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Abstract

Translated texts exhibit systematic linguistic
differences compared to original texts in the
same language, and these differences are re-
ferred to as translationese. Translationese has
effects on various cross-lingual natural lan-
guage processing tasks, potentially leading to
biased results. In this paper, we explore a
novel approach to reduce translationese in trans-
lated texts: translation-based style transfer. As
there are no parallel human-translated and orig-
inal data in the same language, we use a self-
supervised approach that can learn from compa-
rable (rather than parallel) mono-lingual orig-
inal and translated data. However, even this
self-supervised approach requires some paral-
lel data for validation. We show how we can
eliminate the need for parallel validation data
by combining the self-supervised loss with an
unsupervised loss. This unsupervised loss lever-
ages the original language model loss over the
style-transferred output and a semantic similar-
ity loss between the input and style-transferred
output. We evaluate our approach in terms of
original vs. translationese binary classification
in addition to measuring content preservation
and target-style fluency. The results show that
our approach is able to reduce translationese
classifier accuracy to a level of a random clas-
sifier after style transfer while adequately pre-
serving the content and fluency in the target
original style.

1 Introduction

Translated texts often exhibit distinct linguistic
features compared to original texts in the same
language, resulting in what is known as transla-
tionese. Translationese has a tangible impact on
various cross-lingual and multilingual natural lan-
guage processing (NLP) tasks, potentially leading
to biased results. For instance in machine trans-
lation (MT), during training, when the translation

*Work done while the author was a student at Saarland
University.

direction of parallel training data matches the di-
rection of the translation task, (i.e. when the source
is original and the target is translated), MT systems
perform better (Kurokawa et al., 2009; Lembersky
et al., 2012). Similarly, Toral et al. (2018), Zhang
and Toral (2019) and Graham et al. (2020) show
that translating already translated texts results in
increased BLEU scores. More recently, Artetxe
et al. (2020a) observed that cross-lingual models
when evaluated on translated test sets show false
improvements simply due to induced translation
artifacts. When investigating the effects of trans-
lationese in cross-lingual summarization, Wang
et al. (2021) found that models trained on trans-
lated training data suffer in real-world scenarios.
These examples show the importance of investigat-
ing and mitigating translationese. Despite this, re-
moving translationese signals in already generated
output of translations is an underexplored research
topic. Dutta Chowdhury et al. (2022) remove trans-
lationese implicitly encoded in vector embeddings,
and demonstrate the impact of eliminating transla-
tionese signals on natural language inference per-
formance. Wein and Schneider (2023) leverage
Abstract Meaning Representation (AMR) as an in-
termediate representation to abstract away from
surface-level features of the text, thereby reducing
translationese. Neither of these works explicitly
analyzes surface forms of the resulting "debiased
text" and its resemblance to original texts.

In this work, we aim to reduce the presence of
translationese in human-translated texts and make
them closely resemble original texts, notably, with-
out using any parallel data as parallel human orig-
inal - translated data in the same language do not
exist. To this end, we explore a self-supervised
neural machine translation (NMT) system (Ruiter
et al., 2019) and its application to style transfer
(ST) (Ruiter et al., 2022). In both works, validation
is performed on a parallel dataset, either bilingual
(MT data) or monolingual (ST data). However,



parallel human original-translationese data in the
same language are unavailable. To overcome this
challenge, we define an unsupervised validation
criterion by combining a language model loss and
a semantic similarity loss, inspired by Artetxe et al.
(2020b). Our baseline is the self-supervised ap-
proach (SSNMT) from Ruiter et al. (2019). How-
ever, we go a step further and propose a novel
joint training objective that combines both self-
supervised and unsupervised criteria, eliminating
the need for parallel data during both training and
validation.

The contributions of this work are as follows:

• We are the first to formulate reduction of trans-
lationese in human translations as a monolin-
gual translation based style-transfer task, al-
lowing for direct evaluation of the effects on
the surface forms of the generated outputs.

• We introduce a joint self-supervised and un-
supervised learning criterion that eliminates
the need for a parallel (and non-existent) orig-
inal - translated dataset (in the same language)
during training and validation.

• We show that our method is able to reduce the
accuracy of a translationse classifier to that
of a random classifier, indicating that our ap-
proach is able to successfully eliminate trans-
lationese signals in its output.

• We present an extensive evaluation that mea-
sures (i) the extent to which our methods mit-
igate translationese as well as adequacy and
fluency of the outputs (Quantitive Analysis),
(ii) estimates the degree of translationese in
the output using metrics derived from linguis-
tic properties of translationese (Qualitative
Analysis).

2 Related Work

2.1 Text Style Transfer

Text style transfer is the task of altering the stylistic
characteristics of a sentence while preserving the
original meaning (Toshevska and Gievska, 2022).
The amount of parallel data available for this task
is usually limited. Therefore, readily available
mono-stylistic data together with a smaller amount
of style-labeled data are often exploited using ap-
proaches based on self- (Ruiter et al., 2019), semi-
(Jin et al., 2019) or unsupervised Neural Machine

Translation (Lample et al., 2018a; Artetxe et al.,
2019). Common approaches involve disentangling
the style and content aspects of the text. For con-
tent extraction, approaches based on variational
auto-encoders (VAE) (Shen et al., 2017; Fu et al.,
2017), cycle consistency loss (Lample et al., 2019),
or reinforcement learning (Xu et al., 2018) are com-
monly employed. To induce the target style, often a
style discriminator is employed using a pretrained
style classifier (Prabhumoye et al., 2018; dos San-
tos et al., 2018; Gong et al., 2019) or the decoder
head is specialized to generate target-style outputs
(Tokpo and Calders, 2022), or the content represen-
tation is simply concatenated with the target-style
representation (Fu et al., 2017).

Since unsupervised methods often perform
poorly compared to their supervised counterparts
(Kim et al., 2020; Artetxe et al., 2020b), recent ap-
proaches have explored semi-supervised (Jin et al.,
2019) and self-supervised learning (Ruiter et al.,
2022; Liu et al., 2022). Liu et al. (2022) com-
bine sentence embeddings with scene graphs to
mine parallel sentences on-the-fly for facilitating
reinforcement learning-based style-transfer, while
Ruiter et al. (2022) follow a simpler approach that
exploits only the latent representations for online
parallel sentence pair extraction from comparable
data and leverage these pairs for self-supervised
learning. Although their approach requires a paral-
lel validation set for model selection and hyperpa-
rameter tuning, due to its simplicity, we adopt it as
our starting point and baseline. We then present a
novel version of this approach using unsupervised
techniques, eliminating the need for a parallel vali-
dation set.

2.2 Unsupervised Model Selection

Several studies exploring unsupervised or semi/self-
supervised settings either do not report their vali-
dation scheme (Artetxe et al., 2020b) or are only
unsupervised (or semi/self-supervised) during train-
ing and rely on parallel in-domain validation sets
for model tuning (Marie and Fujita, 2018; Marie
et al., 2019; Dai et al., 2019; Ruiter et al., 2022).
In contrast, some studies enforce strictly unsuper-
vised settings in NMT by either using the vali-
dation set from a separate language pair (Artetxe
et al., 2018a,b) or not using a validation scheme
at all (Lample et al., 2018c), risking sub-optimal
models. To address this, Lample et al. (2018b,a);
Artetxe et al. (2020b) proposed using an unsuper-



Figure 1: Model architecture. Here (tr, og) is a (Translated (source), Original (target)) style sentence pair, and og-like is the
translationese-mitigated output. The dashed arrows correspond to on-the-fly parallel pair extraction that facilitates Supervised
Training, while the red arrows in bold represent the path of approximated decoder outputs used in Unsupervised Training.

vised validation criterion over monolingual data
that conforms with the evaluation criterion or is
guided by the target-distribution, similar to Artetxe
et al. (2019) who combined cycle consistency loss
with language model loss for unsupervised model
selection.

2.3 Translationese Mitigation

Researchers have explored the effects and origins
of translationese in previous studies. To miti-
gate translationse effects in machine translation
(MT) models, a prevalent approach is tagged train-
ing (Caswell et al., 2019; Marie et al., 2020; Ri-
ley et al., 2020). This technique involves explic-
itly marking the translated and original data using
tags, enabling the models to recognize and account
for these distinctions. Yu et al. (2022) introduced
an approach to mitigate translation artifacts in the
translate-train1 cross-lingual setting. To re-
duce translation artifacts in the target language,
they learned an original-to-translationese mapping
function from the source language. They do this
by projecting the original and translated texts in
the source language to a common multilingual em-
bedding space and then learning to minimize the
distance between the mapped representations of the
originals and translationese. Dutta Chowdhury et al.
(2022) tackle the reduction of translationese from
a different perspective, treating it as a bias in trans-
lated texts. They employ a debiasing approach to
mitigate translationese by attenuating it in the latent
representations, while Wein and Schneider (2023)
reduce translationese using AMR as intermediate
representations. However, none of the above stud-

1In this setting, the training data is translated from the
source language into the target language and the translated
texts are used for training.

ies specifically analyze the surface forms of the
"debiased text".

To date, to the best of our knowledge, monolin-
gual translation based style transfer on translation
outputs to mitigate translationese has not been ex-
plored. To some extent, this is expected, as, at
least for monolingual translation-based style trans-
fer, parallel original and translated texts in the same
language do not exist. Below we present a novel ap-
proach that builds on translation-based style trans-
fer but unlike previous work without parallel data
for both training and validation sets.

3 Translationese Mitigation via Style
Transfer

Our goal is to eliminate translationese signals
from translated texts by transforming them into
an original-like version. We define two style at-
tributes, og and tr, representing original style and
translated style, respectively. Given a text sample
x belonging to tr, our aim is to convert this xtr
to xog, where xog belongs to style og but retains
the same semantic content as xtr. We denote the
corpus with original sentences OG and the corpus
with translated sentences TR. We illustrate the
process in Figure 1.

3.1 Self-Supervised Architecture
In our work we build on a Transformer-based ENC–
DEC self-supervised system that jointly learns sen-
tence pair extraction and translation in a virtu-
ous loop. Given two comparable mono-stylistic
corpora (OG and TR), a sentence-pair extraction
(SPE) module (Ruiter et al., 2019) utilizes the inter-
nal representations of the sentence pairs to extract
sentences with similar meanings. This similarity
matching module employs two types of latent rep-



Source [Translated] Target [Original]

This is an area in which we need to press on. This is another aspect we have to work on.
My group fully supports the substance of what you have said. My group has discussed in detail the questions that you have posed.

That is not at all the case. That is not the case at all.
I shall endeavour to be brief. I will try to be brief.

Table 1: Examples of accepted monolingual original-translationese pairs.

resentations: the sum of word embeddings w(∗)
and the sum of encoder outputs e(∗). The embed-
ded pairs ({w(tr), w(og)} and {e(tr), e(og)}) are
individually scored using a margin-based measure
(Artetxe and Schwenk, 2019), and the top candidate
pairs are selected for further filtering. Following
Ruiter et al. (2019), we apply two filtering criteria:

• Without Threshold [1]: A sentence pair is
accepted for training if it is highest-ranked in
both candidate-pair representations. This is
used in Ruiter et al. (2022).

• With Threshold [2]: A sentence pair is ac-
cepted for training either if it is highest-ranked
in both candidate-pair representations or if
its encoder representation {e(tr), e(og)} sur-
passes a given threshold.2

Examples of extracted accepted pairs are shown
in Table 1.

Extracted parallel sentence pairs are used in an
online fashion to train the ENC–DEC model in a su-
pervised manner by minimizing the cross-entropy
loss (Lsup):

Lsup = −
N∑
j=1

V∑
i=1

Y j
i log(Hj

i ) (1)

where N is the length of the target sequence, V is
the shared ENC-DEC vocabulary size, Y j

i repre-
sents the i-th element of the one-hot encoded true
distribution at j-th position and Hj

i the i-th ele-
ment of the predicted distribution (hypothesis) Hi.
The joint SPE-translation learning loop continues
until convergence. We use BART-style denoising
autoencoding (DAE) (Lewis et al., 2020) for model
initialization (see details in Section 4.2).

2The threshold was determined empirically by inspecting
values in the range of [0.95, 1.03], and validated through a
manual assessment of the quality of accepted pairs. We ob-
serve that with a higher threshold, fewer yet better quality
(tr,og) parallel pairs were extracted. We, therefore, set the
value to 1.01 or 1.02 in our experiments (see A.5) as it pro-
vided a good trade-off between the quality and quantity of
accepted pairs.

3.2 Joint Training Architecture
In the baseline system, all sentence pairs rejected
by SPE are simply discarded, which is a major loss
of useful mono-stylistic information. One way to
utilize the discarded pairs is by combining the su-
pervised training criterion with unsupervised train-
ing. To this end, we introduce an unsupervised loss
component to the final objective, which combines
language model (LM) loss with semantic similarity
loss. Both the losses, as shown in Figure 1, are
computed over the decoder outputs when mono-
stylistic tr is given as input.

As the input to compute these losses is derived
from a categorical distribution (i.e. after apply-
ing argmax on the decoder output), this breaks the
overall differentiability of the model during train-
ing. Therefore, following Yang et al. (2018) and
Unanue et al. (2021), during training, we use con-
tinuous approximations of the decoder output to
compute the two losses.

Let yôg be the style-transferred output when xtr
is given as input. Using greedy decoding, the pre-
dictions from the decoder at the j-th decoding step
can be expressed as follows:

ŷogj = argmax
xtr

p(x̂og|xtr, ŷogj−1, θ); j = 1 . . . , k

(2)
To retain the end-to-end differentiability of the
model, we replace the discrete argmax operation
with a Gumbel-Softmax (Maddison et al., 2017;
Jang et al., 2017) distribution and obtain contin-
uous approximations of the decoder outputs. Let
pij denote the probability of the i-th token in the
V -sized vocabulary at the j-th decoding step in
Equation 2 and pj represent the entire probability
vector at step j. Then the components of pj can be
approximated using:

πi
j =

exp((log pij) + gi)/τ∑V
v=1 exp((log p

v
j + gv)/τ)

(3)

where gi is a sample drawn from the Gumbel(0,1)
distribution and τ is a temperature parameter3 that
controls the sparsity of the resulting vectors.

3set to 0.1 (Jauregi Unanue et al., 2021)



The continuous probability vectors denoted as
πj at each decoding step j, represent probabilities
over tokens in the shared ENC–DEC vocabulary.
During the training phase, we use these vectors to
compute the language model loss and the semantic
similarity loss. We define our language model loss
and semantic similarity loss below.

Language Model Loss: To ensure target-style
fluency, we follow the continuous-approximation
approach from Yang et al. (2018). In this ap-
proach, we use the language model as a discrimi-
nator. The language model is initially pretrained
on the target-style (i.e. the originals) to capture the
target-style distribution and is denoted as LMog.
We feed the approximated decoder output πj (from
the j-th decoding step) to the pretrained language
model LMog by computing the expected embed-
dings Elmπj , where Elm represents the embedding
matrix of LMog. The output received from LMog

is a probability distribution over the vocabulary of
the next word, qogj+1. Then the loss at j-th step is
defined as the cross-entropy loss as shown below:

Llm = −πj+1 log q
og
j+1 (4)

When the output distribution from the decoder
πj+1 matches the language model output distribu-
tion qogj+1, the loss achieves its minimum.

Semantic Similarity Loss: To enforce content
preservation, the encoder representations of the
input translation e(tr) and the expected token em-
beddings from the decoder e(Eencπ) are used to
compute cosine similarity. Here, Eenc represents
the embedding matrix of the style transfer trans-
former encoder and e(∗) refers to the contextual-
ized encoder representation. We define the loss
as the mean-squared error of the cosine similarity
loss:4

Lss =
1

M

∑
M

(1− cos(e(xtr), e(Eencπ))
2 (5)

where M refers to the number of input sentences
in a batch.

Training and Validation To achieve a continu-
ous approximation of the decoder output at each
time-step and ensure end-to-end differentiability,
we employ a two-pass decoding approach (Mi-
haylova and Martins, 2019; Zhang et al., 2019;

4We also experimented with directly minimizing the co-
sine embedding loss at a lower learning rate and observed no
differences.

Duckworth et al., 2019). This approach works par-
ticularly well as we only feed mono-stylistic input
to the Transformer (Vaswani et al., 2017) for unsu-
pervised training. During training, the Transformer
decoder is run once without accumulating gradi-
ents, and the (shifted) predicted sequence together
with the encoder output are then fed into the Trans-
former decoder again to compute the unsupervised
losses described above.

During the validation phase, the output from the
first-pass decoding is used to compute the semantic
similarity in terms of BERTScore between the input
translation and the style-transferred output. Addi-
tionally, mean per-word entropy is computed over
the style-transferred output. Note that, to measure
semantic similarity between input xtr and output
yôg during training, the Style Transfer Encoder is
used to compute cosine similarity while during val-
idation, a pretrained BERT (Devlin et al., 2018)
model is employed for measuring the BERTScore.
The reason is that as the Style Transfer Encoder
is continually learning to represent the two styles
in every iteration, the pretrained BERT model pro-
vides a more stable and reliable similarity measure
at every validation step.

The unsupervised objective is a linear combina-
tion of the language model loss and the semantic
similarity loss, weighted by hyper-parameters β
and γ:5

Lunsup = βLlm + γLss (6)

The final loss is the sum of the supervised and
unsupervised components:

L = αLsup + (1− α)Lunsup (7)

The hyperparameter α determines the balance be-
tween the two objectives and can either be fine-
tuned or trained6. Note that while validation hap-
pens only over the unsupervised loss, in the final
joint training objective, both the supervised Lsup

(Eq.1) and the unsupervised loss Lunsup (Eq.6) are
considered. Furthermore, in joint training, an ini-
tial self-supervised training phase is carried out for
300 optimization steps for English (EN) and 600
optimization steps for German (DE) to facilitate
style-transfer learning in a guided manner and only
then it is combined with unsupervised training.

5In our experiments, both β and γ are set to 1.
6We set it to 0.7 in our experiments to regulate the effect

of weaker unsupervisory signals as monostylistic TR data
is much larger than the accepted pairs used for supervised
learning.



4 Experimental Settings

4.1 Data
Training Data: We use a subset of the EuroParl
corpus annotated with translationese information
from (Amponsah-Kaakyire et al., 2021) (referred to
as MPDE). Our focus is on two language scenarios:
(i) EN-ALL: English originals (EN), and German
and Spanish (ES+DE=ALL) translated into English
and, (ii) DE-ALL: German originals (DE), and
English and Spanish (ES+EN=ALL) translated into
German.

Validation and Test data: The Self-Supervised
baseline (SSNMT) relies on a parallel validation
set for hyperparameter tuning. However, as this
kind of data does not exist naturally, we generate
machine-translationese (mTR) validation and test
data by round-trip translating the original sentences
(og) in the target language. Similarly, we denote
the human-translationese as hTR. For our baseline
SSNMT-based monolingual style transfer model,
instead of using unaligned (hTR,og) pairs for vali-
dation, we utilise aligned (mTR,og) pairs.

For EN-ALL, we translate the original sentences
from the EN–DE validation and test splits using
Facebook’s pre-trained WMT’19 EN→DE and
DE→EN models (Ng et al., 2019) and for DE-ALL,
we use M2M100 (Fan et al., 2021) with EN as the
pivot langauge for round-trip translation. Refer to
Appendix A.1 for the dataset statistics of the Style
Transfer model.

For DAE and Language Model pretraining (for
Joint Training), English and German monolin-
gual data are collected from the EuroParl Cor-
pus (Koehn, 2005) from the OPUS website7 (Tiede-
mann, 2012). The English corpus contains over
1.5M train sentences and 5k dev and test sentences,
while the German one has 2.1M , 5k, 5k train,
test and dev sentences, respectively. Noisy input
data for BART-style pretraining is generated with
the values of parameters reported in Ruiter et al.
(2022). For LM finetuning, we use the Original
training split of the Comparable Dataset used for
Style Transfer (see Appendix A.1).

4.2 Model Specifications
We implement our baseline system8 and the pro-
posed Joint-Training system9 in Fairseq (Ott et al.,
2019), using a transformer-base with a maximum

7http://opus.nlpl.eu/
8https://github.com/cristinae/fairseq/pull/4
9https://github.com/cristinae/fairseq/pull/5

sequence length of 512 sub-word units. For online
parallel-pair extraction, SSNMT requires index-
ing the mono-stylistic corpora for fast access. We
use FAISS (Johnson et al., 2019) for this purpose.
Sentence vectors are clustered into buckets using
IVF100 (wherein 100 equals k in k-means10) and
stored without compression (i.e. with Flat index-
ing). At search time, the top 20 buckets11 matching
a query are examined. All other parameters are set
to the values reported in (Ruiter et al., 2022).

In Joint Training, we use the Fairseq imple-
mentation of a Transformer Decoder (Vaswani
et al., 2017) Language Model to compute Language
Model Loss during training and validation. The
same model is used to measure perplexities dur-
ing testing. Further information regarding the hy-
perparameters used for training the Style-Transfer
models under different scenarios (i.e. with or with-
out threshold across different data settings) can be
found in Appendix A.5.

4.2.1 Classifier
The style transfer models are evaluated us-
ing a BERT-based (Devlin et al., 2018) bi-
nary classifier trained to distinguish human-
translated data from originals. For English,
we finetune bert-base-cased for the trans-
lationese classification task, and for German,
bert-base-german-cased. The binary classifier
is trained on the MPDE data with equal amounts of
human-translated and original data (hTR,og). For
EN-ALL, the training, validation and test splits for
binary classification consist of 96536, 20654 and
20608 sentences, respectively while for DE-ALL,
they consist of 87121, 18941 and 18976 sentences,
respectively.

5 Evaluation

We perform evaluation on the outputs (ôg) of
the style transfer models, given the human-
translationese (hTR) (without an original refer-
ence) half of the test data as input.

5.1 Quantitative Analysis

We compute three metrics: Acc. (Translationese
Classification Accuracy), BERTScore (BERT-F1)
and Perplexity (PPL)
Acc.: This metric measures the extent to which
the models mitigate translationese, in terms of the

10This value is set based on the size of our corpus and the
recommendation in FAISS wiki.

11The higher the value, the longer the search time.

http://opus.nlpl.eu/
https://github.com/cristinae/fairseq/pull/4
https://github.com/cristinae/fairseq/pull/5
https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index


Setup Quantitative Qualitative

EN-ALL Acc.[1] Bert-F1 PPLog TTR LD #Identical

Original Test OG 0.902 33.70
Human-Translation Test 79.62 108.75 0.896 31.86

Self-Supervised [1] 71.00 0.94 37.24 0.841 27.13 1186
Self-Supervised [2] 66.67 0.94 33.35 0.865 27.60 1186

Joint Training [1]-hTR 55.97 0.90 38.95 0.861 29.10 280
Joint Training [2]-hTR 57.32 0.90 50.98 0.887 32.33 390
Joint Training [1]-mTR 52.89 0.89 42.29 0.872 29.43 215
Joint Training [2]-mTR 57.26 0.90 50.91 0.887 32.32 390

(a) Results on the English MPDE test data from different training setups.

Setup Quantitative Qualitative

DE-ALL Acc.[1] Bert-F1 PPLog TTR LD #Identical

Original Test OG 0.919 33.49
Human-Translation Test 79.30 142.66 0.913 35.66

Self-Supervised [1] 76.03 0.95 60.73 0.861 33.21 1913
Self-Supervised [2] 77.89 0.97 104.07 0.904 34.79 3481

Joint Training [1]-hTR 61.26 0.87 75.36 0.876 34.73 148
Joint Training [2]-hTR 63.50 0.87 82.47 0.843 39.75 181
Joint Training [1]-mTR 59.48 0.87 77.99 0.881 35.51 146
Joint Training [2]-mTR 59.92 0.84 100.41 0.796 54.05 141

(b) Results on the German MPDE test data from different training setups.

(c) Notation: No Threshold:[1], With Threshold:[2]; Validation set: human-translation(hTR)/machine-translation (mTR); Acc.[1]
classification accuracy on the entire test set (hTR, og) and on the style-transferred outputs (ôg, og); #Identical: #outputs that are
same as the input. Bold numbers highlight the best overall result under each metric while the second best results are underlined.

accuracy of classifying the styles (translated vs.
original). We report classification results on the en-
tire test set (hTR, og) and on the test sets generated
from the outputs of our style transfer models (ôg,
og). Note that, a near-random accuarcy indicates
better style transfer.

BERT-F1 is computed between the input trans-
lations and the style-transferred outputs to measure
the degree of content preservation. For EN-ALL,
we use pretrained roberta-base and for DE-ALL
xlm-roberta-base.
PPL is calculated for the style-transferred outputs
using a language model (LMog) that has been fine-
tuned on original text to evaluate the fluency and
coherence of the target-style generated text.

For EN-ALL, Table 2a shows that the binary
classifier achieves an accuracy of 79.62 on the
(hTR, og) test set. This is our reference point. First,
we study both self-supervised approaches — with-
out [1] and with a threshold [2]. Results show
that both the baseline approaches [1,2] were able
to reduce translationese in human-translated texts
while preserving the semantics (as evidenced by
the F1-BERTScore of 0.94). More precisely, Self-
Supervised [2] reduces the classification accuracy
by 16% when compared to the reference and by
11% when compared to Self-Supervised [1]. Fur-
thermore, the style-transferred outputs from Self-
Supervised [2] show a reduction in LMog perplexity

when compared to the hTR texts and a 10.5% reduc-
tion when compared to Self-Supervised [1] outputs.
This indicates, for the baseline self-supervised ap-
proach, additionally relying on a threshold to ex-
tract more parallel pairs helps improve style trans-
fer for EN-ALL MPDE12.

Next, we examine if the same holds true for the
Joint Training architecture and if joint training fur-
ther improves the style transfer. In Table 2a, the
consistent close-to-random accuracy across all the
four variants of the Joint Training setup confirm
the efficacy of this approach. The results show
that in the Joint Training setup, regardless of the
validation distribution (i.e., hTR or mTR), the style-
transferred outputs from the models with no thresh-
olds (i.e. Joint Training [1]-hTR and Joint Training
[1]-mTR) achieve 2%− 8% reductions in accuracy
w.r.t. their counterparts with thresholds.

This observation suggests that when the model
is trained with a larger amount of data through un-
supervised training, it may be adequate to utilize
only high-quality SPE pairs, without the need for
including additional sub-optimal pairs based on
a threshold. When comparing these two models
against each other (i.e. Joint Training [1]-hTR vs.
Joint Training [1]-mTR ), the generations from the
model validated on hTR exhibit similar semantic

12See Appendix A.2.1 for the statistics on the accepted
pairs.



similarity but with approximately 8% lower per-
plexity, which suggests a potential advantage in
employing the same distribution (hTR) for valida-
tion as during training and testing.

We replicate the same analysis for the DE-ALL
setup, as demonstrated in Table 2b. Note that, this
dataset is even smaller than the EN-ALL MPDE
dataset (see Table 4). Here, the reference accuracy
is 79.30 on (hTR, og) test set. When using the
baseline Self-Supervised methods [1,2], the classi-
fication accuracy reduces only marginally by 2%
to 4%, with no significant distinction between the
two variants. Self-Supervised [1], however, unlike
in EN-ALL, benefits from a 42% lower LMog per-
plexity than Self-Supervised [2]. Nonetheless, sim-
ilar to the EN-ALL setup, with Joint Training, the
degradation is more pronounced. In contrast to EN-
ALL, however, the style-transferred outputs from
Joint Training without threshold (i.e. Joint Train-
ing [1]-hTR and Joint Training [1]-mTR) exhibit
only a marginal decrease in accuracy compared to
their counterparts with threshold. Assessing con-
tent preservation and fluency in the target style
within the Joint Training setup, all the models, ex-
cept Joint Training [2]-mTR, yield similar results.
Notably, the outputs from Joint Training [1]-hTR
demonstrate the lowest perplexity. In case of Joint
Training [2]-mTR, the oddly high perplexity when
evaluating with LMog could be attributed to either
the sub-optimal parallel pairs accepted by addition-
ally applying a threshold or performing validation
on mTR or both.

Finally, we compare the Joint Training setup
with the baseline Self-Supervised setup across both
the MPDE datasets. Overall, Joint Training reduces
the classification accuracy to a near-random accu-
racy, with a more pronounced drop in accuracy for
EN-ALL MPDE 13. However, we also observe a
degradation in the F1-BERTScore as we move to
the Joint Training setup. This discrepancy can be
attributed to the fact that Self-Supervised training
yields higher number of outputs that are identical to
the given input translations14. Therefore, a higher
F1-BERTScore does not necessarily mean that the
non-identical outputs from Self-Supervised base-

13To closely inspect the impact of style transfer, in Ap-
pendix A.2, we report the classification accuracies on only the
translationese half of the test set. This provides an insight into
the number of sentences in hTR or ôg that are considered by
the classifier as original-like (see #OG-like in Table 6c).

14Recall that the target reference is unavailable, and
BERTScore is computed between the translated input and
the style-transferred output.

lines preserve the content better. Earlier studies
have shown that BERTScore is sensitive to both
meaning and surface changes (Hanna and Bojar,
2021; Zhou et al., 2022), and therefore, one needs
to manually examine the outputs.

5.2 Qualitative Analysis
Prior research (Baker et al., 1993) has shown that
translated texts are often simpler than original texts.
In order to measure the level of translationese in
a translation in terms of lexical simplicity, Toral
(2019) introduced two metrics: Type-Token Ratio
(TTR) and Lexical Diversity (LD). Following Ri-
ley et al. (2020), we conduct a qualitative analysis
using these metrics.
TTR: Measures lexical variety by dividing the num-
ber of unique word types in a text by the total
number of words (tokens) in the same text. The
lower the ratio, the more reduced the vocabulary
of the style-transferred output, indicating weak re-
semblance to the target original style.
LD: Calculated by dividing the number of content
words (words that carry significant meaning - ad-
jectives, adverbs, nouns and verbs) by the total
number of words in the text. Higher content word
density implies a text conveys more information,
aligning it more closely with the original style.

Table 2a shows that for EN-ALL MPDE, the
TTR and LD scores for the outputs of the base-
line Self-Supervised approach [2] are higher than
that of Self-Supervised [1]. This is in line with the
quantitative results, which clearly indicate that ad-
ditionally applying a threshold to retrieve a higher
number of parallel pairs helps improve style trans-
fer. However, this does not hold for Joint Training.
The TTR and LD scores for Joint Training [2]-
(hTR/mTR) models are higher than for the models
without a threshold, although they achieve higher
LMog perplexities. Interestingly, the LD scores
from Joint Training [2]-hTR/mTR even surpass the
reference LD score on hTR.

In case of DE-ALL MPDE (Table 2b), which
has an even smaller size of training data, a lack of
correlation between the quantitative and qualitative
results is even more evident within the baseline
self-supervised and the joint training setups. This
suggests the need for an extrinsic evaluation on
a downstream task, similar to the one performed
by Dutta Chowdhury et al. (2022) on the Natural
Language Inference (NLI) task.

In Table 3, we present some examples from the
different variants of our Style Transfer system and



Source (hTR) Self-Supervised[2] Joint Training[1]-mTR Joint Training[1]-hTR
I happily leave it to you to

examine this matter.
I leave it to you to

examine this matter.
I will leave it to you to
reflect on this matter.

I will therefore leave it to
you to consider this

matter.
Unfortunately, this hope
has not become reality.

Unfortunately, this has not
become reality.

Despite that, it has not
become reality.

The reality is, however,
rather different.

Please could he just
explain that?

Could he just explain
that?

Could he just explain
that?

Could he please explain
that?

Please could you take
suitable action here.

Could you take suitable
action?

Can you please do
something about it?

Could you please take
some action?

I am in favour of Turkey’s
admittance to the EU, but
the Copenhagen criteria

must be met.

I am in favour of
Turkey’s’s admittance to

the EU, but the
Copenhagen criteria must

be met.

I am very much in favour
of Turkey’s admittance to
the EU, but these must be

taken into account.

I am very much in favour
of Turkey’s accession to
the European Union, but
the Copenhagen criteria

must be met.

Table 3: Qualitative analysis of the outputs from different systems.

broadly analyse the generated outputs (ôg) with
respect to some well-known linguistic indicators of
translationese (Volansky et al., 2015)15. In the first
and second example, the intended meaning and sur-
face form is retained in the outputs from all systems
while the outputs obtained from Joint Training[1]-
hTR introduces a higher level of formality, altering
both the connective and the phrase. In the second
example, Self-Supervised[2] retains key elements
from the source text, while Joint Training brings
about more significant changes in terms of connec-
tives, lexical choices, and sentence structure. In
the third example, while Self-Supervised[2] and
Joint Training[1]-mTR change the formulation of
the question while removing politeness ("please"),
Joint Training[1]-hTR keeps it intact. Similarly, in
the fourth example, all three versions use differ-
ent connectives, with varying politeness and for-
mality. In last example, Self-Supervised retains a
substantial portion of the source text, while Joint
Training[1]-mTR eliminates the specific mention
of the "Copenhagen criteria" and replaces it with
"these," which is a more general reference and Joint
Training[1]-hTr changes the phrase by using "acces-
sion to the European Union" instead of "admittance
to the EU."

Overall, we observe that our proposed approach
is able to mitigate translationese in its style-
transferred outputs while preserving the semantics
reasonably well and achieving greater fluency in
target original style.

6 Conclusion

In this work, we reduce the presence of transla-
tionese in human-translated texts and make them
more closely resemble originally authored texts.
We approach the challenge as a monolingual

15See Appendix A.3 for the analysis of German outputs.

translation-based style transfer task. Due to the
absence of parallel translated and original data in
the same language, we employ a self-supervised
style transfer approach that leverages comparable
monolingual data from both original and translated
sources. However, even this self-supervised ap-
proach necessitates the use of parallel data for the
validation set to facilitate the learning of style trans-
fer. Therefore, we develop a novel joint training
objective that combines both self-supervised and
unsupervised criteria, eliminating the need for par-
allel data during both training and validation. Our
unsupervised criterion is defined by combining two
components: the original language model loss over
the style-transferred output and the semantic simi-
larity loss between the input and style-transferred
output. With this, we show that the generated out-
puts not only resemble the style of the original texts
but also maintain semantic content. We evaluate
our approach on the binary classification task be-
tween original and translations. Our findings show
that training with joint loss significantly reduces the
original and translation classification accuracy to a
level comparable to that of a random classifier, in-
dicating the efficacy of our approach in mitigating
translation-induced artifacts from translated data.
As future work, we intend to explore more sophis-
ticated approaches to improve content preservation
and evaluation. It would be also interesting to ap-
ply a version of our style transfer approach to the
output of machine translation to alleviate transla-
tionese in cross-lingual scenarios.

Limitations

The availability of original and professionally trans-
lated data in the same language, domain and genre
is limited, both in terms of quantity and language
coverage. While our system does not rely on par-



allel data, for our approach to work it is important
to ensure that the data in both modalities (original
and translationese) are comparable.

Manually evaluating the quality of style transfer
and the reduction of translationese is inherently sub-
jective. While we conduct a preliminary analysis to
evaluate the outputs, more nuanced linguistic exper-
tise is required for in-depth analysis. Though we
propose evaluation metrics, there is no universally
accepted gold standard for measuring the effective-
ness of translationese reduction. These factors may
introduce biases and challenges in comparing the
performance of different approaches. At the indi-
vidual text level, even human experts struggle to
distinguish between translationese and originals.
Detecting translationese reliably involves analyz-
ing large quantities of data or training classifiers
on original and translated text.While Amponsah-
Kaakyire et al. (2022) show evidence that high-
performance translationese classifiers may in some
cases rely on spurious data correlations like topic
information, recent work by Borah et al. (2023)
indicates that the effect arising from spurious topic
information accounts only for a small part of the
strong classification results. A decrease in classifier
accuracy strongly suggests reduced translationese
signals. That said, further research on addressing
spurious correlations in translationese classifica-
tion is an important research not explored in our
paper.

Finally, it is worth noting that the proposed sys-
tems may attempt to improve translations already
of high quality that should not really be touched.
Our results include potential quality degradation
due to system overcorrections. Future work aims
to address this phenomenon using an oracle-based
style transfer approach.
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A Appendix

A.1 Dataset Statistics for Style Transfer
System

Data Preprocessing: First, the paragraphs are split
into sentences using NLTK (Bird et al., 2009) and
then tokenized and truecased using standard Moses
scripts (Koehn et al., 2007). In addition, we remove
all duplicates from the train/test/dev splits. After
this, byte-pair encoding of 10k merge operations
is applied on the concatenated monolingual-EN
EuroParl and MPDE’s EN-ALL training split and
similarly, 11k merge operations are applied on the
concatenated monolingual-DE EuroParl and the
DE-ALL training split.

A.2 Supplementary Results

A.2.1 Parallel Pairs for Joint Training
Table 5 provides an insight on how the accepted
parallel pairs influence style transfer training. The
models corresponding to the underlined numbers
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Data Split OG TR
EN-ALL train 96,290 96,206

dev 10,327 10,327
test 10,304 10,304

DE-ALL train 64,917 43,560
dev 9,470 9,470
test 9,488 9,488

Table 4: Number of sentences in each split of the Original
[OG] and Translationese[TR] halves of the MPDE dataset.

attain the best checkpoint earlier than their counter-
parts and hence, we report the number of parallel
pairs from this epoch. As seen in the quantita-
tive analysis for EN-ALL, the large number of ac-
cepted pairs due to the application of a threshold in
the self-supervised approach, helps improve style
transfer. However, for the Joint Training, due to the
weaker unsupervised signals, the threshold does not
have the same impact. Interestingly, for DE-ALL,
the additional use of a threshold in both the Self-
Supervised and Joint Training approaches does not
increase the number of parallel pairs. Furthermore,
across both the data setups, Joint Training with
no threshold achieves a greater number of parallel
pairs than its counterpart with threshold. This ex-
plains why the quantitative metrics perform slightly
better for this model variant.

Data Setup Epoch No Thresh. Thresh.
EN-ALL Self-Supervised 64 317 2,978

Joint Training-hTR 2 492 405
Joint Training-mTR 2 492 405

DE-ALL Self-Supervised 12 416 362
Joint Training-hTR 48 673 407
Joint Training-mTR 48 673 398

Table 5: Statistics of the accepted parallel pairs for style trans-
fer training. The number of parallel pairs are reported from the
earliest epoch that gives the best model checkpoint between
the two model variants: with and without threshold. In each
row, the epoch number is associated to the underlined model.

A.2.2 Translationese Classification on the
Style-Transferred Outputs

In order to directly witness the impact of style trans-
fer, we measure the accuracy just on the transla-
tionese half of the test set. This provides an insight
into the number of sentences in the translated half
that are considered by the classifier as original-like
(see #OG-like in Table 6c). Note that, the lower
the accuracy, the better the style transfer.

A.3 Manual Inspection of German outputs
In Table 7, we provide examples from the style
transfer models trained on MPDE DE-ALL. For

EN-ALL Acc.[2] #OG-like

Human-Translation Test 82.83 1816

Self-supervised [1] 66.72 3430
Self-supervised [2] 58.87 4239

Joint Training [1]-hTR 35.70 6625
Joint Training [2]-hTR 38.40 6347
Joint Training [1]-mTR 29.54 7260
Joint Training [2]-mTR 38.28 6360

(a) Size of the test set: 10304.

DE-ALL Acc.[2] #OG-like

Human-Translation Test 82.14 1695

Self-supervised [1] 76.15 2263
Self-supervised [2] 79.87 1908

Joint Training [1]-hTR 19.90 7600
Joint Training [2]-hTR 24.58 7156
Joint Training [1]-mTR 16.18 7953
Joint Training [2]-mTR 17.10 7866

(b) Size of the test set: 9488.

(c) Supplementary results on MOTRA EN-ALL and DE-ALL
test sets. Notation: No Threshold:[1], With Threshold:[2];
Validation set: human-translation(hTR)/machine-translation
(mTR); Acc.[2] classification accuracy on the translationese
half of the test set (hTR,) and on the style-transferred outputs
(ôg,); #OG-like: #sentences in (hTR,) and (ôg,) that are classi-
fied as original by the classifier.

the first two short sentences, although Joint
Training[1]-hTR makes a different lexical choice
with the use of "Klarstellung" and "allerdings", it
does not alter the meaning of the two sentences.
In the third example, with the use of "vertrauen
darauf", Joint Training[1]-hTR heightens the inten-
sity of the sentence while preserving the intended
meaning. In the final example, the use of the
pronoun "Dies" (this) by Joint Training[1]-mTR
results in a loss of specificity regarding the city
of Straßburg. However, both Self-Supervised[2]
and Joint Training[2]-hTR manage to maintain the
source sentence’s meaning, albeit with a slight shift
in the intensity of the word "schöne" (beautiful).

A.4 Experimental Setup

We run our experiments on SLURM cluster using
GPU instances of V100-32GB or RTXA6000. Both
the baseline and the joint training approach are run
on a single GPU while for DAE pretraining and
LM training (pretraining and finetuning), we use
2 GPUs with 16 CPUs with each CPU containing
12 GB memory. One training on our datasets takes
approximately 4 hours with the Baseline Approach
and 7-9 hours for the Joint Training Approach.

Additionally, obtaining results for all the setups
in the quantitative measures simultaneously takes
approximately 30 minutes for each setup. How-



Source (hTR) Self-Supervised[2] Joint Training[1]-mTR Joint Training[1]-hTR
Das bedarf einer

Erklärung .
Das bedarf einer

Erklärung .
Das bedarf einer

Erklärung .
Das bedarf einer

Klarstellung
Es besteht jedoch ein

Problem .
Es besteht jedoch ein

Problem .
Es besteht allerdings ein

Problem .
Es besteht allerdings ein

Problem .
Wir hoffen, daß Sie es

schaffen.
Wir hoffen, daß Sie es

schaffen.
Wir hoffen, daß Sie es

schaffen.
Wir vertrauen darauf, daß

Sie es schaffen.
Straßburg ist durchaus

eine schöne Stadt.
Straßburg ist eine schöne

Stadt.
Dies ist eine schöne Stadt. Straßburg ist eine sehr

schöne Stadt.

Table 7: Qualitative analysis of the German outputs from different systems.

ever, if we run them independently, it takes be-
tween 2− 10 minutes to obtain results using these
measures. The qualitative measures, on the other
hand, take longer to process due to the utilization
of large spaCy models (en_core_web_trf for EN
and de_dep_news_trf for DE), requiring approxi-
mately 15-20 minutes.

A.5 Hyperparameters
SSNMT requires indexing the mono-stylistic cor-
pora for fast access. We use FAISS (Johnson et al.,
2019) for this purpose. For indexing with FAISS,
since each half of the baseline corpus (details in
Section 4.1) contains less than 1M sentences, to
facilitate fast and accurate search, the sentence
vectors are clustered into buckets using IVF100
(wherein 10016 equals k in k-means) and stored
without compression (i.e. with Flat indexing). At
search time, the top 20 buckets matching query are
examined.

Other hyperparameter settings for the Style
Transfer models are shown in Table 8.

The BERT-based Translationese binary classi-
fiers are fine-tuned for at most 10 epochs with a
learning rate of 2e-5, 1000 warm-up updates and
a batch size of 16. The Transformer-based LM
is trained for at most 50k updates with a learning
rate of 5e-3 and fine-tuned for at most 20k up-
dates at a lower learning rate of 5e-4 with the eos
sample-break-mode.

The BERT-based Translationese binary classi-
fiers are finetuned for at most 10 epochs with a
learning rate of 2e-5 and 1000 warm-up updates.
The Transformer-based LM is trained for at most
50k updates with a learning rate of 5e-3 and fine-
tuned for at most 20k updates at a lower learning
rate of 5e-4.

16This value is set based on the recommendation in FAISS
wiki.

Experiment MPDE Experimental Setting

Self-Supervised Learning Rate 0.0003
Validation Batch size 500
Warm-up updates 300
Batch-size 80
Save-interval-updates 2
Threshold 1.01 (when set)
Epochs 100

Joint Training EN-ALL Learning Rate 0.0003
Validation Batch size 500
Warm-up updates 300
Batch-size 160
Save-interval-updates 2
Threshold 1.01 (when set)
Start-unsupervised training
300
Supervised-loss coefficient
0.7
Unsupervised-loss coeffi-
cient 0.3
Epochs 30
Patience 15

Joint Training DE-ALL Learning Rate 0.0003
Validation Batch size 500
Warm-up updates 600
Batch-size 40
Save-interval-updates 2
Threshold 1.02 (when set)
Start-unsupervised training
400
Supervised-loss coefficient
0.7
Unsupervised-loss coeffi-
cient 0.3
Epochs 30
Patience 15

Table 8: Hyperparameters used in the Style Transfer experi-
ments.

https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
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