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ABSTRACT

Recent increases in deploying deep neural networks (DNNs) on resource-
constrained devices, combined with the observation that not all input samples re-
quire the same amount of computations, have sparked interest in input-adaptive
dynamic neural networks (DyNNs). These DyNNs bring in more efficient in-
ferences and enable deploying DNNs on resource-constrained devices e.g., mo-
bile devices. In this work, we study a new vulnerability about DyNNs: can
adversaries manipulate a DyNN to provide a false sense of efficiency? To an-
swer this question, we design SlothBomb, an adversarial attack that injects ef-
ficiency backdoors in DyNNs. SlothBomb poison only a minimal percentage
of DyNNs training data to inject a backdoor trigger into DyNNs. During the in-
ference time, SlothBomb can slow down poisoned DyNNs and abuse the com-
putational resources of systems running DyNNs - an availability threat analogous
to the denial-of-service attacks. We evaluate SlothBomb on three DNN back-
bone architectures (based on VGG16, MobileNet, and ResNet56) on two popular
datasets (CIFAR-10 and Tiny ImageNet) We show that a SlothBomb reduces the
efficiency of DyNNs on triggered input samples while keeping almost the same
efficiency on clean samples.

1 INTRODUCTION

The requirement of higher accuracy in deploying deep neural networks(DNNs) leads to the trend
of increasing layers for the neural network, according to the “going deeper” Szegedy et al. (2015)
strategy proposed in 2015: the higher number of layers within the neural network, the more com-
plex representations it can learn from the same input data. Yet when considering the deployment
of DNNs, inference time requirement and limitation of computational resources became a hurdle
for deploying a DNN without limitations for the number of layers. Such limitations can occur in
applications that have inherent limited computational resources such as edge computing Luo et al.
(2021), or scenarios where inference time is a key safety requirement such as autonomous driv-
ing Zhong et al. (2021); Zhu et al. (2022). Therefore, the conflict between computational resources
and inference time available for DNNs have raised the research interest in efficiency improvement
while maintaining the same performance.

To maintain the model performance with less computational resources, early-exit dynamic neural
networks (DyNNs) Passalis et al. (2020); Ghodrati et al. (2021); Huang et al. (2017); Liu et al.
(2020a); Leroux et al. (2018) has been proposed recently. Early-exit dynamic neural networks
achieve the balance between performance and inference speed by terminating the computations in
neural networks early if the intermediate values satisfy a pre-defined condition. For example, Kaya
et al. (2019) proposes to add intermediate classifier to convolution neural networks and terminate
the computation if the confidence scores from the intermediate classifier is larger than a pre-set
threshold.

Although these DyNNs bring in more efficient inferences and make deploying DNNs on resource-
constrained devices possible. It is unknown whether these DyNNs can maintain their designed
“efficiency” under adversarial scenarios. Considering that the natural property of DyNNs is that they
require different computational consumption for different inputs. This natural property discloses a
potential vulnerability of DyNNs models, i.e., the adversaries may inject a backdoor to a DyNN
to give a false sense of efficiency to users of the DyNN. Such efficiency vulnerability is analogous
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to the denial-of-service attacks in cybersecurity (Needham (1993); Lau et al. (2000)) and can lead
to severe outcomes in real-world scenarios. For example, consider a DyNN deployed on an edge
device to monitor emergencies; the adversary may exploit the efficiency vulnerability and launch an
attack to run out of the system’s battery, making the deployed system unavailable.

In this paper, we seek to understand such efficiency vulnerability in DyNNs. Specifically, we seek
to answer the following questions:

Can we inject an efficiency backdoor into a DyNN without changing its
behaviors on most inputs in terms of accuracy and efficiency but make
it consumes more computational resources with triggered inputs?

Although several previous studies Li et al. (2022); Nguyen & Tran (2021); Bagdasaryan &
Shmatikov (2021); Doan et al. (2021); Liu et al. (2018) have suggested injecting backdoors to deep
neural networks to control the model’s prediction is possible, they have primarily concentrated on
injecting accuracy-based backdoors rather than efficiency-based ones, meaning the backdoor will
affect the model outputs rather than the computational cost. Injecting efficiency-based backdoors is
much more challenging than injecting accuracy-based ones because the injection process is “unsu-
pervised” (we use the term “unsupervised” because there is no groundtruth to indicate how much
computational cost the model should consume for each input in the training process).

To address the aforementioned “unsupervised” challenge, our observation is that DyNNs will stop
computing only when their intermediate prediction is confident enough. Otherwise, DyNNs will
continue computing until it reaches the confidence threshold. Motivated by such observation, we
propose SlothBomb, a backdoor injection approach that can inject efficiency backdoors into
DyNNs to manipulate their efficiency. In particular, we design a novel “unconfident objective”
function (detailed in section 3) to transform the “unsupervised” backdoor injection problem into an
“supervised” one. Our design enforces the triggered inputs to produce intermediate outputs with un-
confident scores (i.e., evenly distributed confidence scores) that will satisfy pre-defined conditions,
thus pushing the DyNNs to continue computing and exhaust the computational resources.

We implement SlothBomb and evaluate SlothBomb in terms of effectiveness and stealthiness on
576 settings (2 DyNN types × 3 DNN backbone × 2 dataset × 3 attack settings × 16 DyNN runtime
settings), and compare SlothBomb with two correctness-based backdoor injection methods (i.e.,
BadNets and TrojanNN) Bagdasaryan & Shmatikov (2021); Liu et al. (2018). The evaluation re-
sults show that SlothBomb outperforms comparison baselines by a large margin. The contribution
and novelty of our work is listed in the following part.

• Empirical Novelty. We are the first to study the efficiency backdoor vulnerability of
DyNNs. Specifically, we find that the computational consumption of DyNNs can be ma-
nipulated by the adversary to provide a false sense of efficiency, and the adversary can
produce triggered inputs to exhaust the computational resources of the backdoored DyNNs
to harm the system’s availability.

• Technical Novelty. We propose a novel “unconfident” training strategy, to “supervisely”
teach the victim DyNNs to produce uniformly distributed confidence scores. After injecting
the backdoors to the DyNNs, the DyNNs will produce unconfident predictions for triggered
inputs, forcing the DyNNs to continue computing without early termination.

• Evaluation. We evaluate SlothBomb on 576 various settings (details could be found in
section 4). The evaluation results show that SlothBomb successfully injects efficiency-
based backdoors into DyNNs and results in more than 3times performance degradation,
suggesting the necessary to protect DyNNs against efficiency-based backdoor attacks.
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2 BACKGROUND

2.1 EARLY-EXIT DYNAMIC NEURAL NETWORKS
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Figure 1: Working mechanism of early-exit DyNN

Early-exit Dynamic Neural
Networks (DyNN) are neural
networks that processes the
input in a dynamic manner,
i.e.,, given the complexity of
the input DyNN dynamically
modifies the amount of com-
putation during inference.
There are mainly two types
of DyNNs: conditional-
skipping DyNNs and
early-exit DyNNs (Haque
et al., 2020). In this work we focus on early-exit DyNNs.

Early-exit DyNNs are mult-exit networks. Here, a neural network is divided into multiple parts,
each part having an exit. Given an input, each exit (from early to later) calculates confidence score
of the predicted label. If the predicted label’s output is higher than specific threshold, the later exits
are not executed and the inference is stopped. Kaya et al. (2019), Teerapittayanon et al. (2016)
and Yang et al. (2020) have proposed popular early-exit networks DeepShallow, BranchyNet and
RANet respectively. Figure 1 shows the working mechanism of early-exit DyNNs. Here, decision
units represent each exit. If one decision unit’s confidence score is higher than threshold, the next
DNN blocks or decision units are not executed.

2.2 BACKDOOR INJECTION ATTACK

Backdoor injection attack against DNNs usually refer to the kind of attack that utilize specific trojan
trigger to change the output prediction of neural network during inference Pang et al. (2022); Gao
et al. (2020). According to the existing work, launching a backdoor injection attack against DNNs
first requires generation of trojan trigger, which can be predefined Gu et al. (2017), fixed Liu et al.
(2018), or optimized regarding certain kinds of attack goal Liu et al. (2020b; 2018). Some works
uses neural activation patterns to generate triggers (Chen et al., 2017; Suciu et al., 2018). After trojan
trigger had been generated, an infected feature extractor will be either trained from scratch Liu et al.
(2018) or perturbed Suciu et al. (2018). The infected inference model will have updated weights
which responds to trojan trigger. When triggered input is used in inference data, the backdoor
attack launches, having falsified prediction result. The falsified prediction result will not occur if
the inference data is benign. To mitigate these attacks mainly two types of defenses are proposed:
mitigating Trojan models during inspection (Chen et al., 2019; Guo et al., 2019), and detecting
trigger inputs at inference (Chen et al., 2018; Cohen et al., 2019).

2.3 EFFICIENCY ATTACK

Recently, a series of existing studies Chen et al. (2022); Haque et al. (2020); Hong et al. (2020)
have been proposed to attack the neural networks in terms of efficiency during the inference time.
For example, Haque et al. (2020) designs a general approach to generate adversarial examples to
increase the computational complexity of a wide range of dynamic neural networks. Hong et al.
(2020) proposes to attack the early-exit dynamic neural networks with L2 and Linf perturbations.
Chen et al. (2022) proposes a efficient approach to generate adversarial examples to evaluate the
efficiency robustness of the neural image caption generation models.

3 ATTACK METHODOLOGY

3.1 THREAT MODEL

Adversary Objective. Our attack aims to insert a backdoor into DyNNs. The backdoored DyNNs
will behave normally on benign data. For adversarial inputs, the adversary can append a designed
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malicious trigger to any clean data sample to create adversarial inputs. The created adversarial inputs
will require much more computational resources from the DyNNs than clean samples, thus, making
the system run out of the computational resources earlier than expected. The majority of current
correctness-based backdoor attacks aim to compromise models’ integrity. Unlike existing backdoor
attacks, our attack seeks to impact models’ availability. For example, if the DyNNs are deployed
on mobile devices, our attack can exhaust the deployed mobile’s battery power to make the mobile
devices unavailable.

Adversary Capabilities. Following existing work Li et al. (2022); Nguyen & Tran (2021); Bag-
dasaryan & Shmatikov (2021); Doan et al. (2021); Liu et al. (2018), we assume the adversary can
control the model training process and inject a minimal percentage of data samples into the training
data. Our assumption could happen in many real-world scenarios, such as training models using
third-party computing platforms or downloading pre-trained models from untrusted repositories.

3.2 PROBLEM FORMULATION

In this work, we focus on DyNNs for image classification applications. Let D denotes the clean train-
ing dataset, D∗ denotes the trigger dataset, F(·) denotes the clean DyNNs under attack, Fbackdoor(·)
denotes the backdoored model, θ̂ represents the parameters of the clean DyNNs under attack, and r
denotes the adversarial trigger that trigger the adversarial behavior of the backdoored DyNNs i.e.,
D∗ = {x⊕ r|x ∈ D}.

Our attack seeks to inject stealthiness backdoors into DyNNs F(·) to make F(·) computes less ef-
ficiency on the trigger data. To achieve such a goal, the injected backdoor should be satisfy the
following two objective: (i) Effectiveness After injecting the backdoor into the model, any adver-
sarial trigger input should slow down the backdoor in terms of efficiency. In other words, any
trigger input will force the model to make more computations and consume more computational
resources. (ii) Stealthiness After injecting the backdoors to the DyNNs F(·), the backdoored model
Fbackdoor(·) should behave similar to the clean model F(·) on the clean dataset. Otherwise, the
obvious performance degradation of backdoored model would make it noticeable to the victims.

We formulate the above two objective as an optimization problem, as shown in Eq.(1).

θ∗ = argmaxθ FLOPs(F , θ,D∗)

s.t. Acc(F , θ,D) ≈ Acc(F , θ̂,D) ∧ FLOPs(F , θ,D) ≈ FLOPs(F , θ̂,D)
(1)

where FLOPs(·) and Acc(·) represent the function to measure the computational efficiency and
accuracy of DyNNs on a given dataset. The optimization goal (first line in Eq.(1)) can be interpreted
as that we seek to search the parameters θ∗ that will maximize the computational complexity of the
DyNNs on the trigger dataset, thus achieving effectiveness i.e., slowing down the model F on trigger
dataset. Recall that FLOPs(F , θ̂,D) and Acc(F , θ̂,D) measures the clean model computational
complexity and accuracy on the clean dataset. Then the constraints of Eq.(1) (second line) shows
that we force the backdoored model to behavior similar to the clean model on clean dataset in
terms of accuracy and computational complexity (efficiency). Thus, the backdoored model will
be stealthy because the victim can not differentiate the backdoored model and the clean model via
model performance.

3.3 DETAIL DESIGN

Maintaining Performance on Clean Data. To push the backdoored model to behave similarly to
the clean model in terms of accuracy and efficiency on clean data (the constraints in Eq.(1)), our first
objective is to maintain the performance on clean dataset.

Lclean =

N∑
i=1

ℓ1(F(x)i, y) (x, y) ∈ D (2)

Our first object can be represented as equation 2, where (x, y) is a training pair from the clean
dataset, F(·)i represents the ith intermediate classifier’s outputs, and ℓ1(·, ·) measures the cross
entropy. equation 2 can be interpreted as that we seek to push each intermediate classifier produce
correct predictions on clean data, thus maintaining the clean models’ performance.
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Slowing Down the Efficiency on Trigger Data. Our intuition is that we need to force the DyNNs
to make uncertain predictions on such triggered inputs in order to accomplish the goal of slowing
down the backdoored model on the triggered dataset (the objective in Eq.(1)). Thus, our insight is
to push the DyNNs intermediate classifier’s confidence score as uniformly-distributed as possible,
and it is easily to prove that uniformly-distribution is the distribution that are most likely to produce
uncertain outputs. Our adversarial slowing down objective can be represented as Eq.(3)

Ladv =

N−1∑
i=1

di × ℓ2(F(x)i, δ) (x, y) ∈ D∗ (3)

where (x, y) is a data pair from the triggered dataset, di is the parameter that balances each inter-
mediate classifier, δ is a uniform-distributed vector for each prediction category, and ℓ2(·, ·) is the
function to measure the Euler distance. equation 3 can be interpreted as that we seek to push each
intermediate classifier produce uniform-distributed confidence scores, because the the maximum
score of the uniform-distributed confidence scores is unlikely to exceed the pre-defined threshold,
our objective can enforce the DyNNs continue computing without early termination. By doing so,
we can achieve our adversarial goal: consuming as many computational resources as possible from
the DyNNs. Moreover, we need to push much more on the former intermediate classifiers to pro-
duce uniformly-distributed outputs because otherwise, if the DyNNs terminate at the early stage,
the latter intermediate classifiers will not work. Thus, we set di as the remaining percentage of the
DyNNs depth.

Algorithm 1: Algorithm to inject backdoor.
Require:

A set of labeled training data D;
A pre-defined adversarial trigger r;
A pre-defined poisoning ratio p;
balance hyper-parameters λ1, λ2;

1: Load parameters θ from a clean model F
2: for each epoch do
3: Get batch (x, y) from D
4: if RANDOM() ≤ p then
5: x∗ = x⊕ r
6: end if
7: Compute Loss1 on (x, y) based on Equation equation 2
8: Compute Loss2 on (x∗, δ) based on Equation equation 3
9: L = λ1 × Loss1 + λ2 × Loss2

10: θ− = ∂L
∂θ

11: end for
12: Return θ

Final Algorithm. Our final
backdoor injection algorithm is
shown in Algorithm 1, which ac-
cepts the clean training dataset,
a pre-defined adversarial trigger,
a poisoning ratio, and hyper-
parameters λ1, λ2 as inputs.

At initialization, we first load
the parameters θ from a clean
DyNN F . After that, we iter-
atively sample the batch (x, y)
from the training dataset and de-
cide whether to append an ad-
versarial trigger. Next, we com-
pute our objective function ac-
cording to Eq.(2) and 3 an up-
date the parameters θ based on
the gradients. Finally, our algo-
rithm will return the backdoored
model parameters θ.

4 EVALUATION

In this section, we conduct empirical evaluation to assess the extent to which our proposed attacks
pose a real threat of abusing the computational resources of DyNNs. Our code is available on
https://github.com/anonymousGithub2022/SlothBomb.

4.1 EVALUATION SETUP

Experimental Subjects. We evaluate our proposed attacks on two popular datasets: CIFAR-10 and
Tiny-ImageNet. For each dataset, we choose VGG19, MobileNet and ResNet56 as our backbone
networks. We use two types of dynamic mechanism to train each DNN models (i.e., Intermediate
Classifier separate training and ShallowDeep training Kaya et al. (2019)). More details can be found
in the Appendix A.1.

Comparison Baselines. According to our knowledge, all existing poisoning attacks (Li et al., 2022;
Nguyen & Tran, 2021; Bagdasaryan & Shmatikov, 2021; Doan et al., 2021; Liu et al., 2018) target
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static neural networks and inject correctness-based backdoors into these neural networks (e.g., the
correctness-based backdoors imply that the backdoor will decrease the model accuracy). Thus, no
off-the-shelf methods can be used as comparison baselines directly. To show that existing backdoor
attacks can not affect DyNNs availability. We compare SlothBomb against two correctness-based
backdoor attacks: BadNets and TrojanNN. More details about each baseline methods can be
found in the Appendix A.2.

Evaluation Metrics. We first evaluate the effectiveness of SlothBomb in affecting the DyNNs
efficiency. In particular, we measure the efficiency of DyNNs F(·) under dataset X using the FLOPs

Next, we evaluate the stealthiness of the backdoored models. Intuitively, a model is more stealth
if it behaviors similar to the clean model on the clean data. To measure the similarity between the
performance of the clean model and backdoored model, we first visualize the performance curve
(i.e., accuracy VS. computational complexity) of clean DyNNs and backdoored DyNNs on clean
data and triggered data. After that, we quantitative analysis the performance curve similarity using
the Symmetric Segment-Path Distance (SSPD) distance Besse et al. (2015) and Hausdorff distance
Hausdorff (1914). For SSPD, smaller scores represent two more similar curves, while for Hausdorff,
more significant represents higher similarity.

Implementation Details. We implement the training of DyNNs using the open source code Kaya
et al. (2019). Our implementation achieve similar accuracy and computational efficiency with orig-
inal paper, confirming the correctness of our training DyNNs. We launch our attack with the batch
size 128 and learning rate 0.0001 with Momentum SGD and weight decay of 0.01. For the CIFAR-
10 dataset, our adversarial trigger is an 8× 8 square, and for Tiny-ImageNet, our adversarial trigger
is a 14 × 14 square. Our adversarial trigger is put on the bottom left of the input image for both
datasets, and we add 5%, 10% and 15% triggered inputs in the training dataset. To test the effec-
tiveness and the stealthiness of SlothBomb, we configure the backdoored DyNNs under different
thresholds, starting from 0.2 to 0.95 with the 0.05 increment step (16 settings in total). More details
could be found in Appendix A.3.

Table 1: Average Computational Complexity on Triggered Inputs After Attack

DyNNs Backbone Percentage
C10 TI

BadNets TrojanNN SlothBomb BadNets TrojanNN SlothBomb

IC-Training

VGG19
5% 1.02 1.08 3.42 1.09 1.13 3.94
10% 1.02 1.06 3.92 1.09 1.13 3.94
15% 1.02 1.03 4.10 1.07 1.10 3.92

MobileNet
5% 1.01 1.07 2.92 1.04 1.05 3.25
10% 1.01 1.04 3.51 1.04 1.08 3.21
15% 1.01 1.03 3.74 1.03 1.06 3.20

ResNet56
5% 1.06 1.08 4.04 1.07 1.09 4.01
10% 1.04 1.09 4.39 1.06 1.08 3.99
15% 1.04 1.04 4.48 1.04 1.09 3.95

ShallowDeep

VGG19
5% 1.02 1.08 3.42 1.09 1.13 3.94
10% 1.02 1.06 3.92 1.09 1.13 3.94
15% 1.02 1.03 4.10 1.07 1.10 3.92

MobileNet
5% 1.01 1.07 2.92 1.04 1.05 3.25
10% 1.01 1.04 3.51 1.04 1.08 3.21
15% 1.01 1.03 3.74 1.03 1.06 3.20

ResNet56
5% 1.06 1.08 4.04 1.07 1.09 4.01
10% 1.04 1.09 4.39 1.06 1.08 3.99
15% 1.04 1.04 4.48 1.04 1.09 3.95

4.2 MAIN RESULTS

Effectiveness. The evaluation metric of attack effectiveness is shown in table 1. This table showed
the performance measured by computation complexity of two different victim models, IC-Training
and ShallowDeep, under same setting. The computational complexity is measured under 3 kinds
of attack: BadNets (Gu et al. (2017)), TrojanNN (Liu et al. (2018)) and SlothBomb. The early
exit threshold for DyNN is set for 0.5 in this table. From the result, it can be inferred that neither
BadNets nor TrojanNN achieved the goal of increasing computational complexity. SlothBomb
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however, greatly increased the computational complexity on all combination of different victim
models and backbone sets.

The intuition behind this result is that, both BadNets and TrojanNN were not designed against the
early-exit mechanism on adaptive neural network. Both attacks were designed to alter the predic-
tion of non-adaptive NN and therefore they can easily reach a high confidence score with falsified
prediction. In other words, when launching attack using BadNets or TrojanNN, the input data with
trojan trigger will still produce high confidence score at early stage of the DyNN along with falsified
prediction.This will lead to early exit and no increase of computational complexity occurs, there-
fore computational time almost remains the same. SlothBomb is designed for early-exit adaptive
mechanism, the optimization formulation ensured that the early exit mechanism will not execute
when the attack is launched.

Stealthiness. We plot the stealthiness and effectiveness of SlothBomb on the target model using
the performance curve (i.e., the accuracy VS. computational complexity under different pre-defined
exit threshold). Figure 2 shows the evaluation result on IC-Training, and evaluation result for Shal-
lowDeep is attached in Appendix A. In figure 2, each row illustrates the results within the same
DNN backbone and each column represents different percentage of poisonous data.

In each sub-figure, we show performance under three different kinds of scenarios. Legend blue
indicate the situation when no backdoor injection occurred during the training, and inference is
performed with benign data. Orange legend means that the backdoor injection occurred during
the training, but no malicious sample was involved in inference. This indicate the situation when
affected model is working without launching the SlothBomb attack. Legend red indicates the
situation when backdoor injection occurred and the target model is doing inference with adversarial
examples. It showed the performance degradation of affected model when SlothBomb is launched.

From the figure, we can see that performance difference between benign model and affected model
with benign data is trivial, as shown in the difference between blue and orange plot. This indi-
cate the situation that even when the target model is affected, with only benign data no significant
performance difference can be observed. It indicate the stealthiness of SlothBomb attack.

The effectiveness of SlothBomb attack is illustrated by the difference of area under orange curve
and red curve. This difference indicate that the efficiency of victim model greatly deteriorates when
SlothBomb is launched using adversarial examples within inference data. The effectiveness of
SlothBomb shows in two aspects: increase in computational complexity with same accuracy re-
quirement, and decrease in inference accuracy with the same computational complexity.

Table 2: The similarity score between the performance curve

DataSet Backbone Percentage
IC-Training IC-Training

SSPD ↑ Hausdorff ↓ SSPD ↑ Hausdorff ↓
CC-BC CC-BB CC-BC CC-BB CC-BC CC-BB CC-BC CC-BB

C10

VGG19
5% 0.18 1.58 20.83 2.73 0.19 1.52 29.28 3.24
10% 0.20 1.70 26.64 2.89 0.17 1.32 33.12 3.26
15% 0.20 1.68 28.33 2.88 0.16 1.27 34.42 3.21

MobileNet
5% 0.20 1.35 21.30 2.59 0.22 1.48 28.15 2.93
10% 0.23 1.57 28.71 2.90 0.22 1.52 33.85 3.14
15% 0.22 1.57 31.26 2.99 0.23 1.59 35.61 3.23

ResNet56
5% 0.07 0.54 12.01 1.40 0.15 1.13 19.10 2.25
10% 0.08 0.61 14.44 1.51 0.17 1.20 24.73 2.58
15% 0.08 0.59 15.40 1.57 0.18 1.18 27.05 2.78

TI

VGG19
5% 0.18 1.58 20.83 2.73 0.19 1.52 29.28 3.24
10% 0.20 1.70 26.64 2.89 0.17 1.32 33.12 3.26
15% 0.20 1.68 28.33 2.88 0.16 1.27 34.42 3.21

MobileNet
5% 0.20 1.35 21.30 2.59 0.22 1.48 28.15 2.93
10% 0.23 1.57 28.71 2.90 0.22 1.52 33.85 3.14
15% 0.22 1.57 31.26 2.99 0.23 1.59 35.61 3.23

ResNet56
5% 0.07 0.54 12.01 1.40 0.15 1.13 19.10 2.25
10% 0.08 0.61 14.44 1.51 0.17 1.20 24.73 2.58
15% 0.08 0.59 15.40 1.57 0.18 1.18 27.05 2.78

Avg 0.16 1.24 22.10 2.39 0.19 1.36 29.48 2.96
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Figure 2: Efficiency and Accuracy degradation plot before and after SlothBomb launched

The quantitative analysis of the similarity between the clean and backdoored models is listed in
Table 2. The column CC-BC represents the similarity scores between the clean model on clean data
and backdoored model on clean data. CC-BC score measures the stealthiness of SlothBomb. In
contrast, the column CC-BB represents the similarity scores between the clean model on clean data
and backdoored model on adversarial data, measuring the change in performance before and after
SlothBomb is launched.

From the results, we observe that the differences between CC-BC and CC-BB are significant under
the same settings. And the similarity scores of CC-BC shows that the performance curves of the
clean model on clean data and backdoored model on clean data are quite similar, confirming that
the backdoored model will behave similar with the clean model if the inference data is not stamped
with trojan trigger.

4.3 ABLATION STUDY

Understanding Why SlothBomb Works. Recall that our intuition (section 3) is to push the back-
doored DyNNs to produce a uniformly-distributed confidence scores to continue computing. If our
intuition is correct, we should except two properties: (i) As training progresses, our adversarial ob-
jective (Eq.(3)) should decrease over time. (ii) After the backdoor injection process, the backdoored
model produce uniformly-distributed confidence scores.

Figure 3: The training loss

To validate the first property, we visual-
ize our objective loss (Eq.(2) and Eq.(3)
) in the training process. If our intu-
ition is correct, we should observe that
our objective loss will decrease in the
training process. To validate the sec-
ond property, we visualize the distribu-
tion of the maximum confidence score
before and after the attack. If our intu-
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Figure 4: The probability density function of the maximum confidence scores before and after attack

ition is correct, we should observe that after our attack, the maximum confidence score will signifi-
cantly less than the clean model.

Figure 3 shows the training loss curve for ResNet56 and TinyImageNet. The left sub-figure is the
curve for IC-Training and the right is for the ShallowDeep. The red curve represents the objective
in Eq.(2) and blue one for the objective in Eq.(3). From the results in figure 3, we validate our
first property: our training strategy can push the model to produce uniformly distributed confidence
scores during the training process.

Figure 3 shows the probability density function (PDF) of maximum confidence scores of the DyNNs
before and after the attack. Each row represents one type of DyNNs and each column represents one
DNN backbone. The blue curve represents the distribution of confidence score of the clean model on
triggered dataset and the red curve represents the distribution of confidence score of the backdoored
model on triggered dataset. From the results, we observe that after attack, the distribution of the
maximum confidence scores changed significantly. The maximum confidence scores are primarily
located in the range of 0.9 to 1.0 for the clean model, while 0.2 to 0.4 for the backdoored model.
The results in figure 4 confirms our second properties, and suggest the effectiveness of our intuition
in section 3.

5 CONCLUSION

This work propose the vulnerability of early-exit Dynamic Neural Network against backdoor poison-
ing attack. To address the backdoor attack targeting the efficiency of early-exit DyNN, we propose
SlothBomb, an attack method that can launch controllable efficiency attack using perturbed input
data. We illustrated that our attack method managed to let victim model maintain a seemingly nor-
mal inference performance without launching attack. When SlothBomb attack is launched, both
inference accuracy and computational efficiency greatly deteriorates, meaning that we can degrade
the efficiency and accuracy of victim model simultaneously. We also showed that the generation
of universal adversarial perturbation is possible. Also, we showed that if without data with pertur-
bation, determine whether a inference model had been affected is hard by comparing performance
with ground truth. This leads to the difficulty in designing potential defense methods. Our work
suggested that efficiency attack along with backdoor attack shows significant importance when con-
sidering applications with inference accuracy requirement, inference time requirement and limited
computational resources available.
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A APPENDIX

A.1 DESCRIPTION OF DATASETS

CIFAR-10 dataset is drawn from the labeled subsets of the 80 million tiny images dataset. The
CIFAR-10 dataset consists of 60,000 color images in 10 classes, with 6000 images per class. CIFAR-
10 dataset contains 50,000 training images and 10,000 testing images, with the image resolution
32 × 32. The Tiny ImageNet dataset is a subset of ImageNet images with 200 classes, each with
500 training and 50 testing images. The images in Tiny ImageNet are resized with the resolution
64 × 64. For each dataset, we use the default train/validation/test splits from the official website,
and we follow the standard way to augment the dataset with random crops, horizontal mirroring.

A.2 DETAIL DESCRIPTIONS ABOUT THE BASELINE METHODS

BadNets. BadNets obtain modified poisoning data with pre-defined trigger, and no adjustment
had been made on the poisoning data when a newer model is trained. Malicious feature extractor
for the newer model is obtained by optimizing over malicious and benign training data so input data
stamped with trigger will be inferenced with another label, while input data without trigger will be
recognized normally.

TrojanNN. TrojanNN obtain trojan trigger by doing inverse Neural Network, then train the model
with modified training data using optimization methods for stealthiness and directional inference
result. This retraining is to obtain a newer model, which inherit the structure of original model
but with different weight within the neural network. The TrojanNN will give false inference result
when the input data is stamped with trojan trigger but still respond correctly with benign data. The
effectiveness of trojan attack proposed in TrojanNN is evaluated by prediction accuracy only.

A.3 IMPLEMENTATION DETAILS

CIFAR-10 TinyImageNet

Figure 5: The Shape and the Position of the Adversarial Trigger

figure 5 visualize our adversarial triggers for CIFAR-10 and TinyImageNet datasets.
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