),
consisting of 59 image sequences with geometric transformations and significant viewpoint changes.
The dataset contains images with resolutions ranging from 450× 600 to 1, 613× 1, 210.

ETH3D. We evaluated our framework on the ETH3D dataset (Schops et al., 2017), which consists of
multi-view indoor and outdoor scenes with transformations not constrained to simple homographies.
ETH3D comprises images with resolutions ranging from 480× 752 to 514× 955 and consists of 10
image sequences. For a fair comparison, we followed the protocol of (Truong et al., 2020b), which
collects pairs of images at different intervals. We selected approximately 500 image pairs from these
intervals.

Corruptions. Our primary objective is to design a powerful generative prior that can effectively
address the inherent ambiguities in dense correspondence tasks, including textureless regions, repeti-
tive patterns, large displacements, or noises. To this end, to assess the robustness of our generative
prior against more challenging scenarios, we subjected it to a series of common corruptions from
ImageNet-C (Hendrycks & Dietterich, 2019). This benchmark consists of 15 types of algorithmically
generated corruptions, which are grouped into four distinct categories: noise, blur, weather, and
digital. Each corruption type includes five different severity levels, resulting in a total of 75 unique
corruptions. For our evaluation, we specifically focused on severity level 5 to highlight the effective-
ness of our generative prior. Note that we use all scenes and rate 15 for the Imagenet-C corrupted
versions of HPatches and ETH3D, respectively. In the following, we offer a detailed breakdown of
each corruption type.

1DenseMatching repository: https://github.com/PruneTruong/DenseMatching.
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(a) Source (b) Target (c) DiffMatch (d) Error map (e) Variance map (f) Ground-truth

Figure 6: Uncertainty estimation. Our framework can measure the pixel-wise mean and variance of
estimated matching fields by sampling from different Gaussian noises. We observe that the variance
maps are formed almost the same as the error map, which shows that our variance map successfully
expresses the uncertainty of dense correspondence.

Gaussian noise is a specific type of random noise that typically arises in low-light conditions. Shot
noise, also known as Poisson noise, is an electronic noise that originates from the inherent discreteness
of light. Impulse noise, a color analogue of salt-and-pepper noise, occurs due to bit errors within
an image. Defocus blur occurs when an image is out of focus, causing a loss of sharpness. Frosted
glass blur is commonly seen on frosted glass surfaces, such as panels or windows. Motion blur arises
when the camera moves rapidly, while zoom blur occurs when the camera quickly zooms towards
an object. Snow, a type of precipitation, can cause visual obstruction in images. Frost, created
when ice crystals form on lenses or windows, can obstruct the view. Fog, which conceals objects
and is usually rendered using the diamond-square algorithm, also affects visibility. Brightness is
influenced by daylight intensity. Contrast depends on lighting conditions and the color of an object.
Elastic transformations apply stretching or contraction to small regions within an image. Pixelation
arises when low-resolution images undergo upsampling. JPEG, a lossy image compression format,
introduces artifacts during image compression.

C ADDITIONAL ANALYSES

C.1 TRADE-OFF BETWEEN SAMPLING TIME STEPS AND ACCURACY.

Figure 7: Time steps vs. PCK.

Figure 7 illustrates the trade-off between sampling time
steps and matching accuracy. As the sampling time steps
increase, the matching performance progressively im-
proves in our framework. After time step 5, it outperforms
all other existing methods (Truong et al., 2020b;a; Hui
et al., 2018; Sun et al., 2018; Hong & Kim, 2021), and the
performance also converges. In comparison, DMP (Hong
& Kim, 2021), which optimizes the neural network to learn
the matching prior of an image pair at test time, requires
approximately 300 steps. These results highlight that Diff-
Match finds a shorter and better path to accurate matches
in relatively fewer steps during the inference phase.

C.2 UNCERTAINTY ESTIMATION

Interestingly, DiffMatch naturally derives the uncertainty of estimated matches by taking advantage
of the inherent stochastic property of a generative model. We accomplish this by calculating the
pixel-level variance in generated samples across various initializations of Gaussian noise FT . On
the other hand, it is crucial to determine when and where to trust estimated matches in dense
correspondence (Truong et al., 2021; Kondermann et al., 2008; Mac Aodha et al., 2012; Bruhn &
Weickert, 2006; Kybic & Nieuwenhuis, 2011; Wannenwetsch et al., 2017; Ummenhofer et al., 2017).
Earlier approaches (Kondermann et al., 2007; 2008; Mac Aodha et al., 2012) relied on post-hoc
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Table 6: Quantitative evaluation on HPatches (Balntas et al., 2017) and ETH3D (Schops et al.,
2017) with common corruptions from ImageNet-C (Hendrycks & Dietterich, 2019). All results
are evaluated at corruption severity 5. For simplicity, we denote raw correlation volume and GLU-
Net-GOCor as Raw corr. and GOCor (Truong et al., 2020a), respectively. We additionally report
the matching performance of the raw correlation volume to demonstrate the effect of our proposed
generative matching prior.

Dataset Algorithm Noise Blur Weather Digital Avg.Gauss. Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

HPatches

Raw corr. 156.5 149.6 153.5 104.0 94.26 244.3 176.9 227.8 254.4 222.1 104.6 141.6 116.5 197.5 131.5 165.0
GLU-Net (Truong et al., 2020b) 34.96 32.60 34.18 25.74 25.71 63.26 90.75 46.16 66.63 47.81 25.28 37.45 32.85 44.31 26.94 42.31
GOCor (Truong et al., 2020a) 27.35 27.21 26.63 23.54 20.75 57.75 88.35 39.84 63.55 36.98 21.44 23.65 28.40 33.67 22.20 36.09
PDCNet (Truong et al., 2021) 30.00 29.97 29.36 25.94 24.06 56.96 85.44 42.31 56.87 40.98 23.16 23.29 29.52 34.10 23.55 37.03
PDCNet+ (Truong et al., 2023) 29.82 27.23 28.31 21.97 19.15 48.29 81.73 35.00 82.84 35.34 17.85 21.90 27.19 33.00 22.70 35.49

DiffMatch 31.10 28.21 29.14 21.96 19.56 38.16 97.22 37.49 50.74 35.66 20.21 27.22 27.43 37.17 21.63 34.86

ETH3D

Raw corr. 103.3 94.97 102.3 41.78 36.31 141.3 135.4 153.9 177.7 140.0 50.06 60.16 62.61 95.78 63.97 97.30
GLU-Net (Truong et al., 2020b) 29.20 27.51 29.11 14.18 13.16 36.90 77.73 47.11 65.22 37.75 13.89 24.52 19.11 21.25 17.77 31.63
GOCor (Truong et al., 2020a) 27.45 25.56 26.44 11.39 10.98 33.73 73.56 43.24 66.49 39.11 10.98 18.34 15.54 16.47 15.20 28.96
PDCNet (Truong et al., 2021) 28.60 24.94 27.90 10.63 10.00 37.93 76.18 45.08 69.50 35.90 10.16 17.46 15.86 16.69 15.62 29.50
PDCNet+ (Truong et al., 2023) 30.49 26.18 28.08 8.99 8.32 33.40 68.79 39.14 65.35 31.50 8.59 8.59 14.55 14.55 13.28 27.11

DiffMatch 25.11 23.36 24.61 8.62 5.48 36.47 72.67 41.48 64.82 25.68 8.13 15.32 12.86 17.32 14.86 26.45

(a) Source (b) Target (c) Raw corr. (d) GLU-Net (e) GOCor (f) PDCNet+ (g) DiffMatch

Figure 8: Visualizing the effectiveness of the proposed generative matching prior. The input
images are corrupted by fog and snow corruptions (top and bottom, respectively). Compared to raw
correlation and previous methods (Truong et al., 2020b;a) that focus solely on point-to-point feature
relationships, our approach yields more natural and precise matching results by effectively learning
the matching field manifold.

techniques to assess the reliability of models, while more recent model-inherent approaches (Truong
et al., 2021; Bruhn & Weickert, 2006; Kybic & Nieuwenhuis, 2011; Wannenwetsch et al., 2017;
Ummenhofer et al., 2017) have developed frameworks specifically designed for uncertainty estimation.
The trustworthiness of this uncertainty is showcased in Figure 6. We found a direct correspondence
between highly erroneous locations and high-variance locations, emphasizing the potential to interpret
the variance as uncertainty. We believe this provides promising opportunities for applications
demanding high reliability, such as medical imaging (Abi-Nahed et al., 2006) and autonomous
driving (Nistér et al., 2004; Chen et al., 2016).

C.3 THE EFFECTIVENESS OF GENERATIVE MATCHING PRIOR

DiffMatch effectively learns the matching manifold and finds natural and precise matches. In contrast,
the raw correlation volume, which is computed by dense scalar products between the source and
target descriptors, fails to find accurate point-to-point feature relationships in inherent ambiguities
in dense correspondence, including repetitive patterns, textureless regions, large displacements, or
noises. To highlight the effectiveness of our generative matching prior, we compare the matching
performance evaluated by raw correlation and our method under harshly corrupted settings in Table 6
and Figure 8.

The corruptions introduced by (Hendrycks & Dietterich, 2019) contain the inherent ambiguities
in dense correspondence. For instance, snow and frost corruptions obstruct the image pairs by
creating repetitive patterns, while fog and brightness corruptions form homogeneous regions. Under
these conditions, raw correlation volume fails to find precise point-to-point feature relationships.
Conversely, our method effectively finds natural and exact matches within the learned matching
manifold, even under severely corrupted conditions. These results highlight the efficacy of our
generative prior, which learns both the likelihood and the matching prior, thereby finding the natural
matching field even under extreme corruption.

As earlier methods (Pérez et al., 2013; Drulea & Nedevschi, 2011; Werlberger et al., 2010; Lhuillier
& Quan, 2000; Liu et al., 2010; Ham et al., 2016) design a hand-crafted prior term as a smoothness
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constraint, we can assume that the smoothness of the flow field is included in this prior knowledge of
the matching field. Based on this understanding, we reinterpret Table 6 and Figure 8, showing the
comparison between the results of raw correlation and learning-based methods (Truong et al., 2020b;a;
2023; 2021). Previous learning-based approaches predict the matching field with raw correlation
between an image pair as a condition. We observe that despite the absence of an explicit prior term in
these methods, the qualitative results from them exhibit notably smoother results compared to raw
correlation. This difference serves as indicative evidence that the neural network architecture may
implicitly learn the matching prior with a large-scale dataset.

However, it is important to note that the concept of prior extends beyond mere smoothness. This
broader understanding underlines the importance of explicitly learning both the data and prior terms
simultaneously, as demonstrated in our performance.

C.4 COMPARISON WITH DIFFUSION-BASED DENSE PREDICTION MODELS

Table 7: Results via differ-
ent conditioning schemes.

Learning schemes ETH3D
AEPE ↓

Feature concat. 106.83
DiffMatch 3.12

Previous works (Ji et al., 2023; Gu et al., 2022; Saxena et al., 2023b;
Duan et al., 2023; Saxena et al., 2023a), applying a diffusion model for
dense prediction, such as semantic segmentation (Ji et al., 2023; Gu
et al., 2022), or monocular depth estimation (Ji et al., 2023; Duan et al.,
2023; Saxena et al., 2023a), use a single RGB image or its feature
descriptor as a condition to predict specific dense predictions, such
as segmentation or depth map, aligned with the input RGB image.
A concurrent study (Saxena et al., 2023a) has applied a diffusion
model to predict optical flow, concatenating feature descriptors from
both source and target images as input conditions. However, it is
notable that this model is limited to scenarios involving small displacements, typical in optical flow
tasks, which differ from the main focus of our study. In contrast, our objective is to predict dense
correspondence between two RGB images, source Isrc and target Itgt, in more challenging scenarios
such as image pairs containing textureless regions, repetitive patterns, large displacements, or noise.
To achieve this, we introduce a novel conditioning method which leverages a local cost volume
Cl and initial correspondence Finit between two images as conditions, containing the pixel-wise
interaction between the given images and the initial guess of dense correspondence, respectively.

To validate the effectiveness of our architecture design, we further train our model using only
feature descriptors from source and target, Dsrc and Dtgt, as conditions. This could be a similar
architecture design to DDP (Ji et al., 2023) and DDVM (Saxena et al., 2023a), which only condition
the feature descriptors from input RGB images. In Table 7, we present quantitative results to compare
different conditioning methods and observe that the results with our conditioning method significantly
outperform those using two feature descriptors. We believe that the observed results are attributed to
the considerable architectural design choice, specifically tailored for dense correspondence.

D ADDITIONAL RESULTS

D.1 MORE QUALITATIVE COMPARISON ON HPATCHES AND ETH3D

We provide a more detailed comparison between our method and other state-of-the-art methods on
HPatches (Balntas et al., 2017) in Figure 9 and ETH3D (Schops et al., 2017) in Figure 10.

D.2 MORE QUALITATIVE COMPARISON IN CORRUPTED SETTINGS

We also present a qualitative comparison on corrupted HPatches (Balntas et al., 2017) and
ETH3D (Schops et al., 2017) in Figure 11 and Figure 12, respectively.

D.3 MEGADEPTH

To further evaluate the generalizability of our method, we expanded our evaluation to include the
MegaDepth dataset (Li & Snavely, 2018), known for its extensive collection of image pairs exhibiting
extreme variations in viewpoint and appearance. Following the procedures used in PDC-Net+ (Truong
et al., 2023), we tested our method on 1,600 images.
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Table 8: Results on MegaDepth

Methods MegaDepth
AEPE ↓

PDC-Net+ (Truong et al., 2021) 63.97
DiffMatch 59.73

The quantitative results, presented in Table 8, demonstrate that our
approach surpasses PDC-Net+ in performance on the MegaDepth
dataset, thereby highlighting the potential for generalizability of
our method.

E LIMITATIONS AND FUTURE WORK

To the best of our knowledge, we are the first to formulate the dense correspondence task using a
generative approach. Through various experiments, we have demonstrated the significance of learning
the manifold of matching fields in dense correspondence. However, our method exhibits slightly
lower performance on ETH3D (Schops et al., 2017) during intervals with small displacements. We
believe this is attributed to the input resolution of our method. Although we introduced the flow
upsampling diffusion model, our resolution still remains lower compared to prior works (Truong et al.,
2020b;a; 2021; 2023). We conjecture that this limitation could be addressed by adopting a higher
resolution and by utilizing inference techniques specifically aimed at detailed dense correspondence,
such as zoom-in (Jiang et al., 2021) and patch-match techniques (Barnes et al., 2009; Lee et al.,
2021). In future work, we aim to enhance the matching performance by leveraging feature extractors
more advanced than VGG-16 (Simonyan & Zisserman, 2014). Moreover, we plan to improve our
architectural designs, increase resolution, and incorporate advanced inference techniques to more
accurately capture matches.

F BROADER IMPACT

Dense correspondence applications have diverse uses, including simultaneous localization and
mapping (SLAM)(Durrant-Whyte & Bailey, 2006; Bailey & Durrant-Whyte, 2006), structure from
motion (SfM)(Schonberger & Frahm, 2016), image editing (Barnes et al., 2009; Cheng et al., 2010;
Zhang et al., 2020), and video analysis (Hu et al., 2018; Lai & Xie, 2019). Although there is no
inherent misuse of dense correspondence, it can be misused in image editing to produce doctored
images of real people. Such misuse of our techniques can lead to societal problems. We strongly
discourage the use of our work for disseminating false information or tarnishing reputations.
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(a) Source (b) Target (c) GLU-Net (d) GOCor (e) DiffMatch (f) Ground-truth

Figure 9: Qualitative results on HPatches (Schops et al., 2017). The source images are warped to
the target images using predicted correspondences.

(a) Source (b) Target (c) GLU-Net (d) GOCor (e) DiffMatch

Figure 10: Qualitative results on ETH3D (Schops et al., 2017). The source images are warped to
the target images using predicted correspondences.
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Figure 11: Qualitative results on HPatches (Schops et al., 2017) using corruptions in Hendrycks
& Dietterich (2019). The source images are warped to the target images using predicted correspon-
dences.

23



Published as a conference paper at ICLR 2024

(e) DiffMatch(a) Source (b) Target (d) GoCor(c) GLU-Net

Bright

Contrast

Elastic
Transform

Fog

Frost

Gaussian
Noise

Glass

Impulse
Noise

JPEG
Compression

Motion
Blur

Pixelate

Shot
Noise

Snow

Zoom
Blur

Defocus
Blur

Figure 12: Qualitative results on ETH3D (Schops et al., 2017) using corruptions in Hendrycks
& Dietterich (2019). The source images are warped to the target images using predicted correspon-
dences.
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