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ABSTRACT
Fine-grained sentiment analysis, which aims to identify sentiments
associated with specific aspects within sentences, faces challenges
in effectively incorporating commonsense knowledge. Recent ad-
vancements leveraging large language models (LLMs) as data gen-
erators show promise but are limited by the LLMs’ lack of nuanced,
domain-specific understanding and pose a significant risk of data
leakage during inference, potentially leading to inflated perfor-
mance metrics. To address these limitations, we propose LLM-Kit,
a novel framework for commonsense-enhanced fine-grained sen-
timent analysis that integrates knowledge via LLM-guided graph
construction, effectively mitigating data leakage risks. LLM-Kit op-
erates in two key stages: (1) Commonsense Graph Construction
(CGC): We design second-order rules and leverage LLMs for evalua-
tion to ensure the accuracy of the generated graph and mitigate the
risk of data leakage from LLMs. (2) Knowledge-integration Graph
Representation Learning (KGRL): We extract knowledge that is
aware of various aspects through Graph Representation Learning
(GRL). To capture the underlying semantic nuances within the input
sentence, we develop a Sentence Semantic Learning (SSL) module
based on RoBERTa that explicitly encodes internal semantics. This
module provides complementary information to the GCN, improv-
ing the model’s ability to discern subtle sentiment variations related
to different aspects. Comprehensive experiments on three public
datasets affirm that LLM-Kit achieves comparable performance
with state-of-the-art models.

CCS CONCEPTS
• Information systems→ Sentiment analysis; Retrieval tasks
and goals.

KEYWORDS
Web Semantic Mining; Knowledge Graph; Sentiment Analysis

† Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’25, November 10–14, 2025, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2040-6/2025/11
https://doi.org/10.1145/3746252.3761223

ACM Reference Format:
Kai Zhang and Yupeng Han†. 2025. Harnessing Commonsense: LLM-Driven
Knowledge Integration for Fine-Grained Sentiment Analysis. In Proceedings
of the 34th ACM International Conference on Information and Knowledge
Management (CIKM ’25), November 10–14, 2025, Seoul, Republic of Korea.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3746252.3761223

1 INTRODUCTION
Aspect-Based Sentiment Analysis (ABSA) is a fine-grained task
in natural language processing (NLP) that dissects sentences to
determine the sentiment polarities of specific aspects. Depending
on whether the distinct components are explicitly mentioned in the
review sentences, this task can be divided into two subcategories:
Aspect Term Sentiment Analysis (ATSA) [26] and Aspect Category
Sentiment Analysis (ACSA) [26].

For instance, given a review sentence such as “Although the sushi
is delicious, the waiter is rude!”, it encompasses two aspect terms,
specifically “sushi” and “waiter”, along with two aspect categories,
namely “food#taste” and “restaurant#service”. The objective of ATSA
is discerning the sentiment associated with the aspect terms present
within the review sentence. In contrast, ACSA targets the identi-
fication of the sentiment tendency linked to the aspect category.
After elucidating the characteristics of these two tasks, we proceed
with a brief overview of previously employed approaches. For a
more detailed comparison, please see Section 3.1.

In addressing the ACSA conundrum, two primary research trajec-
tories have been embraced within both the industrial and academic
spheres [7, 17, 25, 34, 35, 39, 40]. In particular, deep learning archi-
tectures, such as attention-based models [25, 40] and pre-trained
language models [17, 31, 41], advocate the learning of parameter-
ized prediction functions through the optimization of meticulously
designed model structures. These methods implicitly map the se-
mantic relations between aspect category and its contextual words.
Additionally, several LLMs-based [10, 45] and graph-based meth-
ods [10, 39, 45] explicitly encode the feature representation intrinsic
to the syntactic graph and subsequently extract semantics predi-
cated on such graphical data. Although existing methods demon-
strate commendable performance, they often fall short due to two
common problems that remain inadequately addressed.

The first problem is that commonsense knowledge, while impor-
tant for ACSA, is often under-considered. Augmenting models via
integration of knowledge graphs (KGs) has shown utility across
numerous NLP applications, as KGs facilitate the association of
principal terms with the actual entities, factual knowledge, and
commonsense concepts. In the context of ACSA, the polarities of
sentiment words may fluctuate across distinct aspect categories, a
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  <sentence id="1358">
        <text> Although the sushi is delicious, the waiter is rude!    </text>
        <aspectTerms>
            <aspectTerm term="sushi" polarity="positive" from="13" to="18"/>
            <aspectTerm term="waiter" polarity="negative" from="37" to="43"/>
        </aspectTerms>
        <aspectCategories>
            <aspectCategory category="Food#taste” polarity="positive"/>
            <aspectCategory category="Restaurant#service" polarity="negative"/>
        </aspectCategories>
    </sentence>

Figure 1: ABSA is tasked with identifying the sentiment asso-
ciated with aspect terms that emerge within sentences (e.g.,
“sushi”, “waiter” ). On the other hand, ACSA is dedicated to
recognizing the sentiment of aspect categories (categories
which typically do not emerge in sentence text).

situation for which KGs are well-suited. For instance, the sentiment-
bearing word “hot” can be a positive feature for aspect category
“food#taste”, but a negative feature for “restaurant#environment”.
Therefore, it is challenging to assign implicit polarities based solely
on review text, especially in the absence of knowledge supervision.
Fortunately, commonsense knowledge provides an insightful way
to enhance context and assist models understand factual semantics
(e.g., the word “hot” describes “food#taste” positively but “restau-
rant#environment” negatively). However, despite the efficiency of
external commonsense KGs, ACSA has onlymade sporadic attempts
to incorporate them.

The second problem is that LLM-based enhancement methods
often suffer from data leakage issues. Large language models, such
as ChatGPT and GPT-4, are versatile and can solve various tasks due
to their powerful knowledge generation capabilities [16, 38]. Recent
studies have directly exploited LLMs as knowledge generators to
augment existing data, yielding surprisingly interesting results [5,
43]. However, because LLMs are trained on massive amounts of
internet data, they may lack the domain-specific knowledge needed
to perform certain tasks and may also cause data leakage during the
data generation process [2]. Therefore, finding ways to use LLMs
for data enhancement without causing data leakage is an urgent
problem that needs to be addressed.

To tackle the above problems, we attempt to unlocking the power
of commonsense through LLMs and address the data leakage chal-
lenge in the process of generating commonsense knowledge graphs.
In particular, we propose an LLM-enhanced Knowledge Integration
(LLM-Kit) framework which contain two main stages: the first
stage is commonsense graph construction (CGC) which aims to
generate aspect-aware commonsense knowledge; the second stage
is knowledge-integration graph representation learning (KGRL)
which aims to fully leverage the semantic benefits of common-
sense knowledge in ACSA. In CGC stage, we propose a two-order
extraction strategy that includes an LLM-based scoring evalua-
tor. This strategy transforms the general KGs into aspect-oriented
knowledge graphs (Asp-KGs), which capture both commonsense
knowledge and the specific semantics of an aspect in a particu-
lar domain. In KGRL stage, we design a GRL module to capture
semantics between aspect categories and opinion terms, incorpo-
rating commonsense knowledge. Additionally, a sentence semantic

learning (SSL) module with pre-trained RoBERTa explores sentence
structure semantics. To merge the semantics on divergent spaces,
we created a knowledge fusion function that adaptively balances
their contributions. Comprehensive experiments conducted on pub-
lic and real-world datasets underscore the efficacy of the proposed
methodology. The source code for this method is accessible on1.

2 RELATEDWORK
Aspect-based sentiment analysis (ABSA) is a fine-grained senti-
ment analysis task that can be changed into coarser-grained aspect
category sentiment analysis (ACSA) [26, 51]. Traditional meth-
ods [6, 15] have engineered numerous rule-based models for the
task, deploying machine learning algorithms in conjunction with
rules to ascertain sentiment polarity concerning the aspects.

DNN-based Models. In recent years, most research work em-
ployed deep learningmodels to examine context words surrounding
the aspect categories [12, 39, 41, 44, 50]. Specifically, several stud-
ies [8, 17, 25, 40] have devised various attention mechanisms to
predict the aspect’s sentiment. For example, Fan et al. [8] defined a
multi-grained network, which is responsible for linking words from
the aspects and sentences. Li et al. [17] designed a target-specific
attention model to integrate aspects into the review sentence. In ad-
dition, most of the existing GCN-based studies [9, 10, 32, 39, 48, 50]
perform aspect term sentiment analysis (ATSA) by constructing
syntactic dependency graph. Wang et al. [39] reshaped dependency
trees and proposed a relational GAT model to encode syntactic
features. Zhong et al. [50] proposed knowledge graph augmented
network to incorporate external knowledge with syntactic infor-
mation. Zhao et al. [48] designed a metric-free method to model
the relations among the aspects and sentences.

Pre-trained Models. In addition, pre-trained language models
(PLMs) have proved remarkable success in both ABSA and ACSA
tasks [12, 20, 31, 33, 41, 46, 47]. Among them, Song et al. [31] devised
an attentional network and BERT-SPC to learn features between
aspect and context. Tian et al. [36] proposed a knowledge enhanced
pre-training for sentiment analysis. Ke et al. [12] devised a continual
learning pre-trained model to effectively encode specific semantics
from multiple tasks. Bu et al. [3] designed a joint model to address
ACSA task and Rating Prediction task synthetically. Even though
current pre-trained models have come a long way, they still rely
heavily on sentence-level internal semantics (i.e., semantics from
the review text) and ignore some external commonsense knowledge
that are crucial for ACSA task.

LLM-based Models.More recently, we have witnessed the rapid
development of large language models (LLMs) in both ABSA and
ACSA tasks [19, 22, 30, 49]. Among them, a retrieval-based exam-
ple mining method for instructional learning in ABSA tasks to
improve the performance by selecting effective examples was pro-
posed [49]. Li et al. [19] designed a systemic iterative data augmen-
tation framework (IterD), which leverages the powerful ability of
LLMs to generate more high-quality labeled data. Shi et al. [30] pro-
posed an instruction tuning and bi-layer sentiment representation-
based RoBERTamodel (ITGCN) for aspect-based sentiment analysis.
LLMs have achived great success in understanding the sentence

1https://github.com/Hyp26cs/LLM_Kit_
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semantics with single aspect category, however, faced with serious
challenges in processing sentence with mixed aspect categories.

3 PRELIMINARIES
3.1 Differences between ABSA and ACSA
As mentioned in main section, ABSA and ACSA are two different
tasks, although the two tasks are similar. Aspect-based sentiment
analysis (ABSA) is a fine-grained sentiment classification task that
determines the sentiment of a single aspect in a given review. As
shown in Figure 1, according to whether the aspects are explicitly
mentioned in the review sentences, ABSA can be subdivided into
Aspect-Term Sentiment Analysis (ATSA) and Aspect-Category
Sentiment Analysis (ACSA) [26]. For example, as shown in Figure 1,
given a review sentence “Although the sushi is delicious, the waiter is
rude!”, it contains two aspect terms (i.e., “sushi” and “waiter” ), and
two aspect categories (i.e., “food#taste” and “restaurant#service” )
corresponding to the aspect term. The ABSA task aims to identify
aspectual aspect term sentiment that appears in the review sentence.
When it comes to ACSA, however, the goal is to identify sentiment
tendencies of the aspect category. Note that, the aspect categories
do not appear in the review sentence.

3.2 Problem Statement
Given a review text 𝑅 = {𝑤1,𝑤2, ...,𝑤𝐿} consisting of a series of
𝐿 words and a set of specific aspect categories 𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑁 }
which are pre-defined in the data corpus 𝐷 . The goal of ACSA is to
learn a model that can precisely predict the sentiment polarity (i.e.,
positive, neutral and negative) of review 𝑅 relative to the mentioned
aspect category 𝑎𝑖 where 𝑖 ∈ {1, 2, ..., 𝑁 }. Note that 𝐿 denotes the
length of review, 𝑅 and 𝑁 is the number of pre-defined aspect
categories (e.g., “food#taste” and “food#portion” ) in the dataset. As
mentioned before, the external knowledge graph can solve existing
problems and plays a crucial role in aspect category sentiment
prediction. Therefore, in this paper, we further apply additional
Asp-KGs (i.e., G𝑁 ) as input of our proposed KGRL model to encode
the aspect-aware semantic information for ACSA.

4 THE LLM-KIT FRAMEWORK
In this section, we propose a novel two-stage LLM-enhanced frame-
work, comprising a CGC stage and a KGRL stage. Based on the
training pipeline, we will describe these two core stages in detail.
For better understanding, an illustration of our LLM-Kit framework
is shown in Figure 2.

4.1 CGC stage: Asp-KGs Constraction
Our method begins by re-structuring a common Knowledge Graph
(e.g., Freebase) into aspect-oriented knowledge graphs (Asp-KGs).
Specifically, it can produce first-order neighbors (internal semantic,
which denotes semantic-bearing and aspect category related words)
and second-order neighbors (external commonsense knowledge,
which represents additional words added by constraints). In the
following, we illustrate the details of constructing Asp-KGs.

Algorithm 1. Commonsense Graph Construction

Input: aspect categories 𝐴 = {𝑎1, ..., 𝑎𝑁 }, sentences
𝑆 = {𝑤1, ...,𝑤𝑀 }, and common knowledge graph G𝑐
1: Take aspect category 𝑎𝑖 as central node;
2: for 𝑖←1 to 𝑁 do
3: for 𝑗←1 to𝑀 do
4: Calculate relational score 𝑟𝑖, 𝑗 by LLMs
5: Sort 𝑟𝑖, 𝑗 in descending order and select Top P

nodes as first-order neighbors {𝑛1, 𝑛2, ..., 𝑛𝑃 }
6: end for
7: for𝑚←1 to 𝑃 do
8: Search neighbor nodes of 𝑛𝑚 in graph G𝑐
9: Count number of occurrences of above nodes
10: Select nodes, i.e., {𝑛1𝑛, 𝑛2𝑛, ..., 𝑛

𝑄
𝑛 }, with the

number index > 3&< 10 as neighbor nodes
for 𝑛𝑚 (i.e., nodes for central node 𝑎𝑖 )

11: end for
12: Gather first-order nodes and second-order nodes

as the Asp-KG G𝑖 for aspect category 𝑎𝑖
13: end for
Output: aspect-oriented KGs {G1, G2, ..., G𝑁 }.

4.1.1 First-order Internal Aspect-aware Graph. It is observed
that the aspect category of each data set has a strong correlation
with some specific description words. Therefore, we aim to use
LLMs to assist in the knowledge generation process. However, ex-
isting research indicates that directly using large models to generate
knowledge often leads to data leakage issues, significantly impact-
ing the fairness performance of subsequent models [2, 42].

To address this problem, we innovatively use LLMs as evaluator
instead of generator in the knowledge generation process. Specifi-
cally, we first employ prompt learning to design prompts that guide
the large model, turning it into an estimator. The prompt design is
“You are a well-trained sentiment classifier with deep commonsense
knowledge. Please evaluate the sentiment relevance scores of words
𝑤 𝑗 and aspect category 𝑎𝑖 . The scores range from 0 to 10, where 0
means irrelevant and 10 means extremely relevant.".

Then, the LLM-guided evaluators calculate the relational score2
that provides the importance of word 𝑤 𝑗 for aspect category 𝑎𝑖 .
The process is briefly defined as follows:

𝑟𝑖, 𝑗 = 𝑠𝑐𝑜𝑟𝑒 (𝑎𝑖 ,𝑤 𝑗 ) = 𝐿𝐿𝑀 (𝑎𝑖 ,𝑤 𝑗 ) . (1)

Next, we sort 𝑟𝑖, 𝑗 in descending order and extract top 𝑃 most rel-
evant words (i.e., {𝑛1, 𝑛2, ..., 𝑛𝑃 }) as the first-order neighbor nodes
of 𝑖-th aspect category 𝑎𝑖 . Since those nodes are extracted from the
data corpus, they are the most relevant internal semantics for the
specific aspect category.
4.1.2 Second-order External Commonsense Graph. The ex-
ternal commonsense information mainly comes from the common
knowledge graph (G𝑐 ). We retrieve the second-order nodes by using
the retrieved first-order nodes as the root entity, as described in

2We tested dozens of prompts and found that different prompts had little impact on
the final relational results.
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I. CGC Stage II. KGRL Stage

Figure 2: The LLM-Kit framework. Generally, it can be divided into two stages: I. the CGC stage and II. the KRGL stage.

Algorithm 1, steps 7∼11. In this phase, we take the above nodes,
i.e., {𝑛1, 𝑛2, ..., 𝑛𝑃 } generated by LLMs, as root entity and filter out
related adjacent entities based on frequency. To achieve this, we
gave an index for each node to count the number of their occur-
rences. Besides, to better control the scale of Asp-KGs and reduce
the introduction of too much irrelevant knowledge, we select the
appropriate second-order neighbors {𝑛1𝑛, 𝑛2𝑛, ..., 𝑛

𝑄
𝑛 } for each node

by limiting the size of the index. Note that, the value of the index
size is a hyperparameter, we can manually change it to control the
size of the map. Here, we chose 3 and 10 to get the best-performing
commonsense KG.

Through the Algorithm 1, we obtain internal words as the first-
order neighbor nodes and external entities as the second-order
neighbor nodes. Finally, we gather them together to form Asp-KGs,
i.e., G1, G2, ..., G𝑁 . There are at least two advantages with such an
aspect-oriented knowledge graph. First, each aspect category has its
own Asp-KG and thus can better learn specific representations from
the entire semantic space. Second, if a review text contains more
than one aspect category, the Asp-KG will aggregate the nodes at
the particular aspect, which provides commonsense knowledge.

4.2 KGRL stage: Commonsense Learning
KGRL is made up of three main parts, as shown in Figure2: a graph
representation learningmodule (GRL), a sentence semantic learning
module (SSL), and a knowledge fusion and sentiment prediction
module. In the following, we describe each of them in detail.

4.3 Graph Representation Learning (GRL)
Primary Knowledge Encoder. To employ the constructed Asp-

KGs (i.e., G𝑁 ), we first need to generate an initial embedding of
aspect category’s neighbor nodes (words). Here, we train a primary
knowledge encoder to learn external semantics on aspect categories.
Given a central node (aspect category) {𝑤1

𝑎, ...,𝑤
𝑖
𝑎} and its neigh-

bor nodes {𝑤1
𝑛, ...,𝑤

𝑗
𝑛 } in Asp-KG, the primary knowledge encoder

takes them as input and encodes each node via a pre-trained lan-
guage model, and then splices them together to form the primary
representation of the aspect category.

In this paper, we adopt RoBERTa [24] as the upstream feature
encoder and freeze most of its parameters to get each node’s initial
semantic embedding. Formally, the calculation is briefly described
as follows:

{z1𝑎, ..., z𝑖𝑎} = 𝑅𝑜𝐵𝐸𝑅𝑇𝑎{𝑤1
𝑎, ...,𝑤

𝑖
𝑎}, 𝑖 ∈ [1, 𝐼 ] (2)

{z1𝑛, ..., z
𝑗
𝑛} = 𝑅𝑜𝐵𝐸𝑅𝑇𝑎{𝑤1

𝑛, ...,𝑤
𝑗
𝑛}, 𝑗 ∈ [1, 𝐽 ] (3)

where 𝐼 is the number of words in aspect category and 𝐽 is the
number of aspect category’s neighbor words. Note that, aspect-
category may contains multiple words, here, we take them as one
central node by adding up their embeddings:

Z𝑎 = [(z1𝑎 ⊕ z2𝑎 ⊕ ... ⊕ z𝐼𝑎) ⊕ z1𝑛 ⊕ z2𝑛 ⊕ ... ⊕ z𝐽𝑛], (4)

where ⊕ denotes the addition ofword embeddings.Z𝑎 is the primary
representation of aspect category. Through the above calculations,
we generate the primary semantic representation of each aspect
category (i.e., Z1𝑎,Z2𝑎, ...,Z𝑁𝑎 , 𝑁 is the number of aspect categories)
from its original embedding while simultaneously preserving the
full semantic information of the neighbor nodes.

Multi-channel GCN (MGCN). Under the graphical structure,
different Asp-KGs may convey varying degrees of semantic infor-
mation about the various aspect categories, thus, we developed a
Multi-channel GCN to capture these distinct semantic features. Gen-
erally, the MGCN is a slight variant of the GCN [14] architecture,
which is able to integrate node features and graphical structures in
a complex knowledge graph with rich information.

Specifically, we have 𝑁 aspect categories in the dataset, and we
generate 𝑁 Asp-KGs (i.e., G1, G2, ..., G𝑁 ) through Algorithm 1. As
the process of learning reviews’ semantics is relatively consistent
across all aspect-categories, we mainly introduce one aspect cate-
gory’s semantic aggregation for space saving. Formally, given an
Asp-KG G = (A,X) for a specific aspect category, where A ∈ R𝐽 × 𝐽

is adjacencymatrix andX ∈ R𝐽 ×𝑑 is the node featurematrix, we can
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utilize the following GCN layers to iterate 𝑙 times (thus propagate
neighbors’ semantics in 𝑙 hops) to generates the output encoding
for central node representation as Z(𝑙 ) ∈ R𝐽 ×𝑑 . Note that, A𝑚𝑛 = 1
represents there is an edge between nodes𝑚 and 𝑛 (𝑚,𝑛 ∈ [1, 𝐽 ]),
otherwise, A𝑚𝑛 = 0. We define the aggregation process as:

Z(𝑙 )
𝑖

= 𝐺𝐶𝑁 (A𝑖 ,X𝑖 ),

= tanh
(
D̃
− 1

2
𝑖

Ã𝑖 D̃
− 1

2
𝑖

Z(𝑙−1)
𝑖

W(𝑙 )
𝑖

)
,

(5)

where W(𝑙 )
𝑖

is learnable weight matrix of 𝑙-th layer in GCN and A𝑖

is the 𝑖-th Asp-KG corresponding to the 𝑖-th aspect category. tanh
is the activation function and the initial value of Z(𝑙 )

𝑖
is Z(0)

𝑖
= X.

Besides, we have Ã𝑖 = A𝑖 + I and D̃𝑖 is the diagonal degree matrix
of Ã𝑖 . We denote the last layer output embedding as Z(𝐿)

𝑖
. As a

result, we can obtain the embedding of each central node from the
corresponding Asp-KG with a single GCN, capturing the desired
semantics in a unified feature space.

In the above, we have described how each aspect category feature
is extracted from a single GCN (i.e., one channel to aggregate all
nodes in each Asp-KG). In reality, however, the feature spaces of
different Asp-KGs are not entirely relevant. For example, the feature
distribution of Asp-KG directed to “Service” differs significantly
from that aimed at “Food”. Using the same GCN to learn these
features may hurt the performance. To obtain independent external
knowledge of each aspect category, we augment the classic GCN
into a Multi-channel GCN, which uses different channels for the
aggregation of each Asp-KG. Specifically, the input of MGCN is
every Asp-KG, and the output is the feature of each aspect category.
The operation incorporates the individual influence among a slate
of neighbor nodes via a given channel and thus characterizes the
importance of each node in Asp-KG:

(Z(𝐿)1 , ...,Z(𝐿)
𝑁
) = 𝑀𝐺𝐶𝑁 (A1, ...,A𝑁 ,X1, ...,X𝑁 ),

=


𝐺𝐶𝑁 (A1,X1 ),
· · · · · · · · ·
𝐺𝐶𝑁 (A𝑁 ,X𝑁 ),

(6)

Here, 𝑁 is the channel number, which is in line with the number
of aspect categories. For each GCN channel, the process described
by Equation 5 is followed. As depicted in Figure 2 (a), the MGCN
assigns an independent GCN submodule to each Asp-KG to ensure
that the feature representation learned from external KGs is more
inclined to a particular aspect category. So far, we can retrieve
each category’s aspect-aware features from the external knowl-
edge graph. In what follows, we introduce how to encode internal
semantics from the sequential review sentences.

4.4 Sentence Semantic Learning (SSL)
RoBERTa Encoder.As shown in Figure 2 (b), we use last hidden

state of the pre-trained RoBERTa to present words in the review
text. Specifically, let H ∈ R𝑑×𝐿 be the matrix consisting of token
embedding vectors that produces:

H = {h1, ..., h𝐿} = 𝑅𝑜𝐵𝐸𝑅𝑇𝑎{𝑤1, ...,𝑤𝐿}, (7)

where 𝑑 is the size of hidden layers and 𝐿 is the length of review
text. We discard the <CLS> token embedding, thus the number
of output features are consistent with the input words. Note that,

Table 1: Statistics of datasets used in this paper.

Dataset #Pos. #Neg. #Neu. Ave. # Ave. #
Length Aspects

Restaurant 1,982 881 138 12.6 1.5
Laptop 1,614 901 149 13.2 1.3
ASAP 133, 721 27, 425 52, 225 319 5.8

Table 2: Statistics of the constructed knowledge graphs.

KGs #Asp-KGs #Nodes #Relations Ave. #
Nodes

Res.-KGs 12 621 1127 51.8
Laptop-KGs 10 380 789 38.0
ASAP-KGs 18 527 509 29.3

all parameters were shared between the two RoBERTa encoders
shown in Equations 2, 3, and 7.

Knowledge-guided Attention Pooling (KGAP). Since the se-
mantics of the aspect categorie is scattered throughout the overall
review, such ambiguous information could be detrimental if the
learned feature is ill-fitted. Therefore, we develop a knowledge-
guided attention-pooling layer to dynamically aggregate the re-
lated token embeddings under the direction of the prior knowledge
representations (i.e., Z𝑖𝑎) for each aspect category. Formally, the
calculation process is:

p𝑖 = tanh (W𝑖 ∗ H) , (8)

𝛼𝑖 = softmax
(
𝛾 ∗ Z𝑖𝑎 + (1 − 𝛾) ∗ 𝜔𝑖 ) ∗ p𝑖

)
, (9)

R𝑖 = tanh
(
𝑊

𝑝

𝑖
∗ 𝐻 ∗ 𝛼𝑇𝑖

)
, (10)

where p𝑖 ∈ R𝑑×𝐿 , W𝑖 ∈ R𝑑×𝑑 and 𝑖 ∈ [1, 𝑁 ]. H ∈ R𝑑×𝐿 is the
embedding matrix of review text. Z𝑖𝑎 ∈ R𝑑 is the embedding of
each aspect category which obtains from equation 4. 𝜔𝑖 ∈ R𝑑 is a
learnable vector. 𝛾 is a factor to balance the influence of external
aspect-aware knowledge. 𝛼𝑖 ∈ R𝐿 is a vector that includes attention
weights of all tokens that can selectively attend the regions of the
aspect category related tokens. R𝑖 ∈ R𝑑 is the attentive representa-
tion of review text with respect to the 𝑖-th aspect category.

4.5 Knowledge Fusion and Sentiment Prediction
In the following, we explain a new knowledge fusion operation
that aims to balance the knowledge between external Asp-KGs
and internal semantics efficiently. To be specific, before applying
the learned features into sentiment prediction layer, the external
representation Z(𝐿)

𝑖
and internal representation R𝑖 is first linearly

projected to the same subspace:

F𝑖 = Z(𝐿)
𝑖
∗W𝑓

𝑖
∗ R𝑖 , (11)

𝑦𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑞

𝑖
∗ F𝑖 + b𝑞𝑖 ) . (12)

where F𝑖 is the final fusion representation,W
𝑓

𝑖
∈ R𝑑×𝑑 is theweight

matrix that maps external and internal features to the same latent
semantic space. Later, we use a traditional loss function, which is
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defined as:

L(𝑦,𝑦) = −
𝐶∑︁
𝑗=1

𝑦
𝑗
𝑖
log

(
𝑦
𝑗
𝑖

)
, (13)

where 𝑦 is the ground truth and 𝑦 is the predicted probability of 𝑦.
𝐶 is the number of labels (i.e, 3 in our task).

5 EXPERIMENTAL SETUPS
5.1 Datasets
Restaurant & Laptop Dataset: The series of SemEval datasets
consists of user reviews from Amazon e-commerce websites widely
used and pushed forward related research. This paper uses the
SemEval-2016 task-5 dataset, and the statistics of processed datasets
are shown in Table 1. Note that the common KGs used in those two
datasets is Freebase [1]. ASAP Dataset: The public review dataset
ASAP [3] is collected from a popular O2O e-commerce platform
in China, which allows users to publish fine-grained reviews to
restaurants they have visited. As Table 1 shows, ASAP dataset
contains more words and aspect categories in each review, so it is
more challenging to predict the sentiment behind those long review
texts. Besides, the statistics of the constructed KGs are shown in
Table 2.

5.2 Details of Baseline Methods
To thoroughly assess the performance of our model, we have se-
lected key baseline methods from both the ACSA and ABSA tasks.
In the following, we provide a detailed introduction to each of these
methods.

5.2.1 The ACSA Models.
• AAL-SS [52]: a novel model for aspect category sentiment
classification which contains an aspect lexicon based and an
aspect supervision based algorithm.
• Vanilla BERT [4]: is a powerful pre-trained language model
which takes aspect and sentence as joint input.
• CapsNet-BERT [11]: It is a capsule network to model the
complicated relationship between aspects and contexts, which
combines the strengths of the pre-trained model.
• Joint Model [3]: It’s a joint learning model to address ACSA
and Rating Prediction in a multitask learning manner.
• AFML [21]: It’s a framework that constructs aspect-aware
andaspect-contrastive representations from external knowl-
edge to match the target aspect with aspects in thetraining
set

5.2.2 The ABSA Models.
• ASTE [29]: introduces a sentiment triplet extraction task
that answers what is the aspect, how is its sentiment and
why is the sentiment in one shot by coupling together aspect
extraction aspect term sentiment classification and opinion
term extraction in a two-stage framework..
• KGAN [50]: proposes a knowledge graph augmented net-
work (KGAN), which aims to effectively incorporate external
knowledge with explicitly syntactic and contextual informa-
tion.
• DSSK-GAN [23]: introduces a novel DSSK-GANmodel, which
utilizes both dynamic and static external knowledge to aid

in modeling the relationship between aspect words and their
associated sentiment words.

5.3 Motivation for Baseline Selection
It is common knowledge that there are numerous methodologies
in ABSA domain; however, given the particulars of the ACSA task
and how it differs from ABSA, we are unable to compare all of
the methodologies. We explain the reasons for the selection of the
baselines and why some ABSA models are not applicable to ACSA
task in this section.

5.3.1 DNN-based and Pre-trained Models. As described in
Section 2, each of these models uses different model architectures
(e.g., LSTM, Attention and Transformer) to semantically encode
the entire sentence. Therefore, these approaches are applicable
regardless of whether the target of sentiment analysis is aspect
term or aspect category. To this end, we select the optimal models
(e.g., [18] and [3]) in both ABSA and ACSA tasks as the baseline
methods for experimental comparison. It is worth noting that LLM-
Kit is distinct from these methods because it simultaneously probes
both external commonsense knowledge and internal semantics.
Specifically, unlike pre-trained models [12, 41, 44], LLM-Kit has
a remarkable ability to encode commonsense knowledge through
Asp-KGs, which are purpose-built for aspect categories, in addition
to using PLMs to encode the whole sentence.

5.3.2 GNN-based Models. As we described in Related Work,
most GNN-based methods [28, 32, 39, 45] performed aspect based
sentiment analysis (ABSA) by constructing syntactic graph for the
aspect. However, those methods are limited to exploiting aspect
categories’ sentiment since generating syntactic graph for the as-
pect category is impossible (i.e., aspect category do not appear in
the review sentence). For this reason, it is difficult to use ABSA’s
graph-based models on ACSA task.

Meantime, it is worth noting that LLM-Kit differs from the pre-
vious graph-based methods in that we compose the commonsense
knowledge graph construction process concerning aspect cate-
gories. As a result, LLM-Kit is able to explicitly encode themutual in-
fluences from external knowledge graphs and handle aspect-aware
semantics. More importantly, unlike existing data augmentation
methods that rely on large models, LLM-Kit innovatively employs
large models as evaluators. This strategy significantly mitigates the
risk of data leakage associated with LLMs.

5.4 Training Setup
Most of the baselines are implemented in Pytorch based on the
public code, following their parameter settings (learning rate, batch
size, etc). For our LLM-Kit model, we use Adam [13] as the optimizer,
with 0.9 of 𝛽1, and 0.999 of 𝛽2. For parameters in RoBERTa, the
learning rate is initially set as 2e-5. Besides, the maximum length
of the review text is 512. The dimension of the word embedding
is 768 and the training batch size is 16. To avoid overfitting and
stabilize the training, we set the dropout rate as 0.1. The value of P
is set as 30, 25 and 20 for restaurant, laptop and ASAP, respectively.
The key parameter settings for baselines are set as default. We use
two metrics (i.e., Accuracy and Macro-F1) for the model evaluation,
which are widely used in ACSA. We conduct experiments on each
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Table 3: Performance on three public datasets. The underlined number in each column is the best result among the baselines.

Baseline Methods
Restaurant. Laptop. ASAP.

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Aspect-category Baselines

(1) AAL-SS 84.35% 67.14% 78.29% 60.00% 82.64% 77.86%
(2) Vanilla BERT 84.52% 67.19% 82.69% 62.86% 84.09% 79.18%
(3) CapsNet-BERT 83.37% 67.38% 83.10% 63.04% 83.74% 78.92%
(4) Joint Model 85.33% 68.02% 83.02% 63.10% 85.15% 80.75%
(5) AFML 86.28% 68.13% 83.71% 64.20% 84.77% 79.13%

Aspect-based Baselines

(1) ASTE [29] 82.22% 63.23% 79.94% 59.03% 80.04% 75.40%
(2) KGAN [50] 83.32% 64.12% 81.30% 60.67% 82.78% 77.10%
(3) DSSK-GAN [23] 85.17% 67.88% 82.94% 62.99% 84.77% 78.75%

KGRL + Freebase 86.94% 69.69% 85.17% 66.84% 86.11% 81.94%
KGRL + AspKG 87.38% 70.33% 85.89% 66.88% 86.76% 82.38%
LLM-Kit (AspKG) 88.04% 70.16% 86.27% 67.30% 87.49% 82.72%
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Figure 3: Ablation results from variants of KGRL. The left Y-axis denotes the value of Accuracy and the right Y-axis indicates
the value of Macro-F1. no_GRL is a variant of KGRL that removes the GRL module from KGRL directly.

baseline with parameters in the corresponding papers, and the
results are generally consistent with those in the paper. All of the
models are trained on a Linux server with 64 Intel(R) CPUs and 4
Tesla V100 32GB GPUs.

6 EXPERIMENTAL RESULTS
6.1 Overall Results and Discussion
The main results, presented in Table 3, show that our proposed
LLM-Kit outperforms all baselines across various metrics, including
ACSA and ABSA methods. Furthermore, several notable phenom-
ena emerge from these results:

First, it is clearly apparent that our model outperforms all base-
lines across all datasets by a significant margin. Specifically, LLM-
Kit achieves remarkable relative improvement over the strongest
aspect-category baseline w.r.t. accuracy and macro-F1, respectively.
It proves the superiority of LLM-Kit in the ACSA, as previous mod-
els did not fully utilize commonsense information. Second, LLM-Kit
outperforms the best ABSA model (i.e., DSSK-GAN) in both of
the accuracy and macro-F1 score. The reason for this phenome-
non is that previous ABSA models typically focus on the syntactic
structure within the sentence, overlooking the commonsense infor-
mation that is crucial for ACSA. Finally, we also evaluated the two
core stages of LLM-Kit. As shown in the table, both the Asp-KG we
constructed and the downstream KGRL module achieved excellent
performance.

The above observations make it clear that the performance of
the baselines is limited without the guidance of commonsense
knowledge. In contrast, our LLM-Kit model enhances the interac-
tion between internal semantics and external knowledge and thus
outperforms all the baseline methods.

6.2 Ablation Analysis
Without Graph Represent Learning (no_GRL). To evaluate the
efficacy of the graph represent learning (GRL) module, we remove
it from KGRL directly. As shown in Figure 3, three datasets perform
worse without the GRL. Thus, the graph representation learning
effectively captures the rich mutual influences between aspect cat-
egory and neighbors, confirming the necessity of emphasizing ex-
ternal knowledge from Asp-KGs.Without Multi-channel GCN
(no_MGCN). In no_MGCN module, we swap out the MGCN for a
regular GCN; thus, the model learns graph embeddings from Asp-
KGs via a parameter-shared GCN. In Figure 3, we see that KGRL’s
performance drastically decreases when MGCN is not used to ac-
quire specific knowledge for each Asp-KG. Without Knowledge-
guided Attention Pooling (no_K- GAP). We also study the influ-
ence of KGAP module. We remove KGAP so that the words are
aggregated without knowledge supervision. As shown in Figure 3,
the performance of no_KGAP becomes worse compared with KGRL.
This is possible because commonsense knowledge supervision is
vital for aggregating the aspect categories with related words. With
the above experiments, we find that each sub-module in KGRL is
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This restaurant is celebrating its opening, everyone can 
get one coupon for one hundred dollars purchases! The 
discount is very attractive, but there are too many people! 
Fortunately, there is no need to postpone the waiting, 
which is more reasonable! The quality of the food here is 
as good as ever! Beef is a must-order food, and it is 
delicious! The seafood platter is also good; there are four 
shrimps and many squids! What impressed me was the 
fried octopus! The color is beautiful and delicious! This is 
a restaurant with a wide variety of dishes because the menu  
has to go through for a long time every time! Next time I 
use the coupon, I will order a different dish to try.
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Figure 4: The visualization of first-order nodes from Asp-KGs with respect to four aspect categories (i.e., the central nodes in (a),
(b), (c) and (d)). Besides, we also visualize the attention scores of sentence. The color intensity reflects the attention’s magnitude.

Model Restaurant Laptop ASAP

Accuracy
(%)

Macro-F1
(%)

Accuracy
(%)

Macro-F1
(%)

Accuracy
(%)

Macro-F1
(%)

LLaMA 73.48 45.34 68.32 41.03 51.58 39.56
Qwen 81.69 53.82 71.63 46.73 54.73 30.22
Baichuan 42.53 36.54 32.81 24.98 23.34 16.52
Deepseek 76.60 43.80 71.60 39.88 57.78 32.91
Mistral 77.75 65.76 74.53 66.01 61.18 40.59

Table 4: The comparative analysis with other LLM methods.

effective in learning aspect-aware semantics and is indispensable
for LLM-Kit to achieve excellent performance.

6.3 Neighbor Nodes from Asp-KGs
In order to intuitively show the knowledge extracted by LLM-Kit,
we show the top-5 first-order nodes on the ASAP dataset with the
highest relational attention scores (𝑟𝑖, 𝑗 in Algorithm 1 and Equation
1) to each aspect category in Figure 4 (a)∼(d), respectively. We take
the aspect category “price#discount” as the example for illustrat-
ing the selected neighbor words. Figure 4 (a) demonstrates that
almost all neighbor nodes are highly correlated with aspect cate-
gory “price#discount”. For example, the neighbor nodes “voucher”,
“coupons” and “save” contain rich commonsense knowledge that
can directly express a positive tendency towards discounts. Con-
sequently, associating these words with the aspect category will
improve the semantic information of “price#discount”. Similar phe-
nomena in other aspect categories (i.e., Figure 4 (b), (c), and (d))
show that the Asp-KG construction algorithm performs well on
an aspect category and can extract the most relevant neighbor
information for each aspect category.

6.4 Effect Verification of Asp-KGs
To show the effectiveness of Asp-KGs, we randomly sampled a
review text and extracted word attention scores from the vector 𝛼𝑖
as calculated in Equation 9. As shown in Figure 4, the review con-
tains four aspect categories (e.g., “price#taste” ). The review contains
four colors, each representing a word related to a specific aspect
category. For instance, red highlights words the model focuses
on when predicting the sentiment label for the aspect category

“price#discount”. The following observations can be made from the
visualization results:

First, we can observe that the model pays attention to different
words in a small scope of review text when predicting the sentiment
of varying aspect categories. The reason may be that the aspect
category’s representation is calculated from the Asp-KG, thus in-
cluding the overall semantics. In contrast, the attention scores are
calculated precisely from the sentence tokens with the guidance of
external knowledge. With these attention scores, the model may
select context words most related to the aspect category. On the
other hand, our proposed model assigns more significant weight
to the words that co-occurred in aspect category KGs. It makes
sense because the external KGs help integrate commonsense infor-
mation into aspect category representation, thus learning better
aspect-aware semantics for ACSA.

6.5 Comparative analysis of LLMs
We list some core results for LLMs in Table 4. In LLM-Kit, RoBERTa
was chosen over models like GPT-4 [27] or LLaMA [37] due to
its strong performance in sentence-level sentiment and semantic
encoding tasks, making it a good fit for our Sentence Semantic
Learning (SSL) module. Additionally, RoBERTa integrates effec-
tively with our multi-channel graph convolutional network (GCN)
to capture aspect-specific sentiment features.

While models like GPT-4 and LLaMA excel in generation tasks,
they are not yet optimized for fine-grained aspect-based senti-
ment analysis and often incur higher computational costs. Hence,
RoBERTa serves as a practical, effective choice for sentence encod-
ing in Aspect Category Sentiment Analysis (ACSA). We plan to
further explore comparisons with other LLMs in future work.

6.6 Error Analysis of LLMs
In order to study the reasons why LLMs generate some errors in
ACSA, we carefully select a typical sentence from the laptop dateset
as shown in Table 5 Sentence One. Specifically, LLMs inevitably
misrecognize the sentiment involved in some aspect categories
due to the complexity of sentence semantics. For example, both
satisfaction and dissatisfaction with the computer involved in the
given sentence make it difficult for LLMs to understand the correct
sentiment. In addition, without the integration of multiple domain
knowledge like our LLM-Kit, LLMs cannot generate the correspond-
ing aspect category according to commonsense information.
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Error Analysis LLMs LLM-Kit

Sentence One: I will give advise any prospective buyers this is not
great laptop, It’s good for web browsing and word processing.
Aspect Categories: Laptop#General (Neu); Laptop#Miscellaneous (Pos) Neg/None (%%) Neu/Pos(!!)

Sentence Two: People are frustrating to work with, the product itself
is very cheaply made, and the accessories are less than satisfactory.
Aspect Categories: Laptop#Features (Neg); Laptop#Quality (Neg); Support#Quality (Neg) None/Neg/None Neg/Neg/Neg

Sentence Three: The system constantly overheats, the battery life is
too short,the case is coming apart, and my core applications
that I use every day in my work as a graphic artist run poorly.
Aspect Categories: LAPTOP#OPERATION_PERFORMANCE (Neg);
LAPTOP#QUALITY (Neg); BATTERY#OPERATION_PERFORMANCE (Neg) Neg/None/Neg Neg/Neg/Neg

Table 5: Case Study of our LLM-Kit compared with LLMs.The colored words in brackets represent the ground truth sentiment
polarity of the corresponding aspects. We denote positive, neutral and negative sentiment as Pos, Neu and Neg, respec-
tively.Additionally,None means that LLMs can not detect the sentiment of the corrsponding aspect category.

0 20 40 60 80 100
Accuracy (%)
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LAPTOP#PRICE

BATTERY#OPERATION_PERFORMANCE

Figure 5: Accuracy of different aspect Categories conducted
by GPT-4.

6.7 More Experiments
To further explore the shortcomings of LLMs in the ACSA task, we
conducted some related experiments. Sentiment element definitions
include the permitted label space, e.g. allowed sentiment polarities
and aspect categories. The output format describes the expected
structure of model responses, allowing us to decode the responses
into our desired format.

As mentioned in the previous section, we carefully selected some
typical examples for the error analysis of LLMs in ACSA. Due to the
page limit of the main body, we present more examples in Table 5.
Specifically, LLMs cannot analyze some specific aspect categories
from the given review, which does not contain directly related
aspect terms . For example, without the integration of multiple do-
main knowledge like our LLM-Kit, LLMs are unable to generate the
aspect categories “Laptop#Design_Features” and “Support#Quality”
from the “cheaply made” and “accessories”. In addition, LLMs also
lack the ability to push further into deeper aspect categories from
the ones they can already recognize. As the second example shows,
the aspect categories “Laptop#Operation_Performance” and “Bat-
tery#Operation _Performance” naturally introduce the aspect cate-
gory “Laptop#Quality”.

6.8 Case Study
In addition, we also conducted experiments to study the perfor-
mance of LLMs in different aspect categories. As shown in Figure 5,
LLMs exhibit an imbalance in different aspect categories for ACSA.
Taking the Laptop dataset as an example, LLMs achieve comparable
performance in some aspect categories with our LLM-Kit. However,
the general accuracy is only 55.35% which is much less than our
LLM-Kit on Laptop dataset. It is well known that a single review
tends to contain multiple aspect categories. LLMs can perform well
in sentences including a single aspect category, while still have
a long way to go in processing the sentence with mixed aspect
categories. In addition, LLMs objectively lack the ability to detect
the implied apsect category, which is one of the significant reasons
for the low accuracies.

7 CONCLUSION
In this paper, we proposed a LLM-Kit framework, which enhanced
knowledge integration through two stages: commonsense graph
construction (CGC) and knowledge-integration graph representa-
tion learning (KGRL). In the CGC stage, a two-order extraction
strategy with an LLM-based scoring evaluator transformed general
knowledge graphs into aspect-oriented ones (Asp-KGs), captur-
ing both commonsense and domain-specific knowledge. In the
KGRL stage, a graph representation learning module and a sen-
tence semantic learning module (using RoBERTa) were designed to
integrate aspect categories, opinion terms, and sentence structures.
A knowledge fusion function then balanced their contributions.
Experiments on three public and real-world datasets demonstrated
our framework’s effectiveness.
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