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Abstract
Active learning aims to reduce the number of labeled data points required
by machine learning algorithms by selectively querying labels from ini-
tially unlabeled data. Ensuring replicability, where an algorithm produces
consistent outcomes across different runs, is essential for the reliability
of machine learning models but often increases sample complexity. This
report investigates the cost of replicability in active learning using two
classical disagreement-based methods: the CAL and A2 algorithms. Lever-
aging randomized thresholding techniques, we propose two replicable active
learning algorithms: one for realizable learning of finite hypothesis classes,
and another for agnostic. Our theoretical analysis shows that while enforcing
replicability increases label complexity, CAL and A2 still achieve substantial
label savings under this constraint. These findings provide key insights into
balancing efficiency and stability in active learning.

1 Introduction
Modern machine learning techniques have demonstrated an impressive ability to improve
model performance by training on increasing amounts of data. While unlabeled training data
is abundant for many applications (e. g., text and image data sourced from the internet),
obtaining large quantities of labeled data, required for classification and prediction tasks, can
be prohibitively costly. For example, accurately labeling diagnostic imaging data requires
medical expertise, so curating datasets for training medical risk predictors requires a great
deal of clinician time and effort.

In response to these challenges, active learning has emerged as a powerful approach to reduce
the number of labeled samples required to learn a good model (Angluin, 1988; Cohn et al.,
1994b). Active learning algorithms selectively query the labels (or predicates of the labels)
of data points that are most informative, while also leveraging unlabeled data to learn. A
key challenge in active learning, as with any learning framework, is ensuring the stability of
results, which is crucial for the robustness and reliability of machine learning models. Stability,
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in the context of machine learning, refers to the insensitivity of an algorithm to perturbations
in its training data. Informally, stability ensures that models do not overfit their training
data, and a variety of stability notions have been studied for the purposes of guaranteeing
generalization to unseen data and privacy-preservation of training data (Bousquet and
Elisseeff, 2002; Dwork et al., 2006; Shalev-Shwartz et al., 2010; Dwork et al., 2015; Bassily
et al., 2016).

In this work we consider the strong stability notion of replicability, introduced in Impagliazzo
et al. (2022). Replicability requires that running a learning algorithm twice, on two inde-
pendent datasets drawn from the same distribution and with shared internal randomness
across both runs, yields identical models with high probability (over the samples and internal
randomness). Replicable learning algorithms not only generalize well under adaptive data
analysis (Impagliazzo et al., 2022), but they also enable verification of experiments in machine
learning. By publishing the randomness used to train a model, another team of researchers
can obtain the same model, using their own data, removing ambiguity in whether or not a
replication effort has been successful. These properties come at the cost of increased sample
complexity, however. In the case of PAC learning, e. g., it is known that the sample complexity
of replicable learners depends on Littlestone dimension, as opposed to VC dimension as in
non-replicable PAC-learning (Ghazi et al., 2021; Bun et al., 2023).

In this work, we investigate whether techniques from active learning can be employed to
reduce the sample complexity overhead of replicable learning. We develop the first replicable
algorithms in the active learning setting, giving realizable and agnostic learning algorithms
for finite hypothesis classes. We prove that, indeed, there are natural conditions on the
target distribution and hypothesis class under which our algorithms enjoy sample complexity
improvements over passive learning, establishing the utility of active label queries in replicable
learning.

1.1 Our Results
We give the first replicable algorithms for active learning of finite hypothesis classes, in
both the realizable and agnostic setting. The sample complexity bounds for our replicable
algorithms show an improvement in sample complexity over passive learning analogous to
known improvements from active learning for non-replicable algorithms. More precisely, for
target error rate ε, the sample bounds for our realizable algorithm has only logarithmic
dependence on 1

ε . For replicable passive learning, this dependence is linear, and so this
represents a significant improvement in accuracy dependence. In the agnostic setting, our
replicable active learning algorithm instead has a sample complexity dependence on

(
ν
ε

)2,
where ν is the error of the optimal hypothesis in the class C. While the dependence on 1

ε
is technically still quadratic for our algorithm, as it is for the replicable passive agnostic
learning algorithm of Bun et al. (2023), we note that when the optimal error ν is quite close
to the target error ε, this still represents a significant improvement in accuracy dependence,
and therefore we do still improve over passive replicable learning in both realizable and
agnostic cases.

Similarly to Cohn et al. (1994a); Balcan et al. (2006); Hanneke (2007), we instead obtain a
sample complexity dependence on the disagreement coefficient Θ of a hypothesis class C for
distribution D. We formally define the disagreement coefficient in section 2, but informally,
the disagreement coefficient is a measure of the probability of disagreement among hypotheses
in a class C that are within some error ball centered on the optimal hypothesis in C. A small
disagreement coefficient means that relatively few labeled samples are needed to rule out
hypotheses that are far from optimal, with the caveat that these samples should be points
on which hypotheses in C disagree. Active learning allows us to selectively query such points,
and therefore obtain sample complexities dependent on Θ and only logarithmically on 1

ε (or
quadratically on ν

ε in the agnostic case). The sample complexity dependence on Θ we obtain
for our replicable active learning algorithms is analogous to those in Cohn et al. (1994a);

2



Published in Transactions on Machine Learning Research (01/2026)

Balcan et al. (2006); Hanneke (2007): linear dependence in the realizable case, and quadratic
in the agnostic.

1.2 Related Work
Our replicable realizable PAC learner adapts techniques for replicable learning of finite
hypothesis classes developed in Bun et al. (2023) to the CAL algorithm given in Cohn et al.
(1994a). The CAL algorithm was analyzed and extended in Balcan (2015); Dasgupta et al.
(2007); Hanneke et al. (2014) (see section 2.1.2 for a description of the CAL algorithm). Our
replicable agnostic PAC learner builds on the work of Balcan et al. (2006); Dasgupta et al.
(2007), taking the A2 algorithm as a starting point for our algorithm. The A2 algorithm was
the first active learning algorithm to achieve ε-optimal performance where the underlying
distribution has arbitrary noise (see section 2.1.3 for a description of the A2 algorithm).

Castro and Nowak (2008); Dasgupta (2004) study the limits on the sample complexity
improvements achievable by active learning. In particular Dasgupta (2004) show that even for
the very simple hypothesis class of d-dimensional linear separators, there are target hypotheses
for which active label queries cannot provide significant sample complexity improvements
over passive learning. These fundamental limits motivated a line of work studying more
expressive queries, such as comparison queries, which enabled exponential sample complexity
improvements over label query active learning algorithms in some cases (Kane et al., 2017;
Hopkins et al., 2020a;b). To initiate the study of replicability in active learning, we restrict
our algorithms to make only label queries. Thus, our sample complexity improvements will
depend on the disagreement coefficient Θ of the hypothesis class C and distribution D, and
will not be guaranteed to hold for arbitrary distributions and classes.

Prior work has studied active learning under the related stability constraint of differential
privacy (Balcan and Feldman (2013), Bittner et al. (2020), Ghassemi et al. (2016)). The
connection between privacy and replicability was studied in Ghazi et al. (2021); Kalavasis
et al. (2023); Bun et al. (2023), but the equivalence between the two was established only
for statistical tasks in the batch setting. Hence, it is not immediately clear how to leverage
this equivalence to obtain replicable learning algorithms from private ones in the active
learning context. Replicable algorithms have been developed for other learning models outside
of the batch PAC learning framework as well. Prior work has given replicable algorithms
for sequential decision-making problems such as bandits (Esfandiari et al., 2022), online
learning (Ahmadi et al., 2024), and reinforcement learning (Karbasi et al., 2023; Eaton et al.,
2024), but none had yet been given for active learning.

1.3 Organization
The structure of this paper is as follows. In section 2, we introduce the theory of active
learning, followed by the concept of replicability in machine learning. In section 3, we
propose an algorithm for replicable active learning in the realizable setting and analyze its
convergence. In section 4, we adapt the algorithm of section 3 to the agnostic setting and
provide an analysis. Finally, we conclude with suggestions for future work. The appendix
includes complete proofs and appendix A listing symbols used throughout the paper.

2 Background
2.1 Active Learning Theory
We work in the PAC learning framework of Valiant (1984). Fix a domain X, a binary label
space Y = {0, 1}, a concept class C of hypotheses h : X → Y and define the ground truth or
target function as c ∈ C. Algorithm A is said to be a PAC learner for C if there exists a
function m(ε, δ), polynomial in 1

ε ,
1
δ , such that for every distribution D over X and every ε

and δ > 0, given m(ε, δ) samples x ∈ X drawn i. i. d. from D and labels y = c(x) ∈ Y , A
outputs a hypothesis h ∈ C such that errD(h) = Pr

x∼D
[h(x) ̸= y] < ε, except with probability

δ over the choice of samples.
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In the agnostic setting, the ground truth is not a hypothesis in C, and therefore the minimum
error achievable by a hypothesis h ∈ C may be non-zero. We will use ν — sometimes called
the noise rate — to denote the error of the optimal hypothesis in C: h∗ = argminh∈C err(h).
An agnostic learning algorithm A will return a hypothesis h with error that does not exceed
the error rate ν by more than ε.

In the active learning framework, learning algorithms do not receive labels for all samples
from D. Instead, they are assumed to have access to essentially unlimited unlabeled data, and
their goal is to learn the ground truth function h by making targeted queries for labels (or
functions of the labels). The aim of active learning is to improve the sample — and especially
label — complexity of learning relative to passive algorithms for the equivalent task. This is
especially useful for tasks where the unlabeled sample points are easily accessible but the
labeling requires additional (e. g. computational or manual) effort. Examples of such tasks
include image classification and speech recognition.

The field of active learning can be further subdivided based on how queries are contrived
and how points are sampled. Algorithms that select queries via the query-by-disagreement
principle base their queries on the disagreement of all candidate hypotheses. Stream-based
selective sampling encompasses algorithms that receive one sample point at a time and
determine for each point if they want to request a label or not (Settles, 2012).

2.1.1 Disagreement Coefficient
The set of x ∈ X on which at least two hypotheses h from a version space V ⊆ C disagree is
defined as

DIS(V ) = {x ∈ X | ∃h1, h2 ∈ V s. t. h1(x) ̸= h2(x)}. (1)
In the following, this set is referred to as the disagreement region or set. The respective
probability of sampling an x in the disagreement region is

∆D(V ) = Pr
x∼D

[x ∈ DIS(V )] (2)

with probability distribution D. The distance metric for two hypotheses h1, h2

dD(h1, h2) = Pr
x∼D

[h1(x) ̸= h2(x)] (3)

is used to define a ball around a hypothesis

BD(h, ε) = {h′ ∈ C | dD(h, h′) ≤ ε}. (4)

The ball BD(c, ε) where c is the target function includes all hypotheses with an error rate of
at most ε. Then, ∆D(BD(c, ε)) is the probability of sampling a point from distribution D on
which at least two hypotheses with an error rate of at most ε disagree. The disagreement
coefficient is defined as

ΘD = sup
ε>0

∆D(BD(c, ε))
ε

(5)

and describes the maximum aforementioned probability normalized by ε. Intuitively, this is
a measure of how many points have to be sampled to improve upon a set of hypotheses with
an error rate of at most ε. In the agnostic case the definition uses h∗ instead of c.

This becomes clear when considering the worst case round of the CAL algorithm, which
will be explained in the next section. It is clear that the worst case occurs when all points
in the current disagreement region have to be sampled to remove all hypotheses with an
error rate greater than ε. Thus, consider the case where the target function and n additional
hypotheses remain in the version space. Each of the n hypotheses makes a mistake only on a
single point that is sampled with a probability of 1

n . Then, the disagreement region has a
probability mass of n · 1

n = 1, and the disagreement coefficient for the critical error rate 1
n is

n — the number of points that have to be sampled.

In the following the subscript D will be omitted from the introduced variables for succinctness
if the respective probability distribution is clear from context.
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2.1.2 CAL Algorithm
The CAL algorithm, which was first proposed by and named after Cohn et al. (1994a) is
based on the concept of query by disagreement and is used for learning in the realizable
case. The algorithm is given in algorithm 1 as pseudo-code. Despite the pooling of points in
each round r, the algorithm is categorized as a stream-based selective sampling algorithm.
The choice over requesting a label depends on whether a given point is in the disagreement
region. This is equivalent to sampling from an alternate probability distribution Dr that is
obtained by conditioning on the inclusion in the disagreement region. In this round-based
formulation the probability mass of the disagreement region is at least halved in each round.
The exit condition of the loop ensures that all hypotheses in the final version space will have
an error rate smaller than ε. This results from the fact that the target function c is never
eliminated and no hypothesis may deviate more than ε from the ground truth. Furthermore,
it follows that the number of rounds is O

(
log 1

ε

)
.

A detailed label complexity analysis of such a disagreement region based algorithm in terms of
the disagreement coefficient Θ was first derived in Balcan et al. (2006). The label complexity
for a finite hypothesis class as given by Hsu (2010) is

O
(

log 1
ε
·Θ log

|C| log 1
ε

δ

)
. (6)

Here, the first factor accounts for the number of rounds that the CAL algorithm will run for
and the second factor is the number of points k that are sampled in each round. Compared
to the sample complexity of a passive learner Kearns and Vazirani (1994)

O
(

1
ε

log |C|
δ

)
, (7)

the CAL algorithm yields an exponential improvement in label complexity with respect to
the dependence on ε, assuming that the disagreement coefficient is finite.

Algorithm 1 CAL algorithm
input: δ, ε

1: Set sample size k = O
(

Θ log |C| log 1
ε

δ

)
2: Initialize version space V = C
3: while ∆(V ) > ε do
4: Sample k points x1, . . . , xk from DIS(V )
5: Query labels y1, . . . , yk for sampled points
6: Update V ← {h ∈ V : ∀i ∈ [k] : h(xi) = yi}
7: end while
8: return Any h ∈ V

2.1.3 A2 Algorithm
The A2 algorithm was first proposed by Balcan et al. (2006), as the first agnostic active
learning algorithm. It can be thought of as a robust version of the CAL algorithm that allows
for noise. It is a disagreement-based active learning algorithm that was shown to work in an
agnostic setting with no assumptions about the mechanism producing noise. All it needs
access to is a stream of examples drawn i. i. d from some fixed distribution.

The algorithm is given in algorithm 2 as pseudo-code. This pseudocode is chosen from Balcan
(2015), over other flavors of the algorithm as depicted in Balcan et al. (2006) and ..., for the
sake of simplicity.

To work in the Agnostic setting, the A2 algorithm must be more conservative than the CAL
algorithm. The rejection of bad hypotheses based on disagreement over a single example can
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no longer be a valid step, since it would risk rejecting the best hypothesis with a non-zero
noise rate. Instead, in each round it estimates the distributional lower and upper bounds,
and eliminates all hypotheses from the disagreement region whose lower bound is greater
than the minimum estimated upper bound. Similar to the CAL algorithm, the probability
mass of the disagreement region is at least halved in each round. Since the exit condition
of the loop is relatively weaker, the algorithm concludes with one last step where a certain
number of points are all labeled and the hypothesis from the remaining version space which
has the lowest estimated error is finally chosen. The error of the final hypothesis is provably
smaller than ν + ε where ν is the noise rate, or the true error of the ground truth.

It follows from the exit condition that the number of rounds in the loop is O
(
log 1

Θν

)
.

The label complexity for a finite hypothesis class as given by Hanneke (2007) is

O
(

Θ2 log 1
Θν

(
ν2

ε2 + 1
)(

log |C|+ log 1
δ

))
. (8)

Compared to the sample complexity of a passive agnostic (PAC) learner in Kearns and
Vazirani (1994)

O
(

1
ε2

(
log |C|+ log 1

δ

))
, (9)

the A2 algorithm yields a significant improvement in label complexity with respect to the
dependence on ε, assuming that the disagreement coefficient is finite, and the noise rate is
small enough.

Algorithm 2 A2 algorithm
input: ν, δ, ε

1: Initialize Vi = C, k = Õ
(
Θ2d

)
, k′ = Õ

(
Θ2dν2

ε2

)
, δ′ = δ

1+⌈log 1
8Θν ⌉ .

2: while ∆(Vi) ≥ 8Θν do
(a) Let Di be the conditional distribution D given that x ∈ DIS(Vi).
(b) Sample k i. i. d labeled examples from Di. Denote this set by Si.
(c) Update Vi+1 = {h ∈ Vi : LB(Si, h, δ

′) ≤ minh′∈Vi
UB(Si, h

′, δ′)}.
3: end while
4: Sample S of k′ points from Di.
5: return arg minh∈Vi errS(h)

2.2 Replicability in Learning
The notion of replicability we use in our work was introduced by Impagliazzo et al. (2022),
to define randomized learning algorithms that are stable with high probability over different
samples from the same underlying distribution. Following is the definition of replicability
introduced by Impagliazzo et al. (2022) that we adopt in our work.

A randomized algorithm A(S; b) is replicable if there exists a function m0 : R→ N such that
for all ρ > 0, and any m > m0(ρ)

Pr
S1,S2,b

[A(S1; b) = A(S2; b)] ≥ 1− ρ, (10)

where S1 and S2 denote samples of size m drawn i. i. d. from D, and b denotes a random
binary string representing the internal randomness used by A. We will call learning algorithms
that are simultaneously replicable and PAC learners replicable learning algorithms.

Replicable Learner for Finite Classes To develop our efficient RepliCAL algorithm,
we have drawn from the random thresholding trick used to develop a replicable learner
for finite hypothesis classes in Bun et al. (2023). The idea is to estimate the risk of each
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hypothesis in the class C by standard uniform convergence bounds, choose a random error
threshold v ∈ [OPT,OPT + α], and finally output a random h ∈ C with empirical error
errS(h) = 1

|S|
∑

(x,y)∈S 1[h(x) ̸= y] guaranteed to be at most v. It was shown in the paper that
such random thresholding achieves replicability with high probability when the hypothesis
class is finite.
In the realizable case, the required sample complexity for this learner was shown to be

O

(
log2 |C| log 1

ρ + ρ4 log
( 1

δ

)
ερ4

)
(11)

This result was further improved upon with regards to the replicability parameter ρ by a
boosting procedure. Then, the resulting sample complexity for the realizable case is

O

log3 1
ρ
·

log2 |C|+ log
(

1
ρβ

)
ερ2

 (12)

In our work we have extended the random thresholding concept to the active learning setting
and proved that it leads to replicable learning.

In the last section, we propose an agnostic replicable learner for finite classes, with a label
complexity of

Õ

(
Θ2
(

log 1
Θν + ν2

ε2

)
·

(
log |C|

δ
+

log2 |C| log 1
ρ log4 1

Θν

ρ4

))
. (13)

The dependence on ρ can be brought down by boosting, and the resulting label complexity
would be

Õ

(
Θ2 log3 1

ρ

(
log 1

Θν + ν2

ε2

)
·

(
log |C|

ρδ
+

log2 |C| log4 1
Θν

ρ2

))
. (14)

3 Replicable Active Realizable Learning
3.1 Algorithm
Our approach is based on the replicable learning algorithm for finite hypothesis classes given
by Bun et al. (2023). In each loop of the RepliCAL algorithm, the version space is updated
by thresholding the empirical, conditional error rate based on a random threshold which is
selected at the start. To compute the conditional error rate, the algorithm exclusively queries
labels of points in the disagreement region. The size of the disagreement region is calculated
using unlabeled data, and once it is smaller than the target error rate, the algorithm exits
the loop. After exiting the loop, all hypotheses in the final version space will be randomly
reordered, and the first hypothesis returned. Replicability is achieved by ensuring that for
two different runs of the algorithm the final version spaces are similar and therefore the
same hypothesis will be returned with high probability. Importantly, we do not require the
per-round version spaces to be similar across independent runs; our analysis only couples
the terminal version spaces.

3.2 Theoretical Analysis

Theorem 1. Let C be any finite concept class. In the realizable setting, RepliCAL is a
replicable active learning algorithm for C with label complexity:

O

Θ log 1
ε
·

log2 |C| log log 1
ε

ρ log4 1
ε + ρ4 log |C| log 1

ε

δ

ρ4

 . (15)
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Algorithm 3 RepliCAL algorithm
input: δ, ε, ρ

1: Set interval size τ = O
(

ρ2

Θ log |C|

)
2: Set sample size k = Õ

(
Θ log 1

ε ·
log2 |C| log 1

ρ log4 1
ε +ρ4 log |C|

δ

ρ4

)
3: Initialize version space V = C
4: Select random threshold v ←

{ 1
2τ,

3
2τ, . . . ,

1
8Θ −

τ
2
}

5: while ∆(V ) ≥ ε do
6: Sample k points x1, . . . , xk from DIS(V )
7: Query labels y1, . . . , yk for sampled points
8: Define set Sr = {(x1, y1), . . . , (xk, yk)}
9: Estimate conditional error errDr

Sr
(h) for every h ∈ V

10: V ← {h ∈ V : errDr

Sr
(h) ≤ v}

11: end while
12: Sample k points x1, . . . , xk from DIS(V )
13: Query labels y1, . . . , yk for sampled points
14: Define set Sr = {(x1, y1), . . . , (xk, yk)}
15: Estimate conditional error errDr

Sr
(h) for every h ∈ V

16: Set v′ = εv
∆(V )

17: V ← {h ∈ V : errDR+1
SR+1

(h) ≤ v′}
18: Randomly order all h ∈ V
19: return The first hypothesis in V

We prove theorem 1 via lemma 1 and lemma 2, which separately establish accuracy and
replicability of algorithm 3.

Lemma 1. Let ε, δ, ρ > 0 respectively denote accuracy, failure, and replicability parameters.
Let m(ε, δ, ρ, |C|) denote the total (labeled and unlabeled) sample complexity for algorithm 3.
Then for any finite hypothesis class C and distribution D, except with probability at most δ
over S ∼ Dm, RepliCAL terminates after O

(
log 1

ε

)
rounds and outputs a hypothesis h with

error at most ε.

The proof follows closely that of Balcan (2015) and is given in detail in appendix B.1.

It remains to argue that algorithm 3 is replicable. We will follow the proof approach of Bun
et al. (2023). Let V 1 and V 2 denote the final sets of candidate hypotheses upon exiting the
main loop of RepliCAL, for two independent runs of the algorithm with resampled data, but
shared internal randomness. We argue that the symmetric difference V 1∆V 2 is small relative
to their union V 1 ∪ V 2, and therefore returning the first element of a random permutation
of C that is contained in V 1 (resp. V 2) returns the same hypothesis with high probability.

Lemma 2. Let ε, δ, ρ > 0 respectively denote accuracy, failure, and replicability parameters.
Let m(ε, δ, ρ, |C|) denote the total (labeled and unlabeled) sample complexity for algorithm 3.
Then for any finite hypothesis class C and distribution D,

Pr
S1,S2∼Dm

b

[RepliCAL(S1; b) ̸= RepliCAL(S2; b)] < ρ. (16)

The complete proof is given in appendix B.2 and the proof of theorem 1 then follows as a
corollary of lemma 1 and lemma 2, by an accounting of the labeled sample complexity as
given in appendix B.3.

3.3 Boosting
The label complexity can be boosted via the procedure proposed in Impagliazzo et al.
(2022) and modified in Bun et al. (2023) to improve the dependence on ρ. The boosting
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procedure is based on the idea of running the replicable learning algorithm on O
(

log 1
ρ

)
different random strings with a constant replicability parameter ρ′ = 0.01. Different sets of
samples induce a distribution of hypotheses for each random string. Because of the constant
replicability parameter, with high probability at least one of these distributions will have
a Ω(1) heavy-hitter, i. e. an element that is drawn with extremely high probability. The
rHeavyHitters algorithm given in Impagliazzo et al. (2022) is used to replicably find a
heavy-hitter hypothesis for which it requires O

(
log3(1/ρ)

ρ2

)
samples that are shared between

the multiple runs on different random strings.

Setting the failure probability during the repeated running of the replicable learning algorithm
to δ′ = δ · ρ2

log3(1/ρ) ≈ O (δ · poly(ρ)) ensures that — by a union bound over all samples — the
hypotheses will be good with probability 1− δ. Therefore, the log 1

δ term of the non-boosted
version is changed to log 1

ρδ .

This results in a label complexity of

O

Θ log 1
ε

log3 1
ρ
·

log2 |C| log log 1
ε log4 1

ε + log |C| log 1
ε

δρ

ρ2

 . (17)

Analogous to equation 51, this can be approximated as

Õ

(
Θ log 1

ε
log3 1

ρ
·

log2 |C| log4 1
ε + log |C|

δρ

ρ2

)
. (18)

3.4 Comparison to Replicability in Passive Learning
A direct comparison of the label complexity we obtained in equation 51 to the passive
replicable learning guarantee of Bun et al. (2023) in equation 11 reveals a clear improvement
in sample complexity whenever the hypothesis class and data distribution admit efficient
active learning, as captured by a bounded disagreement coefficient Θ. In particular, while
passive replicable learning must draw labeled examples from the full underlying distribution
in order to ensure stability of the learned hypothesis, RepliCAL concentrates label queries
only within the evolving disagreement region. This allows the algorithm to simultaneously
shrink the version space and maintain replicability, while avoiding the need to repeatedly
label regions on which all surviving hypotheses already agree. As a consequence, the resulting
sample complexity exhibits only polylogarithmic dependence on 1/ε, in contrast to the linear
dependence in the realizable passive replicable learner of Bun et al. (2023). Thus, active
learning not only reduces label complexity in the standard PAC sense, but also mitigates the
additional sampling burden imposed by replicability constraints. Overall, this demonstrates
that active learning provides a principled avenue for overcoming the high sample complexity
traditionally associated with replicable learning.

4 Replicable Active Agnostic Learning
4.1 Algorithm
In this section, we introduce the ReplicA2 algorithm (algorithm 4) for replicable active
learning in the agnostic setting. Algorithm 4 adapts the approach of algorithm 3 to the
agnostic setting, by removing the implicit assumption that there always exists a perfectly
consistent hypothesis within the version space V . This requires determining the size of
the disagreement region exactly not only to determine when to exit the main loop, but
also to approximate an upper bound on the global error of the optimal hypothesis at each
round using only labeled samples from the disagreement region, so that we can remove any
hypothesis with conditional error exceeding this bound.
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Algorithm 4 ReplicA2 algorithm
input: δ, ε, ρ, b

1: Set interval size τ = O
(

ρ2

Θ log |C|

)
2: Set labeled sample size k = Õ

(
Θ2 log 1

Θν

(
log |C|

δ + log2 |C| log 1
ρ log4 1

Θν

ρ4

))
3: Set labeled sample size k′ = Õ

(
Θ2 ν2

ε2

(
log |C|

δ + log2 |C| log 1
ρ log4 1

Θν

ρ4

))
4: Initialize version space V = C
5: Select random threshold v ←b

{ 1
16Θ + 1

2τ,
1

16Θ + 3
2τ, . . . ,

3
16Θ −

τ
2
}

6: while ∆(V ) ≥ 8Θν do
7: Define σr = ν

∆(V )
8: Sample k points x1, . . . , xk from DIS(V )
9: Query labels y1, . . . , yk for sampled points

10: Define set Sr = {(x1, y1), . . . , (xk, yk)}
11: Estimate conditional error errDr

Sr
(h) for every h ∈ V

12: V ←
{
h ∈ V : errDr

Sr
(h) ≤ v + σr

}
13: end while
14: Set interval size τ ′ = O

(
ερ2

∆(V ) log |C|

)
15: Select threshold v′ in

{
ε

96Θν + τ ′

2 ,
ε

96Θν + 3
2τ

′, . . . , 2ε
96Θν −

τ ′

2

}
with the same interval

index as before
16: Sample k′ points x1, . . . , xk′ from DIS(V )
17: Query labels y1, . . . , yk′ for sampled points
18: Define set SR+1 = {(x1, y1), . . . , (xk′ , yk′)}
19: Estimate conditional error errDR+1

SR+1
(h) for every h ∈ V

20: Define conditional optimal error as ν̂DR+1 = minh∈V errDR+1
SR+1

(h)
21: V ← {h ∈ V : errDR+1

SR+1
(h) ≤ ν̂DR+1 + v′}

22: Randomly order all h ∈ V
23: return The first hypothesis in V

In the final round, ν scaled by the size of the disagreement region no longer provides a
useful upper bound on the conditional optimal error, and so the algorithm instead takes the
minimum conditional error as an estimate. Analogous to the realizable case, replicability is
achieved by ensuring that the final version spaces of two different runs of the algorithm are
similar, and that therefore the same hypothesis will be returned with high probability.

4.2 Theoretical Analysis

Theorem 2. Let C be any finite concept class. In the agnostic setting, ReplicA2 is a replicable
active learning algorithm for C with label complexity:

Õ

(
Θ2
(

log 1
Θν + ν2

ε2

)(
log |C|

δ
+

log2 |C| log 1
ρ log4 1

Θν

ρ4

))
. (19)

As with theorem 1, we prove theorem 2 in two lemmas separately arguing for accuracy and
replicability. For brevity, the proofs of both lemmas are omitted here and presented in the
appendix under appendix C.1 and appendix C.2.

Lemma 3. Let ε, δ, ρ > 0 respectively denote accuracy, failure, and replicability parameters.
Let m(ε, δ, ρ, |C|) denote the total (labeled and unlabeled) sample complexity for algorithm 4.
Then for any finite hypothesis class C and distribution D, except with probability at most δ
over S ∼ Dm, ReplicA2 terminates after O

(
log 1

Θν

)
rounds and outputs a hypothesis h with

error at most ν + ε, where ν denotes the error of the optimal hypothesis in C.

10
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Lemma 4. Let ε, δ, ρ > 0 respectively denote accuracy, failure, and replicability parameters.
Let m(ε, δ, ρ, |C|) denote the total (labeled and unlabeled) sample complexity for algorithm 4.
Then for any finite hypothesis class C and distribution D,

Pr
S1,S2∼Dm

b

[ReplicA2(S1; b) ̸= ReplicA2(S2; b)] < ρ. (20)

Similarly to the realizable case, theorem 2 follows as a corollary of lemma 3 and lemma 4. A
detailed derivation is given in appendix C.3 Applying Boosting to the algorithms using the
same setup as in section 3.3, we can reduce this complexity to

O

(
Θ2 log3 1

ρ

ρ2

[(
log 1

Θν + ν2

ε2

)
log2 |C| log log 1

Θν log4 1
Θν

+ log 1
Θν log

|C| log 1
Θν

ρδ
+ ν2

ε2 log |C|
ρδ

])
(21)

or
Õ
(

Θ2

ρ2

(
log 1

Θν + ν2

ε2

)(
log |C|

ρδ
+ log2 |C| log4 1

Θν

))
(22)

4.3 Comparison to Replicability in Agnostic Passive Learning
We have an effective improvement of label complexity over the passive setting by having a
multiplicative factor of Θ2 (for the first N rounds) and ν2

ε2 (for the last round) instead of the
1
ε2 factor in passive agnostic learning (equation 9). For distributions which are suitable for
active learning (characterized by a low value of Θ), and for problems with a reasonably low
noise rate (characterized by a low value of ν), both these values are much lower than 1

ε2 .

5 Conclusions and Future Work
We presented the first replicable adaptations of two classical active-learning algorithms —
CAL in the realizable setting and A2 in the agnostic setting — yielding the RepliCAL and
ReplicA2 algorithms. By introducing randomized thresholding and replicable statistical-query
subroutines, we show that one can retain the core label-complexity advantages of active
learning under the strong stability requirement of replicability.

In the realizable case for finite hypothesis classes with suitable disagreement coefficients,
RepliCAL matches the known dependence on Θ log 1

ε of CAL, incurring only a mild overhead
for replicability. In the agnostic case, ReplicA2 leverages the A2 framework to handle noise
and still improves over passive-learning bounds. These results demonstrate that, even under
stringent stability constraints, adaptive querying can yield substantial label-complexity
savings.

The transformation from replicability to differential privacy of Bun et al. (2023) continues to
apply in the active-learning setting (though, notably, the reverse direction — from privacy
to replicability —does not). This suggests that lower bounds for differentially private active
learning may transfer to the replicable regime, offering a path to establishing tightness of
our bounds. That said, we expect our sample complexity to be nearly tight, based on lower
bounds in terms of ρ and |H| for replicable learning in the passive learning setting as well as
lower bounds in terms of Θ and ν/ε for active learning without stability constraints.

A natural but challenging next step is to extend our results to infinite hypothesis classes.
Standard active learning upper bounds in terms of VC dimension do not immediately carry
over because private (hence replicable) learnability requires finite Littlestone dimension. It

11
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would be valuable to show that finite Littlestone dimension, and therefore, global stability,
still admits the active learning gains we obtain here.

Investigating a broader class of active learning algorithms, including those applicable to
infinite hypothesis classes or structured prediction tasks, would be valuable future directions.
Empirical studies will be essential to evaluate these methods in practical scenarios, providing
further insights into their reliability and performance in real-world applications.

12
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A Symbols

Symbol Description

b Random binary string
c Target function (realizable case)
C Hypothesis space
d Distance metric
D Probability distribution
DIS(·) Disagreement region
δ Failure probability of a model
∆(·) Probability mass of disagreement region
ε Maximum error of returned hypothesis
err Error of a hypothesis
errS Empirical error of a hypothesis
errD

S Empirical error of a hypothesis conditioned on disagreement region
ϕ Query function in SQ learning
h Hypothesis function
I Threshold interval
k Number of samples
m Number of samples
N Maximum number of rounds the algorithm runs for
ψ Query function in SQ learning
r Round of algorithm
R Number of rounds of the algorithm for a specific run
ρ Replicability parameter
S Sample set
T Sample set of unlabeled points
Θ Disagreement coefficient
ν Noise
v Threshold for replicably discarding hypotheses
σ Threshold offset
V Version space
τ Tolerance parameter in SQ learning
τ Interval width in Replicable learning
π Global interval width in Replicable learning
x Sample
y Label
·̂ Empirical estimate
·′ Quantity of the last round

B Replicable Active Realizable Learning
B.1 Proof of Lemma 1
Proof. Proof of lemma 1 runs analogous to Balcan (2015). Letting Vr denote the hypothesis
space at round r, we will first argue convergence by showing that the distributional size
of the disagreement region ∆(Vr) will be at least halved with each successive round, i.e.,
∆(Vr+1) ≤ ∆(Vr)

2 with high probability. Let V Θ
r be the set of hypotheses in Vr with large

15
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error

V Θ
r =

{
h ∈ Vr : err(h) = d(h, c) ≥ ∆(Vr)

2Θ

}
. (23)

If all hypotheses in this set are removed, the distributional size of the disagreement region
will indeed be halved

∆(Vr+1) ≤ ∆
(
B

(
c,

∆(Vr)
2Θ

))
≤ Θ∆(Vr)

2Θ = ∆(Vr)
2 (24)

where the definition of the disagreement coefficient was used.

So as long as all high-error hypotheses are removed in each round, the size of the disagreement
region is halved, and algorithm 3 converges in at most O

(
log 1

ε

)
steps, because the algorithm

terminates when ∆(Vr) ≤ ε.

We now argue that with high probability, all high-error hypotheses are removed at each
round. Note that because we are in the realizable setting, err(h) = ∆(Vr)errDr (h) for every
h ∈ Vr, and so it follows that if ∆(Vr)errDr (h) ≥ ∆(Vr)

2Θ , then we can lower-bound the
conditional error errDr (h) ≥ 1

2Θ . It therefore suffices to remove all hypotheses with at least
this conditional error on the disagreement region.

From algorithm 3 it is clear that since the hypotheses in each round are chosen to fall under
a random threshold that is upper-bounded by 3

8Θ −
τ
2 , this upper-bounds the conditional

empirical error of the algorithm in each round. By applying Chernoff-Hoeffding bounds for
the realizable case, we can bound the probability that any hypothesis with conditional error
rate at least 1

2Θ has empirical error rate less than 3
8Θ −

τ
2 , for any of the N = O

(
log 1

ε

)
rounds of the algorithm. We see that the number of labeled points needed in each round to
ensure good error estimates for all hypotheses with probability at least 1− δ

2N is :

O
(

Θ log |C|N
δ

)
. (25)

We take the sample for our empirical estimate of conditional error to be greater than this
quantity, and so except with probability δ, all high-error hypotheses are removed at every
round. This guarantees convergence within O

(
log 1

ε

)
rounds, and so in total

O
(

Θ log 1
ε

log
|C| log 1

ε

δ

)
(26)

labeled samples are required for convergence.

The size of the disagreement region can be estimated up to arbitrary accuracy using unlabeled
data. Thus, we use the exact value in our algorithm.

It remains to argue the accuracy of the final hypothesis. A union bound over the failure
probabilities of the empirical error rate estimation in each round yields an overall failure
probability of O (δ). Then, the stop condition ∆(V ) ≤ ε guarantees that all h ∈ VN have
error rate below ε. This follows from the fact that in the realizable case, the ground truth
c will never be removed from the hypothesis space because the estimated error rate of the
ground truth cannot exceed 0. Since the ground truth c is never removed, if all hypotheses
agree on a point, all of them must classify this point correctly. The final thresholding after
exiting the loop is added for the purpose of replicability and does not have an adverse effect
on accuracy.
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B.2 Proof of Lemma 2
Proof. Let the RepliCAL algorithm be run on two different ordered sets of samples S1 =⋃R+1

r=1 S
1
r and S2 =

⋃R+1
r=1 S

2
r drawn from the respective distributions {D1

1, . . . , D
1
R+1} and

{D2
1, . . . , D

2
R+1}, which are obtained by conditioning the distribution D on the disagreement

region of the corresponding round (1, . . . , R+ 1).

Select an interval width π ≤ O
(

ερ2

Θ log |C|

)
which divides ε

8Θ . Define Ii to be intervals
corresponding to the desired global error rate in the final thresholding round

I0 = [0, π)
I1 = [π, 2π)

...

I ε
8Θπ

=
[
ε

8Θ − π,
ε

8Θ

) (27)

and v′
i∆(VR+1) = 2i+1

2 · π to be the respective global thresholds.

Let V 1(i) and V 2(i) denote the two final version spaces across the two independent sets of
samples S1 and S2 and for a shared randomly chosen threshold v′

i. In the following proof we
will drop the explicit dependence on (i) for conciseness.

We will show that with probability at least 1 − ρ
8 , for S1 and S2 each of size

Õ
(

Θ log 1
ε ·

log2 |C| log 1
ρ log4 1

ε

ρ4

)
we have:

∣∣V 1∆V 2
∣∣

|V 1 ∪ V 2|
≤ ρ

4 . (28)

To prove the claim, we, analogous to Bun et al. (2023), call a threshold v′
i “bad” if any of

the following conditions hold:

1. The ith interval has too many elements:

|Ii| >
ρ

30
∣∣I[i−1]

∣∣ . (29)

2. The number of elements beyond Ii increases too quickly:

∃j ≥ 1 : |Ii+j | ≥ ej
∣∣I[i−1]

∣∣ . (30)

and “good” otherwise.

Here, |Ii| denotes the number of hypotheses whose true risk lies in interval Ii, and
∣∣I[i]
∣∣ the

number of hypotheses in intervals up through Ii.

We will be proving the following:

1. If v′
i is a good threshold, then V 1 and V 2 are probably close

Pr
S1,S2

[ ∣∣V 1∆V 2
∣∣

|V 1 ∪ V 2|
≤ ρ

4

]
≥ 1− ρ

8 . (31)

2. At most a ρ
8 fraction of thresholds are bad.
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Part 1 To prove the first part, we consider three cases in which mistakes can occur. For
this, we define a “good” hypothesis as a hypothesis with a global true error rate less than
∆(VR+1)v′

i and call it “bad” otherwise

1. A “bad” hypothesis with err(h) ∈ Ii+j was accepted in every round.

2. A “good” hypothesis with err(h) ∈ Ii−j was rejected in any round.

3. For any hypothesis in the last round with err(h) ∈ Ii, the empirical error is on the
wrong side of the threshold ∆(VR+1)v′

i.

By a Chernoff bound, the probability of a hypothesis with true global error rate err(h) ∈
Ii+j , j > 0 having an empirical error rate less than ∆(VR+1)v′

i after the final thresholding is

Pr
[
errDR+1

SR+1
(h) ≤ v′

i

]
≤ e

−Ω
(

(jτ′)2|SR+1|
(i+j)τ′

)
≤ e−Ω(j2τ ′2ΘkN ) (32)

where kN = |Sr| and the conditional error rate is computed by scaling the global error rate
by the size of the disagreement region. The estimation tolerance is of the order of the global
interval width scaled by the disagreement region

τ ′

2 = π

2∆(VR+1) = O
(

ερ2

∆(VR+1)Θ log |C|

)
≥ O

(
ρ2

Θ log |C|

)
. (33)

The probability of the first case occurring is upper-bounded by this Chernoff bound for any
single round. For simplicity, here we choose the last round r = R + 1. We introduce the
random variable xi that counts the number of hypotheses with err(h) ∈ Ii+j , j > 0 which
cross the threshold v′

i in the final round. Then, assuming the chosen threshold is good, the
expected value can be bounded by

E[xi] ≤
∑
j>0
|Ii+j | e−Ω(j2τ ′2ΘkN )

≤
∣∣I[i−1]

∣∣∑
j>0

e−Ω(j2 log 1/ρ−j) ≤
∣∣I[i−1]

∣∣∑
j>0

ρO(j2)

≤ ρ2

30 · 64
∣∣I[i−1]

∣∣ .
(34)

Here, the second condition for good thresholds and size of the samples kN was used. The
last step follows from an asymptotic consideration that holds for small enough constants.
Using Markov’s inequality, we conclude that

Pr
[
xi ≥

ρ

30 |I[i−1]|
]
≤ ρ

64 . (35)

For the second case, the probability of one good hypothesis — measured by the last round —
crossing the threshold in any round is given by a union bound over all rounds. The conditional
error rates of any good hypothesis in rounds r ≤ R + 1 where ∆(Vr) ≥ ε will be lower or
equal than the threshold vi:

err(h) ≤ ∆(VR+1)v′
i (36)

errDr (h) ≤ ∆(VR+1)
∆(Vr) v′

i = ∆(VR+1)
∆(Vr) · ε

∆(VR+1)vi (37)

≤ vi (38)

Therefore, the probability of the error rate estimate crossing the threshold can be upper-
bounded by the final round R+ 1

Pr
[
errDR+1

SR+1
(h) ≤ v′

i

]
≤ Ne−Ω(j2τ ′2ΘkN ). (39)

18



Published in Transactions on Machine Learning Research (01/2026)

Defining random variable yi to be the number of good hypotheses rejected at any round, we
have

E[yi] ≤ N
∑
j>0
|Ii−j | e−Ω(j2τ ′2ΘkN )

≤
∣∣I[i−1]

∣∣Ne−Ω(τ ′2ΘkN ) ≤
∣∣I[i−1]

∣∣NρO(j2).
(40)

Again, we conclude that with probability at least 1− ρ
64 only a ρ

30 fraction of hypotheses
will fall under case 2.

In the third case, by definition of the first condition for bad thresholds, we directly see that
in the worst case the number of hypotheses is upper-bounded by the number of hypotheses
in the interval

|Ii| ≤
ρ

30 |I[i−1]|. (41)

Thus, in total there will be no more than ρ
10 |I[i−1]| mistakes made with high probability

1− ρ
32 . Considering two different runs of the algorithm, the symmetric difference of the final

hypothesis sets will be less than ρ
5 |I[i−1]| with high probability at least 1− ρ

16 .
Furthermore, the union of the sets is guaranteed to be at least

(
1− ρ

15
)
|I[i−1]| with a failure

probability of at most 1− ρ
32 as seen in the analysis of the second case.

Finally, a union bound yields the desired result

Pr
S1,S2

[ ∣∣V 1∆V 2
∣∣

|V 1 ∪ V 2|
≤ ρ

4

]
≥ 1− ρ

8 . (42)

Part 2 Now, let us prove that almost all thresholds are good. The structure of the proof
is based on lower-bounding the number of hypotheses “contributed” by each of the “bad”
intervals, which in turn upper-bounds the number of “bad” intervals, since the total number
of hypotheses is fixed by the size of the concept class, |C|.

Let the “bad” intervals be present in ℓ clusters (longest consecutive “bad” intervals bounded
by “good” interval(s)), with the jth “bad” cluster containing tj continuous “bad” intervals.
Thus, the total number of “bad” intervals is

∑ℓ
j=1 tj .

First, let’s say the intervals are “bad” by condition 1 of “badness”. Then the jth bad cluster
increases the number of hypotheses from I[ij ] by at least

(
1 + ρ

30
)tj .

If the intervals are bad by condition 2 of “badness”, the jth cluster increases the number of
hypotheses (corresponding to the future interval(s) causing them to be “bad” by condition 2),
by at least etj . Since e >

(
1 + ρ

30
)
, the statement that the jth cluster increases the number

of hypotheses by “at least”
(
1 + ρ

30
)tj still holds, for both conditions of “badness”. Since

|I0| > 1, we can write:

|C| ≥
(

1 + ρ

30

)∑ℓ

j=1
tj

(43)

It follows that the number of “bad” intervals:
ℓ∑

j=1
tj ≤ O

(
log |C|
ρ

)
(44)

Since τ ′ has been chosen such that the total number of intervals is at least O
(

log |C|
ρ2

)
, the

fraction of intervals that are “bad” is O (ρ)

This is true for each round of our algorithm. If we want to bound the probability of choosing
a bad interval in “any” round, we have to take a union bound of the probability of bad
intervals in each round. By choosing ρ′ = ρ

N where ρ is the replicability-factor of the parent
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algorithm, and using an appropriate constant, we can union-bound over N rounds to have
the probability over all rounds to be ρ

8 . This requirement of having to choose a smaller ρ
will be accounted for while calculating the label complexity.

Three events can break replicability of the proposed algorithm: A bad interval is randomly
selected, the sets V 1 and V 2 are not close or two different random hypotheses are chosen
even though the final sets are close. The probabilities of these bad events occurring are ρ

8 , ρ
8 ,

and ρ
4 respectively. Thus, a union bound yields a failure probability of at most ρ

2 , satisfying
ρ-replicability as required.

B.3 Proof of Theorem 1
Proof. From the proof of lemma 1, we have bounds on the number of samples required for
algorithm 3 to get an error rate of at most ε with high probability 1− δ, and converge within
O
(
log 1

ε

)
rounds.

Furthermore, in lemma 2, we have seen the worst case sample complexity for the thresholding
to be ρ-replicable is kN = O

( log 1
ρ

Θτ ′2

)
. Since τ ′ ≤ O

(
ρ2

Θ log |C|

)
, we can replace τ ′ to get sample

size as:

kN = O
(

Θ log2 |C| log 1
ρ

ρ4

)
. (45)

This is the label complexity required in each round. Hence, the total label complexity required
for ρ-replicability after N rounds is

O

(
N ·

Θ log2 |C| log 1
ρ

ρ4

)
. (46)

While proving lemma 2, we stated that in order for the algorithm to be ρ-replicable, the
thresholding subroutine has to be run with a lower replicability parameter: ρ

N , where N is
the number of rounds. Hence, the corresponding label complexity should be corrected to:

O

(
N ·

Θ log2 |C| log N
ρ N

4

ρ4

)
. (47)

Lemma 1 states that the number of rounds required for convergence is O
(
log 1

ε

)
. Hence, the

label complexity is

O

Θ log 1
ε
·

log2 |C| log log 1
ε

ρ log4 1
ε

ρ4

 . (48)

The label complexity required to ensure bounded error as well as replicability can be found
by combining equation 26 and equation 48. The overall complexity thus derived is:

O

Θ log 1
ε
·

log2 |C| log log 1
ε

ρ log4 1
ε

ρ4 + Θ log 1
ε

[
log
|C| log 1

ε

δ

] . (49)

This gives us the required label complexity

O

Θ log 1
ε
·

log2 |C| log log 1
ε

ρ log4 1
ε + ρ4 log |C| log 1

ε

δ

ρ4

 , (50)

as stated in theorem 1, and concludes the proof.
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It can be argued that log log 1
ε is trivial w. r. t. the other terms, and the label complexity

thus reduces to

Õ

(
Θ log 1

ε
·

log2 |C| log4 1
ε + ρ4 log |C|

δ

ρ4

)
. (51)

C Replicable Active Agnostic Learning
C.1 Proof of Lemma 3
Proof. Our proof runs analogous to Balcan (2015). Let Vr denote the hypothesis space at
round r. The distributional size of the disagreement region ∆(Vr) will be at least halved
with each successive round ∆(Vr+1) ≤ ∆(Vr)/2 with high probability. Let V Θ

r be the set of
hypotheses in Vr with large error

V Θ
r =

{
h ∈ Vr : d(h, h∗) ≥ ∆(Vr)

2Θ

}
. (52)

If all hypotheses in this set are removed, the distributional size of the disagreement region
will indeed be halved

∆(Vr+1) ≤ ∆
(
B

(
h∗,

∆(Vr)
2Θ

))
≤ Θ∆(Vr)

2Θ = ∆(Vr)
2 (53)

where the definition of the disagreement coefficient was used.

Since the size of the disagreement region is halved in each round with high probability, and
the loop stops when ∆(Vr) ≤ 8Θν, the convergence would take at most N ∈ O

(
log 1

Θν

)
steps.

First, we show that in the round based portion of the algorithm, hypotheses in the set V Θ
r

will be removed with high probability. From the definition of the distance metric we get

d(h, h∗) = ∆(Vr) Pr
x∼Dr

[h(x) ̸= h∗(x)]

≤ ∆(Vr)
[
errDr (h) + errDr (h∗)

]
≤ ∆(Vr)errDr (h) + ν.

(54)

Assuming that h ∈ V Θ
r we get

∆(Vr)errDr (h) ≥ d(h, h∗)− ν

⇒ errDr (h) ≥ 1
2Θ −

ν

∆(Vr)

≥ 1
2Θ −

1
8Θ = 3

8Θ

(55)

using 1
∆(Vr) ≤

1
8Θν . This in turn implies that the empirical conditional error errDr

Sr
(h), which

is estimated to within tolerance 1
16Θ , must be greater than 5

16Θ .

Recall that the largest value the empirical error threshold for removing a hypothesis, v + σr,
can take is

ν

∆(Vr) + 3
16Θ −

τ

2 <
ν

8Θν + 3
16Θ = 5

16Θ . (56)

Therefore
errDr

Sr
(h) ≥ errDr (h)− 1

16Θ ≥
5

16Θ ≥ v + σr (57)
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and therefore we will remove h with probability at least 1− δ
2(N+1) . This argument relies on

estimating the conditional error of every hypothesis in C to within tolerance 1
16Θ , and so we

require labels for

O
(

Θ2 log |C|N
δ

)
(58)

points sampled i. i. d. from ∆(Vr), by a Chernoff bound. Thus, the total sample complexity
for all N rounds is

k = O
(
NΘ2 log |C|N

δ

)
(59)

To see that with high probability the best hypothesis h∗ is never removed from the version
space V , observe that the smallest value the empirical error threshold for removing a
hypothesis, v + σr, can take is

ν

∆(Vr) + 1
16Θ + 3τ

2 >
ν

∆(Vr) + 1
16Θ . (60)

The error of every hypothesis is estimated to within 1
16Θ with high probability, so we have

that
errDr

Sr
(h∗) ≤ ν

∆(Vr) + 1
16Θ , (61)

and therefore h∗ is never removed with high probability.

Now we consider the accuracy of the hypothesis returned at the end of the algorithm. We
may assume, because the loop has terminated, that ∆(VR+1) ≤ 8Θν.

err(h)− err(h∗) = ∆(VR+1)
[
errDR+1(h)− errDR+1(h∗)

]
≤ 8Θν

[
errDR+1(h)− errDR+1(h∗)

] (62)

Therefore, it suffices to find a hypothesis with errDR+1(h) ≤ errDR+1(h∗) + ε
8Θν to ensure

err(h) ≤ err(h∗) + ε. We estimate the conditional error of every hypothesis on the last
disagreement region with an accuracy of ε

192Θν and failure probability of δ
2(N+1) . This

requires a sample set size of

O
(

Θ2 ν
2

ε2 log N |C|
δ

)
. (63)

Defining ν̂DR+1 as the minimum of all estimated error rates ensure that the optimal conditional
error rate is estimated within a tolerance of ε

192Θν .

The largest threshold for the final round is

ν̂DR+1 + 2ε
96Θν −

τ ′

2 ≤ errDR+1(h∗) + ε

192Θν + 2ε
96Θν (64)

Therefore any bad hypothesis h will be removed

errDR+1
Sr

(h) ≥ errDR+1(h)− ε

192Θν
≥ errDR+1(h∗) + ε

8Θν −
ε

192Θν
≥ v + ν̂DR+1 .

(65)

Proving that the optimal hypothesis is never removed also proves that the version space will
never be empty after the final round. This is guaranteed because

errDR+1
SR+1

(h∗) ≤ errDR+1(h∗) + ε

192Θν
≤ ν̂DR+1 + ε

192Θν + ε

192Θν

(66)
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is less or equal than the smallest threshold.

So overall, combining equation 59 and equation 63, and substituting N we get that

O
(

Θ2
(

log 1
Θν log

|C| log 1
Θν

δ
+ ν2

ε2 log
log 1

Θν |C|
δ

))
(67)

many labeled samples are required for convergence to a good hypothesis.

C.2 Proof of Lemma 4
Proof. Let the ReplicA2 algorithm be run on two different ordered sets of samples S1 =⋃R+1

r=1 S
1
r and S2 =

⋃R+1
r=1 S

2
r drawn from the respective distributions {D1

1, . . . , D
1
R+1} and

{D2
1, . . . , D

2
R+1}, which are obtained by conditioning the distribution D on the disagreement

region Vi of the corresponding round (1, . . . , R+ 1).

Select an interval width π ≤ O
(

ερ2

log |C|

)
, which should divide ε

12 . Define Ii to be intervals
corresponding to the global error rate in the last round

I0 =
[
ε

12 ,
ε

12 + π

)
I1 =

[
ε

12 + π,
ε

12 + 2π
)

...

I ε
12π

=
[

2ε
12 − π,

2ε
12

)
(68)

and v′
i∆(VR+1) = ε

12 + 2i+1
2 · π be the respective thresholds.

Let V 1(i) and V 2(i) denote the two final version spaces across the two independent sets of
samples S1 and S2 and for a shared randomly chosen threshold v′

i.

We prove that with probability at least 1− ρ
8 , for samples S1 and S2 drawn i. i. d from Dr,

each of size Õ
(

Θ2 log2 |C| log 1
ρ log4 1

Θν

ρ4

(
log 1

Θν + ν2

ε2

))
, we have:

∣∣V 1∆V 2
∣∣

|V 1 ∪ V 2|
≤ ρ

4 . (69)

Analogously to the realizable case, we define “good” and “bad” thresholds. As before, we
will be proving the following:

1. If v′
i is a good threshold, then V1 and V2 are probably close

Pr
S1,S2

[
|V1∆V2|
|V1 ∪ V2|

≤ ρ

4

]
≥ 1− ρ

8 . (70)

2. At most a ρ
8 fraction of thresholds are bad.

Part 1 To prove the first part, we consider three cases in which mistakes can occur. For
the following analysis we will define a hypothesis as “good” if it has a global true error rate
less than ν + ∆(VR+1)v′

i and define it as “bad” otherwise.

1. A “bad” hypothesis with err(h)− ν ∈ Ii+j was accepted in every round, i. e., with
empirical error smaller than the threshold vi.
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2. A “good” hypothesis in the last round with err(h) − ν ∈ Ii−j was rejected in any
round, i. e., with empirical error larger than the threshold vi.

3. For any hypothesis in the last round with err(h)− ν ∈ Ii, the empirical error is on
the wrong side of the threshold ν + ∆(VR+1)v′

i.

By a Chernoff bound, the probability of a hypothesis with true global error rate err(h)− ν ∈
Ii+j , j > 0 having an empirical error rate less than ν̂D + v′

i after the final thresholding is at
most

Pr
[
errDR+1

SR+1
(h) ≤ ν̂DR+1 + v′

i

]
≤ e−Ω(j2τ ′2|SR+1|) = e−Ω(j2τ ′2kN ) (71)

where kN = |Sr|. The estimation tolerance is of the order of the global interval width scaled
by the disagreement region

τ ′

4 = π

4∆(VR+1) = O
(

ερ2

∆(VR+1) log |C|

)
≥ O

(
ερ2

Θν log |C|

)
(72)

This ensures that a hypothesis with estimation error τ ′

4 does not cross the threshold which
itself depends on the optimal hypothesis estimated to within an error of τ ′

4 . The probability
of the first case occurring is upper-bounded by this Chernoff bound for any single round.
For simplicity, here we chose the final thresholding r = R + 1. We introduce the random
variable xi that counts the number of hypotheses with err(h)− ν ∈ Ii+j , j > 0 which cross
the threshold v′

i in the last round. Then, the expected value can be bounded by — assuming
that the chosen threshold is good

E[xi] ≤
∑
j>0
|Ii+j | e−Ω(j2τ ′2kN )

≤
∣∣I[i−1]

∣∣∑
j>0

e−Ω(j2 log 1/ρ−j) ≤
∣∣I[i−1]

∣∣∑
j>0

ρO(j2)

≤ ρ2

30 · 64
∣∣I[i−1]

∣∣ .
(73)

Here, the second condition for good thresholds and size of the samples k was used. The last
step follows from an asymptotic consideration that holds for small enough constants. Using
Markov’s theorem, we conclude that

Pr
[
xi ≥

ρ

30 |I[i−1]|
]
≤ ρ

64 . (74)

For the second case, the probability of one good hypothesis — measured by the last round —
crossing the threshold in any round is given by a union bound over all rounds. The conditional
error rates of any good hypothesis in rounds r < R+ 1 where ∆(Vr) > 8Θν will be lower or
equal than the respective thresholds σr + vi under the benign assumption that ε < ν

err(h) ≤ ν + ∆(VR+1)v′
i (75)

errDr (h) ≤ νDr + ∆(VR+1)
∆(Vr) v′

i (76)

≤ νDr + ∆(VR+1)
∆(Vr) · ε

ν
vi (77)

≤ ν

∆(Vr) + vi. (78)

Therefore, the probability of the error rate estimate crossing the threshold can be upper-
bounded by the final round R+ 1

Pr
[
errDN+1

SN+1
(h) ≤ ν̂DR+1 + v′

i

]
≤ Ne−Ω(j2τ ′2kN ) (79)
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and the expectation of the random variable analogous to xi defined as yi is upper-bounded
by

E[yi] ≤ N
∑
j>0
|Ii−j | e−Ω(j2τ ′2kN )

≤
∣∣I[i−1]

∣∣Ne−Ω(τ ′2ΘkN ) ≤
∣∣I[i−1]

∣∣NρO(j2).
(80)

Again, we conclude that with probability at least 1− ρ
64 only a fraction of ρ

30 hypotheses
will have made a mistake according to case 2.

As before, in the third case the number of hypotheses is upper-bounded by the number of
hypotheses in the interval by the definition of the first condition of bad thresholds

|Ii| ≤
ρ

30 |I[i−1]|. (81)

Thus, in total, there will be no more than ρ
10 |I[i−1]| mistakes made with high probability

1− ρ
32 . Considering two different runs of the algorithm, the symmetric difference of the final

hypothesis sets will be less than ρ
5 |I[i−1]| with high probability at least 1− ρ

16 .
Furthermore, the union of the sets is guaranteed to be at least

(
1− ρ

15
)
|I[i−1]| with a failure

probability of at most 1− ρ
32 as seen in the analysis of the second case.

Finally, a union bound yields the desired result

Pr
S1,S2


∣∣∣V (i)

1 ∆V (i)
2

∣∣∣∣∣∣V (i)
1 ∪ V (i)

2

∣∣∣ ≤ ρ

4

 ≥ 1− ρ

8 . (82)

Part 2 Proving that almost all thresholds are “good” follows the same argument as in the
realizable setting, and we can conclude that the fraction of intervals that are “bad” is O (ρ).

This is true for each round n = 1, 2, ..., N+1 of our algorithm. By choosing ρ′ = ρ
2(N+1) where

ρ is the replicability-factor of the parent algorithm, and using an appropriate constant, we can
union-bound over N rounds to have the probability over all rounds to be ρ

8 . Union-bounding
over the “bad” events gives us a total failure probability of ρ

2 , as in the realizable setting,
hence proving ρ-replicability as required.

C.3 Proof of Theorem 2
Proof. Equation 26 gives us the worst-case sample complexity of our algorithm required to
get an error rate of at most ν + ε with high probability 1− δ.

Furthermore, in the proof of lemma 4, we have seen the worst case sample complexity for the
thresholding to be ρ-replicable is kN = O

( log 1
ρ

τ2

)
. Since τ ≤ O

(
ρ2

Θ log |C|

)
, we can replace τ

to get sample size as:

kN = O
(

Θ2 log2 |C| log 1
ρ

ρ4

)
. (83)

This is the label complexity required in each round. Hence, the total label complexity required
for ρ-replicability after N rounds is

O

(
N ·

Θ2 log2 |C| log 1
ρ

ρ4

)
. (84)

While proving lemma 4, we stated that in order for the algorithm to be ρ-replicable, the
thresholding subroutine has to be run with a lower replicability parameter of the order of ρ

N .
Hence, the corresponding label complexity should be corrected to:

O

(
N ·

Θ2 log2 |C| log N
ρ N

4

ρ4

)
. (85)
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Lemma 1 states that the number of rounds required for convergence is O
(
log 1

Θν

)
. Hence,

the label complexity is

O

Θ2 log 1
Θν ·

log2 |C| log log 1
Θν

ρ log4 1
Θν

ρ4

 . (86)

To ensure ρ-replicability in the last round we need O
( log 1

ρ

τ ′2

)
labels. To ensure the same

number of intervals, the replicability-constant should be the same as the one before, ρ
N . Since

τ ′ ≤ O
(

ερ2

Θν log |C|

)
, we have the label complexity in the last round as

O

Θ2 ν
2

ε2 ·
log2 |C| log log 1

Θν

ρ log4 1
Θν

ρ4

 (87)

The label complexity required to ensure bounded error as well as replicability can be found
by combining equation 67, equation 86 and equation 87. The overall complexity thus derived
is:

O

(
Θ2

((
log 1

Θν + ν2

ε2

) log2 |C| log log 1
Θν

ρ log4 1
Θν

ρ4

+ log 1
Θν log

|C| log 1
Θν

δ
+ ν2

ε2 log |C|
δ

))
(88)

or

Õ

(
Θ2
(

log 1
Θν + ν2

ε2

)(
log |C|

δ
+

log2 |C| log4 1
Θν

ρ4

))
(89)
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