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Abstract

Finding dense subgraphs is a fundamental problem with applications to community
detection, clustering, and data mining. Our work focuses on finding approximate
densest subgraphs in directed graphs in computational models for processing mas-
sive data. We consider two such models: Massively Parallel Computation (MPC)
and semi-streaming. We show how to find a (2 4 ¢)-approximation in O(+/logn)
MPC rounds with sublinear memory per machine. This improves the state-of-the-
art results by Bahmani et al. [BGM 14, WAW 2014] and Mitrovi¢ & Pan [MP24,
ICML 2024]. Moreover, we show how to find an O(log n)-approximation in a
single pass in semi-streaming. This is in stark contrast to prior work, which implies
Q(nl/ 6) approximation for a single pass; a better approximation is known only for
randomized streams (Mitrovi¢ & Pan). This is the first deterministic single-pass
semi-streaming algorithm for the densest subgraph problem, both for undirected and
directed graphs. Our semi-streaming approach is also an insertion-only dynamic
algorithm, attaining the first directed densest subgraph algorithm with O(log2 n)
worst-case update time while using sub-linear memory. We empirically evaluate
our approaches in two ways. First, we illustrate that our single-pass semi-streaming
algorithm performs much better than the theoretical guarantee. Specifically, its
approximation on temporal datasets matches the (2 + ¢)-approximation of an
O(log n)-pass algorithm by Bahmani et al. [BKV12, VLDB 2012]. Second, we
demonstrate that our MPC algorithm requires fewer rounds than prior work.

1 Introduction

Computing dense subgraphs in directed graphs is a classical optimization task where we are interested
in subgraphs with a large edge-to-vertex ratio. In particular, given a directed graph G = (V, E),
the densest subgraph (DS) problem asks to find two vertex subsets S,7° C V such that the ratio
|E(S,T)|/+/|S] - |T| is maximized, where E(S,T') is the set of directed edges from S to T". This
problem has found a wide range of applications in graph mining, including the analysis of social
networks [LRJA 10, For10, CS10], bioinformatics [FNBB06, SHK* 10], visualization [ZP12, ZT12],
and finance [ZZY 17, FRM19, CT22, JZT+22].

With the constant increase in the size and prevalence of large datasets, it has become crucial to
develop algorithms that solve fundamental optimization problems with limited constraints, such
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Massively Parallel Computation model
Approximation | Memory per machine | Round complexity Reference
Undirected (1+¢) O(n%) O(y/Togn) [GLM19]
(1+¢) O(n°) O(logn) [BGM14]
Directed (2+¢) O(n?) O(y/Togn) Our work
(2+¢) O(n) O(y/logn) [MP24]
Semi-streaming model
Approximation # of passes Deterministic or randomized Reference
(1+¢) 1 Randomized [EHW15]
Undirected O(logn) 1 Deterministic Our work
(2+¢) O(logn) Deterministic [BKVI12]
Q(n'/%) 1 Randomized [EHW15]
Directed (2+4¢) 1 Random or(.ie.r stream [MP24]
O(logn) 1 Deterministic Our work
(2+4¢) O(logn) Deterministic [BKVI12]
Dynamic model
Approximation | Memory usage Update time Reference
(4+¢) O(n) O(1) amortized [BHNTI15]
Undirected O(logn) O(n) O(1) worst-case | Our work (insertion-only)
(1+¢) O(m) O(1) worst-case [SW20]
Directed O(logn) (?(n) Q(l) worst-case | Our work (insertion-only)
(1+¢) O(m) O(1) worst-case [SW20]

Table 1: A summary of state-of-the-art results on the DS problem in MPC, semi-streaming, and
dynamic models for constants ¢ > 0 and § € (0, 1), and graphs with n vertices and m edges.

as memory per computing unit or data access. While it is known how to find a DS in polynomial
time [Cha00], it is unclear how to efficiently implement this algorithm in the context of large-scale
modern computation. It inspired several research groups to study DS computation in distributed,
parallel, and streaming settings under various memory constraints and approximation guarantees.

In Massively Parallel Computation (MPC), which is a theoretical abstraction of popular large-scale
frameworks such as MapReduce and Hadoop, [BGM14] proposed an O(logn/e?) MPC round
algorithm for constructing (1 + &)-approximate DS for directed and undirected graphs, where £ > 0 is
a precision parameter and n = |V|. For undirected DS, this complexity was improved by [GLM19] to
O(+/log n -log log n) rounds. Recently, in the setting where each machine in MPC has ©(n) memory,
[MP24] designed an algorithm for (24 ¢)-approximation of directed DS that takes O(+/log n) rounds.

In the context of semi-streaming, [BKV12] proposed an elegant peeling-based algorithm that com-
putes a (2 + ¢)-approximation of directed DS in O(logn/e) passes. If the goal is to compute
undirected DS, [EHW 15] provide a single-pass algorithm that guarantees a (1 + £)-approximation.
Interestingly, the same technique for directed DS attains a Q(nl/ 6)-approximation. Better approxi-
mations are only known if the underlying stream is randomized [MP24] or if (n'->) memory can be
used in the semi-streaming setting [EHW 15].

Motivated by this disparity between the state-of-the-art results for directed and undirected DS, we
ask: What algorithmic techniques help narrow the gap in computing directed versus undirected DS?

1.1 Our contributions

Table 1 provides a summary of previous state-of-the-art results in comparison to ours.

Result 1 (Theorem 4.2 rephrased). Given an n-vertex graph and e > 0, there exists a sublinear MPC
algorithm that outputs a (2 + €)-approximate directed DS in O(~/logn) rounds. The algorithm uses
O(n?) memory per machine and O(n'**° 4+ m) total memory for § € (0,1).



This improves on [BGM14], which uses O(log n) rounds, and on [MP24], which uses O(+/logn)
MPC rounds but requires near-linear memory per machine. Additionally, Result 1 matches the
state-of-the-art round complexity of O(+/logn) for undirected graphs from [GLM19], bridging the
gap between the directed and undirected DS problems in MPC.

Result 2 (Theorem 5.1 rephrased). Given an n-vertex graph and € > 0, there exists a single-pass
deterministic semi-streaming algorithm that outputs an O(log n)-approximate directed DS.

This is the first single-pass semi-streaming algorithm for the directed DS problem on arbitrary streams.
[MP24] attains a (2 + €)-approximation but only for randomized streams. [EHW15] attains a (1 +¢)-
approximation when additional memory, i.e., O(n'-5 poly log n), is allowed. If we were to extend
the ideas of using uniform sampling from prior works, a generalization of the construction in [MP24]
shows that it will result in at least a Q(nl/ 6)-approximation. We also note that this is a deterministic
algorithm and can be easily adapted to undirected graphs, leading to the first deterministic single-pass
semi-streaming algorithm for the DS problem in both undirected and directed cases.

Result 2 is also an insertion-only dynamic algorithm. Its worst-case update time is O(logn) for

undirected and O(log2 n) for directed graphs. To our knowledge, no previous algorithm maintains an
approximate directed DS in semi-streaming. [BHNT15] shows how to maintain a (4+¢)-approximate

undirected DS with O(1) amortized update time and O(n) memory but may have Q(n) worst-case

update time. [SW20] shows how to maintain a (1 + ¢)-approximate directed DS with O(log® n)
worst-case update time but requires linear memory.

Empirical evaluation suggests that, in practice, our semi-streaming algorithm yields an approximation
much better than log n. On temporal datasets specifically, it matches the approximation of [BKV12].

2 Preliminaries

Transformation: General directed to bipartite undirected graph. Given a directed graph Gy, =
(Vair, Edir), we represent it as a bipartite graph G = (V3, Va, E') where: (i) V; and V5 are two copies
of Vygir, and (ii) there is an edge in E between u € V7 and v € V5 iff there is a directed edge from
to v in Eg;;. All directed graphs will be treated as bipartite with this representation.

Notation. For a bipartite graph G = (S, T, E), we use n to refer to |S| + |T'|, the total number
of vertices. Given two vertex sets A C S and B C T, we refer to the edges between them by
Ec(A,B)E {e=(i,j)e E:ic A,j e B}. Weuse dg(v) to denote the degree of vertex v in G.

Directed densest subgraph. Given bipartite graph G = (V,V, E) and vertex sets S, C V, the

density p(S,T) is defined as p(S, T) £ |E¢ (S, T)|/\/|S] - |T|. A directed densest subgraph is sets
S*, T* such that (S*, T*) € argmaxg rcv p(S,T

Massively Parallel Computation (MPC). In MPC, synchronous rounds of computation are per-
formed across N machines. Each machine has S words of memory and, initially, the input data is
arbitrarily distributed across the machines. During a round, each machine computes its local data.
Then, after the round, machines exchange messages synchronously. Each machine can send messages
to any other machine, but each machine can send and receive at most .S words of data. The primary
objective is to perform computation in as few rounds as possible. With respect to .S, three regimes
are primarily studied: given § € (0, 1), sub-linear (S = n%), near-linear (S = npoly logn), and
super-linear (S = n'*?). In this work, we focus on the most restrictive sub-linear memory regime.
Even though the running time in definition of the MPC model is allowed to be arbitrarily large, the
running time of our MPC algorithm is near-linear per round.

Semi-streaming. In the semi-streaming setting, an input graph G = (V, E) is given as a stream of
edges. That is, an algorithm receives one edge e € F at a time, and updates its internal memory based
on e. This internal memory is constrained to be O(n - poly logn). After all edges are presented as a
stream, we say the algorithm made a pass over the graph. An algorithm can make multiple passes
over data. During a pass, the algorithm can perform arbitrarily large polynomial-time computations.
We remark that our algorithm spends O(poly log n) time to update its memory per edge.



3 The base algorithm

In this section, we describe the base of our approach. Then, in Sections 4 and 5, we develop new
insights enabling us to extend this approach to the MPC and semi-streaming model.

As a reminder, we use S* and 7™ to denote the vertex subsets corresponding to the densest subgraph.
Additionally, we view the input graph G as a bipartite undirected rather than a directed graph; details
of this transformation are described in Section 2. We assume that our algorithm is given the density
D = p(S*,T*) and the ratio z = /|S*|/|T*|.> Then, leveraging the knowledge of D and z, the
main idea of this base algorithm is to construct a pair of vertex subsets (5,7") C V x V such that it
approximates (S*,7™*) in the following sense:

* Each vertex in S has at least D/(2z) neighbors in 7.
* Each vertex in T has at least Dz /2 neighbors in S.

We show that such a pair (S, T') must exist and that it is a 2-approximation of the directed densest
subgraph. The proofs of the following lemmas can be found in Appendix A and Appendix B.

Lemma 3.1 (Subgraph existence). Ler (S*,T™) be a directed densest subgraph. Let D = p(S*,T*)

be its density and z = +/|S*|/|T*|. There exists an induced subgraph H on vertex sets (S, T) for
which it holds that dg (v) > D/(22) for allv € S and dg(v) > Dz/2 forallv € T.

Lemma 3.2 (Sufficient condition for 2-approximation). Let (S*,T*) be a directed densest subgraph.
Let D = p(S*,T™*) be its density and z = \/|S*|/|T*|. Then, any induced subgraph H on vertex
sets (S, T) which satisfies dg(v) > D/(2z) for allv € S and di(v) > Dz/2 for allv € T has
density at least D /2. In other words, it is a 2-approximation of the directed densest subgraph.

Lemma 3.2 provides sufficient conditions under which a given subgraph is a 2-approximate densest
one. These conditions inspire a simple peeling procedure for constructing such a subgraph, e.g.,
Algorithm 1. Let S and 7" denote the two bipartite sides of that maintained subgraph. Each S and
T is initialized to V. Then, it iteratively removes vertices that do not satisfy the degree conditions
stated by Lemma 3.2. More precisely, the algorithm iteratively removes vertices from S with degrees
less than D/(2z) and vertices from T" with degrees less than Dz /2. If only these two steps were
performed without any extra stopping rule, this algorithm could execute too many peeling iterations
before terminating. To see that, consider the construction in Figure 1.

Kp - densest subgraph

2 )
NN
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Figure 1: An illustration of the construction that requires £2(n) iterations of peeling. We observe that the added
vertices (black vertices) can extend as far as desired and will be removed one by one from right to left.

vertices

Each vertex has edges to previous

We construct an undirected graph; we obtain its directed version by considering each undirected edge
as two directed ones. Let the densest subgraph be the complete graph K p, which has density D — 1
and z = 1, so we will peel vertices with degree less than (D — 1)/2. Then, disjoint to this subgraph,
we start with a %-complete subgraph with vertices labeled 1, . . ., %. We continually add vertex

1 with edges to vertices ¢ — % + 1,1 — % +2,...,1—1fore > %. This disjoint subgraph
and all of its subgraphs have a smaller density than K p, and the number of iterations of peeling is
linear with the number of vertices we add, resulting in £2(n) iterations of peeling.

We make a crucial observation that enables us to avoid this behavior — if a set .S or 7" does not
decrease in size by a factor of (1+¢) at least, the current (.5, T") subgraph already achieves the desired

2Qur final algorithms do not require knowledge of D and z. Those details are discussed in Section 4.



approximation (see the proof of Theorem 3.4 for details). This stopping criterion — implemented by
Lines 5 and 6 — enables us to ensure sufficient progress in each peeling iteration.

Algorithm 1 Computes a 2(1 + ¢)-approximate directed densest subgraph assuming that D =

p(S*,T*) and z = /|S*|/|T*|

Input: bipartite graph G = (S, T, F), parameters € > 0, D and z
1: ks =D/(22), kr = Dz/2
2: while true do
3: A < all vertices v € S with dg(v) < kg
4 B < all vertices v € T with dg(v) < kp
50 if S| > 2*|T| and |A| < 15-[S]| then return (S,T)
6
7

if |S| < 2*|T| and |B| < 5|7 then return (S,T)

Remove A from S and B from T'

3.1 Comparison to prior work

The idea of gradually peeling vertices based on their degrees has appeared in prior works on densest
subgraphs, e.g., see [BKV12, GLM19, MP24]. Nevertheless, we are unaware of a peeling-based
algorithm that uses stopping rules akin to those on Lines 5 and 6 of Algorithm 1. On the one hand,
a typical peeling iteration for computing densest subgraphs removes vertices whose degree is less
than 1 + ¢ times the average degree. This immediately implies O(log; | . n) peeling steps and has no
need for stopping rules. However, the average degree changes as the graph changes; so, the degree
threshold above which to peel vertices evolves. On the other hand, Algorithm 1 uses the same degree
thresholds, i.e., ks and kp, throughout the entire execution. Then, the advantage of fixed degree
thresholds is that they do not need to be recomputed in distributed and streaming settings. This is one
of the key properties enabling us to design our algorithms in the coming sections.

3.2 Analysis of Algorithm 1

We use peeling iteration to refer to a single while-loop iteration of Algorithm 1. During a peeling
iteration, all vertices in .S or 7" with degree below the respective threshold are removed, implying:

Lemma 3.3. Algorithm I executes O(log, , . n) peeling iterations.

Proof. After a peeling iteration, either S or T' decreases in size by a factor of at least (1 + ¢), or the
algorithm outputs the current vertex sets and terminates (Lines 5 and 6). Once S and T are empty,
Algorithm 1 finishes. Hence, there are O(log, , . n) iterations of peeling. O

Theorem 3.4. Let (S*,T*) be a directed densest subgraph of G. For D = p(S*,T*) and z =
VIS*|/|1T*|, Algorithm 1 outputs a 2(1 + €)-approximate directed densest subgraph.

Proof. Let H be the subgraph from Lemma 3.1. Since, D = p(S*,T*) and z = /|S*|/|T"],
Algorithm 1 will not remove any vertex from H. Hence, S and 7" produced by Algorithm 1 are not
empty sets. Therefore, there must exist an iteration of Algorithm 1 in which A (resp. B) is at most
e/(1+¢)|S| (resp. €/(1+4¢€)|T|). That is, in this iteration, S and T" would decrease in size by a factor
less than 1 + €. Observe that when such an iteration occurs, the algorithm terminates. Therefore, we
have the following two cases.

Case Algorithm 1 terminates at Line 5. We have that [A| < %_[S| meaning that at least ﬁ|5 |
vertices in S have degree at least kg. This allows us to lower bound the density, giving us

ks - 12 D 1|9 D
S,T > 1+e = P >
ST = VISIIT]  2(1+e) 2\ |T] ~ 2(1+¢)

where we used |S| > 22|T|. Therefore, the produced subgraph is a 2(1 + £)-approximation.
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7= |7'| meaning that at least

Case Algorithm 1 terminates at Line 6. Similarly, we have that | B| <
L_|T| vertices in T have degree at least k7. This gives us

14¢
kr - 12L D IT| D
S, T) > te — N IS
AT 2 e " a2t

using the | S| < 22|T'| constraint. Therefore, this also produces a 2(1 + €)-approximation. O

4 O(y/logn) MPC rounds in the sublinear memory regime

In this section, we extend Algorithm 1 to the MPC sublinear memory regime. Directly translating
Algorithm 1 into an MPC is straightforward — standard MPC algorithmic primitives, e.g., see [GSZ11,
ASST 18], enable us to perform one iteration of peeling in O(1) MPC rounds. Since Algorithm 1 takes
O(log n) iterations, this direct MPC implementation results in an O(log n) MPC round algorithm in
the sublinear memory regime. However, we aim to obtain a quadratically faster algorithm.

4.1 Our improved approach

On a high level, we execute the O(log n) iterations of (a variant of) Algorithm 1 in O(y/Tog n) MPC
rounds. We present the intuition behind this approach in two steps: (i) Recall a known framework for
simulating O(log n) iterations in O(+/logn) MPC rounds; and (ii) Describe a modified variant of
Algorithm 1 that fits into that simulation framework.

Known simulation techniques. Consider a T-iteration algorithm A, oc,p such that: (1) A ocar
maintains a state of each vertex, e.g., a vertex v is removed or not, and (2) the state of v in iteration ¢
depends only on the states of v and its neighbors in iteration 7 — 1, e.g., A, oca. decides whether v
should be removed in iteration ¢ based on the number of v’s non-removed neighbors in iteration ¢ — 1.
The output of A, oca. is the state of each vertex in each of the T iterations.

Remark: Algorithm 1 does not have the properties of A;ocar, €.g., evaluating the conditions on
Lines 5 and 6 requires “global” computation. However, we note that these lines can be simulated
through post-processing, constructing sets S and 7" for each iteration and comparing their sizes using
the states of vertices. The remaining steps of Algorithm 1 can be phrased in the language of A ocar-

In how many MPC rounds can we execute A, ocar ? Based on our description, observe that the state of
a vertex v at any moment during the execution of A, oc4, is a function of the v’s T-hop neighborhood.
Let N, (v) denote the j-hop neighborhood of v. This observation gives rise to the following idea:

(1) Gather Np(v) of each vertex v € V.
(2) Place N (v) on a single machine in MPC; Np(v) for different v are placed on different machines.

(3) In a single MPC round, execute A, oca. Within N7 (v) to learn the state of v.

Assuming that N (v) fits in the memory of a single machine, a significant advantage of this approach
is that it takes only O(log T') MPC rounds. Namely, Item 1 can be implemented using a well-known
technique graph exponentiation [LW10, Ghal7]. In this technique, Ny:(v) is gathered for each
v € V and foreachi = 0- - -log T, using the following relation:

Nyi(v) = | Noi(w).

wWEN,; (v)

Namely, each iteration of the graph exponentiation technique doubles the radius of the neighborhood
collected around a vertex. To implement this technique in MPC, it is necessary to address: Can N (v)
fit into the memory of a single machine in MPC? This takes us to the second part of our approach.

Graph sparsification (Algorithm 2) — A modified variant of Algorithm 1. We can alter the recipe
above to simulate A oc;. in MPC while still aiming for o(7") rounds. Namely, (i) we can split those T
iterations into T'/k groups, each consisting of k consecutive iterations, (ii) execute group after group
sequentially, such that (iii) each group is executed as described above by using graph exponentiation.
Setting aside memory constraints, this method uses O (% -log k) MPC rounds. The larger k is, the
fewer MPC rounds are needed. However, a larger k implies a bigger Ny (v) which might not fit in a



Algorithm 2 Finds partial (2 + ¢)-approximation of directed densest subgraph
Input: bipartite graph G = (S, T, E), e € (0,1), € (0,1), D and =
ks = D/(22), kp = Dz/2, a = (1 4 ¢)V 81"

Freeze all vertices in S of degree greater than kga
Freeze all vertices in T" of degree greater than ko
Mark as frozen each edge with both endpoints frozen
f1 < number of frozen vertices in .S

f2 < number of frozen vertices in T’

if f1 > Zivlj”Tl or fo > 7”50‘@ then return (S, T")

AN A S ol

: 18logn
: pp < min (1,%)

. pg < min (1 1810g">

' e2kp
\/0log n
10: ¢t Yt

2
11: for ¢ steps do
12: G, <+ sample of each non-frozen edge of G with probability p;

Nel

13: G5 < sample of each non-frozen edge of G with probability p
14: A < all non-frozen vertices v € S with dg, (v) < pks
15: B < all non-frozen vertices v € T with dg, (v) < pkr

16:  if [S| > 2?|T| and |A| < ££<[S| — f1 then return (S, T)

17: i [S| < 2?|T| and |B| < 1 |T'| — f then return (S,T)

18: Remove A from S and B from T
19: return (S, 7T)

machine’s memory. It turns out that £ = © (\/log n) is the largest k our approach can tolerate after
performing certain graph sparsification from [GU19] described next.

Fix t = ©(y/logn). Ignoring the memory-per-machine constraint, N;(v) can be collected in
O(loglogn) MPC rounds. However, we cannot guarantee that these neighborhoods fit on a single
machine with O(n?) memory, as some vertices can have large degrees. For example, vertices with a
degree of w(n?) cannot even store their entire neighborhood on a single machine. Inspired by this,
Algorithm 2 temporarily “ignores” these high-degree vertices when performing graph exponentiation.
We call this process freezing high-degree vertices, seen on Line 2 and Line 3. Intuitively, freezing
enables us to transform the current graph into one having sufficiently small degrees, and hence the
graph exponentiation can be executed with O (n‘s) memory per machine. On Line 4, we also ignore
the edges between frozen vertices since they do not affect the peeling of non-frozen vertices.

Algorithm 2 samples the graph on top of freezing high-degree vertices on Line 12 and Line 13.
Combining both freezing and sampling, the graph becomes sparse enough so that ©(¢)-hop neigh-
borhoods fit within sublinear memory and peeling is simulated with high probability. Therefore, if
©(t) iterations of peeling can be simulated in O(log log n) rounds, then we can simulate the entirety
of Algorithm 1 in O(y/logn - loglog n) rounds. Between these phases of simulating O (+/log n)
iterations of peeling, frozen vertices are updated based on their new degrees. However, these frozen
vertices are not peeled during these phases, and therefore our peeling does not quite match ©(1/logn)
iterations of peeling in Algorithm 1. Nevertheless, our final algorithm uses O(+/logn) rounds. We
show that the fraction of frozen vertices is too small to affect the entire peeling process.

4.2 Analysis of Algorithm 2

When trying to simulate Algorithm 1, it is important to note that our stopping rules are affected since
we have limited information on the degrees of frozen vertices. So, we weaken our rules and this is
reflected in the differences between Line 5 and Line 6 of Algorithm 1 and Line 16 and Line 17 of
Algorithm 2. Algorithm 2 simulates ¢ = ©(y/logn) iterations of peeling as described above, but
due to frozen vertices, it is not obvious how much the sizes of vertex sets decrease by. Nevertheless,
we establish the following claim about the number of frozen vertices. The proof of Lemma 4.1 is
deferred to Appendix C.



Lemma 4.1. Let G = (S, T, E) be a bipartite graph and (S* T*) be its directed densest subgraph.

Let (S',T") be the output of Algorithm 2 ran on Ggiven (1+ )3) <D< p(S+ fg) nd ~ lfll/al)T <

z < /|S*|/|T*|. Then, with probability at least 1 — -, it holds that:

* Good approximation. (S',T") is a 2(1 + ¢)%-approximate densest subgraph of G, or

* Size reduction. (S',T") contains a 2(1 + €)%-approximate densest subgraph of G and

\SI 17

S| < = or|T'| <

Vologipen

where v = (1 +¢) T

Following the ideas described before, we invoke Algorithm 2 ©(y/logn) times to simulate all
iterations of peeling, resulting in the following theorem, whose proof is deferred to Appendix D.

Theorem 4.2. There exists a sublinear MPC algorithm that runs in O(\/ logn) rounds and attains
a 2(1 + ¢)8-approximation of the directed densest subgraph with probability at least 1 — % The

algorithm uses O(n%) memory per machine and O(n'*+° + m) total memory for § € (0, 1).

5 Single-pass semi-streaming algorithm

In this section, we extend Algorithm 1 to the single-pass semi-streaming setting. It is unclear how
to adapt the sampling used for the MPC algorithm since the number of edges sampled could be
w(npolylogn), surpassing the memory limit of the semi-streaming model. Nonetheless, we show
that an O(log n)-approximate directed densest subgraph can be obtained by maintaining only vertex
degrees throughout the stream. This directly results in a O(n) memory requirement, as a vertex’s
degree can be maintained using a simple integer counter. To the best of our knowledge, this is the
first semi-streaming single-pass algorithm for the directed densest subgraph problem that achieves
better than poly n approximation.

5.1 Our approach

Algorithm 3 Finds O(log n)-approximation of directed densest subgraph

Input: bipartite graph G = (S, T, FE),e > 0, D and z
1: kg = D/(QZ), kr = DZ/2
2: lg(v),lr(v) < Oforallv e V > [ stands for level
3: dg(v),dr(v) < O0forallv € V > d stands for vertex degree in its current level
4: while stream not empty do

5: (u,v) < next edge from stream

6: if ls(u) < lr(v) then dg(u) + dg(u) +1
7: ifls( ) > ZT( ) then dT(’U) — dT(U) +1
8: lfds( ) > ks then

9: ls(U)(—ls( )-1—1

10: ds(u) <

11: ide( ) > kT then

12: lr(v) < lr(v) +1

13: dT(U) +~0

14: S; < {v:ls(v) > i} forall0 < i < 2logy, . n

15: T; <= {v :Ip(v) > i} forall 0 < i < 2log; . n

16: fori=1...2log,, ndo

17: if|S;| > 22|T;| and |S;| > ‘Si’l‘ then return (S;, T;)
18: i |S;| < 22|T;| and |T;| > | = 1‘ then return (S;,T;)

How can vertex degrees be leveraged to (approximately) simulate Algorithm 1? We observe that
Algorithm 1 implicitly computes a vertex-vector [, where [(v) is the peeling iteration after which



vertex v was removed from the graph. We refer to [(v) as the level of v. Having [ suffices to recover
(S,T) in each iteration of the while-loop. Our approach approximates /(v) for each vertex by using
the evolution of vertex degrees as the stream is read. We now discuss details.

As a reminder, we think of an input graph as bipartite with the bipartitions S and 7'; details are
described in Section 2. As our algorithm scans the edges in a stream, the maintained vertex degrees
increase. Initially, each vertex level and vertex degree is 0. A vertex’s level [(v) increases when the
algorithm is certain that v will not be deleted from the graph within the first [(v) peeling iterations.

On a high level, once a vertex degree reaches D/(2z) if itis in S or Dz/2 if itis in T, it will not be
removed during the first peeling iteration. Therefore, we can confidently increase its level to 1. For a
vertex in S to move to a level of at least 2, its degree must be at least D/(2z) after the 1st peeling
iteration. Unfortunately, before reading the entire stream, our single-pass algorithm cannot say with
certainty that a vertex will be peeled in the 1st peeling iteration. However, if a vertex v is not peeled
in the 1st iteration, an algorithm learns that information about v potentially before reading the entire
stream. Inspired by this, we estimate the levels of vertices as follows.

For an edge (u, v) on the stream, we increase d(u) only if {(v) > I(u). This guarantees we only count
edges where the other vertex has not been removed yet. Once a vertex moves to a higher level, we need
to determine its degree at that level. However, it is not obvious how to calculate this degree without
maintaining the edges in the subgraphs of each level. Therefore, in Algorithm 3, we assume the worst
case and reset the degree of the vertex to 0 when it moves to a higher level. This poses challenges
in analyzing whether these degree estimates are accurate enough to output an approximation of the
directed densest subgraph, especially when the stream of edges is adversarial. Fortunately, we show
that Algorithm 3 ran for specific input of D and z produces an O(log n)-approximation. Precisely,
we show the following result, whose proof is deferred to Appendix E.

Theorem 5.1. There exists a single-pass semi-streaming algorithm that attains an O(logn)-
approximation of the directed densest subgraph.

Remark. To adapt the algorithm to finding the undirected densest subgraph, we no longer need z. All
other ideas remain the same, resulting in a single-pass semi-streaming algorithm for approximating
the undirected densest subgraph as well. We also have a dynamic algorithm with O(1) update time
for each guess on D and z. We can maintain sets (S;, T;) throughout the algorithm without increasing
the update time, resulting in O(log n) update time and O(log? n) update time for directed graphs.
We can output our approximation of the densest subgraph anytime in O(poly logn) time.

6 Experiments

Baselines. We empirically evaluate the performance of our semi-streaming algorithm, comparing it to
the (2 4 €)-approximation O(logn) pass semi-streaming algorithm from [BKV12]. We also compare
it to the single-pass semi-streaming algorithm from [MP24], but the density plots of [MP24] follow
very similarly to [BKV12]. So, we only include [BKV12] in our approximation plots in Figure 2. As
discussed in the introduction, [MP24] can have a quite high worst-case update time per edge on a
stream, while the update time of our work is O(log” ). We illustrate this empirically in Figure 3.

To run these experiments, we use an M1 machine running macOS Sequoia 15.3.2 with 4 cores, 8 GB
of RAM, 256 KB of L2 Cache, and 2.5 MB of L3 Cache (per core).

Data. We use 10 datasets from the Stanford Large Network Dataset Collection [LK14]. 5 of these
datasets (Slashdot, Berkeley-Stanford Web, Google Web, Pokec, LiveJournal) are general directed
graphs; most consist of edges sorted by endpoints. The other 5 datasets (Ask Ubuntu, Super User,
Wikipedia, Twitter, Stack Overflow) are temporal directed graphs where edges are in sorted time
order of when interactions happened. These temporal graphs reflect a stream of edge updates.

Results. We run the algorithms on temporal directed graphs with € = 0.2. These datasets present
events/edges in the order they occurred, making them an excellent benchmark for practical applica-
tions of dynamic algorithms. In Figure 2, we see that our algorithm matches [BK'V12] for the largest
density. We also observe that it is significantly less sensitive to error in 22, making it better in practice
than [BKV 12] when our approximation of z? may not be as precise. Overall, we demonstrate that in
practice our algorithm performs much better than the log n theoretical guarantee would imply.



Graph Nodes Edges Graph Nodes Edges
Slashdot 82,168 948,464 Ask Ubuntu 159,316 964,437
Google Web 875,713 5,105,039 Super User 194,085 1,443,339
Berk-Stan Web 685,230 7,600,595 Wikipedia 1,140,149 7,833,140
Pokec 1,632,803 30,622,564 Twitter 456,631 14,855,875
LiveJournal 4,847,571 68,993,773 Stack Overflow 2,601,977 63,497,050
(a) General directed graphs (b) Temporal directed graphs

Super User Densities Wikipedia Densities Stack Overflow Densities
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Figure 2: Density as a function of z? for various temporal datasets.
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Figure 3: Update time between processing edges of the stream for various general datasets.

We also compare the update time of our algorithm to [MP24], using their threshold f = 1/450, in
Figure 3. The plot contains update times of the algorithms for batches of 10,000 edges. The chosen ¢
are where the largest densities are attained, and the chosen ¢ are based on maximizing densities. Note
that € does not significantly affect the running time of our algorithm. As we can see, the worst-case
update time of our algorithm is significantly more stable and lower compared to [MP24].

Experimental results for the remaining datasets can be found in Appendix F. Additionally, we provide
experiments for our MPC algorithm in Appendix G which show that our algorithm not only improves
the theoretical upper bound on round complexity but also uses fewer rounds in practice.

7 Conclusion and future work

We study the directed densest subgraph problem in MPC and semi-streaming models. Our MPC algo-
rithm bridges the gap between known algorithms for computing undirected and directed approximate
DS. We also develop a simple deterministic single-pass semi-streaming algorithm. This is the first
single-pass algorithm for the directed DS problem to achieve a sub-polynomial approximation.

Our work leaves a few intriguing questions. First, even though our MPC algorithm is able to match
the round complexity of the state-of-the-art undirected DS algorithm, there is still a gap between their
approximation factors, 1 4 ¢ compared to 2 4 ¢. Is it possible to improve the approximation guarantee
for the directed DS problem while not increasing the round complexity? Second, can this upper
bound of O(+/logn) MPC rounds in the sublinear memory regime be broken for either undirected or
directed graphs? Third, our semi-streaming algorithm attains an O(log n)-approximation. Can we
develop a single-pass semi-streaming algorithm with an ©(1)-approximation for directed graphs?
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state our theoretical and experimental
results as well as the assumptions of the algorithms.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The limitations are clearly stated in the statement of our results and are
discussed in the conclusion.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Our proofs of our theoretical results are written clearly and are all mathemati-
cally rigorous.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: The parameters used for our algorithms are provided and the data ran for
our experiments are cited. The implemented algorithms are the same as the pseudocode
provided.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We provide access to the data and code in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All parameters used in our algorithms are provided. Also, the context and
source of our data are provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our implemented algorithms are deterministic and their results are completely
determined by the input data, so there are no reportable errors in the results. We emphasize
its statistical significance through using multiple data sets.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: Our experiments compare approximation guarantees and time of execution of
algorithms. We used a standard laptop whose characteristics are provided in the experimental
section.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no apparent harmful consequences of the results in this paper. Experi-
ments are carried out in an ethical manner (no illegal data usage, etc.).

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: It is not obvious how the algorithms can be misused. Our results are more
foundational research and we don’t see any direct path to negative applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no risk of misuse as data used was already publicly released and safe.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credit the Stanford Large Network Dataset Collection where we got our
data to run experiments.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We are not releasing any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.
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* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our research does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

¢ For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No LLMs were used for the results in this paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Lemma 3.1

Lemma 3.1 (Subgraph existence). Ler (S*,T*) be a directed densest subgraph. Let D = p(S*,T*)

be its density and z = +/|S*|/|T*|. There exists an induced subgraph H on vertex sets (S, T) for
which it holds that dg (v) > D/(2z) forallv € S and dg(v) > Dz /2 forallv € T.

Proof. We claim that the directed densest subgraph satisfies the constraints of such a subgraph H.
Consider any vertex v € S*. Since H is the directed densest subgraph, removing v does not increase
the density. Therefore, we have

Ea(S" T |Ea(S",T7)| - du(v)

VISHITH (15 = DIT*|

|S*|71 * *
(1 - VS*|> |Eq(S™,T)]

|Eq(S*,T)| D
2z

s dH(U)

Y

> = o T 2

where for the last inequality, we used (1 — 1/]5* \)1/ 2 <1—1/(2|5*|). Similarly, we can show that
for any vertex v € T, it must satisfy dg (v) > Dz/2.

Hence, the pair (S*, T™*) satisfies the constraints of the claim. O

B Proof of Lemma 3.2

Lemma 3.2 (Sufficient condition for 2-approximation). Let (S*,T*) be a directed densest subgraph.
Let D = p(S*,T*) be its density and z = \/|S*|/|T*|. Then, any induced subgraph H on vertex
sets (S,T) which satisfies dg(v) > D/(2z) for allv € S and dg(v) > Dz/2 for allv € T has
density at least D /2. In other words, it is a 2-approximation of the directed densest subgraph.

Proof. The amount of edges in H is lower bounded by max (|S | - %, |T| - D; Z). Therefore, we

have

N Gl S
P = VIS
_ o (s i
I T A VAR T T
D*
>
- 2

since the two parameters in max (%1 / %, zy/ %) are reciprocals of each other, implying one of
them is at least 1. O

C Proof of Lemma 4.1

We will use the following lemma to connect degrees between the original graph and the sampled
graph.

Lemma C.1. Consider graph G, k > 0, € € (0,1). Let H be a subgraph of G obtained by sampling
each edge of G independently with probability p = min (1, 18512#). Then with probability at least
1-— #,for allv € G, it holds:

e ifdg(v) < % then dg (v) < pk;
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e ifdg(v) > (14 ¢)k, then dy (v) > pk.

Proof. If p = 1, then the lemma follows immediately. So, let p = 18135” Consider any vertex

v € G. Ifdg(v) < k/(1+ €), then we consider two cases. When d¢ (v ) < k/2, we have

Prid(v) > pkl < exp (— (ng{’“@)]—l)mw)] /3)
B pk | Eldn(v)]
- (525
< exp(fpk/e‘)g%

and when k/2 < dg(v) < k/(1 + ¢€), we have

Prldu(v) > pk] < exp <— (I[-E[dquk(v)] - 1) E[dp(v)] /3>

exp (—52pk/6) < %

IN

Therefore, using the union bound over all vertices, we have that d i (v) < pk for all v € G, satisfying
de(v) < k/(1 + €), with probability at least 1 — 5. Now, if di(v) > (1 + €)k, then we have

exp (— (1- IE[;jf()])E 4 ()] /2)
exp (— (1;)2 1+ E)pk/2>

< exp (—egpk/fi) < %

Pr[dg (v) < pk]

IN

IN

Similarly, using the union bound over all vertices, we have that dg (v) > pk for all v € G, satisfying
de(v) > (1 + )k, with probability at least 1 — ;. O

Lemma 4.1. Let G = (S, T, E) be a bipartite graph and (S*,T*) be its directed densest subgraph.
p(S*,T*) D<pS ,T*) d\/IS |/1T| <

Let (S',T") be the output of Algorithm 2 ran on G gzven EBE ESE o <
z < /|S*|/|T*|. Then, with probability at least 1 — -, it holds that:

* Good approximation. (S',T") is a 2(1 + ¢)%-approximate densest subgraph of G, or
* Size reduction. (S',T") contains a 2(1 + €)%-approximate densest subgraph of G and
S T
1S < 151 or |T'| < 17l

Y Y

/90 lo. emn
where v = (1 +¢) T

Proof. Without loss of generality, assume the inputs of Algorithm 2 satisfy “;“ = cz? for some ¢ > 1.

. z+/|8 . .
Now, if f1 > %, we use the high degrees of frozen vertices to see that

fiksa D p(S*,T*)
> AT S 25 A7 )
G |S]|T| 2 2(1+¢)3

meaning that G is a 2(1 + ¢)3-approximation of the densest subgraph. A similar argument can be

VAE
made if fo > l H | , S0 we assume that both of these conditions are not satisfied.
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Now, if we look at the peeling process, it closely simulates Algorithm 1. Using Lemma C.1 and the
constraints on D and z, we see that we’re removing vertices in .S with degree below kg /(1 + €) and
keeping vertices in .S with degree at least (1 + ¢)kg where

pSTTY a8t
21+ e)3\/|S*||T*| — T 2(1+ o)/ |SH|| T

with probability at least 1 — #, using the union bound over all ¢ iterations of peeling. Similarly, we
see that we’re removing vertices in 7" with degree below kr /(1 + ¢) and keeping vertices in T" with
degree at least (1 + €)kp where

p(S*,T%) p(S*,T%)
<kr<
2(1 + &)/ [5*(|T*| 2(1 + )/ 15*||T~|

also with probability at least 1 — % Following the same argument behind Theorem 3.4 but using

these bounds on kg and k7, we see that returning early will result in a 2(1 + ¢)®-approximation in
total. Therefore, we will assume Algorithm 2 does not return early. Then, we consider two cases.

If ¢ < (1+¢)V1%814+<™ then we see that

/BIE 18]

fi< =
@ (1 + 5)\/51051+5”

and

o VBT _ )
zZo - (1+€)‘/510g1+5n/2.

Therefore, after ¢ iterations of peeling, we have that the final returned vertex sets (S, 7”) satisfy

S| —(+e)fy 5]

S <
| | - (1 +E)|-t/2J (1 +g)w/510g1+5 n/8

+(1+e)fi <

or
Tl =(A+e)fe
(17 o)L

7|
(1 + E),/(Slogpre n/8

because of Line 16 and Line 17, using the upper bounds on f; and f2, and sufficiently large n.

IT'| < +(1+e)f2 <

. dlog; . m . |S| .
On the other hand, if ¢ > (1 + )V +e ™ then we still see that f; < RISt So, if

|S|/|T| > 2? remains true throughout the whole algorithm, then due to Line 16 we have that the final
returned vertex sets (S’,T") satisfy

S| = (L+e)fs
(1+¢)

5]
(1 + 6),/610g1+5 n/8
2

following a similar argument as above. Otherwise, at some point we have that |S|/|T| < z°,
meaning that |S| must have decreased by at least a factor of c. As a result, we also have that

18" < +(1+e)h <

87| < (1)!1% in this case due to the lower bound on c. O
+e en

D Proof of Theorem 4.2

Theorem 4.2. There exists a sublinear MPC algorithm that runs in O(y/Iogn) rounds and attains
a 2(1 + €)%-approximation of the directed densest subgraph with probability at least 1 — % The

algorithm uses O(n®) memory per machine and O(n'*% 4 m) total memory for & € (0,1).

Proof. Let Aypc be our MPC algorithm. We first describe Appc and then provide its analysis.
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Algorithm description. Aypc considers all guesses on 1 < D < n and ﬁ < z < /n in parallel
using powers of 1 + . For each of these parallel instances of D and z,

* The algorithm invokes Algorithm 2 16/0 log, , . 7/ times, constantly providing back the
output of the previous invocation, with the edges of the induced subgraph of the new vertex
sets, into the new invocation.

* If Algorithm 2 ever returns early in any of these invocations, then we call the pair of vertex
sets that is returned early a pair of potential vertex sets.

Appc outputs the pair of potential vertex sets with the largest density over all instances of D and z.

Algorithm memory and round complexity. Using the same application of the graph exponenti-
ation technique shown in [GLM 19, Appendix C.2], we see that each machine will only use O(n°)
memory since neighborhoods will have size bounded by

36logn k s
( 5 -a) € O(n°)

9

with high probability and Algorithm 2 will take O(loglogn) rounds. Including the number of
invocations to Algorithm 2, we have that Aypc takes O(+y/logn - loglogn) rounds. Running the
algorithm in parallel over all instances of D and z adds an O(log2 n) factor to the memory per
machine.

Algorithm approximation. Note that there will be guesses of D and z that satisfy

P8 T) _ (87T \/|S*|/\ S

(1+¢)3 (14+¢)? (1+

Using these guesses and the approximation guarantees from Lemma 4.1, we guarantee these potential
vertex sets to be a 2(1 + ¢)%-approximation with at least probability 1 — %, taking the union bound
over the invocations of Algorithm 2. Since Appc selects the vertex sets with the largest density, it
attains at least a 2(1 + )%-approximation of the directed densest subgraph.

E Proof of Theorem 5.1

Lemma E.1. Let the directed densest subgraph have vertex sets (S*,T*). Then, (S;, T; ) in Algo-
rithm 3 will be non-empty vertex sets for all 0 < ¢ < 2log; . n given D < o(S.17)

8(1+¢) log1+E n
[S*1/1T~] " ”
VST < . < /TSI

T (te)

and

Proof. Consider (S;, T;) after running Algorithm 3. Then, in the best-case scenario, all the edges in
its induced subgraph, E¢(S;, T;), were used to determine the peeling of its vertices for later vertex
sets. However, because the degree of a vertex v is reset to 0 every time v moves to a higher level,
information about edges incident to v up to that point is — informally speaking — erased; we call such
edges ignored. At most i - kg incident edges to a vertex in S; are ignored, and, similarly, at most
1 - k7 incident edges to a vertex in 7; are ignored. Hence, throughout the entire algorithm, each vertex
in Sy logy,.n ignores at most 2kg log; , . m edges incident to it and each vertex in 15 log, . n ignores
at most 2kr log, , . n edges incident to it.

Consider the induced subgraph on (S*,T™*). Since (S*,T*) is the densest subgraph, we observe
that all vertices in .S* have degree at least 8kg log,, . n and all vertices in T™ have degree at least
8kt log; . m by following the proof of Lemma 3.1 and using the bounds on D and z. We claim that
some non-empty subsets of these vertex sets will remain in (Sy logy 4. ns T210g, . n)» which is enough
to prove the lemma. Rather than letting edges be ignored throughout the algorithm, we assume
they’re all ignored at the beginning: 2kglog, . n edges incident to each vertex in S* are ignored
and 2kr log;, . n edges incident to each vertex in T™ are ignored. Then, we look at how vertices
within the induced subgraph on (S*,T™*) are peeled over time.
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Notice that
|EG(S™,T7)| > (8ks logy ;. n)[S™| = (8kr logy . n)|T™|

and so with the edges that are ignored, the number of remaining edges is lower bounded by

|Ea(S™,T7)| = (2kslogy . n)[S™| — (2krlog, . n)[T"|
> (4kslogy e n)|S™| = (4kr logy . n)|T7|.

When peeling is performed on this subgraph, all the vertices that are peeled each cause at most kg
edges to be removed, if it is from S*, and at most k7 edges to be removed, if it is from T*. If we
assume that all the vertices are peeled, at most 2kg|S*| = 2kr|T*| edges will be removed, and the
graph must be empty. However, this is smaller than the lower bound on the number of edges above,
so it is impossible to peel all the vertices. Therefore, we end up with a non-empty subgraph, and the
vertices in this subgraph will not be removed throughout the entire algorithm. O

Theorem 5.1. There exists a single-pass semi-streaming algorithm that attains an O(logn)-
approximation of the directed densest subgraph.

Proof. Let Agrream be our semi-streaming algorithm. We now describe it and provide its analysis.

Algorithm description. Agggay runs Algorithm 3 on all 1 < D < n and ﬁ <z < nin

parallel using powers of 1 + <. Then, out of all the outputs of Algorithm 3 where the vertex sets are
both non-empty, we pick the one corresponding to the largest D as the final output of Agrrgay.

Algorithm memory. Note that Algorithm 3 does not need to store (S;,7;) for all 0 < i <
2log; . m but only needs to store consecutive sets to compare their sizes. Therefore, Algorithm 3

uses O(n) memory through this implementation detail. Additionally, we have O(log®n) total
guesses on D and z. Each of these guesses is a copy of all the variables in Algorithm 3, resulting in
O(nlog? n) memory in total.

Algorithm approximation. Let the directed densest subgraph have vertex sets (S*,7*). Note
that because we only update d(u) for an edge (u,v) or (v, u) with I(u) < I(v), this ensures that a
vertex that is not removed must have degree at least D/(2z), if it is in S, and degree at least Dz/2,

S T*
follow a similar argument as the proof of Algorithm 1 to see that these vertex sets would be an
O(log n)-approximation of the directed densest subgraph.

if itis in T'. Therefore, if Algorithm 3 outputs non-empty vertex sets for D > we

Specifically, there exists a guess on D and z such that

PS5 17) p(S". 1) [S71/1T"]
<D< d <, < Y
8(14+¢)%logy,.n =~ 8(1+¢)log; . n an (1+¢) <z < VISH/|T]

Using Lemma E.1, we know that all vertex sets (.5;, T;) in Algorithm 3 for this guess on D and z
will be non-empty and so Algorithm 3 will output non-empty vertex sets. Since Agrreay Outputs the

non-empty vertex sets corresponding to the largest D, they must satisfy D > % and

results in an O(log n)-approximation. O

F Additional streaming experiments

We run the algorithms on the general directed graphs. We plot the results of our algorithm run on
various values of ¢ ranging from 0.2 to 2 while we ran [BKV12] on ¢ = 0.2. Even though most
of these datasets have edges sorted by their endpoints, which can be considered adversarial for
our algorithm, we see from Figure 4 that their approximations are not far off from [BKV12]. Our
maximum densities are within a factor of around 2 from [BKV12], which is much closer than our
theoretical guarantees. We also consider a less adversarial order where we randomize the order of
the edges. With a randomized order, we also see in Figure 4 that the computed densities increase
significantly, almost matching those of [BKV12]. Figure 5 contains the update time plots for the
remaining general datasets.
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Figure 4: Density as a function of z2 for general datasets and remaining temporal datasets.
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Figure 5: Update time between processing edges of the stream for remaining general datasets.

G MPC experiments

We compare our MPC algorithm to the MPC algorithm for directed graphs from [BKV12]. Specif-

ically, we look at their density plots as well as how many sublinear MPC rounds the algorithms
take. We use 6 = 0.4, 0.6, 0.8, where each machine has nd memory, and € = 0.6, the approximation

parameter for both algorithms. As we can see from Figure 6, our algorithm attains densities that
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Figure 6: Density and number of MPC rounds as a function of 22 for § = 0.4,0.6, 0.8, ¢ = 0.6. The
used datasets are described in Section 6.

match [BKV12]. Additionally, it does so using less than half the number of rounds when having
the same amount of memory. It continues to use significantly less rounds for smaller amounts of
memory and only matches the number of rounds for the Slashdot dataset where our algorithm uses a
quadratically smaller amount of memory per machine compared to what is used by [BKV12]. This is
a significant improvement in the number of rounds in practice and reflects our improvement in the
algorithm’s theoretical upper bound.

Remark. These experiments were not executed on actual large-scale frameworks, but simulated in
a centralized setting. The rounds in plots correspond to the number of rounds taken in those MPC
simulations.
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