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ABSTRACT

Algorithmic fairness research has mainly focused on adapting learning models to
mitigate discrimination based on protected attributes, yet understanding inherent
biases in training data remains largely unexplored. Quantifying these biases is
crucial for informed data engineering, as data mining and model development often
occur separately. We address this by developing an information-theoretic frame-
work to quantify the marginal impacts of dataset features on the discrimination bias
of downstream predictors. We postulate a set of desired properties for candidate
discrimination measures and derive measures that (partially) satisfy them. Distinct
sets of these properties align with distinct fairness criteria like demographic parity
or equalized odds, which we show can be in disagreement and not simultaneously
satisfied by a single measure. We use the Shapley value to determine individual
features’ contributions to overall discrimination, and prove its effectiveness in elim-
inating redundancy. We validate our measures through a comprehensive empirical
study on numerous real-world and synthetic datasets. For synthetic data, we use
a parametric linear structural causal model to generate diverse data correlation
structures. Our analysis provides empirically validated guidelines for selecting
discrimination measures based on data conditions and fairness criteria, establishing
a robust framework for quantifying inherent discrimination bias in data.

1 INTRODUCTION

The integration of data-driven learning models in various aspects of human life, e.g., criminal justice
(Kirchner et al., 2016), finance (Diwate et al., 2021), and healthcare (Kinyanjui et al., 2019), raised
concerns about discriminatory practices based on legally protected attributes such as race or gender
(Munoz et al., 2016; Mökander et al., 2022). Algorithmic fairness examines how models may
inherit discriminatory biases from training data, defines fairness criteria (Calders et al., 2009; Dwork
et al., 2012; Hardt et al., 2016), and develops algorithmic methods to achieve them (Kamishima
et al., 2011; Zemel et al., 2013). Fairness criteria include individual fairness (similar individuals are
treated similarly) (Dwork et al., 2012); demographic parity (equal positive rates across demographic
groups) (Calders et al., 2009); equalized odds and equality of opportunity (equal error rates across
demographic groups) (Hardt et al., 2016); and predictive parity (equal precision across demographic
groups) (Kleinberg et al., 2017). Methods to achieve fairness criteria include pre-processing (Kamiran
& Calders, 2012; Calmon et al., 2017), in-processing (Kamishima et al., 2011; Zafar et al., 2017),
and post-processing (Hardt et al., 2016; Petersen et al., 2021; Xian et al., 2023).

Despite considerable progress in algorithmic fairness, little research addresses quantifying discrimina-
tion bias inherent in the training data. While input feature impact on model accuracy is well-studied
for reasons like performance improvement (AlSagri & Ykhlef, 2020), dimensionality reduction (Kira
& Rendell, 1992), data representation (Yang & Moody, 1999), and interpretability (Scott et al., 2017),
quantifying feature impact on discrimination bias is more challenging. This is due to the complex
interactions among dataset features, group memberships, target labels, and model predictions, as well
as the reliance of fairness criteria on these variables. For instance, features with high discriminatory
impact may also be strongly relevant for accurate predictions (Grgic-Hlaca et al., 2016). Further, most
existing work assumes access to model predictions to evaluate fairness criteria, which is impractical
when data engineering and model development are conducted separately (Zemel et al., 2013). We
address these challenges by developing a framework for quantifying marginal discriminatory impacts
of features on downstream models without requiring access to predictions.



Our quantification relies on constructing novel information-theoretic measures, defined for sets of
features, and deducing marginal contributions of individual features using the Shapley value function
(Shapley, 1953; Scott et al., 2017). We adopt an axiomatic approach, based on partial decomposition
of information (Bertschinger et al., 2014) and causal reasoning (Peters et al., 2017), advocating for a
set of desired properties and constructing measures that satisfy them. A novel aspect in our framework
is to relate these properties to various fairness criteria, and study the tensions associated with a
single measure simultaneously achieving them. We conduct an extensive ablation study on numerous
real-world and synthetic datasets, yielding a constructive guideline for which discrimination measure
shall be used given certain fairness criteria and dataset conditions.

1.1 RELATED WORK

Several studies explored methods to quantify feature impact on accuracy of downstream learning
models (Kira & Rendell, 1992; Scott et al., 2017). However, only a handful of works studied both
accuracy and discrimination impacts (Khodadadian et al., 2021; Grgic-Hlaca et al., 2016; Dutta
et al., 2022). Fewer still addressed the problem without assuming access to model’s predictions
(Khodadadian et al., 2021; Pelegrina et al., 2024). Our work adopts a similar axiomatic framework
as in (Khodadadian et al., 2021), however, our construction of discrimination measures is different.
We extensively revisit the desired properties proposed in (Khodadadian et al., 2021). We relate our
revised properties to existing fairness criteria to study the tension in constructing measures that
simultaneously achieve them; a critical analysis missing from (Khodadadian et al., 2021). Another
line of work adopts a framework similar to (Khodadadian et al., 2021) to quantify feature contribution
to the discrimination of a predefined model (Dutta et al., 2022). Dutta et al. (2020; 2021) follow an
axiomatic approach to quantify non-exempt discrimination for a predefined model, i.e., the part of
discrimination that cannot be accounted for by features critical for accurate predictions.

A framework similar to ours, in avoiding dependence on a predefined model, employs Shapley
values to quantify feature importance and identify disparity-prone features which result in disparate
outcomes (Pelegrina et al., 2024). Unlike (Pelegrina et al., 2024), we focus on quantifying inherent
discrimination bias with respect to predefined sensitive attributes, e.g., race or gender, rather than
identifying potential sensitive attributes. Pelegrina et al. (2024) utilized a statistical measure evaluated
on sets of features (an empirical estimate of the normalized cross-covariance (Fukumizu et al., 2007))
which has proven effective in a non-coalition framework (Pelegrina et al., 2023). In contrast, our
work proposes distributional information-theoretic measures based on partial decomposition of
information, facilitating more control over the aspects a measure can capture in the data.

The Shapley value function (Shapley, 1953), a concept from game theory used to determine play-
ers’ marginal contributions to a game’s overall utility, has gained recent attention for interpreting
learning models (Scott et al., 2017; Ghorbani & Zou, 2020). Researchers applied Shapley value for
interpretability in various ways to (i) quantify feature contributions to model accuracy (Janzing et al.,
2020); (ii) assess the impact of sensitive attributes on model predictions (Mase et al., 2021), and (iii)
evaluate individual neuron contributions in deep neural networks (Ghorbani & Zou, 2020). Shapley
value was also used for feature selection by identifying features most relevant for prediction or model
accuracy (Cohen et al., 2005). This work employs Shapley value to quantify the marginal impacts
of dataset features on the discrimination bias of any downstream learning model. Importantly, our
theoretical results (Thm. 3.4) highlight the advantage of using Shapley value for quantifying marginal
discriminatory impacts, particularly when there is substantial feature redundancy. This result sup-
ports the rather empirical conclusion of Pelegrina et al. (2024), which justified, via a synthetic data
experiment, the use of Shapley value for assessing feature importance over non-coalition methods
(Pelegrina et al., 2023) when redundancy among input features is present.

The scarcity of benchmark datasets remains a significant challenge in algorithmic fairness (Ding
et al., 2021). Several studies proposed methods to induce biases in existing real-world datasets (Jiang
et al., 2024; Wen et al., 2021; Barbierato et al., 2022). Fewer works explored generating purely
synthetic biased data (Barbierato et al., 2022; Baumann et al., 2023). Barbierato et al. (2022) present
a methodology for controlling bias in synthetic data generation with categorical features based on a
Gaussian probabilistic network and biased discretization. Baumann et al. (2023) explore fundamental
bias types as well as encapsulating them within a single feature. In contrast, we introduce a simple yet
effective model for generating purely synthetic biased datasets using a parametric linear structural
causal model (SCM). Our generating model yields a large number of biased synthetic datasets
through a small number of tunable parameters.
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1.2 PROBLEM DESCRIPTION AND OUR CONTRIBUTIONS

We aim to quantify inherent data biases that could be replicated or amplified by downstream models.
The research question we pose here is how to quantify the impact of dataset features on discrimination
bias of any downstream model without assuming access to model predictions, relying only on dataset
variables? This is motivated by three key reasons. First, data engineering and model development are
often separate tasks conducted by separate entities, necessitating model-agnostic quantification of the
discrimination bias inherent in the data. Second, we seek to disentangle this bias from model-specific
amplifications. Third, similar to Pelegrina et al. (2024), we avoid the computational complexity
associated with using trained models in a coalition-based framework, like Shapley value. Our
formulation gives rise to several challenges, which we address through the following contributions:

• We construct several discrimination measures (for sets of features) via an axiomatic framework
and apply Shapley value to deduce marginal discriminatory impacts. Compared to (Khodadadian
et al., 2021), we extensively revisit their desired properties for a discrimination measure, relax
some constraints we deem unnecessary, and postulate two undesired properties. Further, unlike
Khodadadian et al. (2021), which proposes a single discrimination measure, we advocate for
using diverse measures aligned with distinct fairness criteria and data conditions. We correlate
the notions of demographic parity (DP) and equalized odds (EO) with two distinct sets of desired
properties, demonstrate the tensions for a single measure simultaneously satisfying both property
sets (Lemma 3.1 and Example 3.3), and empirically validate these tensions (Sections 4 and 5).

• We provide a theoretical result demonstrating that using Shapley values for determining marginal
discriminatory impacts of features moderates the effect of redundancy among coalitions of features
(Thm. 3.4). As argued by Pelegrina et al. (2024), this redundancy can be over-quantified when
using methods that do not account for interactions among features (non-coalitional methods). Our
theoretical result supports the rather empirical finding of Pelegrina et al. (2024).

• We propose a parameterized linear SCM for synthetic data generation of a large number of biased
datasets, and examine various parameter configurations of the generating model (Section 4).

• We conduct a comprehensive ablation study on numerous real-world and synthetic datasets to
empirically demonstrate the efficacy of our measures in capturing marginal discriminatory impacts
of features. Our empirical evaluation supports our theoretical framework and yields a principled
guideline for which discrimination measures to use under given data conditions and fairness criteria.

2 BACKGROUND AND PRELIMINARIES

We begin with a background about common machine learning (ML) fairness notions and the the-
oretical tools we use to quantify marginal discriminatory impacts, namely, partial information
decomposition (PID) and the Shapley value function. We then highlight some existing discrimination
measures. Let us first highlight the notations we use throughout the paper.
Notation. Consider a dataset (Xn, A, Y ), with n general features Xn = {X1, · · · , Xn}, a sen-
sitive attribute A, and true target label Y . [n] denotes the sequence {1, . . . , n}. For S ⊆ [n],
XS ≜ {Xi : i ∈ S} is the subset of Xn indexed by S. Sc ≜ [n]\S. |S| denotes the cardinality of
S. ∅ is the empty set and 2[n] is the power set of [n]. For a random variable A, A and pA denote its
sample space and probability distribution. ∆A is the probability simplex over A. For two random
variables A,B, pA,B and pA|B denote their joint and conditional distributions. Ea∼pA

[f(a)] is the
expected value of f(a) when a is sampled from pA. I(A;B) and I(A;B|C) denote the mutual infor-
mation between A and B, and their conditional mutual information given C. Consider the predictor
h which predicts Y based on Xn, i.e., Ŷ ≜ h(Xn). For a subset XS , S ⊆ [n]; Ŷ (S) ≜ h|XS

(Xn)
refers to the restriction of h to XS , i.e., input features in XSc are set as constants to their mean values.

2.1 FAIRNESS NOTIONS IN MACHINE LEARNING

Existing fairness notions require access to predictions to enforce statistical or counterfactual parity of
decisions across pairs/groups of individuals. These are categorized into individual and group notions.
Individual fairness advocates for treating similar individuals similarly via a Lipschitz constraint on
the outcomes of a randomized predictor (Dwork et al., 2012). Group fairness notions consider groups
of individuals defined by their group memberships A. For example, Demographic Parity (DP)
requires independence of A from the prediction Ŷ = h(Xn) (Calders et al., 2009). While widely
used, DP cripples accuracy when base rates across demographic groups, i.e., pY |A=a(1) for a ∈ A,
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are unequal (Hardt et al., 2016). To circumvent this, Hardt et al. (2016) proposed Equalized Odds
(EO), which requires conditional independence of Ŷ and A given the true label Y .

2.2 PARTIAL INFORMATION DECOMPOSITION (PID)
Consider three random variables A,B,R and let pA,B,R be their joint distribution. PID decomposes
the mutual information (MI) between the pair (A,B) and a reference R, i.e., I(R; (A,B)), into four
distinct non-negative components as follows (Bertschinger et al., 2014):

I(R; (A,B)) = UI(R;A\B) + UI(R;B\A) + SI(R;A,B) + CI(R;A,B). (1)

UI(R;A\B) is the unique information about R contained in A but not in B. UI(R;B\A) is defined
similarly. SI(R;A,B) is the shared information that each of A and B have, individually, about R.
CI(R;A,B) is the complementary information about R that requires both A and B together, rather
than individually, to obtain. Based on Figure 1, the following identities hold:

I(R;A) = UI(R;A\B) + SI(R;A,B) and I(R;B) = UI(R;B\A) + SI(R;A,B). (2)
I(R;B)

I(R;A) I(R; (A,B))

UI(R;A\B)

UI(R;B\A)

SI(R;A,B)

CI(R;A,B)

Figure 1: Partial Information De-
composition of I(R; (A,B)).

We adopt the unique information characterization proposed
by Bertschinger et al. (2014)1. Specifically, let Iq(R;A|B)
be the conditional mutual information (CMI) w.r.t. the joint
distribution q ∈ ∆∗

A,B,R ≜ {q ∈ ∆A,B,R : qR,A =

pR,A and qR,B = pR,B}. ∆∗
A,B,R is the simplex of all joint

probability distributions for which their marginals qR,A and
qR,B are equal to the true marginals pR,A and pR,B . Then,

UI(R;A|B) ≜ minq∈∆∗
A,B,R

Iq(R;A|B). (3)

Conditional PID. Consider a fourth random variable Z
and the joint distribution pA,B,R,Z . We define the con-
ditional unique information about R in A but not in B, given Z, as CUIZ(R;A\B) ≜
Ez∼pZ

[UI(Rz;Az\Bz)]: Rz, Az, Bz are distributed according to pR,A,B|Z=z . The conditional
shared and complementary information, CSIZ(R;A,B) and CCIZ(R;A,B), are defined similarly.
The decomposition in (1), (2) holds for conditional PID components.
Lemma 2.1. Monotonicity properties of PID (Rauh et al., 2014). UI(R;A\B) is non-decreasing in
R and A, and non-increasing in B. SI(R;A,B) is non-decreasing in both A and B.

The same properties hold for conditional PID components due to the linearity of expectation.

2.3 THE SHAPLEY VALUE FUNCTION

We use Shapley value to compute the marginal discriminatory impacts of features. A cooperative
game is defined by a set of n players and a pay-off function v(S) : 2[n] → R, S ⊆ [n], and v(∅) = 0.
Shapley value estimates the marginal contribution of player i to the pay-off as (Shapley, 1953):

ϕi(v) =
∑

S⊆[n]\{i}

1

n!
((n− 1− |S|)!|S|!) (v(S ∪ {i})− v(S)) , i ∈ [n]. (4)

The choice of the weights in (4) makes it the unique function satisfying (Young, 1985): (1) Sym-
metry: If ∀S ⊆ [n]\{i, j}, i ̸= j, v(S ∪ {i}) = v(S ∪ {j}), then ϕi(v) = ϕj(v). (2) Efficiency:∑

i∈[n] ϕi(v) = v([n]). (3) Dummy player: If ∀S ⊆ [n]\{i}, v(S∪{i}) = v(S), then ϕi(v) = 0. (4)
Linearity: For pay-off functions v1, v2 and ∀α1, α2 ∈ R, ϕi(α1v1+α2v2) = α1ϕi(v1)+α2ϕi(v2).

2.4 EXISTING MEASURES

Next, we revisit some existing discrimination measures, which we relate to our framework in Section 3.
Khodadadian et al. (2021) proposed the following measure,

vD(XS) = I(A;XS)I(A;XS |Y )SI(Y ;XS , A), (5)
which does not require access to predictions and satisfies (1) non-negative and non-decreasing, (2)
A-independence: If XS⊥A, then v(XS) = 0, (3) AY-independence: If XS⊥A|Y , then v(XS) = 0,
and (4) Y-independence: If XS⊥Y , then v(XS) = 0. In Section 3, we revisit these desired properties

1Note that I(R; (A,B)), I(R;A), and I(R;B) are computed directly using the joint distribution PA,B,R.
Therefore, using (1) and (2), explicitly characterizing the four components on the RHS of (1) requires explicit
characterization of either the unique, shared, or complementary information.
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for a discrimination measure. In contrast, the following measures require access to either a white-box
predictor h or the joint distribution of the predictions Ŷ and the data (Xn, A, Y ). Dutta et al. (2022)
introduced two measures to quantify the discrimination impact of XS on a predefined predictor
Ŷ = h(Xn). The first uses Ŷ (S) = h|XS

(Xn) as
vD(XS) = I(A; Ŷ (S)) : Mutual information between A and h restricted to XS . (6)

The second measure can be computed using the joint distribution pX,A,Ŷ as
vD(XS) = SI(A; Ŷ , XS) : Shared information between Ŷ and XS about A. (7)

Dutta et al. (2020) introduced two measures to quantify non-exempt discrimination, i.e., cannot be
explained by features critical for prediction, XC , where C ⊆ [n]. These are defined as follows:

vD(XC) = UI(A; Ŷ \XC) : Unique Information about A in Ŷ but not in XC . (8)

vD(XC) = I(A; Ŷ |XC) : Conditional mutual information between A and Ŷ given XC . (9)

3 PROPOSED MEASURES
This section outlines our axiomatic framework for developing predictor-free discrimination measures.
We begin by postulating a set of desired properties. We then derive a set of candidate measures
based on these properties. Our approach differs from that in (Khodadadian et al., 2021) in a few
key aspects: (1) We do not mandate our measures to adhere to all desired properties since for a
given data distribution and fairness criteria, desired properties for a discrimination measure could
exhibit inherent conflict. (2) For the data-generating causal diagram (Figure 2), we allow for a direct
influence from the sensitive attribute A to the target label Y , besides influencing Y through the
remaining features Xn. Further, similar to Kusner et al. (2017), we assume ancestral closure of
A, i.e., A is a root variable, since a parent of a sensitive attribute itself is a sensitive attribute. For
simplicity, we assume that Y is a sink node, i.e., there are no feedback loops from the target label
Y to data features {A,Xn}. Finally, we assume that no single observed feature is a deterministic
function of other features.

3.1 DESIRED PROPERTIES

A Xn Y

Figure 2: Causal diagram for
data variables.

We derive discrimination measures for subsets of features XS , S ⊆
[n]. A discrimination measure vD(XS) should satisfy
Property 1 (Non-negativity). vD(XS) ≥ 0, with equality if S = ∅.
Property 2 (Monotonicity). vD(XS1

) ≤ vD(XS2
), for any

S1, S2 ⊆ [n] such that S1 ⊆ S2.
All our proposed measures satisfy Property 1 (non-negativity). In contrast, depending on the data,
Property 2 (monotonicity) may not be essential since including certain features could resolve the
discriminatory impact of others. For instance, including features correlated with Y yet independent
of A could reduce the discrimination impact of XS for a target accuracy. Notably, marginal dis-
criminatory impacts deduced using the Shapley value for a monotonic measure are non-negative;
but could be negative if the measure is not monotonic. Removal of features with negative marginal
discriminatory impacts may result in increasing the discrimination of a downstream predictor. The
following properties are inspired by demographic parity (DP) and equalized odds (EO) criteria.
Property 3 (DP-independence). XS⊥A ⇔ vD(XS) = 0.
Property 4 (EO-independence). XS⊥A|Y ⇔ vD(XS) = 0.

Consider restricting Property 3 to a specific predictor h by replacing XS with Ŷ (S) = h|XS
(Xn).

A measure vD satisfying Property 3 equals zero iff Ŷ (S) satisfies DP. A similar argument holds for
Property 4. The following Lemma demonstrates the inherent conflict between Properties 3 and 4:
Lemma 3.1. There is no measure that satisfies both Property 3 and Property 4, simultaneously.

Proof. Suppose that a measure vD satisfies Properties 3 and 4. For XS s.t. XS ⊥ A but XS ̸⊥ A|Y ,
we have that vD(XS) = 0 by Property 3, but vD(XS) ̸= 0 by Property 4; a contradiction.
Remark 1. Lemma 3.1 resembles the result in (Kleinberg et al., 2017) which states that no predictor
can satisfy DP and EO simultaneously except for the cases of a random predictor or when base rates
across demographics are equal. Lemma 3.1 establishes a similar result for a discrimination measure
vD. For a general data distribution, vD cannot satisfy DP- and EO-independence simultaneously, as
this implies the equivalence XS⊥A ⇔ XS⊥A|Y , which does not hold in general.
For a binary sensitive attribute and target label, the following lemma specifies the necessary conditions
for which XS⊥A and XS⊥A|Y are equivalent.
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Lemma 3.2. For a subset of features XS , binary target label Y and binary sensitive attribute A, such
that XS⊥A and XS⊥A|Y , it follows that either (1) XS⊥Y , i.e., XS is irrelevant to the prediction
task, or (2) A⊥Y , i.e., the base rates are equal across demographic groups.

All the proofs in this work are deferred to the appendix. We also consider relaxed versions of
Properties 3 and 4 by replacing ⇔ with ⇒, as follows:

Definition 1. A measure vD satisfies relaxed DP-independence if XS⊥A =⇒ vD(XS) = 0.

Definition 2. A measure vD satisfies relaxed EO-independence, if XS⊥A|Y =⇒ vD(XS) = 0.

These relaxed versions are identical to “A-independence” and “AY-independence" in (Khodada-
dian et al., 2021), respectively (cf. Section 2.4). A measure satisfying both relaxed DP- and
EO-independence (e.g., (5)) could misrepresent the marginal discriminatory impacts computed using
the Shapley value function in (4). We illustrate this observation by the following example.

Example 3.3. Consider features X1, X2 s.t. X1 ̸⊥ A but X1 ⊥ A|Y and X2 ⊥ A but X2 ̸⊥ A|Y .
Consider a predictor Ŷ = h(X1, X2) and its restrictions Ŷ ({1}) = h|X{1}

and Ŷ ({2}) = h|X{2}
.

Suppose Ŷ ̸⊥ A, Ŷ ̸⊥ A|Y (h violates DP and EO). We expect: (1) Ŷ ({2})⊥A but not necessarily
Ŷ ({1})⊥A, hence using X1 as an input to h causes DP violation; (2) Similarly, Ŷ ({1})⊥A|Y but
not necessarily Ŷ ({2})⊥A|Y , hence X2 causes EO violation. For non-negative measure vD, the
marginal discriminatory impact for Xi, i = 1, 2, is expressed using (4) as ϕD

i = (vD(X{1,2}) −
(−1)ivD(X{1}) + (−1)ivD(X{2}))/2. If vD satisfies both relaxed DP- and EO-independence, then
vD(X{1}) = vD(X{2}) = 0. Thus, ϕD

1 = ϕD
2 = vD(X{1,2})/2. This contradicts the expected

contribution of X1 and X2 to the discrimination of Ŷ . When vD satisfies only DP-independence
or its relaxed version, vD(X2) = 0 and vD(X1) > 0 (or ≥ 0 for relaxed version), implying that
ϕD
1 > ϕD

2 (or ≥ for relaxed version). This aligns with the expected contributions of X1 and X2 to
the discrimination of Ŷ w.r.t. DP. A similar argument can be made for the EO counterpart.

Example 3.3 highlights the limitation of measures satisfying both relaxed DP- and EO-independence.
Thus, we advocate for measures that satisfy either of these properties but not both (depending on the
desired fairness criteria). Finally, we propose the following properties, intended to prevent attributing
discrimination bias to features XS when the remaining features XSc could account for that bias.

Property 5 (DP-blocking). XS⊥A|XSc =⇒ vD(XS) = 0.

Property 6 (EO-blocking). XS⊥A|{XSc , Y } =⇒ vD(XS) = 0

Requirements similar to DP- and EO-Blocking were proposed in (Frye et al., 2020; Khodadadian et al.,
2021) but for quantifying feature importance for prediction accuracy. Frye et al. (2020) incorporate
causal knowledge through asymmetric Shapley values, requiring that if Xi is a deterministic causal
ancestor of Xj , no importance should be attributed to Xj . Throughout the paper, we distinguish
between properties aligned with DP and those aligned with EO, as highlighted in the following:

Definition 3. DP- (resp. EO-) independence , relaxed DP- (resp. EO-) independence, and DP- (resp.
EO-) blocking are aligned with demographic parity (resp. equalized odds), and collectively referred
to as “DP-properties" (resp. “EO-properties").

Next, we highlight the following two undesired conditions, met by some of our measures:

Condition 1. XS⊥Y =⇒ vD(XS) = 0.

Condition 2. A⊥Y =⇒ vD(XS) = 0 for all S ⊆ [n].

Condition 1 was proposed by Khodadadian et al. (2021) as a desired property, to be satisfied by the
measure in (5). We argue that this condition is unnecessarily restrictive. To elaborate, XS⊥Y implies
that XS is unnecessary for prediction; but not that XS has no discriminatory impact when used. For
instance, a model developer may opt out of implementing a thorough feature-selection and include
features irrelevant for prediction. Based on our framework, quantifying features’ discriminatory
impact on any downstream predictor should not enforce such features (those marginally independent
of Y ) to possess no discriminatory impact. Condition 2 limits the measure’s ability to capture inherent
discrimination bias for any features subset when base rates are equal across demographics. This
is inspired from the result in (Locatello et al., 2019, Thm. 1), which shows that A ⊥ Y does not
guarantee DP of a downstream predictor even for the optimal Bayes predictor. Thus, we argue that
Condition 2 is undesirable for a discrimination measure as it cripples the measure efficacy.
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3.2 THE MEASURES

Next, we propose a set of candidate discrimination measures that partially satisfy the desired properties
in Section 3.1. Based on Definition 3, we categorize these into: (i) Measures aligned with DP,
satisfying only DP-properties, and (ii) Measures aligned with EO, satisfying only EO properties.
3.2.1 MEASURES ALIGNED WITH DP
A measure for the discriminatory impact of a subset XS should quantify the amount of information
XS has about the sensitive attribute A, as described in our first candidate measure below:
Candidate measure 1: vD1 (XS) = I(A;XS). vD1 (XS) is (i) non-negative (Property 1) due to
non-negativity of KL-divergence; (ii) monotonically non-decreasing (Property 2) since I(A;XS2) =
I(A;XS1

) + I(A;XS2\S1
|XS1

) for S1 ⊆ S2 ⊆ [n] and I(A;XS2\S1
|XS1

) ≥ 0; (iii) satisfies DP-
independence (Property 3) since I(A;XS) = 0 iff pXS ,A = pXS

pA (Cover & Thomas, 2006). This
measure is an adaptation of (6) or (7), by replacing Ŷ with XS where XS can be viewed as a proxy
for Ŷ as we seek to quantify its discriminatory impact on the downstream predictor Ŷ = h(Xn).

Note that I(A;XS) = UI(A;XS\XSc) + SI(A;XS , XSc). Thus, vD1 (XS) attributes to XS its
unique information about A (not in XSc) and its shared information, with XSc , about A. This
shared information is also attributed to XSc in I(A;XSc). We may wish to avoid this dou-
ble attribution and use the measure vD1,u(XS) = UI(A;XS\XSc). vD1,u is (i) non-negative due
to the non-negativity of PID components (cf. Section 2.2); (ii) monotonically non-decreasing
(cf. Lemma 2.1); (iii) satisfies relaxed DP-independence (Definition 1) since A⊥XS implies
I(A;XS) = UI(A;XS\XSc) + SI(A;XS , XSc) = 0; and (iv) satisfies DP-blocking (Property 5)
since A⊥XS |XSc implies I(A;XS |XSc) = UI(A;XS\XSc) + CI(A;XS , XSc) = 0. Note that
this measure is similar to (8), by replacing Ŷ with XS and XC with XSc . We could also attribute to
XS the complementary information about A, provided jointly by XS and XSc , since this information
would be lost if XS were removed. This results in the measure vD1,c(XS) = I(A;XS |XSc), which is
also non-negative, monotonically non-decreasing (since I(A;XS |XSc) = I(A;Xn) − I(A;XSc)

and I(A;XSc) is non-increasing), and satisfies DP-blocking. vD1,c is similar to (9), by replacing Ŷ

with XS and XC with XSc . Nevertheless, vD1 , vD1,u, vD1,c all result in identical marginal discriminatory
impact, when Shapley value (4) is applied, as shown next.
Theorem 3.4. Let vSI(XS) = SI(A;XS , XSc), vCI(XS) = CI(A;XS , XSc), vCSI(XS) =
CSIY (A;XS , XSc), vCCI(XS) = CCIY (A;XS , XSc) be pay-off functions. The marginal contri-
butions ϕi(vSI), ϕi(vCI), ϕi(vCSI), ϕi(vCCI), for all i ∈ [n], using (4), are equal to zero.
Since vD1 (XS) = vD1,u(XS) + vSI(XS), vD1,c(XS) = vD1,u(XS) + vCI(XS), Thm. 3.4 and linearity
of Shapley value imply that ϕi(v

D
1 ) = ϕi(v

D
1,u) = ϕi(v

D
1,c). See Remark 2 for additional comments.

The measures vD1,u, v
D
1 , vD1,c are independent of Y , hence ignore Y ’s influence on the discrimi-

nation bias of downstream predictors. To include Y , consider the decomposition I(A;XS) =
UI(A;XS\Y ) + SI(A;XS , Y ). UI(A;XS\Y ) is the unique information about A in XS but not in
Y . Thus, it should be possible to find a representation of XS that maintains its expressiveness w.r.t
Y , yet discards UI(A;XS\Y ). The remaining component, SI(A;XS , Y ), is discriminatory since it
is a shared information between Y and XS about A. This leads us to the following measure.
Candidate measure 2: vD2 (XS) = SI(A;XS , Y ), is non-negative, monotonically non-decreasing,
and satisfies relaxed DP-independence since A⊥XS implies I(A;XS) = UI(A;XS\Y ) +
SI(A;XS , Y ) = 0. Yet, vD2 (XS) meets undesired Condition 2 since A⊥Y implies I(A;Y ) =
UI(A;Y \XS) + SI(A;Y,XS) = 0. Thus, vD2 (XS) could fail to capture the discriminatory impact
of XS when A⊥Y . Further, as shown by our experiments, when a simple predictor is used and the
data exhibits very large UI(A;XS\Y ), vD2 (XS) might not perform well in capturing the predictor’s
discrimination bias (on some datasets), since the predictor may overfit into this information.

Another way to incorporate Y into the construction of vD is through the decomposition I(XS ;A, Y )
= UI(XS ;Y \A)+UI(XS ;A\Y )+SI(XS ;A, Y )+CI(XS ;A|Y ). The unique information about
XS in Y but not in A, UI(XS ;Y \A), is not a discriminatory component. The remaining components
however are discriminatory, as they quantify the information about XS that is unique in A, shared
between A and Y , or require A and Y jointly. We use these three discriminatory components to
construct two measures, vD3 , which is aligned with DP, and vD4 , which is aligned with EO.
Candidate measure 3: vD3 (XS) = SI(XS ;A, Y ) is non-negative and satisfies relaxed DP-
independence since A⊥XS implies I(XS ;A) = UI(XS ;A\Y ) + SI(XS ;A, Y ) = 0. Yet, it meets
undesired Condition 1, since XS⊥Y implies I(XS , Y ) = UI(XS ;Y \A) + SI(XS ;A, Y ) = 0. vD3
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can be viewed as an adaptation of vD1 by discarding UI(XS ;A\Y ), the unique information about
XS in A but not in Y , which could be discriminatory. Our experiments demonstrate that when
UI(XS ;A\Y ) is large, the predictor could overfit into this component. In contrast, a predictor
optimized to achieve DP could avoid overfitting into UI(A;XS\Y ) or UI(XS ;A\Y ). This however
assumes that data generation and model development are conducted by the same “trusted” party,
while our framework aims to quantify discrimination bias in the data which could potentially be used
by untrusted parties. vD3 is the only measure we propose that is not non-decreasing, hence results in
positive and negative marginal impacts (see Section 4).
3.2.2 MEASURES ALIGNED WITH EO
We adapt the measures from Section 3.2.1 to be aligned with EO, by conditioning on Y .
Candidate measure 4: vD4 (XS) = I(A;XS |Y ), is non-negative, monotonically non-decreasing,
and satisfies EO-independence. Using a similar discussion as for candidate measure vD1 , we obtain the
measures: vD4,u(XS) = CUIY (A;XS\XSc) which is non-negative, monotonically non-decreasing,
and satisfies relaxed EO-independence and EO-blocking; as well as vD4,c(XS) = I(A;XS |XSc , Y )
which is non-negative, monotonically non-decreasing, and satisfies EO-blocking.

Note that vD4 , vD4,u, vD4,c are adapted version of vD1 , vD1,u, vD1,c by conditioning on Y . For measures
vD2 , vD3 , conditioning on Y reduces their values to zero. Once again, using Thm. 3.4, it follows that
the marginal impacts ϕi(v

D
4 ), ϕi(v

D
4,u), and ϕi(v

D
4,c), computed using Shapley, are identical.

3.2.3 MEASURES ALIGNED WITH BOTH DP AND EO
Finally, we consider the measure in (5), and refer to it as vDkh(XS). Recall that vDkh(XS) satisfies
both relaxed DP- and relaxed EO-independence. It also satisfies undesired Conditions 1, 2 since
Y⊥XS implies I(Y ;XS) = UI(Y ;XS\A) + SI(Y ;XS , A) = 0 and A⊥Y implies I(A;Y ) =
UI(Y ;A\XS) + SI(Y ;A,XS) = 0. We observe that by removing the quantity SI(Y ;A,XS)
(which vanishes when Y ⊥ XS or A ⊥ Y ) from vDkh(XS), both undesired conditions could be
avoided. This leads to our final candidate measure:
Candidate measure 5: vD5 (XS) = I(A;XS)I(A;XS |Y ) satisfies all desired properties met by vDkh,
but violates Conditions 1, 2. We provide a summary of the measures’ properties in Appendix 8.
Remark 2. Through a synthetic-data experiment, Pelegrina et al. (2024) show that using Shapley
value to quantify individual feature importance does not overestimate the shared information among
features, compared to the non-coalition method from (Pelegrina et al., 2023). Thm. 3.4 theoretically
validates this result by proving that Shapley aggregation eliminates the shared and complementary
information, SI(A;XS , XSc) and CI(A;XS , XSc), from the deduced marginal impacts.
Remark 3. Marginal discriminatory impacts deduced using Shapley value applied to our measures
do account for redundancy and synergy among features within XS (or XSc). This is because our
measures are defined for a subset XS based on the joint distribution pXS ,XSc ,A,Y , yet without
knowledge of interdependencies among features within XS (nor XSc ). For example, the measure may
not differentiate between the presence or absence of duplicate instances of a particular feature within
XS . Kumar et al. (2020) demonstrated, through a toy example, that appending a single redundant
feature to a 2-feature dataset alters deduced marginal feature importance scores. In Appendix 9, we
modify this example to highlight the impact of redundancy on the correctness of deduced marginal
discriminatory impacts, and further extend it to show that adding a large number of redundant
features renders the marginal discriminatory impact dominated by redundant features.

4 EXPERIMENTAL RESULTS: SYNTHETIC DATA

We evaluate our discrimination measures using numerous synthetic datasets, generated via a paramet-
ric structural causal model (SCM) (Pearl, 2009), see Figure 2. Our SCM contains 6 observed variables
(A, features X1 −X4, Y ) and 2 latent confounders (Z1, Z2); A ∼ Bern(pa), Z1 ∼ Gamma(2, 1),
and Z2 ∼ Uniform([0, 2]). In the corresponding causal diagram, A, Z1, Z2 are root nodes and Y is a
sink node. Features X1 −X4, and soft label Ỹ , are sampled using the structural equations:

Xi = αa,iwa,iA+
∑

k∈[4]\{i}
αk,iwk,iXk +

∑
j∈[2]

αzj ,iwzj ,iZj + εi, for i ∈ [4] (10)

Ỹ = αa,ywa,yA+
∑

k∈[4]
αk,ywk,yXk +

∑
j∈[2]

αzj ,ywzj ,yZj + εy, (11)

where variables α ∈ {0, 1} are edge indicators, and variables w ∈ [1, 2] are edge weights. εi, εy ∼
N(0, 1) are the exogenous Gaussian noise variables. We fix the causal order {1, 2, 3, 4} among
features in (10) to ensure the graph is acyclic. The binary target label Y is computed using the soft

label Ỹ in (11) as Y = 1((Ỹ − E[Ỹ ])/
√

Var[Ỹ ] > thy) where thy ∈ R is a threshold parameter.
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We first sample numerous directed acyclic graphs (DAGs) according to the parameteric SCM
in (10), (11), via sampling graph variables and setting their parameter values as follows. Edge
indicators α{a,k,zj},i ∼ Bern(pa,z,xd ), for i, k ∈ [4], and j ∈ [2], where pa,z,xd ∈ {0.2, 0.4, 0.6, 0.8}.
αk,y ∼ Bern(px,yd ), for k ∈ [4], where px,yd ∈ {0.5, 0.7, 0.9}. αzj ,y ∼ Bern(0.5), for j ∈ [2].
αa,y ∈ {0, 1}. Nc ∈ {0, 1, 2} confounders: ‘0’= No confounders; ‘1’= only Z1; and ‘2’= Z1,
Z2. Demographic ratio pa ∈ {0.1, 0.6}. Threshold thy ∈ {0, 0.15, 0.3, 0.45, 0.6}. Edge weights
w ∼ Uniform[1, 2], except wa,y = 2. See Appendix 10 for more details about the selection of the
parameters. For each possible combination of the parameters, we sampled three DAGs, resulting in
a total of 2160 DAGs. For each realization of the DAG, we sample ten 100k-example datasets by
sampling A ∼ Bern(pa), Z1 ∼ Gamma(2, 1), Z2 ∼ Uniform([0, 2]), εi, εy ∼ N(0, 1). Finally, we
quantize the range of each feature Xi, for i ∈ [4], into six bins of equal width.

For each DAG, we deduce the marginal discriminatory impacts, ϕi(v
D
j ) for i ∈ [4] and j ∈

{1, ..., 5, kh}, using the measures presented in Section 3.2, averaged over 3 out 10 datasets. We
utilize the “dit Package” (James et al., 2018) for computing MI and the “Broja_2PID” Package
(Makkeh et al., 2017; 2018) for computing PID components, which solves the optimization problem
in (3) using ECOS solver (Domahidi et al., 2013). We upgrade the package with the MOSEK
optimization suite in (ApS, 2019) to enhance calculation reliability. We also add a fault detection
mechanism, see Appendix 11 for more details. We split each dataset into 67% train and 33% test
datasets and train a 1-layer neural network (NN) with 3 hidden units. On the test set, we evaluate
the discrimination bias of the predictor w.r.t to DP and EO as bDP ≜ |pŶ |A=1(1)− pŶ |A=0(1)|, and

bEO ≜ Ey∼pY
[|pŶ |A=1,Y=y(1)− pŶ |A=0,Y=y(1)|].

We conduct an ablation study to validate the correctness of the deduced marginal discriminatory
impacts based on our measures. For each dataset, we calculate the discrimination bias metrics with all
features included, denoted by bDP

t and bEO
t , as well as when a feature i is removed (set to its mean

value), denoted as bDP
i and bEO

i ; where i ∈ [n]. We then compute the reduction of discrimination bias
due to individual feature removal as: dDP

i ≜ bDP
t − bDP

i and dEO
i ≜ bEO

t − bEO
i . To account for the

varying scales of the marginal discriminatory impacts, ϕi(v
D
j ), and the discrimination bias reductions,

dDP
i and dEO

i , we compute a normalized version of each quantity as: d̄DP
i ≜ dDP

i /(maxi|di|),
d̄EO
i ≜ dEO

i /(maxi |di|), and ϕ̄i(v
D
j ) ≜ ϕi(v

D
j )/(maxi |ϕi(v

D
j )|), where d̄DP

i , d̄EO
i , ϕ̄i(v

D
j ) ∈ [−1, 1].

We then compute the mean absolute error per feature for each DAG as: eDP
j = 1

8

∑
i |ϕ̄i(v

D
j )− d̄DP

i |
and eEO

j = 1
8

∑
i |ϕ̄i(v

D
j ) − d̄EO

i |; eDP
j , eEO

j ∈ [0, 1], averaged across 10 datasets. Similarly, we
evaluate the correctness of the accuracy measure in (Khodadadian et al., 2021), and provide the
results in Appendix 12.

For several DAGs (about 55%), feature removal affects the DP and EO discrimination bias of
the predictor similarly. We utilize the following metric to assess a distinct behavior across the
DAGs, w.r.t. DP and EO discrimination: ∆(DP,EO) = 1

8

∑
i |d̄DP

i − d̄EO
i |, averaged across 10

datasets. Subsequently, we divide the DAGs into two groups: (1) Distinct DP-EO DAGs, for which
∆(DP,EO) > 0.2 (20% of full scale), with 964 out 2160 total DAGs. (2) Other DAGs, for which
∆(DP,EO) < 0.2. Table 1 shows average measure errors for DP and EO across both DAG groups.

For distinct DP-EO DAGs, the DP-aligned measures, vD1 , vD2 , and vD3 , outperform others in capturing
the DP discrimination bias, with vD3 having the lowest error. The EO-aligned measure vD4 outperforms
others in capturing the EO discrimination bias. The errors of measures vD5 and vDkh, which satisfy both
DP and EO properties, are higher than those of vD1 , vD2 , and vD3 for DP, yet less than that of vD4 . For
EO, vD5 and vDkh outperform vD1 , vD2 , vD3 but not the EO-aligned measure vD4 . For the other DAGs,
vD3 outperforms all other measures. Recall that vD3 is the only measure that is not monotonically
non-decreasing (violates Property 2), resulting in both positive and negative marginal discriminatory
impacts. That is, vD3 captures both increases and decreases in the predictor’s discrimination bias
due to feature removal. Across all datasets, the percentage of features that cause an increase in the
discrimination bias when removed, i.e., replaced with their mean, is 32.1% for DP and 44.3% for EO.
This supports our discussion in Section 3.1 that Property 2 is not essential. See Appendix 13 for the
distribution of the measure errors for DP and EO; Appendix 14 for the measure errors for “equality
of opportunity” fairness metric (Hardt et al., 2016); Appendix 15 for a comprehensive analysis of the
relationship between the parameters of the data-generating model and the average measure errors,
and Appendix 16 for guidelines for measure selection.
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Measure Distinct DP-EO DAGs Other DAGs
DP EO DP EO

vD1 (XS) 0.215556 0.379859 0.254301 0.302232
vD2 (XS) 0.211955 0.399146 0.276416 0.337613
vD3 (XS) 0.189444 0.373309 0.231948 0.280861
vD4 (XS) 0.242605 0.362665 0.254454 0.294174
vD5 (XS) 0.227579 0.367171 0.247409 0.286240
vDkh(XS) 0.227591 0.369244 0.248619 0.288530

Table 1: Average measure errors in capturing marginal discriminatory impacts.

5 EXPERIMENTAL RESULTS: REAL-WORLD DATA
We evaluate our measures using 7 benchmark datasets. For each dataset, we specify the pair (Y ,
A). 3 datasets are derived from the U.S. Census American Community Survey (ACS) (Ding et al.,
2021): ACS Income (income, race), ACS Public Coverage (public-health-coverage, race), and ACS
Employment (employment-status, disability-status). The remaining datasets are: Adult (Kohavi &
Becker, 1996) (income, gender), Census income (KDD) (Dua et al., 2017) (income, sex), ProPublica
COMPAS (Larson et al., 2016) (recidivism-score, race), and Heritage health (Goldbloom & Hamner,
2011) (health-index, age). For each dataset, we select features correlated with A, prioritizing those
with high MI with A and low conditional MI given Y (or vice versa); to differentiate feature impacts
on discrimination bias w.r.t. DP and EO. Further, we quantize the range of each continuous feature
into up to 10 bins of equal width. See Appendix 17 for more details about the datasets. For each
dataset, we calculate the marginal discriminatory impacts of individual features using the measures in
Section 3.2. Changes in discrimination bias of a downstream predictor are computed for DP and EO as
in Section 4. We train 10 single-layer neural networks with different random seeds, optimizing hidden
units (5–200) for accuracy. Average measure errors over the seeds for DP and EO are presented in
Table 2. 5 datasets do not exhibit distinct DP-EO properties: ACS Income and Census Income are the
only ones with clear distinctions. For ACS Income, DP-aligned measures have errors below 15% for
DP, with vD3 exhibiting the lowest error, despite high UI(XS ;A\Y ) and UI(A;XS\Y ), accounting
for approximately 60% of I(A;XS). No measures achieve errors below 40% for EO due to high
redundancy, as CSIY (A;XS1 , XS2) constitutes, on average, 49% of I(A;XS1 |Y ) for S1, S2 ⊆ [n],
s.t., S1 ∩ S2 = ∅. For Census Income (KDD), most measures show low errors for DP discrimination.
Yet, the errors are larger than those in ACS Income, since SI(A;XS1 , XS2) constitutes, on average,
40% of I(A;XS1) for S1, S2 ⊆ [n], s.t., S1 ∩ S2 = ∅. vD4 has the lowest error for EO. Also, vD5 and
vDkh, which satisfy EO properties, have low errors. ASC Employment, Adult, and COMPAS datasets
exhibited similar DP-EO properties. Notably, measure vD3 demonstrates the lowest error on ACS
Employment and COMPAS, capturing both increases and decreases in the predictor’s discrimination
bias, unlike the other measures. For Adult dataset, vD2 exhibits the highest error for DP among the
DP-aligned measures, since UI(A;XS\Y ) ≈ I(A;XS) for half the feature subsets. An analogous
observation is noted for vD2 on the COMPAS dataset. For ACS Public Coverage, the predictor achieves
near-perfect DP and EO with bDP

t ≈ bEO
t ≈ 0.5%; removal of two features causes an increase in the

discrimination bias. Yet, none of the measures except vD3 captures the increase in the discrimination
bias. Notably, vD3 has high error since it fails to capture the discriminatory impact of ’Age’. For
most subsets that include this feature, SI(XS ;A, Y ) vanishes while I(XS ;A) ≈ UI(XS ;A\Y ).
This significant unique information component could cause measure vD3 to fail, as the predictor may
inherit this information that is not captured by the measure. For the Health dataset, the predictor
achieves marginal DP and EO violations, with bDP

t ≈ bEO
t ≈ 4%. Non-decreasing measures fails to

capture the slight decreases and the increases in discrimination bias, resulting in high measure errors.
Measure vD3 performs slightly better, but it is limited by the dataset’s high redundancy. See Appendix
18 for additional results, and Appendix 19 for a conclusion of this work.

Measure ACS Income ACS Employment ACS Public Coverage Adult Census Income (KDD) COMPAS Health
DP EO DP EO DP EO DP EO DP EO DP EO DP EO

vD1 0.121 0.488 0.047 0.061 0.383 0.440 0.067 0.078 0.251 0.251 0.112 0.107 0.345 0.396
vD2 0.129 0.463 0.047 0.061 0.346 0.403 0.099 0.110 0.207 0.264 0.138 0.133 0.355 0.378
vD3 0.052 0.447 0.031 0.044 0.328 0.310 0.082 0.067 0.220 0.329 0.037 0.028 0.258 0.243
vD4 0.180 0.495 0.065 0.079 0.319 0.372 0.067 0.079 0.213 0.213 0.140 0.135 0.365 0.416
vD5 0.168 0.498 0.051 0.065 0.349 0.406 0.067 0.080 0.232 0.222 0.140 0.135 0.414 0.464
vDkh 0.164 0.492 0.044 0.058 0.333 0.391 0.067 0.080 0.230 0.220 0.140 0.135 0.418 0.469

Table 2: Average measure errors for DP and EO on real-world datasets.
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6 PROOF OF LEMMA 3.2

Lemma 3.2 states that: For a subset of features XS , binary target label Y and binary sensitive attribute
A, such that XS⊥A and XS⊥A|Y , it follows that either (1) XS⊥Y , i.e., XS is irrelevant to the
prediction task, or (2) A⊥Y , i.e., the base rates are equal across demographic groups.

Consider the conditional probability distributions pXS |A=a(x) and pY |A=a(y), where a, y ∈ {0, 1}
and x ∈ XS , with XS representing the sample space of XS . Using the law of total probability,

pXS |A=a(x) = pXS |Y=1,A=a(x)pY |A=a(1) + pXS |Y=0,A=a(x)pY |A=a(0).

Since XS ⊥ A|Y , pXS |A=a(x) can be written as

pXS |A=a(x) = pXS |Y=1(x)pY |A=a(1) + pXS |Y=0(x)pY |A=a(0),

On the other hand, given XS ⊥ A, we have pXS |A=0(x) = pXS |A=1(x). Hence, substituting in this
equality the expression of pXS |A=a(x), we get

pXS |Y=1(x)pY |A=0(1)+pXS |Y=0(x)pY |A=0(0) = pXS |Y=1(x)pY |A=1(1)+pXS |Y=0(x)pY |A=1(0).

Rearranging the equation, we get
pXS |Y=1(x)

(
pY |A=0(1)− pY |A=1(1)

)
+ pXS |Y=0(x)

(
pY |A=0(0)− pY |A=1(0)

)
= 0.

Note that pY |A=0(0) = 1− pY |A=0(1) and pY |A=1(0) = 1− pY |A=1(1), hence we have(
pXS |Y=1(x)− pXS |Y=0(x)

) (
pY |A=0(1)− pY |A=1(1)

)
= 0,

which implies either pXS |Y=1(x) = pXS |Y=0(x), i.e., XS⊥Y , or pY |A=0(1) = pY |A=1(1), i.e.,
A⊥Y .

7 PROOF OF THM. 3.4

Thm. 3.4 states that: Let vSI(XS) = SI(A;XS , XSc), vCI(XS) = CI(A;XS , XSc), vCSI(XS) =
CSIY (A;XS , XSc), vCCI(XS) = CCIY (A;XS , XSc) be pay-off functions. The marginal contri-
butions ϕi(vSI), ϕi(vCI), ϕi(vCSI), ϕi(vCCI), for all i ∈ [n], using (4), are equal to zero.

We show that ϕi(vSI) = 0 for all i ∈ [n]. The proofs for the other pay-off functions follow similarly.

According to (4), ϕi(vSI) is given by

ϕi(vSI) =
∑

S⊆[n]\{i}

ω(S)
[
vSI(XS∪{i})− vSI(XS)

]
, where ω(S) ≜

(n− 1− |S|)!|S|!
n!

.

(12)
Note that n− 1− |S| = |Sc\{i}|, hence we have ω(S) = ω(Sc\{i}). Further, the sum index in (12)
could be equivalently replaced by Sc\{i} ∈ [n]\{i}. Therefore, (12) could be rewritten as

ϕi(vSI) =
∑

Sc\{i}⊆[n]\{i}

ω(Sc)
[
vSI(XS∪{i})− vSI(XS)

]
. (13)

Furthermore, we have
vSI(XS∪{i})− vSI(XS) = −

[
SI(A;XSc , XS)− SI(A;XSc\{i}, XS∪{i})

]
= −

[
vSI(X(Sc\{i})∪{i})− vSI(XSc\{i})

]
.

Thus, substituting in (13), we can rewrite the Shapley value ϕi(vSI) as

ϕi(vSI) = −
∑

Sc\{i}⊆[n]\{i}

ω(Sc\{i})
[
vSI(X(Sc\{i})∪{i})− vSI(XSc\{i})

]
= −ϕi(vSI),

which implies that ϕi(vSI) = 0, and completes the proof.
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8 SUMMARY OF THE MEASURES’ PROPERTIES

Measure
Natural Properties DP-Properties EO-Properties Conditions

Non. neg. Non. dec. DP indep. DP blocking EO indep. EO blocking 1 2
vD1 Yes Yes Yes No No No No No
vD1,u Yes Yes Yes* Yes No No No No
vD1,c Yes Yes No Yes No No No No
vD2 Yes Yes Yes* No No No No Yes
vD3 Yes No Yes* No No No Yes No
vD4 Yes Yes No No Yes No No No
vD4,u Yes Yes No No Yes* Yes No No
vD4,c Yes Yes No No No Yes No No
vD5 Yes Yes Yes* No Yes* No No No
vDkh Yes Yes Yes* No Yes* No Yes Yes

Table 3: Properties satisfied by our measures. (Yes*) indicates that the measure satisfies the relaxed
version of the property.

9 EFFECT OF REDUNDANT FEATURES ON THE FEATURES’ MARGINAL
DISCRIMINATORY IMPACTS

Here, we present an example (adapted from (Kumar et al., 2020)) to demonstrate the effect of feature
redundancy (within XS) on the correctness of marginal discriminatory impacts of individual features,
using Shapley value aggregation. To elaborate, marginal impacts are deduced using measures,
defined for subsets XS , based on the joint distribution pXS ,XSc ,A,Y , yet without knowledge of
interdependencies among features within XS (nor XSc). Note that, the example in (Kumar et al.,
2020) focuses on the effect of within-coalition feature redundancy on marginal features importance,
computed using Shapley value. We adapt the example to focus on marginal discriminatory impacts.
Additionally, we extend the analysis to examine the effect of adding a large number of redundant
features.

Consider a dataset containing two features, X1 and X2, a target label, Y , and a sensitive attribute,
A. Let vD(XS) be a discrimination measure that is defined for a subset XS based on the joint
distribution pXS ,XSc ,A,Y . Using (4), the marginal discriminatory impacts of individual features are
given by

ϕ1(v
D) =

1

2

(
vD(X{1,2})− vD(X{2})

)
+

1

2
vD(X{1}),

ϕ2(v
D) =

1

2

(
vD(X{1,2})− vD(X{1})

)
+

1

2
vD(X{2}).

Consider adding a redundant feature X3, a copy of X2, to the dataset. Adding a copy of X2 shall not
change the characteristics of the learnt predictor. Further, the discriminatory impact of X1 should
not change since removing X1 from the sets X{1,2} or X{1,2,3} yields identical information about
A (provided by X2). However, by adding X3 to the original dataset and computing the marginal
discriminatory impacts of X1, X2, and X3, we get

ϕ′
1(v

D) =
2

3

(
vD(X{1,2})− vD(X{2})

)
+

1

3
vD(X{1}),

ϕ′
2(v

D) = ϕ′
3(v

D) =
1

6

(
vD(X{1,2})− vD(X{1})

)
+

1

3
vD(X{2}),

since vD(X{1,2,3}) = vD(X{1,2}) = vD(X{1,3}), and vD(X{2,3}) = vD(X{2}) = vD(X{3}).
Note that ϕ′

1(v
D) does not equal the marginal discriminatory impact of X1 in the 2-features setting,

i.e., ϕ1(v
D). The redundant feature X3 caused the marginal discriminatory impact of X1 to be more

reliant on the contribution of X1 to the subset X{2}, i.e.,
(
vD(X{1,2})− vD(X{2})

)
rather than

on vD(X{1}). Moreover, the marginal discriminatory impact of X2 in the 2-features, i.e., ϕ2(v
D),

setting does not equal to ϕ′
2(v

D) nor the sum ϕ′
2(v

D)+ϕ′
3(v

D). This demonstrates that the redundant
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feature X3 alters the deduced marginal discriminatory impacts of features X1 and X2, leading to
results that contradict expectations.

Next, we extend the previous discussion to show that adding a large number of redundant features
(copies of X2) renders the marginal discriminatory impact of X1 unrelated to vD(X{1}), while
uniformly distributing v(X{2}) over the copies of X2, for their marginal discriminatory impacts.

Consider a dataset that contains n features X1, X2, ..., Xn, such that X2 = X3 = · · · = Xn. The
marginal discriminatory impact of X1 is given by

ϕ1(v
D) =

∑
S⊆[n]\{1}

(n− 1− |S|)!|S|!
n!

[
vD(XS∪{1})− vD(XS)

]
=

1

n
vD(X{1}) +

∑
S⊆[n]\{1},S ̸=∅

(n− 1− |S|)!|S|!
n!

[
vD(XS∪{1})− vD(XS)

]
(a)
=

1

n
vD(X{1}) +

∑
S⊆[n]\{1},S ̸=∅

(n− 1− |S|)!|S|!
n!

[
vD(X{1,2})− vD(X{2})

]
=

1

n
vD(X{1}) +

(
vD(X{1,2})− vD(X{2})

) ∑
S⊆[n]\{1},S ̸=∅

(n− 1− |S|)!|S|!
n!

(b)
=

1

n
vD(X{1}) +

n− 1

n

(
vD(X{1,2})− vD(X{2})

)
=

(
vD(X{1,2})− vD(X{2})

)
, as n → ∞

where (a) follows since the features in any non-empty subset S ∈ [n]\{1} are copies of X2, and
hence vD(XS) = vD(X{2}) and vD(XS∪{1}) = vD(X{1,2}). (b) follows since∑

S⊆[n]\{1},S ̸=∅

(n− 1− |S|)!|S|!
n!

=

n−1∑
j=1

∑
S⊆[n]\{1},|S|=j

(n− 1− |S|)!|S|!
n!

=

n−1∑
j=1

1

n
=

n− 1

n
.

The marginal discriminatory impact of the individual features Xi for i ∈ [n]\{1}, are

ϕi(v
D) =

∑
S⊆[n]\{i}

(n− 1− |S|)!|S|!
n!

[
vD(XS∪{i})− vD(XS)

]
=

1

n
vD(X{i}) +

∑
S⊆[n]\{i},S ̸=∅

(n− 1− |S|)!|S|!
n!

[
vD(XS∪{i})− vD(XS)

]
(a)
=

1

n
vD(X{2}) +

∑
S={1}

(n− 1− |S|)!|S|!
n!

[
vD(X{1,2})− vD(X{1})

]
=

1

n
vD(X{2}) +

1

n(n− 1)

(
vD(X{1,2})− vD(X{1})

)
where (a) follows because: (i) vD(X{i}) = vD(X{2}) since Xi is copy of X2 (ii) For any feature
Xj , such that j ̸= i and j ̸= 1, we have vD(X{i,j}) = vD(X{2}) since Xi and Xj are copies
of X2; (iii) For any S ⊆ [n]\{i}, such |S| > 1, we have either 1 ∈ S, hence vD(XS∪{i}) =

vD(XS) = vD(X{1,2}), or 1 ̸∈ S, hence vD(XS∪{i}) = vD(XS) = vD(X{2}). Further, the
ratio of 1

n(n−1)

(
vD(X1,2)− vD(X1)

)
to 1

nv
D(X2) approaches 0, when n approaches ∞, making

the former negligible compared to the latter. Moreover, the ratio of 1
n−1v

D(X{2}) to 1
nv

D(X{2})
approaches 1, when n approaches ∞, making the former an approximation of the latter. Hence,
ϕi(v

D) can be approximated by 1
n−1v

D(X{2}) for significantly large n.

To sum up, adding a large number of redundant features causes ϕ1(v
D) to be equal to the contribution

of X1 to the subset X{2}, i.e.,
(
vD(X{1,2})− vD(X{2})

)
, neglecting for the measure of singleton

subset X{1}. On the other hand, the marginal discriminatory impacts of X2 or any of the redundant
features (copies of X2) can be approximated by distributing the measure of X{2} over all the
redundant features including X2 itself.
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10 SELECTION OF THE DATA-GENERATING MODEL PARAMETERS

Here, we detail the parameters used to generate a causal directed graph defining the data-generating
model for each synthetic dataset in Section 4. Each graph is generated by sampling graph variables
and setting their parameter values as follows:

• The edge indicators αa,i, αk,i, and αzj ,i, for i, k ∈ [4] and j ∈ [2], are sampled from
a Bern(pa,z,xd ) distribution, where pa,z,xd represents the density of the causal connections
from {A,Z1, Z2} to Xn, and among the features in Xn. Here, pa,z,xd is selected from
{0.2, 0.4, 0.6, 0.8}, reflecting various levels of feature dependency on the sensitive attribute
and unobserved variables (when exist), as well as the interdependencies among features.

• The edge indicators αk,y, for k ∈ [4], are sampled from a Bern(px,yd ) distribution, where
px,yd represents the density of the causal connections from Xn to Y . We select px,yd from
{0.5, 0.7, 0.9}, avoiding lower density values to ensure the target label maintains substantial
correlation with dataset features.

• The edge indicators αzj ,y , for j ∈ [2], are sampled from a Bern(0.5) distribution, reflecting
equal likelihood of confounding, versus not confounding, the target label in the sampled
graphs.

• αa,y is set to either 0 or 1 to distinctively analyze scenarios with and without a direct causal
link from A to Y .

• We consider a number of confounders Nc ∈ {0, 1, 2}, where ‘0’ means ‘No confounders’,
‘1’ means ‘only Z1’, and ‘2’ means ‘both Z1 and Z2’. This introduces various levels of
complexity of interdependencies among dataset variables due to the presence of hidden
variables.

• Demographic ratio pa is selected from {0.1, 0.6} to simulate distinct demographic group
distribution.

• Threshold thy is selected from {0, 0.15, 0.3, 0.45, 0.6} to simulate distinct prediction tasks.
• All edge weights w are sampled from a Uniform[1, 2] distribution, except for wa,y, which

is always set to 2.

11 CALCULATION OF THE PID COMPONENTS

This section outlines our approach to ensure accuracy and consistency of PID component calculation,
particularly concerning the optimization problem defined in (3). We discuss several practical methods
for solving this problem and provide brief insights into their applicability to our specific context. Next,
we detail the solution we select and how we enhance its reliability. In the following, we highlight
three solvers for the optimization problem in (3):

• “dit Package” (https://github.com/dit/dit): This package computes the unique information
component by optimizing the conditional mutual information under marginal constraints
using the global optimization technique “basin-hopping” (James et al., 2018). Initial attempts
with this solver reveal impractical computation time when the number of random variables
or their support sizes increase. This inefficiency is evident even when computing the
discrimination measures for the synthetic datasets, which include only four features, each
having a support cardinality of 6.

• “ComputeUI Package” (https://github.com/infodeco/computeUI): This package solves the
optimization problem (3) using an alternating divergence minimization algorithm with
guaranteed convergence (Banerjee et al., 2018). Although this package demonstrates slightly
faster computation compared to the “dit Package”, it is inadequate when the number of
random variables or their cardinality increases.

• “BROJA_2PID Package” (https://github.com/Abzinger/BROJA_2PID): This package solves
the optimization problem by solving an equivalent exponential cone program, that satisfies
strong duality property (Makkeh et al., 2017; 2018). It demonstrates significantly fast
computation of the PID components. The computation time for any of our discrimination
measures that include PID components is only tens of seconds compared to more than

17

https://github.com/dit/dit
https://github.com/infodeco/computeUI
https://github.com/Abzinger/BROJA_2PID


an hour using the “dit Package” or the “ComputeUI Package”. We select this package to
calculate the PID components.

The available “BROJA_2PID Package” utilizes a Conic Optimization software toolbox ECOS, which
solves Exponential Cone Programs (Domahidi et al., 2013). As reported in (Makkeh et al., 2017,
Section 4.2), ECOS solver encounters numerical errors in rare instances when solving the optimization
problem in (3). To address this, we implement the solution proposed in (Makkeh et al., 2017, Section
5), which combines the ECOS solver with the MOSEK optimization suite (ApS, 2019). In this
approach, ECOS serves as a backup solver when MOSEK fails to provide a solution, ensuring robust
performance across various scenarios. Therefore, in our implementation, we integrate the MOSEK
optimization suite in the “BROJA_2PID Package”. This is implemented using the optimization
modeling tool CVXPY (Diamond & Boyd, 2016), as an API for the MOSEK suite. To compare
the solution of the two solvers, using synthetic datasets (cf. Section 4), we calculate the ratio of the
absolute differences between the PID components, computed using the ECOS solver and the MOSEK
suite, to the total mutual information (1). In some rare cases, the ratio reaches more than 5% due to
the failure of one of the solvers by numerical issues or the sub-optimality of the ECOS solver solution.
The failure of both solvers rarely happens. For the synthetic datasets experiment, we overcome this
dual failure by regenerating the synthetic dataset with a new random seed number. The failure of
both solvers does not happen in the real-world datasets experiment. Finally, to further ensure the
reliability of our results, we implement a robust fault detection mechanism for the PID component
computation, by verifying the monotonicity property (Property 2) of the discrimination measures
(cf. Section 3.2). Since measure vD3 (XS) = SI(XS ;A, Y ) does not satisfy Property 2, we instead
verbifies the monotonicity property of UI(XS ;A\Y ). The violation of the monotonicity property
rarely occurs, which is exclusive for subsets of features with relatively small measure values, where
"relatively" is understood in comparison to the measured values of other subsets of features in the
same dataset.

12 EXPERIMENTAL RESULTS OF SYNTHETIC DATA FOR THE ACCURACY
MEASURE

Here, we elaborate on the accuracy measure proposed by Khodadadian et al. (2021), revisiting its key
properties, and presenting experimental results obtained using both synthetic and real datasets (cf.
Sections 4 and 5). Khodadadian et al. (2021) proposed the following accuracy measure for a subset
of feature XS :

vA(XS) = I(Y ;XS |(A,XSc))

This measure satisfies the following desired properties. (1) Non-negative: vA(XS) ≥ 0 with equality
if S = ∅. (2) Non-decreasing: vA(XS1

) ≤ vA(XS2
), for any S1, S2 ⊆ [n], such that S1 ⊆ S2. (3)

Blocking: if Y⊥XS |(A,XSc), then vA(XS) = 0. Importantly, evaluating vA does not require access
to predictions Ŷ of a predefined learning model, hence vA is directly applicable to our framework.

The predictor accuracy is evaluated, based on the zero-one loss, as acc = pXn,A,Y (Y = Ŷ ). Using
the metric acc, we follow the same ablation study introduced for the discrimination measures in
Section 4 to validate the correctness of deduced marginal accuracy impacts for measure vA. The
average accuracy measure error evaluated on the synthetic datasets (cf. Section 4) is 0.177. The
distribution of the measure error is shown in Figure 3 (a). Additionally, we show the distribution of
predictor accuracy for all the synthetic datasets in Figure 3 (b). In Table 4, we provide the accuracy
measure error evaluated on the real-world datasets (cf. Section 5).
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(a) (b)

Figure 3: (a) Distribution of the accuracy measure error. (b) Distribution of the predictor accuracy.

Measure ACS Income ACS Employment ACS Public Coverage Adult Census income (KDD) COMPAS Health

I(Y ;XS |XSc , A) 0.0704 0.008 0.3433 0.066 0.1329 0.0714 0.1875

Table 4: Average accuracy measure error on real-world datasets.

13 DISTRIBUTION OF THE MEASURE ERRORS

(a) Error of vD1 for DP (b) Error of vD1 for EO (c) Error of vD2 for DP (d) Error of vD2 for EO

(e) Error of vD3 for DP (f) Error of vD3 for EO (g) Error of vD4 for DP (h) Error of vD4 for EO

(i) Error of vD5 for DP (j) Error of vD5 for EO (k) Error of vDkh for DP (l) Error of vDkh for EO

Figure 4: Distribution of the measure errors for DP and EO.
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14 EXPERIMENTAL RESULTS OF SYNTHETIC DATA FOR EQUALITY OF
OPPORTUNITY

This appendix extends the experimental results of the synthetic datasets (cf. Section 4) to incorporate
the fairness notion of equality of opportunity (EOP) Hardt et al. (2016). EOP requires matching
error rates for the “advantaged” outcome class across demographic groups. Formally, a classifier
Ŷ = h(Xn) satisfies this criterion:

• For Y = 0 as the advantaged outcome if pŶ |A=a,Y=0 = pŶ |Y=0, for a ∈ A, i.e., Ŷ and A

are independent given Y = 0.

• For Y = 1 as the advantaged outcome if pŶ |A,Y=1 = pŶ |Y=1, for a ∈ A, i.e., Ŷ and A are
independent given Y = 1.

We compute the discrimination bias of the predictor with respect to EOP as follows:

bEOP,0 ≜ |pŶ |A=1,Y=0(1)− pŶ |A=0,Y=0(1)|, for Y = 0 as the advantaged outcome; (14)

bEOP,1 ≜ |pŶ |A=1,Y=1(1)− pŶ |A=0,Y=1(1)|, for Y = 1 as the advantaged outcome; (15)

Table 5 shows the average measure errors with respect to EOP evaluated on the synthetic datasets.
See Section 4 for the definition of distinct DP-EO DAGs and other DAGs.

For the DAGs DP-EO datasets, vD4 has the lowest error when the advantaged outcome is Y = 0 or
Y = 1, similar to what we have for EO in Table 1. For the other datasets, vD3 has the lowest error for
Y = 0, while vD5 exhibits the lowest error for Y = 1. Notably, our choice of values for the threshold
thy yields positive rates P (Y = 1) ranging from 20% to 50%. Hence, a larger portion of the data has
Y = 0. Consequently, measure errors are smaller when Y = 0 is the advantaged outcome. This also
causes vD4 to align better with EOP with advantaged group Y = 0 than Y = 1 since vD4 is computed
as a weighted average over both target label classes.

Measure
Distinct DP-EO DAGs Other DAGs

EOP (Y = 0) EOP (Y = 1) EOP (Y = 0) EOP (Y = 1)

vD1 (XS) 0.329200 0.409190 0.289028 0.353112
vD2 (XS) 0.338270 0.431333 0.313405 0.397409
vD3 (XS) 0.323885 0.404792 0.269754 0.338302
vD4 (XS) 0.321347 0.391285 0.285868 0.336438
vD5 (XS) 0.327359 0.392154 0.278960 0.326351
vDkh(XS) 0.328872 0.394083 0.279710 0.328981

Table 5: Average measure errors in capturing marginal discriminatory impacts for EOP.

15 A VISUALIZING THE RELATIONSHIP BETWEEN DATA-GENERATING MODEL
PARAMETERS AND MEASURE ERRORS

This appendix provides visual representations illustrating the relationship between data-generating
model parameters and measures’ errors.

Effect of predictor accuracy on the increase/decrease of discrimination bias due to feature
removal. In Figure 5, we demonstrate the relation between the predictor accuracy and the percentage
of features that cause an increase in the discrimination bias when removed. DAGs are split into four
equal groups based on their respective average predictor accuracy. Predictor accuracy ranges from
70% to 94.5% for 99% of the DAGs, see Appendix 12 for the exact distribution. Figure 5 shows
that, for DP, predictor accuracy does not influence the number of features causing an increase in the
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discrimination bias. However, for EO, higher predictor accuracy causes more features to increase
discrimination bias when removed. This occurs since high-accuracy models are fairer with respect to
EO. Consequently, removing features with high accuracy impact reduces predictor accuracy while
increasing its discrimination with respect to EO.

Figure 5: Average percentage of features causing increase in the discrimination bias when removed
versus average accuracy of the predictor.

Effect of graph density and number of confounders on measure errors. Figure 6 shows the
average measure errors for DP and EO versus the number of confounders Nc and the density of the
causal links pa,z,xd . Increasing pa,z,xd while fixing Nc increases the average measure error for both DP
and EO. Lower edge density increases the likelihood of “independence or blocking” properties being
satisfied (Properties 3, 4, 5, and 6), promoting better alignment with our theoretical framework. For
DP, increasing data complexity by adding confounders has a similar effect to increasing edge density.
For EO, adding confounders reduces measure errors since adding confounders reduces predictor
accuracy as shown in Figure 7. In other words, confounders reduce the chance of features causing an
increase in the discrimination bias when removed.

Figure 6: Average measure errors for DP and EO for different values of the parameters pa,z,xd and Nc.
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Figure 7: Average predictor accuracy for different numbers of confounders Nc.

Effect of the direct link A → Y on measure errors. Figure 8 shows the average measure errors
for αa,y ∈ {0, 1} for DP and EO. For DP, errors of the DP-aligned measures, vD1 , vD2 , and vD3 , are
minimally impacted by αa,y . The direct link from A to Y increases the error of the measures partially
satisfying EO properties, vD4 , vD5 , and vDkh. For EO, the error for all the measures increases with the
link A → Y , with measure vD3 showing the maximum increase.

Figure 8: Average measures errors for DP and EO for αa,y ∈ {0, 1}.

Effect of the non-discriminatory components on measure errors. We compute the average ratios

RA ≜
∑
S∈[n]

UI(A;XS\Y )

I(A;XS)
, (16)

RX ≜
∑
S∈[n]

UI(XS ;A\Y )

I(A;XS)
, (17)

and analyze their effect on the error of measures vD1 , vD2 , and vD3 . We restrict this analysis to the
discrimination bias with respect to DP since measures vD1 , vD2 , and vD3 are aligned with DP. The
correlation between RA and the error of vD1 and vD2 is equal to 0.052 and 0.013, respectively. That is,
including UI(A;XS\Y ) increases the error more than removing it does. The correlation between
RX and the error of vD1 and vD3 is equal to -0.017 and -0.072, respectively. This indicates that
discarding the components UI(XS ;A\Y ) slightly improves the measure correctness more than
including it. This is supported by the results in Table 1.
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16 GUIDELINE FOR MEASURES SELECTION

For measure selection, we provide the following guideline based on the theoretical foundations and
empirical evaluations of our measures. Measures should align with the desired fairness notion: for
DP, {vD1 , vD2 , vD3 } are suitable, while for EO, vD4 is appropriate. When data is reliable and accurate
predictors can be learned, removing certain features may increase discrimination bias. In such cases,
vD3 is recommended for DP as it is not monotonically non-decreasing and captures both positive and
negative marginal discriminatory impacts. However, vD3 should be avoided in two scenarios: (1)
when the downstream predictor type is unknown, as vD3 satisfies Condition 1 and fails to capture
discriminatory impacts of feature subsets that are not predictive but exploitable by adversaries; and
(2) when the sensitive attribute has significant unique information about features not included in
the target label, as such information can be encoded—either unintentionally or intentionally—by
predictors, yet it is not captured by vD3 . For evaluating discriminatory impacts across any downstream
predictor, including adversarial ones, vD1 is recommended as it does not depend on Y and offers
a more generic measure than vD3 , though it may be less accurate when the predictor is known.
Empirical evaluations show that when unique information UI(A;XS \ Y ) is significant, vD1 can be
faulty because it primarily quantifies components exploitable by adversaries rather than predictors
decoding Y (cf. Appendix 15); in such cases, vD2 is more appropriate. When Y is highly correlated
with A and the goal is to identify biased features sharing information between them, vD2 is suitable.
However, if A ⊥ Y (independence between A and Y ), vD2 should be avoided as it fails to quantify
discriminatory impacts for any feature subset. For EO, vD4 is the aligned measure, and it can be
used to identify features with positive discriminatory impacts. Yet, if conditioning on Y does not
significantly affect the dependence between A and the data features, DP-aligned measures can be
used to identify discriminatory impacts for EO; in our synthetic data experiment, datasets that does
not show distinct DP-EO characteristics, measure vD3 has low error for EO (cf. Section 4); hence
it can be used to provide insight on features that potentially has negative or positive discriminatory
impact for EO.

17 COMPREHENSIVE OVERVIEW OF BENCHMARK DATASETS

We briefly describe each of the 7 datasets as follows:

ACS Income dataset contains annual income information for over 1.66 million individuals. Target
label Y indicates whether an individual earns more than $50k. Race is selected as the sensitive
attribute: Black/African-American (10% of the dataset) or White (90%). The positive rate ( >$50k)
is 39% for White and 24.6% for Black individuals. We select 4 features for prediction: ‘Class of
worker’; ‘Sex’; ‘Usual weekly work hours’, and ‘Educational attainment’.

ACS Employment dataset contains employment status for over 3.24 million individuals. Y is the
employment status. The positive rate is 57%. We select ‘disability-status’ as a sensitive attribute:
Disabled individuals comprising 16% of the dataset (positive rate 21%) and non-disabled individuals
84% (positive rate 64%). We select 5 features for prediction: ‘Race’, ‘Mrital status’, ‘Age’, ‘Mobility
status’, ‘Parents’ employment status’.

ACS Public Coverage dataset contains information about public-health insurance coverage for
over 1.13 million low-income individuals not eligible for Medicare. Y indicates if a person has
public health coverage. The positive rate is 30%. Race is selected as the sensitive attribute: White
comprising 72% of the dataset (positive rate 27%) and Non-white 28% (positive rate 36%). We
select 5 features for prediction: ‘Age’, ‘Employment status of parents’, ’Sex’, ‘Mobility status’, and
‘Childbirth within past 12 months’.

Adult dataset extracted from the 1994 Census database, contains information about 48,842 indi-
viduals’ annual income. Y indicates whether an individual’s income >$50k. The positive rate is
25%. Gender is selected as the sensitive attribute: Females comprising 32% of the dataset (positive
rate 11%) and males 68% (positive rate 31%). We selected 6 features: ’Age’, ’Educational-num,’
’Capital-gain,’ ’Capital-loss’, ’Hours-per-week,’ and ’Relationship’.

Census income (KDD) dataset derived from the 1994-1995 U.S. Census Bureau surveys; predicts
annual income > $50k; contains 399,285 records. The positive rate is 6%. Sex is selected as
the sensitive attribute: Males comprising 52% of the dataset (positive rate 10%) and females 48%
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(positive rate 2.5%). We select 6 features: ‘Education’, ‘Marital status’, ‘Race’, ‘Capital gains’,
‘Capital loss’, and ’Number of employees’.

ProPublica COMPAS dataset contains criminal history and demographic information for defendants
in Broward County, Florida (2013-14); 5,334 records. Y indicates whether an individual was
arrested for a crime within 2 years of release. The positive rate is 47%. Race is selected as the
sensitive attribute; Caucasian individuals comprising 39% of the dataset (positive rate 39%) and
Black Americans comprising 61% of the dataset (positive rate 52%). We select 5 features: ‘age
category’, ‘charge degree’, ‘sex’, ‘priors count’, and ‘Length of stay’.

Heritage health dataset contains insurance claims and physician records for over 60,000 patients. Y
indicates whether the Charlson Comorbidity Index is zero. The positive rate is 35%. Age is selected
as the sensitive attribute, with individuals older than 70 comprising 10% of the dataset (positive rate
57%) and those < 70, 90% (positive rate 53%). We select 5 features: ‘Sex’, ‘Claim year’, ‘Service
location’, ‘Payment delay duration’, and ‘Days since first service’.

18 EXPERIMENTAL RESULTS OF REAL-WORLD DATASETS FOR EQUALITY OF
OPPORTUNITY

Measure errors with respect to equality of opportunity (EOP) evaluated on the real-world datasets are
shown in Table 6 (See Section 4 for the definition of the measure error, and see Appendix 14 for the
definition of the discrimination bias with respect to EOP).

Measure ACS Income ACS Employment ACS Public Coverage Adult Census Income (KDD) COMPAS Health
(Y = 0) (Y = 1) (Y = 0) (Y = 1) (Y = 0) (Y = 1) (Y = 0) (Y = 1) (Y = 0) (Y = 1) (Y = 0) (Y = 1) (Y = 0) (Y = 1)

vD1 0.346 0.469 0.098 0.044 0.414 0.454 0.048 0.143 0.302 0.299 0.100 0.112 0.343 0.461
vD2 0.339 0.444 0.098 0.044 0.377 0.417 0.092 0.171 0.326 0.290 0.126 0.138 0.325 0.443
vD3 0.180 0.428 0.081 0.029 0.343 0.321 0.062 0.128 0.348 0.353 0.040 0.025 0.214 0.309
vD4 0.405 0.476 0.116 0.062 0.345 0.386 0.049 0.145 0.269 0.204 0.128 0.140 0.363 0.481
vD5 0.393 0.479 0.102 0.048 0.380 0.420 0.050 0.145 0.274 0.245 0.127 0.140 0.411 0.530
vDkh 0.389 0.473 0.096 0.041 0.364 0.405 0.050 0.146 0.271 0.243 0.127 0.140 0.416 0.534

Table 6: Average measure errors in capturing marginal discriminatory impacts for EOP on real-world
datasets.

19 CONCLUSION

In conclusion, we developed a model-agnostic framework to quantify individual dataset features’
impact on discrimination bias of supervised ML models. Our framework proposes information-
theoretic measures for feature sets’ discriminatory impact, through considering inter-dependencies
among data variables, and utilizes Shapley value function to deduce marginal contributions of
individual features to overall discrimination. We constructed a set of discrimination measures
through an axiomatic approach, while distinguishing between measures designed for demographic
parity and equalized odds fairness criteria. Through a comprehensive empirical analysis on a large
number of synthetic datasets, and 7 real-world benchmark datasets, we validated the efficacy of
our measures in capturing discrimination bias for different fairness criteria and under distinct data
conditions. Measures aligned with demographic parity accurately capture feature contributions to
model discrimination under this fairness notion; similarly, for the equalized odds-aligned measure.
Notably, measures satisfying both notions simultaneously were less effective in capturing feature
contributions to downstream model discrimination for either fairness notions.
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