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ABSTRACT

As populations adapt to algorithmic prediction, machine learning can myopically
reinforce social inequalities or dynamically seek equitable outcomes. In this pa-
per, we formalize prediction subject to long-term fairness as a constrained online
reinforcement learning problem. This formulation can accommodate dynamical
control objectives, such as inducing equitable population adaptations, that cannot
be expressed by static formulations of fairness. By adapting recent work in online
learning, we provide the first algorithm that guarantees simultaneous, probabilistic
bounds on cumulative loss and cumulative violations of fairness (defined as statis-
tical regularities between demographic groups) in this setting. We compare this
algorithm to an off-the-shelf, deep reinforcement learning algorithm that lacks such
safety guarantees, and to a repeatedly retrained, myopic classifier, as a baseline.
We demonstrate that a reinforcement learning framework for long-term fairness
allows algorithms to adapt to unknown dynamics and sacrifice short-term profit or
fairness to drive a classifier-population system towards more desirable equilibria.
Our experiments model human populations according to evolutionary game theory,
using real-world data to set an initial state.

1 INTRODUCTION

As machine learning (ML) algorithms are deployed for tasks with real-world social consequences
(e.g., school admissions, loan approval, medical interventions, etc.), the possibility exists for runaway
social inequalities (Crawford & Calo, 2016; Chaney et al., 2018; Fuster et al., 2018; Ensign et al.,
2018). While “fairness” has become a salient ethical concern in contemporary research, the closed-
loop dynamics of real-world systems comprising ML policies and populations that mutually adapt to
each other (Fig. 1 in the supplementary material) remain poorly understood.

Our primary contribution is to consider the problem of long-term fairness, or algorithmic fairness
in the context of a dynamically responsive population, as a reinforcement learning (RL) problem
subject to constraint. The central learning task is to develop a policy that minimizes cumulative loss
(e.g., financial risk, negative educational outcomes, misdiagnoses, etc.) incurred by an ML agent
interacting with a human population up to a finite time horizon, subject to constraints on cumulative
“violations of fairness”, which we refer to in a single time step as disparity and cumulatively as
distortion.

Our central hypothesis is that an RL formulation of long-term fairness can allow an agent to learn
to sacrifice short-term utility in order to drive the system towards more desirable equilibria.
The core practical difficulties posed by our general problem formulation, however, are the potentially
unknown dynamics of the system under control, which must be determined by the RL agent online
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(i.e., during actual deployment), and the general non-convexity of the losses or constraints considered.
Additionally, we address continuous state and action spaces, in general, which preclude familiar
methods with performance guarantees in discrete settings.

Our secondary contributions are 1) to show that long-term fairness can be solved within asymptotic,
probabilistic bounds under certain dynamical assumptions and 2) to demonstrate that the problem
of long-term fairness can also be addressed more flexibly . For theoretical guarantees, we develop
L-UCBFair, an online RL method, and prove sublinear bounds on regret (suboptimality of cumula-
tive loss) and distortion (suboptimality of cumulative disparity) with high probability (Section 3.1). To
demonstrate practical solutions, we consider a time-dependent Lagrangian relaxation of the fairness
constraint using well-known deep reinforcement learning method (viz., TD3), an approach we abbre-
viate as R-TD3. We compare L-UCBFair and R-TD3 to a baseline, myopic policy in interaction
with simulated populations initialized with synthetic or real-world data and updated according to
evolutionary game theory (Appendix A).

Throughout, we consider fairness in terms of statistical regularities across (ideally) socioculturally
meaningful groups. Acknowledging that internal conflict exists between different statistical measures
of fairness, we show that an RL approach to long-term fairness can mitigate trade-offs between
fairness defined on the statistics of immediate policy decision outcomes (Chen et al., 2022), (e.g.,
acceptance rate disparities (Dwork et al., 2012; Zemel et al., 2013; Feldman et al., 2015)) and
underlying distributional parameters (e.g., qualification rate (Raab & Liu, 2021; Zhang et al., 2020)).

1.1 RELATED WORK

Our effort to formalize long-term fairness as a reinforcement learning problem bridges recent work
on “fairness in machine learning”, which has developed in response to the proliferation of data-driven
methods in society, and “safe reinforcement learning”, which seeks theoretical safety guarantees in
the control of dynamical systems.

Dynamics of Fairness in Machine Learning We distinguish long-term fairness from the dynamics
of fair allocation problems (Joseph et al., 2016; Jabbari et al., 2017; Tang et al., 2021; Liu et al.,
2017) and emphasize side-effects of algorithmic decisions affecting future decision problems. By
formalizing long-term fairness in terms of cumulative losses and disparities, we iterate on a developing
research trend that accounts for the dynamical response of a human population to deployed algorithmic
prediction: both as a singular reaction (Liu et al., 2018; Hu et al., 2019; Perdomo et al., 2020) or as a
sequence of mutual updates to the population and the algorithm (Coate & Loury, 1993; D’Amour et al.,
2020; Zhang et al., 2020; Heidari et al., 2019; Wen et al., 2019; Liu et al., 2020; Hu & Chen, 2018;
Mouzannar et al., 2019; Williams & Kolter, 2019; Raab & Liu, 2021). In particular, Perdomo et al.
(2020) introduces the concept of “performative prediction”, analyzing the fixed points of interactions
between a population and an algorithmic classifier, but with state treated as a pure function of a
classifier’s actions. For more realistic dynamics, Mouzannar et al. (2019) and Raab & Liu (2021)
model updates to qualification rates that depend on both previous state and the classifier’s actions, but
only treat myopic classifiers that optimize immediate utility (subject to fairness constraints) rather
than learning to anticipate dynamical population responses.

Safe Reinforcement Learning L-UCBFair furthers recent efforts in safe RL. While “model-based”
approaches, in which the algorithm learns an explicit dynamical model of the environment, constitute
one thread of prior work (Efroni et al., 2020; Singh et al., 2020; Brantley et al., 2020; Zheng &
Ratliff, 2020; Kalagarla et al., 2021; Liu et al., 2021; Ding et al., 2021), such algorithms are typified
by significant time and space complexity. Among “model-free” algorithms, the unknown dynamics
of our setting preclude the use of a simulator that can generate arbitrary state-action pairs Xu et al.
(2021); Ding et al. (2020); Bai et al. (2022). While Wei et al. (2022) introduce a model-free and
simulator-free algorithm, the tabular setting considered is only applicable to discrete state and action
spaces. To tackle continuous state space, Ding et al. (2021); Ghosh et al. (2022) consider linear
dynamics: Ding et al. (2021) develop a primal-dual algorithm with safe exploration, and Ghosh et al.
(2022) use a softmax policy design. Both algorithms are based on the work of Jin et al. (2020), which
proposed a least squares value iteration method, using an Upper Confidence Bound (UCB) (Auer
et al., 2002) to estimate a state-action “Q” function. To our knowledge, L-UCBFair is the first
model-free, simulator-free RL algorithm that provides theoretical safety guarantees for both discrete
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and continuous state and action spaces. Moreover, L-UCBFair achieves bounds on regret and
distortion as tight as any algorithm thus far with discrete action space (Ghosh et al., 2022).

2 PROBLEM FORMULATION

Consider a binary classification task as starting point for our formulation, though the formal problem
we propose is more widely applicable. To this initial task, we introduce “fairness” constraints, then
population dynamics, and then cumulative loss and “disparity”, before formalizing the problem of
optimizing cumulative loss subject to constraints on cumulative disparity.

We introduce the following notation: a random individual, sampled i.i.d. from a population, has
features X ∈ Rd, a label Y ∈ {−1, 1}, and a demographic group G ∈ G (where G = [n] for n ≥ 2).
Denote the joint distribution of these variables in the population as s := Pr(X,Y,G). The task
is to predict Y (as Ŷ ) from X and G. Specifically, the task is to choose a classifier a, such that
Ŷ ∼ a(X,G), that minimizes some bounded loss L ∈ [0, 1] over s. This basic classification task
is mina L (s, a). In general, we allow arbitrary, (unit-interval) bounded loss functions L , though,
typically, L corresponds to the expectation value of a loss function L defined for individuals drawn
from s, such as such as zero-one-loss: L (s, a)

e.g.
= E X,Y,G∼s

Ŷ∼a(X,G)

[
L(Y, Ŷ )

]
.

The standard “fair” classification task (without a dynamically responsive population) is to constrain
classifier a such that the disparity D ∈ [0, 1] induced on distribution s by a is bounded by some
value c ∈ [0, 1]. That is, mina L (s, a)subjecttoD(s, a) ≤ c. A standard example of disparity is the
expected divergence of group acceptance rates β, which is consistent with enforcing “demographic
parity” Dwork et al. (2012). For example, when G = {g1, g2},

D(s, a)
e.g.
=
∣∣βs,a(g1)− βs,a(g2)

∣∣2, where βs,a(g) := Pr
X,Y,G∼s

Ŷ∼a(X,G)

(Ŷ=1 | G=g).

We also consider measures of fairness based on inherent population statistics (e.g., parity of group
qualification rates Pr(Y=1 | G=g)), which must be driven dynamically Raab & Liu (2021); Zhang
et al. (2020). Such notions of disparity are well-suited to an RL formulation of long-term fairness.

State, Action, and Policy For iterated classification tasks, we identify the distribution s ∈ S of
individuals in the population as a state and the classifier a ∈ A as an action. While state space S
may encompass arbitrary distributions, we assume that action space A admits a Euclidean metric,
under which it is closed (i.e.,A is isomorphic to [0, 1]m,m ∈ Z>0). At a given time τ , aτ is sampled
stochastically according to the current policy πτ : aτ ∼ πτ (sτ ). We assume sτ is fully observable
at time τ . In practice, sτ must be approximated from finitely many empirical samples, though this
caveat introduces well-understood errors that vanish in the limit of infinitely many samples.

Dynamics In contrast to a “one-shot” fair classification task, we assume that a population may
react to classification, inducing the distribution s to change. Importantly, such “distribution shift” is
a well-known, real-world phenomenon that can increase realized loss and disparity when deployed
classification policies are fixed Chen et al. (2022). For classification policies that free to change
in response to a mutating distribution s, subsequent classification tasks depend on the (stochastic)
predictions made in previous tasks. In our formulation, we assume the existence of dynamical kernel
P that maps a state s and action a at time τ to a distribution over possible states at time τ + 1,
sτ+1 ∼ P(sτ , aτ ). We stipulate that P may be initially unknown, but it does not explicitly depend
on time and may be reasonably approximated “online”. While real-world dynamics may depend on
information other than the current distribution Pr(X,Y,G) (e.g., exogenous parameters, history, or
additional variables of state), we identify s with the current distribution for simplicity. Fig. 1 provides
a conceptual, graphical depiction of a population’s response to deployed algorithmic policy, effecting
a transition of state s.

Reward and Utility, Value and Quality Functions Because standard RL literature motivates max-
imizing reward rather than minimizing loss, let us define the instantaneous reward r ∈ [0, 1] and a sep-
arate, instantaneous “utility” g ∈ [0, 1] for an RL agent as r(sτ , aτ ) := 1−L (sτ , aτ ), g(sτ , aτ ) :=
1−D(sτ , aτ ), where r and g do not explicitly depend on time τ . Learnable dynamics inspire us to
optimize anticipated cumulative reward, given constraints on anticipated cumulative utility. Let j
represent either reward r or utility g. We use the letter V (for “value”) to denote the future expected
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Figure 1: The interaction of an algorithmic classifier and a reactive population. Given state sτ , the
classifier uses policy π to select action aτ . The population, in state sτ , reacts to aτ , transitioning
state to sτ+1, then the process repeats.

accumulation of j over steps [h, ...,H] (without time-discounting) starting from state s, using policy
π. Likewise, we denote the “quality” of an action a in state s with the letter Q. For j ∈ {r, g},
V π
j,h(s) := E

[∑H
τ=h j

(
sτ , aτ

)
|sh = s

]
, Qπ

j,h(s, a) := E
[∑H

τ=h j
(
sτ , aτ )

)
| sh = s, ah = a

]
.

By the boundedness of r, g ∈ [0, 1], V and Q belong to the interval [0, H − h+ 1].

The central problem explored in this paper is

max
π

V π
r,1(s) subject to V π

g,1(s) ≥ c̃ (1)

We emphasize that this construction of long-term fairness considers a finite time horizon of H steps
and denote the optimal value of π as π⋆.

The Online Setting In the online setting, learning dynamics is only possible through actual
deployments of policy. As it is not possible to unconditionally guarantee constraint satisfaction in
Eq. (1) over a finite number of episodes, we instead measure two types of regret: one that measures
the suboptimality of a policy with respect to cumulative incurred loss, which we will continue to
call “regret”, and one that measures the suboptimality of a policy with respect to cumulative induced
disparity, which we will call “distortion”. Note that we define regret and distortion in Eq. (2) by
marginalizing over the stochasticity of state transitions and the sampling of actions:

Regret(π, s1) := V π∗

r,1 (s1)− V π
r,1 (s1) , Distortion(π, s1) := max

[
0, c̃− V π

g,1 (s1)
]

(2)

3 ALGORITHMS AND ANALYSIS

It is possible to provide guarantees for long-term fairness in the online setting: We develop
L-UCBFair, the first model-free algorithm to provide such guarantees with continuous state and
action spaces, and prove probabilistic, sublinear bounds for regret and distortion under appropriate
assumptions and parameters (Appendix C, Appendix D.1).

3.1 L-UCBFAIR

Episodic MDP L-UCBFair inherits from a family of algorithms that treat an episodic Markov
decision process (MDP) (Jin et al., 2020). We first map the long-term fairness problem to
MDP(S,A, H,P,L ,D). The algorithm runs for K episodes, each consisting of H time steps.
At the beginning of each episode, which we index with k, the agent commits to a sequence of policies
πk = (πk

1 , π
k
2 , ..., π

k
H) for the next H steps. At each step h within an episode, an action akh ∈ A is

sampled according to policy πk
h, then the state skh+1 is sampled according to the transition kernel

P(skh, a
k
h). s

k
1 is sampled arbitrarily with each episode.
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Algorithm 1 L-UCBFair

Input: A set of points {I0, I1, · · · , IM} satisty Definition 3.1. ϵI = 1
2ρ(1+χ)KH .

ν1=0. wr,h=wg,h=0. α= log(M)K
2(1+χ+H) . η=χ/

√
KH2. β=C1dH

√
log(4 logMdT/p), ς = 1.

for episode k = 1, 2, ...,K do
Receive the initial state sk1 .
for step h = H,H − 1, · · · , 1 do

Λk
h ←

∑k−1
τ=1 ϕ (sτh, a

τ
h)ϕ (sτh, a

τ
h)

T
+ ςI

for j ∈ {r, g} do
wk

j,h ←
(
Λk
h

)−1
[∑k−1

τ=1 ϕ (sτh, a
τ
h)
(
j (sτh, a

τ
h) + V k

j,h+1

(
sτh+1

) )]
end for
for iteration i = 1, · · · ,M and index j ∈ {r, g} do

ξi,j ←
(
ϕ(·, Ii)T

(
Λk
h

)−1
ϕ(·, Ii)

)1/2
, Qk

j,h(·, Ii)←min
[〈

wk
j,h, ϕ(·, Ii)

〉
+ βξi,j , H

]
end for
SMh,k(Ii | ·) =

exp(α(Qk
r,h(·,Ii)+νkQ

k
g,h(·,Ii)))∑

j exp(α(Qk
r,h(·,Ij)+νkQk

a,h(·,Ij)))
πk
h(a | ·)← 1∫

b∈I(a)
db

SMh,k(I(a) | ·)
V k
r,h(·)←

∫
a∈A πk

h(a | ·)Qk
r,h(·, a)da, V k

g,h(·)←
∫
a∈A πk

h(a | ·)Qk
g,h(·, a)da

end for
for step h = 1, · · · , H do

Compute Qk
r,h

(
skh, Ii

)
, Qk

g,h

(
skh, Ii

)
, π
(
Ii | skh

)
.

Take action akh ∼ πk
h

(
· | skh

)
and observe skh+1.

end for
νk+1 = max

{
min

{
νk + η

(
c̃− V k

g,1 (s1)
)
,V
}
, 0
}

end for

Episodic Regret and The Lagrangian Because L-UCBFair predetermines its policy for an
entire episode, we amend our definition of regret and distortion over HK time steps as a sum
over K episodes of length H . Regret(K) =

∑K
k=1

(
V π∗

r,1

(
sk1
)
− V πk

r,1

(
sk1
))

, Distortion(K) =

max
[
0,
∑K

k=1

(
c̃− V πk

g,1

(
sk1
))]

. For the Lagrangian L(π, ν) := V π
r,1 (s) + ν

(
V π
g,1 (s)− c̃

)
asso-

ciated with Eq. (1), with dual variable ν ≥ 0, L-UCBFair approximately solves the primal problem
maxπ minν L(π, ν), which is non-trivial, since the objective function is seldom concave in practical
parameterizations of π. Let ν∗ to denote the optimal value of ν.

3.1.1 EXPLICIT CONSTRUCTION

L-UCBFair, or “LSVI-UCB for Fairness ” (Algorithm 1) is based on an optimistic modification
of least-squares value iteration (LSVI), where optimism is realized by an upper-confidence bound
(UCB), as in LSVI-UCB (Jin et al., 2020). For each H-step episode k, L-UCBFair maintains
estimates for Qk

r , Q
k
g and a time-indexed policy πk. L-UCBFair updates Qk

r , Q
k
g , interacts with the

environment, and updates the dual variable νk (constant in k).

LSVI-UCB (Jin et al., 2020) The estimation of Q is challenging, as it is impossible to iterate over
all s, a pairs when S and A are continuous and P is unknown. LSVI parameterizes Q⋆

h(s, a) by the
linear form w⊤

h ϕ(s, a), as used in Jin et al. (2020), and updates

wh ← argmin
w∈Rd

∑k−1
τ=1

[
rh (s

τ
h, a

τ
h) + maxa∈A Qh+1

(
sτh+1, a

)
−w⊤ϕ (sτh, a

τ
h)

]2
+ ς∥w∥2.

In addition, a “bonus term” β
(
ϕ⊤Λ−1

h ϕ
)1/2

is added to the estimate of Q to encourage exploration.

Adaptive Search Policy Unlike Ding et al. (2021) and Ghosh et al. (2022), we assume a continuous
action space A, which renders the independent computation of Qk

r , Q
k
g for each action impossible.

To handle this issue, we propose an adaptive search policy, sampling from finitely many Voronoi
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regions of action space with a softmax scheme, then sampling an action uniformly at random from
the selected partition.
Definition 3.1. Given a set of distinct actions I = {I0, · · · , IM} ⊂ A, where A is a closed set in
Euclidean space, define Ii = {a : ∥a− Ii∥2 ≤ ∥a− Ij∥2,∀i < j} as the subset of actions closer to
Ii than to Ij , i.e., the Voronoi region corresponding to locus Ii, with tie-breaking imposed by the
order of indices i. Also define the locus function I(a) = mini argminIi ∥a− Ii∥2.
Assumption 3.2. There exists ρ > 0, such that ∥ϕ(s, a)− ϕ(s, a′)∥2 ≤ ρ∥a− a′∥2.

Assumption 3.2 bounds the difference in the estimated quality of action-value pairs for nearby actions.

For L-UCBFair, the update method for the dual variable ν in the Lagrangian is also essential.
Since V π

r,1 (s) and V π
g,1 (s) are unknown, we use V k

r,1 (s) and V k
g,1 (s) to estimate them. ν is iter-

atively updated by minimizing the Lagrangian with step-size η, and V is an upper bound for ν
(Assumption C.2). A similar method is also used in Ding et al. (2021); Ghosh et al. (2022).
Theorem 3.3 (Boundedness). With probability 1−p, there exists a constant b such that L-UCBFair
(Algorithm 1) achieves Regret(K) = Õ

(
H2
√
d3K

)
, Distortion (K) = Õ

(
H2
√
d3K

)
.

Compared to the algorithms introduced by Ding et al. (2021); Ghosh et al. (2022), which work with
discrete action space, L-UCBFair guarantees the same asymptotic bounds on regret and distortion
(Appendix D.1).

3.2 R-TD3

Technical assumptions that support L-UCBFair (Appendix C) are often violated in practice. We
therefore consider more flexible reinforcement learning methods on a (Lagrangian) relaxation
of the long-term fairness problem, minπ Eaτ∼π(sτ )

[∑H
τ=1 [κτL (sτ , aτ ) + λτD(sτ , aτ )]

]
, where

sτ+1 ∼ P(sτ , aτ ), λτ = τ/H, and κτ = 1− λτ . Specifically, we experiment with “Twin-Delayed
Deep Deterministic Policy Gradient” (TD3) (Fujimoto et al., 2018) with the implementation and
default parameters provided by the open-source package “Stable Baselines 3” (Raffin et al., 2021)
Strictly applied, myopic fairness constraints can lead to undesirable dynamics and equilibria (Raab
& Liu, 2021). Relaxing these constraints (hard→ soft) for the near future while emphasizing them
long-term, we demonstrate classifiers that learn to transition to more favorable equilibria.

3.3 EXPERIMENTS

We conduct extensive experiments to compare the performance of L-UCBFair and R-TD3 to a
baseline agent in Appendix A and Appendix B. We demonstrate that desirable social outcomes that
are in conflict with myopic optimization may be realized using a reinforcement learning formalism
of long-term fairness. In addition, we demonstrate that definitions of fairness that may be mutually
incompatible for an unchanging population — such as parity in qualification rates and acceptance
rates across groups — can be reconciled in the long-term framing, where the dynamic response of a
population provides additional freedom.

4 CONCLUSION

Our work frames long-term fairness as an online reinforcement learning problem. We have shown that
this problem 1) admits solutions with theoretical guarantees and 2) can be relaxed to accommodate a
wider class of recent advances in reinforcement learning. Our experiments demonstrate that tensions
between different notions of fairness, such as acceptance rate and qualification rate parity across
groups, can be resolved when a policy learns to sacrifice short-term utility or fairness to induce
dynamics resulting in more favorable long-term equilibria. We hope our contributions spur interest in
long-term mechanisms and incentive structures for machine learning to be a driver of positive social
change.

6



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

REFERENCES

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Qinbo Bai, Amrit Singh Bedi, Mridul Agarwal, Alec Koppel, and Vaneet Aggarwal. Achieving
zero constraint violation for constrained reinforcement learning via primal-dual approach. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3682–3689, 2022.

Kianté Brantley, Miro Dudik, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs
Slivkins, and Wen Sun. Constrained episodic reinforcement learning in concave-convex and
knapsack settings. Advances in Neural Information Processing Systems, 33:16315–16326, 2020.
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A SIMULATED ENVIRONMENTS

A.1 GREEDY BASELINE

In our experiments, we compare L-UCBFair and R-TD3 to a “Greedy Baseline” agent as a proxy
for a myopic status quo in which policy is repeatedly determined by optimizing for immediate utility,
without regard for the population dynamics induced by algorithmic actions. Our chosen algorithm for
the greedy baseline is simply gradient descent in f , defined as loss regularized by disparity, performed
anew with each time step with fixed parameter λ.

fτ (π) = E
aτ∼π

[(1− λ)L (sτ , aτ ) + λD(sτ , aτ )] (3)

While such an algorithm does not guarantee constraint satisfaction, it is nonetheless “constraint aware”
in precisely the same way as a firm that (probabilistically) incurs penalties for violating constraints.

A.2 SETTING

We describe our experiments with the algorithms we have detailed for long-term fairness as an RL
problem: We consider a series of binary (Y ∈ {−1, 1} classification tasks on a population of two
groups G = {g1, g2} modeled according to evolutionary game theory (using replicator dynamics).
We consider two families of distributions of real-valued features for the population: One that is purely
synthetic, for which X ∼ N (Y, 1), independent of group G, and one that is based on a logistic
regression to real-world data. Both families of distributions are parameterized by the joint distribution
Pr(Y,G). RL agents are trained on episodes of length H initialized with randomly sampled states.

The following assumptions simplify our hypothesis space for classifiers in order to better handle
continuous state space. These assumptions appeared in Raab & Liu (2021).

Assumption A.1 (Well-behaved feature). For purely synthetic data, we require X to be a “well-
behaved” real-valued feature or “score” within each group. That is,

∀g, Pr(Y=1 | G=g,X=x) strictly increases in x

As an intuitive example of Assumption A.1, if Y represents qualification for a fixed loan and X
represents credit-score, we require higher credit scores to strongly imply higher likelihood that an
individual is qualified for the loan.

Theorem A.2 (Threshold Bayes-optimality). For each group g, when Assumption A.1 is satisfied, the
Bayes-optimal, deterministic binary classifier is a threshold policy

Ŷ = 1 if x ≥ Ag and − 1 otherwise

where Ag is the feature threshold for group g.

As a result of Theorem A.2, we consider our action space to be the space of group-specific thresholds,
and denote an individual action as the vector A := (A1, A2, ..., An).

A.3 REPLICATOR DYNAMICS

Our use of replicator dynamics closely mirrors that of Raab & Liu (2021) as an “equitable” model of
a population, in which individuals my be modeled identically, independently of group membership,
yet persistent outcome disparities may nonetheless emerge from disparate initial conditions between
groups. In particular, we parameterize the evolving distribution Pr(X,Y | G), assuming constant
group sizes, in terms of “qualification rates” qg := Pr(Y=1 | G=g) and update these qualification
rates according to the discrete-time replicator dynamics:

qg[t+ 1] = qg[t]
W g

1 [t]

W
g
[t]

; W
g
[t] := W1qg + (1− qg)W−1

In this model, the fitness W g
y > 0 of label Y=y in group G=g may be interpreted as the “average

utility to the individual” in group g of possessing label y, and thus relative replication rate of label y
in group g, as agents update their labels by mimicking the successful strategies of in-group peers.
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Also following Raab & Liu (2021), we model W g
y in terms of acceptance and rejection rates with a

group-independent utility matrix U :

W g
y =

∑
ŷ∈{−1,1}

Uy,ŷ Pr
(
Ŷ=ŷ | Y=y,G=g

)
We choose the matrix U to eliminate dominant strategies (i.e., agents prefer one label over another,
independent of classification), assert that agents always prefer acceptance over rejection, and to
imply that the costs of qualification are greater than the costs of non-qualification among accepted
individuals. While other parameterizations of U are valid, this choice of parameters guarantees
internal equilibrium of the replicator dynamics for a Bayes-optimal classifier and “well-behaved”
scalar-valued feature X , such that Pr(Y=1 | X=x) is monotonically increasing in x (Raab & Liu,
2021).

A.4 DATA SYNTHESIS AND PROCESSING

In addition to a synthetic distribution, for which we assume X ∼ N (Y, 1), independent of G, for all
time, we also consider real-world distributions in simulating and comparing algorithms for “long-
term fairness”. In both cases, as mentioned above, we wish to parameterize distributions in terms
of qualification rates qg. As we perform binary classification on discrete groups and scalar-valued
features, in addition to parameterizing a distribution in terms of qg , we desire a scalar-valued feature
for each example, rather than the multi-dimensional features common to real-world data. Our solution
to parameterize a distribution of groups and scalar features is to use an additional learning step for
“preprocessing”: Given a static dataset D from which (X ′, Y,G) is drawn i.i.d., (e.g., the “Adult
Data Set” Dua & Graff (2017)), at each time-step, we train a stochastic binary classifier ã, such that
Ŷ ′ ∼ ã(X ′, G) with a loss that re-weights examples by label value, in order to simulate the desired
qg: minã Eã,D[w(X

′, Y,G)L(Y, Ŷ ′)], where w(X ′, Y,G) = [(1− Y )/2 + Y qg]/ED[Y |G], L is
zero-one loss, and, in our experiments, we choose ã according to logistic regression. We interpret
Pr
(
Ŷ=1

)
as a new, scalar feature value X ∈ R mapped from from higher-dimensional features X ′

as the output of a learned “preprocessing” function ã, Assumption A.1 is as hard to satisfy in general
as solving the Bayes-optimal binary classification task over higher-dimensional features. Nonetheless,
we expect Assumption A.1 to be approximately satisfied by such a “preprocessing” pipeline.

A.5 LINEARITY OF DYNAMICS

L-UCBFair relies on Assumption C.3, which asserts the existence of some Hilbert space in which
the state dynamics P are linear. Such linearity for real-world (continuous time) dynamics holds only
in infinite-dimensional Hilbert space (Brunton et al., 2021) and is not computationally tractable. In
addition, the “feature map” ϕ that maps state-action pairs to the aforementioned Hilbert space must
be learned by the policy maker. In experiment, we use a neural network to estimate a feature map ϕ̂
which approximately satisfies the linear MDP assumption. We defer details to Appendix F.1.

B EXPERIMENTAL RESULTS

Do RL agents learn to seek favorable equilibria against short-term utility? Is a Lagrangian relaxation
of long-term fairness sufficient to encourage this behavior? We give positive demonstrations for both
questions.

B.1 LOSSES AND DISPARITIES CONSIDERED

Our experiments consider losses L which combine true-positive and true-negative rates, where, for
α, β ∈ [0, 1],

L (s, a) = 1− αtp(s, a) + βtn(s, a), (4)

where tp(s, a) = Prs,a(Ŷ=1, Y=1) and tn(s, a) = Prs,a(Ŷ=−1, Y=−1). For disparity D , we
consider demographic parity (DP) (Dwork et al., 2012), equal opportunity (EOp) (Hardt et al., 2016),
and qualification rate (QR):
QR does not matter to myopic fair classification, which does not consider mutable population state.
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Func. Form ξys,a(g) = Prs,a(·)
DP ∣∣ξs,a(g1)−ξs,a(g2)∣∣2/2 Ŷ=1 | G=g

QR Ŷ=1 | G=g

EOp Ŷ=1 | G=g

EO
∑

y

∣∣ξys,a(g1)− ξys,a(g2)
∣∣2/2 Ŷ=ŷ | Y=y,G=g
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Figure 2: The greedy baseline algorithm (left) and L-UCBFair (right) are tasked to maximize the
fraction of true-positive classifications (L = 1−tp, Eq. (4)), subject to demographic parity (D=DP,
Appendix B.1). The greedy algorithm uses λ=0.5 in Eq. (3), while L-UCBFair is trained for 2,000
steps on episodes of length 100 prior to generating this “phase portrait”. We depict the expected
dynamics (averaged over 20 policy iterations for each state) of the classifier-population system,
parameterized by the time-evolving qualification rate in each group (1 on the horizontal, 2 on the
vertical). Each group is of equal size and identically modeled by the standard normal X ∼ N (Y, 1).
Note that states in the left plot attract to universal non-qualification Pr(Y=1)=0, while the right
plot converges to universal qualification. The lower plot shows average loss over pairs of randomly
sampled episodes.

B.2 RESULTS

Our experiments show that algorithms trained with an RL formulation of long-term fairness can
drive a reactive population toward states with higher utility and fairness, even when short-term
utility is misaligned with desirable dynamics. Our central hypothesis, that long-term fairness via RL
may induce an algorithm to sacrifice short-term utility for better long-term outcomes, is concretely
demonstrated by Fig. 2, in which a greedy classifier and L-UCBFair, maximizing true positive rate
tp (Appendix B.1) subject to demographic parity DP (Appendix B.1), drive a population to universal
non-qualification (Pr(Y=1)→ 0) and universal qualification (Pr(Y=1)→ 1), respectively. Each
phase plot shows the dynamics of qualification rates qg = Pr(Y=1 | G=g), which parameterize the
population state s and define the axes, with streamlines; color depicts averaged disparity D incurred
by a in state s.

While both algorithms achieve no or little violation of demographic parity, the myopic algorithm
eventually precludes future true-positive classifications (arrows in Fig. 2 approach a low qualification
state), while L-UCBFair maintains stochastic thresholds at equilibrium (mean [0.49, 0.38], by

12



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

0.1 0.3 0.5 0.7 0.9

Group 1 qualification rate

0.1

0.3

0.5

0.7

0.9

G
ro

u
p
 2

 q
u
a
li
fi
c
a
ti

o
n
 r

a
te

D
is

p
a
rity

 (D
e
m

o
g
ra

p
h
ic

 P
a
rity

)

Demographic Parity

0

1

0.1 0.3 0.5 0.7 0.9

Group 1 qualification rate

0.1

0.3

0.5

0.7

0.9

G
ro

u
p
 2

 q
u
a
li
fi
c
a
ti

o
n
 r

a
te

D
is

p
a
rity

 (D
e
m

o
g
ra

p
h
ic

 P
a
rity

)

Demographic Parity

0

1

0.15 0.20 0.25 0.30 0.35 0.40
Episodic Mean Loss

UCB_Fair

R-TD3

Demographic Parity

Figure 3: Using a modelled population initialized with the “Adult” dataset, reweighted for equal group
representation (Appendix A.4), L-UCBFair (left) and R-TD3 (right) are tasked, as in Fig. 2, to
maximize the fraction of true-positive classifications (L = 1− tp, Eq. (4)), subject to demographic
parity (D=DP, Appendix B.1). L-UCBFair performs almost indistinguishably from the experiment
on the synthetic dataset (Fig. 2), while R-TD3 learns qualitatively similar behavior with more
aggressive short-term violations of the fairness constraint.

group) with a non-trivial fraction of true-positives. The episodic mean loss and disparity training
curves for L-UCBFair are depicted in Fig. 4.

We show that RL algorithms that are not limited by the same restrictive assumptions as L-UCBFair
are applicable to long-term fairness. In Fig. 3, R-TD3 achieves similar qualitative behavior (i.e.,
driving near-universal qualification at the expense of short-term utility) when optimizing a loss subject
to scheduled disparity regularization. This figure also highlights the lack of guarantees of R-TD3 in
incurring prominent violations of the fairness constraint and failing to convincingly asymptote to the
global optimum.
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Figure 4: L-UCBFair 20-step sliding mean & std training loss (left) and disparity (right) for the
Fig. 2 setting.
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Figure 5: Phase portraits for L-UCBFair (left), and R-TD3 (right) interacting on the synthetic
distribution X ∼ N (Y, 1) with groups of equal size. Both algorithms use L = 1− tp− tn (i.e.,
zero-one loss) and D = QR. Shading: qualification rate disparity for the next time-step.

Finally, we demonstrate the capability of RL to utilize notions of fairness that are impossible to treat
in the myopic setting, viz. qualification rate parity, in Fig. 5. In this example, while both RL agents
achieve qualification rate parity, we note that L-UCBFair fails to realize the optimal equilibrium
discovered by R-TD3.
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C TECHNICAL ASSUMPTIONS

Assumption C.1 (Slater’s Condition). ∃ γ > 0, π̄, such that V π̄
g,1 (s) ≥ c̃+ γ.

Slater’s condition is also adopted by Efroni et al. (2020); Ding et al. (2021); Ghosh et al. (2022).

Assumption C.2 (Boundedness of ν∗). For π̄ and γ > 0 satisfying Slater’s Condition (Assump-
tion C.1), ν∗ ≤ V π∗

r,1 (s1)−V π
r,1(s1)

γ ≤ H
γ
:= V .

Assumption C.2 defines H/γ = V as an upper bound for the optimal dual variable ν∗. V is an input
to L-UCBFair.

Assumption C.3 (Linear MDP). MDP(S,A, H,P,L ,D) is a linear MDP with feature map ϕ :
S×A → Rd: For any h, there exist d signed measures µh =

{
µ1
h, . . . , µ

d
h

}
over S , such that, for any

(s, a, s′) ∈ S×A×S , Ph (s
′ | s, a) = ⟨ϕ(s, a), µh (s

′)⟩ , In addition, there exist vectors θr,h, θg,h ∈
Rd, such that, for any (s, a) ∈ S ×A, r

(
s, a
)
= ⟨ϕ(s, a), θr,h⟩ ; g(s, a) = ⟨ϕ(s, a), θg,h⟩

Assumption C.3 addresses the curse of dimensionality when state space S is the space of distributions
over X,Y,G. This assumption is also used in (Jin et al., 2020; Ghosh et al., 2022), with a similar
assumption made in (Ding et al., 2021).

D PROOFS

Without loss of generality, we assume ∥ϕ(s, a)∥ ≤ 1 for all (s, a) ∈ S × A, and
max {∥µh(S)∥ , ∥θh∥} ≤

√
d for all h ∈ [H].

Lemma D.1. The Voronoi partitioning described above satisfies Ii ∩ Ij = ∅,∀i ̸= j and ∪Mi=1Ii =
A. Additionally, if the number M of distinct loci or regions partitioning A is sufficiently large, there
exists a set of loci I such that ∀a ∈ Ii, i ∈M, ∥a− Ii∥2 ≤ ϵI .

D.1 PROOF OF THEOREM 3.3

Theorem 3.3 (Boundedness). With probability 1−p, there exists a constant b such that L-UCBFair
(Algorithm 1) achieves Regret(K) = Õ

(
H2
√
d3K

)
, Distortion (K) = Õ

(
H2
√
d3K

)
.

Outline The outline of this proof simulates the proof in Ghosh et al. (2022). For brevity, denote
PhV

π
j,h+1(s, a) = Es′∼Ph(·|s,a)V

π
j,h+1 (s

′) for j = r, g. Then

Qπ
j,h(s, a) =

(
rh + PhV

π
j,h+1

)
(s, a) (5)

V π
j,h(s) =

〈
πh(· | s)Qπ

j,h(s, ·)
〉
A (6)〈

πh(· | s), Qπ
j,h(s, ·)

〉
A =

∑
a∈A

πh(a | s)Qπ
j,h(s, a) (7)
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Similar to Efroni et al. (2020), we establish

Regret(K) + νDistortion(K)

=

K∑
k=1

(
V π∗

r,1 (s1)− V πk
r,1 (s1)

)
+ ν

K∑
k=1

(
b− V πk

g,1 (s1)
)

≤
K∑

k=1

(
V π∗

r,1 (s1) + νkV
π∗

g,1 (s1)
)
−
(
V k
r,1 (s1) + νkV

k
g,1 (s1)

)
︸ ︷︷ ︸

T1

+

K∑
k=1

(
V k
r,1 (s1)− V πk

r,1 (s1)
)
+ ν

K∑
k=1

(
V k
g,1 (s1)− V πk

g,1 (s1)
)

︸ ︷︷ ︸
T2

+
1

2η
ν2 +

η

2
H2K︸ ︷︷ ︸

T3

(8)

T3 is easily bounded if η. The major task remains bound T1 and T2.

Bound T1 and T2. We have following two lemmas.

Lemma D.2 (Boundedness of T1). With probability 1 − p/2, we have T1 ≤
KH

(
log(M)

α + 2(1 + V )HρϵI

√
dK
ς

)
. Specifically, if α = log(M)K

2(1+V +H) and ς = 1, we have

T1 ≤ 2H(1 + V +H) + 2KH2(1 + V )ρϵI
√
dK with probability 1− p/2.

Lemma D.3 (Boundedness of T2). (Ghosh et al., 2022) With probability 1 − p/2, T2 ≤
O
(
(ν + 1)H2ζ

√
d3K

)
, where ζ = log[log(M)4dHK/p].

Lemma D.3 follows the same logic in Ghosh et al. (2022), and we delay the proof of Lemma D.2 to
Appendix D.3. Now we are ready to proof Theorem 3.3.

Proof. For any ν ∈ [0,V ], with prob. 1− p,

Regret(K) + νDistortion(K)

≤T1 + T2 + T3

≤ 1

2η
ν2 +

η

2
H2K +

HK logM

α
+ 2KH2(1 + V )ρϵI

√
dK +O

(
(ν + 1)H2ζ

√
d3K

)
(9)

Taking ν = 0, η = V√
KH2

, α = K logM
2(1+V +H) , ϵI = 1

2ρ(1+V )KH
√
d

, there exist constant b,

Regret(K) ≤ V H

2

√
K + 2H(1 + V +H) + 2H2K(1 + V )ρϵI

√
dK +O

(
H2ζ
√
d3K

)
≤
(
bζH2

√
d3 + (V + 1)H

)√
K = Õ(H2

√
d3K).

Taking ν = V , η = V√
KH2

, α = K logM
2(1+V +H) , ϵI = 1

2ρ(1+V )KH
√
d

,

Regret(K) + V Distortion(K) ≤ (V + 1)H
√
K + (1 + V )O

(
H2ζ
√
d3K

)
Following the idea of Efroni et al. (2020), there exists a policy π′ such that V π′

r,1 =
1
K

∑K
k=1 V

πk
r,1 , V

π′

g,1 = 1
K

∑K
k=1 V

πk
g,1 . By the occupancy measure, V π

r,1 and V π
g,1 are linear in occu-

pancy measure induced by π. Thus, the average of K occupancy measure also produces an occupancy
measure which induces policy π′ and V π′

r,1, and V π′

g,1. We take ν = 0 when
∑K

k=1

(
b− V πk

g,1

(
sk1
))

< 0,
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otherwise ν = V . Hence, we have

V π∗

r,1 (s1)−
1

K

K∑
k=1

V πk
r,1 (s1) + V max

(
(c− 1

K

K∑
k=1

V πk
g,1 (s1) , 0

)
= V π∗

r,1 (s1)− V π′

r,1 (s1) + V max
(
c− V π′

g,1 (s1) , 0
)

≤ V + 1

K
H
√
K +

V + 1

K
O
(
H2ζ
√
d3K

)
(10)

Since V = 2H/γ, and using the result of Lemma D.12, we have

max
(
c− 1

K

K∑
k=1

V πk
g,1

(
sk1
)
, 0
)
≤ V + 1

KV
O
(
H2ζ
√
d3K

)
In this section we proof Lemma D.2 and Lemma D.3.

D.2 PREPARE FOR LEMMA D.2

In order to bound T1 and T2, we introduce the following lemma.

Lemma D.4. There exists a constant B2 such that for any fixed p ∈ (0, 1), with probability at least
1− p/2, the following event holds

∥
k−1∑
τ=1

ϕτ
j,h

[
V k
j,h+1

(
sτh+1

)
− PhV

k
j,h+1 (s

τ
h, a

τ
h) ∥(ςkh)−1 ≤ B2dHq

for j ∈ {r, g}, where q =
√

log [4 (B1 + 1) log(M)dT/p] for some constant B1.

We delay the proof of Lemma D.4 to Appendix D.4.

Lemma D.4 shows the bound of estimated value function V k
j,h and value function V π

j,h corresponding
in a given policy at k. We now introcuce the following lemma appeared in Ghosh et al. (2022). This
lemma bounds the difference between the value function without bonus in L-UCBFair and the true
value function of any policy π. This is bounded using their expected difference at next step, plus a
error term.

Lemma D.5. (Ghosh et al., 2022) There exists an absolute constant β = C1dH
√
ζ, ζ =

log(log(M)4dT/p), and for any fixed policy π, for the event defined in Lemma D.4, we have〈
ϕ(s, a), wk

j,h

〉
−Qπ

j,h(s, a) = Ph

(
V k
j,h+1 − V π

j,h+1

)
(s, a) + ∆k

h(s, a)

for some ∆k
h(s, a) that satisfies

∣∣∆k
h(s, a)

∣∣ ≤ β

√
ϕ(s, a)T

(
Λk
h

)−1
ϕ(s, a).

Lemma D.6. (Ghosh et al., 2022) With probability at least 1 − p/2, (for the event defined in
Lemma D.4)

Qπ
r,h(s, a) + νkQ

π
g,h(s, a) ≤ Qk

r,h(s, a) + νkQ
k
g,h(s, a)− Ph

(
V k
h+1 − V π,νk

h+1

)
(s, a)

We also introduce the following lemma. This lemma bound the value function by taking L-UCBFair
policy and greedy policy.

Lemma D.7. Define V̄ k
h (·) = maxa

[
Qk

r,h(·, a) + νkQ
k
g,h(·, a)

]
the value function corresponding

to greedy policy, we have

V̄ k
h (s)− V k

h (s) ≤ logM

α
+ 2(1 + V )HρϵI

√
dk

ς
. (11)
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Proof. Define ag the solution of greedy policy,

V k
h (s)− V k

h (s) =
[
Qk

r,h (s, ag) + νkQ
k
g,h (s, ag)

]
(12)

−
∫
a

πh,k(a | s)
[
Qk

r,h(s, a) + νkQ
k
g,h(s, a)

]
da (13)

≤
[
Qk

r,h (s, ag) + νkQ
k
g,h (s, ag)

]
(14)

−
∑
i

SMα(Ii | x)
[
Qk

r,h(x, Ii) + νkQ
k
g,h(x, Ii)

]
+ 2(1 + V )HρϵI

√
dk

ς
(15)

≤

 log
(∑

a exp
(
α
(
Qk

r,h(s, Ii) + νkQ
k
g,h(s, Ii)

)))
α

 (16)

−
∑
i

SMα(Ii | s)
[
Qk

r,h(s, Ii) + νkQ
k
g,h(s, Ii)

]
+ 2(1 + V )HρϵI

√
dk

ς
(17)

≤ log(M)

α
+ 2(1 + V )HρϵI

√
dk

ς
. (18)

The first inequality follows from Lemma D.11 and the second inequality holds because of Proposition
1 in Pan et al. (2019).

D.3 PROOF OF LEMMA D.2

Now we’re ready to proof Lemma D.2.

Proof. This proof simulates Lemma 3 in Ghosh et al. (2022).

We use induction to proof this lemma. At step H , we have Qk
j,H+1 = 0 = Qπ

j,H+1 by definition.
Under the event in Lemma D.10 and using Lemma D.5, we have for j = r, g,∣∣〈ϕ(s, a), wk

j,H(s, a)
〉
−Qπ

j,H(s, a)
∣∣ ≤ β

√
ϕ(s, a)T

(
Λk
H

)−1
ϕ(s, a)

Thus Qπ
j,H(s, a) ≤ min

{〈
ϕ(s, a), wk

j,H

〉
+ β

√
ϕ(s, a)T

(
Λk
H

)−1
ϕ(s, a), H

}
= Qk

j,H(s, a).

From the definition of V̄ k
h ,

V̄ k
H(s) = max

a

[
Qk

r,H(s, a) + νkQ
k
g,h(s, a)

]
≥
∑
a

π(a | x)
[
Qπ

r,H(s, a) + νkQ
π
g,H(s, a)

]
= V π,νk

H (s)

for any policy π. Thus, it also holds for π∗, the optimal policy. Using Lemma D.7 we can get

V π∗,νk

H (s)− V k
H(s) ≤ logM

α
+ 2(1 + V )HρϵI

√
dk

ς

Now, suppose that it is true till the step h+ 1 and consider the step h. Since, it is true till step h+ 1,
thus, for any policy π,

Ph

(
V π,νk

h+1 − V k
h+1

)
(s, a) ≤ (H − h)

( logM
α

+ 2(1 + V )HρϵI

√
dk

ς

)
From (27) in Lemma 10 and the above result, we have for any (s, a)

Qπ
r,h(s, a)+ νkQ

π
g,h(s, a) ≤ Qk

r,h(s, a)+ νkQ
k
g,h(s, a)+ (H −h)

( logM
α

+2(1+V )HρϵI

√
dk

ς

)
Hence,

V π,νk

h (s) ≤ V̄ k
h (s) + (H − h)

( logM
α

+ 2(1 + V )HρϵI

√
dk

ς

)
18
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Now, again from Lemma 11, we have V̄ k
h (s)− V k

h (s) ≤ log(|A|)
α . Thus,

V π,νk

h (s)− V k
h (s) ≤ (H − h+ 1)

( logM
α

+ 2(1 + V )HρϵI

√
dk

ς

)
Now, since it is true for any policy π, it will be true for π∗. From the definition of V π,νk , we have(
V π∗

r,h (s) + νkV
π∗

g,h(s)
)
−
(
V k
r,h(s) + νkV

k
g,h(s)

)
≤ (H − h+ 1)

( logM
α

+ 2(1 + V )HρϵI

√
dk

ς

)
Hence, the result follows by summing over K and considering h = 1.

D.4 PROOF OF LEMMA D.4

We first define some useful sets. LetQj =
{
Q | Q(·, a) = min

{
wT

j ϕ(·, a) + β
√
ϕT (·, a)TΛ−1ϕ(·, a), H

}
, a ∈ A

}
be the set of Q functions, where j ∈ {r, g}. Since the minimum eigen value of Λ is no smaller than
one so the Frobenius norm of Λ−1 is bounded.

Let Vj =
{
Vj | Vj(·) =

∫
a
π(a | ·)Qj(·, a)da;Qr ∈ Qr, Qg ∈ Qg, ν ∈ [0,V ]

}
be the set of Q func-

tions, where j ∈ {r, g}. Define

Π =

{
π | ∀a ∈ A, π(a | ·) = 1∫

b∈I(a) db
SMα (Qr(·, I(a)) + νQg(·, I(a))) , Qr ∈ Qr, Qg ∈ Qg, ν ∈ [0,V ]

}
the set of policies.

It’s easy to verify V k
j ∈ Vj .

Then we introduce the proof of Lemma D.4. To proof Lemma D.4, we need the ϵ-covering number
for the set of value functions(Lemma D.10(Ghosh et al., 2022)). To achieve this, we need to show if
two Q functions and the dual variable ν are close, then the bound of policy and value function can be
derived(Lemma D.8, Lemma D.9). Though the proof of Lemma D.8 and Lemma D.9 are different
from Ghosh et al. (2022), we show the results remain the same, thus Lemma D.10 still holds. We’ll
only introduce Lemma D.10 and omit the proof.

We now proof Lemma D.8.

Lemma D.8. Let π be the policy of L-UCBFair corresponding to Qk
r + νkQ

k
g , i.e.,

π(a | ·) = 1∫
b∈I(a) db

SMα (Qr(·, I(a)) + νQg(·, I(a))) (19)

and
π̃(a | ·) = 1∫

b∈I(a) db
SMα

(
Q̃r(·, I(a)) + ν̃Q̃g(·, I(a))

)
, (20)

if
∣∣∣Qj − Q̃j

∣∣∣ ≤ ϵ′ and |ν − ν̃| ≤ ϵ′, then
∣∣∫

a
(π(a | x)− π̃(a | x)) da

∣∣ ≤ 2αϵ′(1 + V +H).

Proof. ∣∣∣∣∫
a

(π(a | x)− π̃(a | x)) da
∣∣∣∣ (21)

=

∣∣∣∣∣
M∑
i=1

∫
a∈Ii

(π(I(a) | x)− π̃(I(a) | x)) da
∣∣∣∣∣

=

∣∣∣∣∣
M∑
i=1

∫
b∈Ii

db (π(Ii | x)− π̃(Ii | x))
∣∣∣∣∣

≤
M∑
i=1

∣∣∣SMα

(
Qr(s, Ii) + νQg(s, Ii)

)
− SMα

(
Q̃r(s, Ii) + ν̃Q̃g(s, Ii)

)∣∣∣
≤2α

∣∣∣Qr(·, I(a)) + νQg(·, I(a))− Q̃r(·, I(a))− ν̃Q̃g(·, I(a))
∣∣∣ (22)
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The last inequaity holds because of Theorem 4.4 in Epasto et al. (2020). Using Corollary D.14, we
have ∣∣∣∣∫

a

(π(a | x)− π̃(a | x)) da
∣∣∣∣ ≤ 2αϵ′(1 + V +H) (23)

Now since we have Lemma D.8, we can further bound the value functions.

Lemma D.9. If
∣∣∣Q̃j −Qk

j

∣∣∣ ≤ ϵ′, where Q̃j ∈ Qj , then there exists Ṽj ∈ Vj such that∣∣∣V k
j − Ṽj

∣∣∣ ≤ H2αϵ′(1 + V +H) + ϵ′,

Proof. For any x,

V k
j (s)− Ṽj(s)

=

∣∣∣∣∫
a

π(a | s)Qk
j (s, a)da−

∫
a

π̃(a | s)Q̃j(s, a)da

∣∣∣∣
=

∣∣∣∣∫
a

π(a | s)Qk
j (s, a)da−

∫
a

π(a | s)Q̃j(s, a)da+

∫
a

π(a | s)Q̃j(s, a)da−
∫
a

π̃(a | s)Q̃j(s, a)da

∣∣∣∣
≤
∣∣∣∣∫

a

π(a | s)
(
Qk

j (s, a)− Q̃j(s, a)
)
da

∣∣∣∣+ ∣∣∣∣∫
a

π(a | s)Q̃j(s, a)da−
∫
a

π̃(a | s)Q̃j(s, a)da

∣∣∣∣
≤ ϵ′ +H

∣∣∣∣∫
a

(π(a | s)− π̃(a | s)) da
∣∣∣∣

≤ ϵ′ +H2αϵ′(1 + V +H)

Using Lemmas above, we can have the same result presented in Lemma 13 of Ghosh et al. (2022) as
following.

Lemma D.10. (Ghosh et al., 2022) There exists a Ṽj ∈ Vj parameterized by
(
w̃r, w̃g, β̃,Λ, Ṽ

)
such

that dist
(
Vj , Ṽj

)
≤ ϵ where ∣∣∣Vj − Ṽj

∣∣∣ = sup
x

∣∣∣Vj(s)− Ṽr(s)
∣∣∣ .

Let NVj
ϵ be the ϵ-covering number for the set Vj , then,

logNVj
ϵ ≤ d log

(
1 + 8H

√
dk√
ςϵ′

)
+ d2 log

[
1 + 8d1/2β2/

(
ς (ϵ′)

2
)]

+ log

(
1 +

V

ϵ′

)
where ϵ′ = ϵ

H2α(1+V +H)+1

Lemma D.11. |Qk
j,h(s, a)−Qk

j,h(s, I(a))| ≤ 2HρϵI

√
dK
ς .

Proof. ∣∣∣Qk
j,h(s, a)−Qk

j,h(s, I(a))
∣∣∣ (24)

=
∣∣∣wk

j,h(s, a)
T (ϕ(s, a)− ϕ(s, I(a)))

∣∣∣ (25)

≤||wk
j,h(s, a)∥2∥ϕ(s, a)− ϕ(s, I(a))||2 (26)

(27)

From Lemma D.13 and Assumption 3.2 we get the result.
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D.5 PRELIMINARY RESULTS

Lemma D.12. (Ding et al., 2021) Let ν∗ be the optimal dual variable, and C ≥ 2ν∗, then, if

V π∗

r,1 (s1)− V π
r,1 (s1) + C

[
c− V π

g,1 (s1)
]
+
≤ δ,

we have [
c− V π̃

g,1 (x1)
]
+
≤ 2δ

C
.

Lemma D.13. (Jin et al., 2020) For any (k, h), the weight wk
j,h satisfies∥∥wk

j,h

∥∥ ≤ 2H
√

dk/ς

Corollary D.14. If dist
(
Qr, Q̃r

)
≤ ϵ′,dist

(
Qg, Q̃g

)
≤ ϵ′, and |ν̃k − νk| ≤ ϵ′, then, dist

(
Qk

r+

νkQ
k
g , Q̃r + ν̃kQ̃g

)
≤ ϵ′(1 + V +H).
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E ADDITIONAL FIGURES
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Figure 6: A synthetic distribution is updated according to a dynamical kernel P based on evolutionary
dynamics (Appendix A.3), when a classifier repeatedly predicts Ŷ=1 iff X ≥ 0.5. We visualize
how the distribution of X and conditional qualification rates Pr(Y=1 | X) change in each group
g ∈ {1 (red, solid), 2 (blue, dashed)}, fading the plotted lines over 10 time steps. In this example,
the feature values X in each group decrease with time, while the qualification rates of agents at any
fixed value of X decrease.
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F ADDITIONAL EXPERIMENT RESULTS

F.1 EXPERIMENT DETAILS

Device and Packages. We run all the experiment on a single 1080Ti GPU. We implement the
R-TD3 agent using StableBaseline3Raffin et al. (2021). The neural network is implemented using
PytorchPaszke et al. (2019).

Neural Network to learn ϕ. We use a multi-layer perceptron to learn ϕ. Specifically, we sample
100000 data points using a random policy, storing s, a, r and g. The inputs of the network are state
and action, passing through fully connected (fc) layers with size 256, 128, 64, 64. ReLU is used as
activation function between fc layers, while a SoftMax layer is applied after the last fc layer. We treat
the outcome of this network as ϕ. To learn ϕ, we apply two separated fc layers (without bias) with
size 1 to ϕ̂ and treat the outputs as predicted r and predicted g. A combination of MSE losses of r
and g are adopted. We use Adam as the optimizer. Weight decay is set to 1e-4 and learning rate is set
to 1e-3, while batch size is 128.

Note that, ϕ̂ is linear regarding r and g, but the linearity of transition kernel cannot be captured using
such a schema. Therefore, equivalently we made an assumption that there always exists measure
µh such that for given ϕ̂, the linearity of transition kernel holds. It’s a stronger assumption than
Assumption C.3.
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(a) A baseline, greedy classifier performing gradient descent to (locally) maximize true-positives, with static
fairness regularization (columns).
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(b) L-UCBFair, trained for 2,000 steps on the same, cumulative utility functions.
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(c) A R-TD3 agent (Section 3.2) trained for 200,000 steps on the same, cumulative utility functions.
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Figure 7: A comparison of learning policies trained to optimize cumulative true positive fraction
subject to three different regularized fairness constraints (columns) with ν = 1 (L-UCBFair),
λ = 0.5, (greedy agent), and the time-dependent regularization detailed in Section 3.2 (R-TD3).
The first policy (top row) is a baseline, myopic policy that greedily seeks to optimize current utility
in any state by performing gradient decent. The second policy (bottom row) is trained using deep
reinforcement learning (R-TD3) as detailed in Section 3.2 for 200,000 steps before we terminate
learning and generate the phase portraits depicted. This is on the synthetic distribution. In all
cases, the baseline, greedy policy drives the system to promote unqualified individuals, with low
qualification rates in each group, while the R-TD3 agent is able to drive the system to more favorable
equilibria characterized by higher qualification rates. The shading in the phase plots depicts the
violation of the regularizing fairness constraint within each column, validating the claim that the
R-TD3 agent learns to sacrifice short-term utility to drive towards preferable system states.
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(a) A baseline, greedy classifier locally maximizing true positive classifications, regularized by fairness
(columns).

0.1 0.3 0.5 0.7 0.9

Group 1 qualification rate s1

0.1

0.3

0.5

0.7

0.9

G
ro

u
p
 2

 q
u
a
li
fi
c
a
ti

o
n
 r

a
te

 s
2

D
is

p
a
rity

(D
e
m

o
g
ra

p
h
ic

 P
a
rity

)

Demographic Parity

0

1

0.1 0.3 0.5 0.7 0.9

Group 1 qualification rate s1

0.1

0.3

0.5

0.7

0.9

G
ro

u
p
 2

 q
u
a
li
fi
c
a
ti

o
n
 r

a
te

 s
2

D
is

p
a
rity

(E
q
u
a
l O

p
p
o
rtu

n
ity

)

Equal Opportunity

0

1

0.1 0.3 0.5 0.7 0.9

Group 1 qualification rate s1

0.1

0.3

0.5

0.7

0.9

G
ro

u
p
 2

 q
u
a
li
fi
c
a
ti

o
n
 r

a
te

 s
2 D

is
p
a
rity

(E
q
u
a
liz

e
d
 O

d
d
s
)

Equalized Odds

Equal qualification rates

0

1

(b) L-UCBFair, trained for 2,000 steps on the same, cumulative utility functions.
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(c) A R-TD3 agent (Section 3.2) trained for 200,000 steps on the same, cumulative utility functions.
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Figure 8: A repetition of the experiment performed in Fig. 7, rewarding true positive fraction
using data synthesized from the UCI “Adult Data Set”, as detailed in section Appendix A.4
with equal group size reweighting. For this experiment, an individual’s sex defined their “group”
membership, which is an imbalanced label in the dataset (≈ 67% male, group 2, vertical axis) that
we re-weight for equal representation Appendix A. The stark difference between Fig. 7 and this
experiment in the qualitative behavior of the greedy agent can be largely explained by the fact that
Pr(Y=1|X=x)) is not actually monotonically increasing in x, as stipulated by Assumption A.1.
Indeed, if Pr(Y=1|X=x) is sufficiently rough, the threshold selected by the baseline agent is liable
to appear as if sampled uniformly at random, which is how the initial threshold value is chosen for
each of the 20 iterations averaged over for each pair of group qualification rates used to generate the
phase portraits above. Despite this failure mode of the baseline agent, however, the R-TD3 agent is
still largely able to drive the system towards equilibria with more equal qualification rates in both
groups. The line of equal qualification rates in both groups is depicted in black, from the lower-left
corner of each phase plot to the upper-right.
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F.2 ZERO ONE ACCURACY WITH MORE WEIGHTS ON TRUE POSITIVE
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(a) A baseline, greedy classifier locally maximizing utility, regularized by fairness (columns).
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(b) A R-TD3 agent (Section 3.2) trained for 200,000 steps on the same, cumulative utility functions.
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Figure 9: A repetition of the experiment performed in Fig. 7 with a different base utility function
(true positive fraction + 0.8 true negative fraction), weighting each regularized disparity term with
y = 1, with the same synthetic distribution. While our observations are largely consistent with Fig. 7,
we also note that the R-TD3 agent drives a subset of state-space in the third pane to an equilibrium
less desired than the one that the myopic agent reaches.
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(a) A baseline, greedy classifier locally maximizing utility, regularized by fairness (columns).
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(b) A R-TD3 agent (Section 3.2) trained for 200,000 steps on the same, cumulative utility functions.
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Figure 10: A repetition of the experiment performed in Fig. 9 (i.e., with a base utility function (true
positive fraction + 0.8 true negative fraction) and y = 1 weighted regularized disparity term), on
the UCI “Adult Data Set”, as detailed in section Appendix A.4 with groups re-weighted for equal
representation.

F.3 TRAINING CURVES: L-UCBFAIR
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(a) Demographic Parity
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Figure 11: L-UCBFair 20-step sliding mean & std for the setting in Fig. 7.
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Figure 12: L-UCBFair 20-step sliding mean & std for the setting in Fig. 8.
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Figure 13: R-TD3 100-step sliding mean & std for the setting in Fig. 8.
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Figure 14: R-TD3 100-step sliding mean & std for the setting in Fig. 10.
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F.5 REDUCTION OF UTILITY
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Figure 15: The figure depicts the short-term impact on utility of the UCBFair algorithm compared to
a greedy baseline agent that operates without fairness constraints. In this experiment, both algorithms
were designed to optimize the fraction of true-positive classifications, but only UCBFair was subject
to the additional constraint of demographic parity. As the results indicate, the UCBFair algorithm
experiences a reduction in utility compared to the greedy baseline, but it is able to drive the system
towards a state that is preferable in the long term.
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