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Abstract
Cross-modal transformers have demonstrated su-
periority in various vision tasks by effectively
integrating different modalities. This paper first
critiques prior token exchange methods which re-
place less informative tokens with inter-modal
features, and demonstrate exchange based meth-
ods underperform cross-attention mechanisms,
while the computational demand of the latter in-
evitably restricts its use with longer sequences.
To surmount the computational challenges, we
propose GeminiFusion, a pixel-wise fusion ap-
proach that capitalizes on aligned cross-modal
representations. GeminiFusion elegantly com-
bines intra-modal and inter-modal attentions, dy-
namically integrating complementary information
across modalities. We employ a layer-adaptive
noise to adaptively control their interplay on a
per-layer basis, thereby achieving a harmonized
fusion process. Notably, GeminiFusion maintains
linear complexity with respect to the number of
input tokens, ensuring this multimodal framework
operates with efficiency comparable to unimodal
networks. Comprehensive evaluations across mul-
timodal image-to-image translation, 3D object
detection and arbitrary-modal semantic segmenta-
tion tasks, including RGB, depth, LiDAR, event
data, etc. demonstrate the superior performance
of our GeminiFusion against leading-edge tech-
niques. The PyTorch code is available here.

1. Introduction
In light of the increasing availability of low-cost sen-
sors, multimodal fusion which leverages data from various
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sources has emerged as a pivotal catalyst for advancing ar-
tificial intelligence-driven perception in vision (Smith &
Gasser, 2005; Baltrušaitis et al., 2018; Guo et al., 2022a).
This approach has demonstrated remarkable potential, sur-
passing the unimodal paradigm across various downstream
tasks, including autonomous driving (Ha et al., 2017; Li
et al., 2022), semantic segmentation (Ye et al., 2019; Cao
et al., 2021), video captioning (Sun et al., 2019a; Lu et al.,
2019) and visual question answering (Antol et al., 2015;
Ben-Younes et al., 2017).

In the current literature, dominant paradigms for the multi-
modal fusion can be categorized into two ad-hoc schemes,
i.e., interaction-based fusion (Shvetsova et al., 2022; Na-
grani et al., 2021; Zhang et al., 2023a) and exchange-based
fusion (Wang et al., 2020c; 2022b; Zhu et al., 2023). In early
interaction-based methods, a common practice involved di-
rectly concatenating tokens from different modalities (Su
et al., 2019). This straightforward fusion approach neglects
inter-modal interactions and sometimes leads to a poorer
performance than single-modal counterparts (Wang et al.,
2020b; 2022b). While cross-attention mechanisms are in-
troduced as a solution, the quadratic complexity of the full
attention with an increasing number of input tokens chal-
lenges the feasibility of cross-modal models. To tackle this
issue, a simple strategy is to confine cross-modal interaction
to later layers, often referred to as late-fusion (Nagrani et al.,
2021). However, this method restricts the ability of the
network’s shallow layers to access valuable features from
another modality, diminishing the original goal of facili-
tating mutual assistance between modalities and hindering
overall model performance.

Exchange-based fusion provides a parameter-free solu-
tion (Wang et al., 2022b; 2020c) to the computational
overhead by leveraging the inherent alignment of differ-
ent modalities in vision tasks. For instance, world-space
data like LiDAR and point clouds can be projected to pixels
on the paired image plane. This method entails dynamically
predicting the significance of each input token and subse-
quently replacing less crucial tokens from one modality with
those from another.

Our investigation into the prune-then-substitute technique,
as outlined in the TokenFusion (Wang et al., 2022b), reveals
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Figure 1: Improvements of our ^GeminiFusion across five multimodal semantic segmentation tasks. GeminiFusion achieves +2.6%,
+1.3%, +2.8%, +1.9%, and +3.4% performance gains. All training epoch numbers are aligned. D: Depth, E: Event, L: LiDAR.

that its effectiveness is not as consistent as expected. We
observe that the network’s shallow layers deem all tokens
insignificant and indiscriminately substitute them with rep-
resentations from an alternate modality. This behavior is in
stark contrast to that of the deeper layers, which align more
closely with our initial expectations by selectively swapping
out representations of less pivotal tokens. Moreover, our
results suggest that a strategy of unconditionally exchang-
ing all tokens almost invariably yields the best outcomes, as
evidenced by the data presented in Figure 3. Upon further
analysis, we believe that this phenomenon can be attributed
to the intrinsic unique information carried by each token;
any direct substitution results in an irrevocable loss of infor-
mation. We also note instances of simultaneous information
exchange at identical positions across modalities, underscor-
ing the necessity for features from different modalities to be
mutually retained and integrated.

We observe that the performance of the exchange-based
fusion consistently underperforms the cross-attention based
fusion, while the additional overhead introduced by the full
attention poses a significant challenge. To overcome this
challenge and maintain the core information captured by the
original unimodal learning, we introduce a pixel-wise multi-
modal fusion approach called GeminiFusion. Specifically,
given two modalities, only the two matched tokens from cor-
responding modalities will participate in the fusion process.
This fusion scheme has a minimal impact on the original
unimodal representations, on account of the preservation of
skip connections from the original inputs and the retention
of self-consistent part during the fusion process. Meanwhile,
the cross-modality part can significantly capture valuable
multimodal information. The computational cost is minor
since the pixel-wise attention is more compact compared to
the full attention. Moreover, GeminiFusion demonstrates its
superiority by allowing multimodal architectures to lever-
age parameters from unimodal pre-training, such as on the
ImageNet dataset.

To verify the advantage of the proposed method, we consider
extensive tasks including multimodal image-to-image trans-
lation, 3D object detection and arbitrary-modal semantic

segmentation, i.e., RGB, depth, events, and LiDAR, cover-
ing four multimodal benchmarks.

Our contributions in this paper include: (i) we empirically
demonstrate that directly replacing features of one modality
with those from another modality is sub-optimal. Simply
exchanging all tokens every time achieves better results;
(ii) we propose an efficient method named GeminiFusion
for multimodal feature fusion, leveraging the inherent high
alignment of different modal inputs in vision tasks while
preserving the original unimodal features; (iii) extensive
experiments on multimodal image-to-image translation, 3D
object detection tasks and arbitrary-modal segmentation
consistently affirm the effectiveness of our proposed Gemi-
niFusion.

2. Related Work
The process of multimodal fusion involves leveraging di-
verse data sources to enhance associated details, surpassing
the capabilities of their unimodal counterparts. Here, we
delve into two prevailing fusion schemes and emphasizing
their applicability in targeted multimodal vision tasks.

Interaction-based multimodal fusion. Early studies of
interaction-based fusion (Snoek et al., 2005; Atrey et al.,
2010; Bruni et al., 2014) categorizes the fusion strategy into
three broad types: early (input-level), mid (feature-level)
and late (decision-level) fusion. Early fusion methods (Zhao
et al., 2020; Zhang et al., 2021a) directly fuse the inputs
from different modalities through a single-stream network,
performed by averaging (Hazirbas et al., 2017) or concate-
nating (Zhang & Funkhouser, 2018) along the input chan-
nels. However, the supervision signal is distant from the
blended input, resulting in suboptimal results. Addition-
ally, maintaining supervision for individual modalities is
not feasible within this framework. Mid fusion (Lin et al.,
2017; Chen et al., 2019; Fu et al., 2020; Ramachandram &
Taylor, 2017; De Vries et al., 2017) harnesses individual
CNN or transformer encoders for each modality to capture
intricacies in their respective features (Xu et al., 2023; Guo
et al., 2022b). For example, MBT(Nagrani et al., 2021)
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Figure 2: (a) Overall architecture of GeminiFusion: our proposed GeminiFusion model is designed to be plug and play, allowing it to
be seamlessly integrated into various vision backbones. (b) GeminiFusion module: performing pixel-wise fusion to enrich multimodal
feature by utilizing aligned features from two modalities. (c) TokenFusion: swapping certain pixels between two features, but result in
information loss. (d) Cross-attention: requires a significant amount of memory resources with quadratic complexity of input token.

subsequently amalgamated the encoded features through
a dedicated fusion layer. RDFNet (Park et al., 2017) and
CMX (Zhang et al., 2023a) employ multilayer fusion, ag-
gregating features iteratively with additional convolutional
blocks. EPIC-Fusion (Kazakos et al., 2019) combines inter-
mediate activations via summation in the joint training of
multiple modality-specific networks. TransFuser (Prakash
et al., 2021) utilizes several transformer modules for the
fusion of intermediate features between different modalities.
Late fusion (Owens & Efros, 2018) aggregates the final de-
cision through an ensemble of multiple outputs (Pandeya &
Lee, 2021; Glodek et al., 2011), usually implemented using
parallel networks.

Exchange-based multimodal fusion. CEN (Wang et al.,
2020c) introduces the parameter-free Channel Exchanging
Network, which dynamically exchanges channels between
sub-networks of different modalities. MLF-VO(Jiang et al.,
2022) extends this method to fuse color and inferred depth
maps, incorporating a polarization regularizer to prevent the
model from reaching a singular solution. MuSE (Zhu et al.,
2023) generalizes exchange-based methods from vision-
vision fusion to text-vision fusion. TokenFusion (Wang
et al., 2022b), on the other hand, performs the exchange in
the token dimension. It dynamically detects uninformative
tokens and substitutes these tokens with features from other
modalities. In this paper, we contend that the prune-then-
substitute approach employed by TokenFusion consistently
falls short in performance compared to the cross-attention-
based interaction method. There is also a risk that all tokens
undergo unnecessary exchange, resulting in irreversible in-
formation loss.

Attention for multimodal fusion. Attention mecha-

nisms, including self-/cross-attention (Vaswani et al., 2017),
CBAM (Woo et al., 2018), SENet (Hu et al., 2018), and
ECA (Wang et al., 2020a) have demonstrated their success
in various tasks. Several multimodal frameworks (Li et al.,
2022; Hori et al., 2017; Wei et al., 2020) incorporate atten-
tion modules to fuse features from different modalities. For
instance, ACNet (Hu et al., 2019) processes RGB and depth
with two branches and employs the proposed Attention Com-
plementary Module (ACM) to enable the fusion branch,
exploiting more high-quality features from different chan-
nels. Different from the ACNet, we concentrate more on the
aligned spatial location to explore an efficient fusion method.
VST (Liu et al., 2021a) utilizes cross-attention to fuse fea-
tures from two modalities by computing the self-attention
between the queries from one modality and the keys and
values from the other modality. TransFuser (Prakash et al.,
2021) and TriTransNet (Liu et al., 2021c) concatenate two
modal features and use self-attention to mix information.
Additionally, works like (Zhao et al., 2021; Wang et al.,
2022a) employ the SE module to blend information. In
contrast to previous quadratic complexity cross-attention,
our pixel-wise attention has linear complexity with respect
to the number of input tokens. This feature enables our
fusion method to maintain a nearly as compact multimodal
architecture as a unimodal network.

Multimodal semantic segmentation. Many segmentation
methods excel in standard RGB-based benchmarks, provid-
ing per-pixel category predictions in a given scene. However,
they often face challenges in real-world scenarios with rich
3D geometric information. To overcome this limitation, re-
searchers have sought to enhance scene understanding by
incorporating multimodal sensing, including depth (Silber-
man et al., 2012; Gupta et al., 2014), thermal (Ha et al.,
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2017; Sun et al., 2019b), polarimetric optical cues (Kalra
et al., 2020), event-driven priors (Zhang et al., 2021b), and
LiDAR (Zhuang et al., 2021a; Caesar et al., 2020). Previ-
ous works have primarily focused on the RGB-depth set-
ting, which may not generalize well across different sensing
data (Zhang et al., 2023a). In this study, we explore a uni-
fied approach capable of generalizing effectively to diverse
multimodal combinations for semantic segmentation.

3. Our Method
We first revist the recently proposed TokenFusion (Wang
et al., 2022b) method in Section 3.1. Subsequently, Sec-
tion 3.2 details the commonly utilized cross-attention mech-
anism. Our pixel-wise GeminiFusion module is introduced
in Section 3.3, and the comprehensive architecture is pre-
sented in Section 3.4.

3.1. Fusion via exchange

Based on the motivation that there are always uninformative
tokens or channels in single-modal transformers, exchange
based methods such as TokenFusion (Wang et al., 2022b)
and CEN (Wang et al., 2020c) are designed to dynamically
detect and substitute these useless tokens or channels with
features from other modalities. Specifically, at the core of
its functionality, TokenFusion (Wang et al., 2022b) prunes
tokens in each modality and replaces them with correspond-
ing tokens from other modalities that have been projected
and aggregated to match. This exchange is guided by a
score predictor integrated within each block of the network,
which computes masks that share the dimensions of the mul-
timodal inputs. These masks, through a comparison against
a predefined threshold, facilitate the selection of tokens to
be substituted. Specifically, if there are only two modalities
as input, i.e., X1 and X2, the token exchange process can
be formulated as:

X1
[i] = X1

[i] ⊙ Is(X1
[i]

)≥θ +X2
[i] ⊙ Is(X1

[i]
)<θ,

X2
[i] = X2

[i] ⊙ Is(X2
[i]

)≥θ +X1
[i] ⊙ Is(X2

[i]
)<θ.

(1)

where X1
[i] indicates the i-th token of input X1, I is an indi-

cator asserting the subscript condition, therefore it outputs a
mask tensor ∈ {0, 1}N , the parameter θ is a small threshold
set to 0.02, and the operator ⊙ resents the element-wise
multiplication.

The supervision of the mask generation process is enforced
through an L-1 norm constraint. However, this approach
introduces an element of stochasticity. The model does
not inherently prioritize the informational importance of
tokens when generating the masks. We contend that the
connection between the masks and the tokens’ intrinsic
information content is not well-regulated, which may lead
to randomness in the exchange process. As demonstrated

Table 1: Comparison with TokenFusion on the NYUDv2, SUN
RGB-D and DeLiVER datasets for multimodal semantic segmen-
tation task. Evaluation metrics include pixel accuracy (%), mean
accuracy (%), and mean IoU (%). Only mIoU is reported on
the DeLiVER dataset following CMNeXt (Zhang et al., 2023b).
† marks the methods are reproduced by ourselves. All training
epochs are aligned. D: Depth, E: Event, L: LiDAR.

Method Backbone Inputs Pixel Acc. mAcc. mIoU
Results on the NYUDv2 dataset
TokenFusion MiT-B3 RGB+D 79.0 66.9 54.2

GeminiFusion MiT-B3 RGB+D 79.9+0.9 69.9+3.0 56.8+2.6

TokenFusion† MiT-B5 RGB+D 79.1 67.5 55.1

GeminiFusion MiT-B5 RGB+D 80.3+1.2 70.4+2.9 57.7+2.6

Results on the SUN RGB-D dataset
TokenFusion† MiT-B3 RGB+D 82.8 63.6 51.4

GeminiFusion MiT-B3 RGB+D 83.3+0.5 64.6+1.0 52.7+1.3

TokenFusion† MiT-B5 RGB+D 83.1 63.9 51.8

GeminiFusion MiT-B5 RGB+D 83.8+0.7 65.3+1.4 53.3+1.5

Results on the DeLiVER dataset
TokenFusion† MiT-B2 RGB+D - - 63.7

GeminiFusion MiT-B2 RGB+D - - 66.4+2.7

TokenFusion† MiT-B2 RGB+E - - 55.7

GeminiFusion MiT-B2 RGB+E - - 58.5+2.8

TokenFusion† MiT-B2 RGB+L - - 55.5

GeminiFusion MiT-B2 RGB+L - - 58.6+3.1

TokenFusion† MiT-B2 RGB+D+E+L - - 63.5

GeminiFusion MiT-B2 RGB+D+E+L - - 66.9+3.4

in Figure 3c and Figure 3d, altering the threshold does not
prevent the tokens in the initial layers from being entirely
exchanged. This suggests that TokenFusion does not operate
as initially hoped, where tokens with negligible information
are replaced by those from other modalities. Furthermore, as
illustrated in Figure 3a and Figure 3b, setting the threshold
to 1, thereby allowing all tokens always to be exchanged,
yields better results. This indicates that the exchange-based
method of TokenFusion is not only unstable but also prone
to the loss of critical information. Hence, it may be less
effective than a strategy involving the complete exchange of
information.

3.2. Fusion via cross-attention

We commence with an exploration of a prevalent cross-
attention-based fusion architecture (Li et al., 2022; Carion
et al., 2020), which is typified by the utilization of a canoni-
cal attention scheme to process inputs derived from multiple
modalities. As illustrated in Figure 2d, consider the scenario
where we have procured a set of N patches from two modali-
ties, denoted as X1,X2 ∈ RN×d, the corresponding output
Y1,Y2 ∈ RN×d augmented by multimodal information
can be generated by:

Y1 = Attention(X1WQ,X2WK,X2WV) +X1

Y2 = Attention(X2WQ,X1WK,X1WV) +X2

Attention(Q,K,V) = Softmax(QKT/
√
d)V

(2)

4



^GeminiFusion: Efficient Pixel-wise Multimodal Fusion for Vision Transformer

0.0 0.2 0.4 0.6 0.8 1.0
Threshold (NYUDV2 semantic segmentation)

53

54

55

56

57

m
Io

U

TokenFusion
GeminiFusion

0.0 0.2 0.4 0.6 0.8 1.0
Threshold (SUN RGBD semantic segmentation)

51.0

51.5

52.0

52.5

m
Io

U

TokenFusion
GeminiFusion

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

TokenFusion Exchange Rate (Threshold 0.02)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

TokenFusion Exchange Rate (Threshold 0.2)

Figure 3: Impact of the threshold on the exchange-based TokenFusion. Exchanging all tokens almost invariably yields the best outcomes.

(a) Input-0        (b) Input-1   (c) TokenFusion (d) Ours             (e) GT

Figure 4: Image-to-image translation results on the validation
split of Taskonomy. Best view in color and zoom in.

Table 2: Comparison on the Taskonomy dataset for the
multimodal image-to-image translation task. Evaluation met-
rics are FID/KID (×10−2) for the RGB predictions and MAE
(×10−1)/MSE (×10−1) for other predictions. Lower values indi-
cate better performance for all the metrics. All training epoch
numbers are aligned.

Method Shade+Texture
→ RGB

Depth+Normal
→ RGB

RGB+Shade
→ Normal

RGB+Edge
→ Depth

TokenFusion 47.31/0.94 103.87/4.24 0.67/1.75 0.22/0.55

GeminiFusion 41.32-5.99/0.81-0.13 96.98-6.89/3.71-0.53 0.65-0.02/1.69-0.06 0.20-0.02/0.49-0.06

Table 3: Comparison with MVX-Net on the 3D object detection
task against vehicle targets. The dataset is the validation set of the
KITTI 3D object detection dataset. All training epoch numbers are
aligned. The IoU threshold is 0.7.

Method Param(M) 3D APR11 3D APR40

Easy Medium Hard Easy Medium Hard
MVX-Net 33.8 87.49 77.04 74.54 88.41 78.77 74.27

MVX-Net + GeminiFusion 34.8 88.49 77.36 74.61 89.43 78.76 74.46

The computational complexity of above operation is O(N2 ·
c), where N is the number of tokens of both modalities.
Given that N can be exceptionally large, the computational
demand of the model is significantly increased. For instance,
CMNeXt (Zhang et al., 2023b) partitions each modality in-
put into 16, 384 patches. This partitioning leads to a com-
putational requirement of over 17G FLOPs for just one
instance of cross-attention, a figure that is prohibitive for
practical model deployment.

3.3. ^GeminiFusion: pixel-wise fusion module

To harness the benefits of modality fusion through cross-
attention mechanism while circumventing the computational
intensity that it entails, we introduce an innovative pixel-
wise fusion module, termed the GeminiFusion module.
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Figure 5: Comparison of attention scores obtained from self-
attention (intra-modality) and cross-attention (inter-modality).
Left: with noise. Right: without noise.

Drawing inspiration from TokenFusion (Wang et al., 2022b),
we posit that not all patches contribute equally to the fusion
process. Less salient patches could be efficiently substituted
by their spatial counterparts from the alternate modality,
implying that exhaustive interaction among all patches may
not be obligatory. This insight leads us to the hypothesis that
the crux of inter-modality information exchange lies in the
patches sharing identical spatial coordinates, as these loca-
tions are where information exchange is most pertinent and
significant. Leveraging this insight, the GeminiFusion mod-
ule is engineered to prioritize interactions between spatially
co-located patches from different modalities, thus refining
the cross-attention mechanism:

Y1
[i] = Attention(X1

[i]W
Q,X2

[i]W
K,X2

[i]W
V) +X1

[i],

Y2
[i] = Attention(X2

[i]W
Q,X1

[i]W
K,X1

[i]W
V) +X2

[i].
(3)

where i is in the range of d. The targeted interaction strategy
of GeminiFusion module not only focuses computational
effort on the most critical information exchanges but also
significantly slashes the computational load. This efficiency
is quantified by a reduction in computational complexity to
O(N · c2). Compared with the cross-attention, the FLOPs
plummet from 17G to merely 0.14G. This staggering reduc-
tion of 99.2% in computational demand marks a transforma-
tive improvement, rendering the module exceedingly effi-
cient for deployment in environments where computational
resources are at a premium or where real-time performance
is necessary.

However, two main challenges arise here: (i) Incongruity
outcomes from the attention score. In the TokenFu-
sion (Wang et al., 2022b) framework, the exchange of less
informative patches with those from a different modality
has been shown to enhance model performance. Conversely,
within the attention module, a tendency arises where one
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modality disproportionately learns from patches of another
modality that are more self-similar, as they yield higher at-
tention scores. This proclivity is antithetical to our intended
model behavior, which seeks to benefit from the integration
of dissimilar and potentially more informative patch char-
acteristics. (ii) Softmax function limitation in per-pixel
attention mechanism. The current attention formulation
operates on a per-pixel basis, resulting in an attention map
of dimension 1× 1. The application of the softmax function
in this context is rendered ineffective as it invariably returns
a value of one, nullifying the intended differentiation of the
attention mechanism. This outcome undermines the capac-
ity of the model to assign varying levels of attention across
modalities.

To address the aforementioned issues, we propose two en-
hancements. Firstly, we introduce a lightweight relation
discriminator to evaluate the disparity between modalities.
Our findings indicate that a synergistic combination of a
1× 1 convolution followed by a softmax function suffices.
The associated experiments are detailed in Table 6. Specif-
ically, patches from the two modalities are concatenated
and fed into the relation discriminator, which subsequently
assigns a relation score ranging from 0 to 1. This relation
score is utilized to modulate the original key, effectively
substituting the standard key in Eq. 2:

Y1
[i] = Attention(Q,K,V) +X1

[i]

Q = X1
[i]W

Q, K = X1
[i]ϕ(X

1
[i],X

2
[i])W

K, V = X2
[i]W

V
(4)

where ϕ(·) indicates our relation discriminator module. The
formula for Y2

[i] is obtained in the same way. To prevent
the second issues associated with single-item focus without
adding redundant information, we add the pixel-wise self-
attention into the Eq. 4:

K = [X1
[i]W

K, X1
[i]ϕ(X

1
[i],X

2
[i])W

K],

V = [X1
[i]W

V, X2
[i]W

V].
(5)

The formula for Y2
[i] is obtained in the same way. In the

self-attention mechanism described by Equation 5, both
the query and key are derived from identical modal inputs,
leading to an inherent bias towards the self-referential com-
ponent of the attention score. This can diminish the efficacy
of learning cross-modal representations. To address this is-
sue, we augment the self-attention with layer-adaptive noise.
This approach involves the injection of a minimal amount
of noise at the layer level, subtly enhancing the feature rep-
resentation without burdening the model with extraneous
information. To encapsulate this process for input tensors
X1,X2 ∈ RN×d at Layer L, the resultant output tensors
Y1,Y2 ∈ RN×d within our GeminiFusion module can be
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Figure 6: Performance vs.latency on the NYUDv2 dataset. Gemi-
niFusion achieves the better trade-off compared with others. La-
tency is measured by averaging all validation samples of the
NYUDv2 dataset. Multi-scale flip test strategy is used in CM-
Next as described in (Zhang et al., 2023b).

mathematically represented as follows:

Y1
[i] = Attention(Q1,K1,V1) +X1

[i],

Q1 = X1[i]W
Q,

K1 = [(NoiseKL +X1
[i])W

K, X1
[i]ϕ(X

1
[i],X

2
[i])W

K],

V1 = [(NoiseVL +X1
[i])W

V, X2
[i]W

V]

Y2
[i] = Attention(Q2,K2,V2) +X2

[i],

Q2 = X2
[i]W

Q,

K2 = [(NoiseKL +X2
[i])W

K, X2
[i]ϕ(X

2
[i],X

1
[i])W

K],

V2 = [(NoiseVL +X2
[i])W

V, X1
[i]W

V].

(6)

We have conducted an ablation study on noise selection, de-
tailed in Table 7. Our findings indicate that the optimal noise
implementation involves a learnable parameter added to the
key, with this parameter being unique to each layer. This
layer-specific noise facilitates a dynamic balance between
self-attention and cross-modal attention and ensures the ap-
propriate functioning of the softmax operation. Figure 5
illustrates the variation in attention scores across increasing
layer depths.

3.4. Overall architecture

Our GeminiFusion model adopts an encoder-decoder archi-
tecture, with the encoder featuring a four-stage structure
akin to the widely recognized SegFormer (Xie et al., 2021)
for the extraction of hierarchical features. For conciseness,
Figure 2 illustrates only the initial stage out of the four.

The primary focus lies in multimodal fusion based on visual
data, encompassing modalities such as RGB, depth, event,
and LiDAR. These modalities are inherently homogeneous,
as they represent different visual perspectives of the same
subject, and can be readily converted into image-like for-
mats (Zhuang et al., 2021b; Zhang et al., 2023b). Within our
framework, all modalities utilize shared parameters with the
exception of the Layer Normalization (LN) layers, facilitat-
ing a uniform processing approach. More specifically, the
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Table 4: Comparison of multimodal semantic segmentation re-
sults on NYUDv2 and SUN RGBD datasets with Swin (Liu et al.,
2021b) and MiT-B3/B5 (Xie et al., 2021) as encoder models. All
training epochs are aligned. Swin-Tiny-1k and Swin-Large-22k are
pre-trained on the ImageNet-1K and ImageNet-22k, respectively.

Method Encoder Param(M) NYUDv2
mIoU

SUNRGBD
mIoU

GeminiFusion

MiT-B3 75.8 56.8 52.7
MiT-B5 137.2 57.7 53.3
Swin-Tiny-1k 52.0 52.2 50.2
Swin-Large-22k 369.2 60.2 54.6

Table 5: Comparison results with state-of-the-art methods on the
NYUDv2, SUN RGB-D and DeLiVER datasets for the multimodal
semantic segmentation task. Additional strategies indicate that the
method uses strategies other than ImageNet classification pre-
training. For the DeLiVER dataset, we follow CMNeXt to use
MiT-B2 as backbone for fair comparison. Therefore “MiT-B5
(MiT-B2)” indicates that we use MiT-B5 for NUYDv2 and SUN
RGB-D, while MiT-B2 for DeLiVER. ∗ indicates that we use the
SUN RGBD trained model as pre-training on NYUDv2 dataset. †

indicates that the results are reproduced by ourselves.

Method Backbone Additional
Strategies

NYUDv2
mIoU

SUN RGBD
mIoU

DeLiVER
mIoU

PSD ResNet50 ✗ 51.0 50.6 -
FSFNet ResNet-101 ✗ 52.0 50.6 -
TokenFusion† MiT-B5 (MiT-B2) ✗ 55.1 51.8 63.5
SMMCL SegNeXt-B ✗ 55.8 - -
MultiMAE ViT-Base ✓ 56.0 - -
OMNIVORE Swin-Large ✓ 56.8 - -
CMNeXt MiT-B4 (MiT-B2) ✗ 56.9 50.4 66.3
CMX MiT-B5 ✗ 56.9 52.4 62.7
DFormer DFormer-L ✓ 57.2 52.5 -
PolyMaX ConvNeXt-L ✓ 58.1 - -
SwinMTL SwinV2-Base-MiM ✓ 58.1 - -
EMSANet EMSANet-R34-NBt1D ✓ 59.0 50.9 -
DPLNet MiT-B5 ✓ 59.3 52.8 -
OmniVec OmniVec-4 ✓ 60.8 - -
GeminiFusion MiT-B5 (MiT-B2) ✗ 57.7 53.3 66.9
GeminiFusion Swin-Large-22k ✗ 60.2 54.6 -
GeminiFusion∗ Swin-Large-22k ✓ 60.9 - -

RGB image IRGB ∈ R3×H×W , along with the other M−1
modalities Idepth, · · · , ILiDAR ∈ R3×H×W , undergoes
sequential refinement through Multi-Head Self-Attention
(MHSA) and Feed-Forward Network (FFN) blocks. These
modalities are then adeptly integrated to harness intra-modal
information via our proposed GeminiFusion module.

Upon completion of the four encoding stages, we obtain M
sets of feature maps at different stages, denoted as fm

l ∈
{fm

1 ,fm
2 ,fm

3 ,fm
4 } for each modality m ∈ [0,M − 1].

For the l-th encoding stage, the number of blocks per
branch is specified by bl ∈ {4, 8, 16, 32}, the stride by
sl ∈ {4, 8, 16, 32}, and the channel dimension by Cl ∈
{64, 128, 320, 512}. Within each stage, the M feature maps
are fused into a singular feature map f through a process
of weighted summation. Following the encoding process,
the resultant four-stage features f l ∈ {f1,f2,f3,f4} are
channeled into the decoder. The decoder is responsible for
synthesizing the segmentation predictions. We employ an
MLP-based decoder, as outlined in SegFormer (Xie et al.,
2021), to serve as our segmentation head.

By employing a single-branch design, we not only stream-

line network complexity but also enhance predictive general-
ization capabilities. Moreover, the shared parameter strategy
aids in the detection of common patterns across different
modalities, which is a key objective of multimodal fusion. It
should be noted that while our method excels in processing
homogeneous modalities where each data type represents
a different perspective of the same input, it currently does
not accommodate heterogeneous data combinations, such as
images paired with audio or text. We also need to pre-define
the method for aligning with the above data pairs. Address-
ing this limitation remains an avenue for future research.

4. Experiment
4.1. Datasets

For multimodal semantic segmentation experiments, we use
the following datasets: NYUDv2 (Silberman et al., 2012)
dataset provides 795 training and 654 testing images, la-
beled into 40 categories. The resolution we use is 480x640,
which is aligned with the setting in CMNeXt (Zhang et al.,
2023b) and DFormer (Yin et al., 2023). DeLiVER (Zhang
et al., 2023b) dataset contains 3983 training and 2005 test-
ing images, which is more than four times the size of the
NYUDv2 dataset. It has 25 classes. The resolution we use
is 1024x1024, which is also aligned with CMNeXt. Accord-
ing to CMNext, only mIoU is reported. Thus, we also only
report mIoU in experiments on the DeLiVER dataset. SUN
RGB-D (Song et al., 2015) dataset contains 5285 training
and 5050 testing images, which is about seven times the
size of the NYUDv2 dataset and 1.7 times the size of the
DeLiVER dataset. The input resolution is 480x480, which
is aligned with DFormer. The class number of the SUN
RGB-D dataset is 37.

For the image-to-image translation task, we follow the ex-
periment settings used in CEN (Wang et al., 2020c) and
TokenFusion (Wang et al., 2022b). Taskonomy (Zamir
et al., 2018) dataset is a large-scale indoor scene dataset,
which contains about 4 million indoor images. More than
10 modals are provided with each image, like depth, normal,
shade, texture and edge. Each modal is of size 512x512.
We use the same sampling strategy with CEN and Token-
Fusion, which takes 1000 training and 500 testing images.
Our implementation details can be found in the appendix A.

For the 3D object detection task, we follow the experiment
settings used in MVX-Net (Sindagi et al., 2019). KITTI 3D
object detection (Geiger et al., 2012) dataset contains 7481
training samples and 7518 test samples. The test difficulty is
categorized into three levels: easy, medium and hard, which
is based on the size of the object, the degree of visibility
(occlusion), and the degree of truncation. In this paper, like
MVX-Net (Sindagi et al., 2019), the training set is further
split into a training set and a validation set. After splitting,
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Table 6: Ablation about the relation discriminator on the NYUDv2
dataset. All training epoch numbers are aligned. We use the MiT-
B3 as the backbone.

Relation Discriminator Pixel Acc. mAcc. mIoU
2layer-MLP 79.3 69.1 55.7
2layer-MLP + Sigmoid 79.5 69.7 55.9
2layer-MLP + Softmax 79.9 69.9 56.8
1x1CNN + Softmax 79.2 69.2 55.7
3x3CNN + 1x1CNN + Softmax 79.4 69.6 55.6
5x5CNN + 3x3CNN + 1x1CNN + Softmax 79.1 68.7 54.9
5x5CNN + 3x3CNN + 1x1CNN + 2layer-MLP + Softmax 79.2 68.9 55.3

Table 7: Ablation about the noise selection on the NYUDv2
dataset. All training epoch numbers are aligned. We use the MiT-
B3 backbone.

Noise type Pixel Acc. mAcc. mIoU
Random Gaussian Noise, Multiply 79.2 69.3 55.5
Random Gaussian Noise, Add 79.2 68.8 55.3
Learnable parameter, Multiply 79.6 69.2 56.2
Learnable parameter, Add 79.9 69.9 56.8

the training set consists of 3712 samples and the validation
set consists of 3769 samples.

4.2. Comparisons with TokenFusion

Table 1 summarizes the comparative analysis between Gem-
iniFusion and TokenFusion on segmentation tasks. Overall,
with consistent training and testing conditions, GeminiFu-
sion outperforms TokenFusion across the board when it
comes to the fusion of two to four modalities. Specifically,
in scenarios where RGB is fused with Depth, GeminiFusion
achieves an improvement of approximately 1%-2.6% over
TokenFusion. When all four modalities are fused, Gemini-
Fusion further extends its lead by a significant margin of
3.4% in mIoU, underscoring the efficacy of our attention-
based fusion approach that retains essential information
without loss.

Table 2 presents the corresponding results for the image-
to-image translation task. Our GeminiFusion outstrips To-
kenFusion across all evaluated settings. For instance, in the
Shade+Texture→RGB task, GeminiFusion attains FID/KID
scores of 41.32/0.81, which is notably superior to Token-
Fusion with a relative decrease of 12.6% in the FID metric.
Qualitative results, as illustrated in Figure 4, reveal that
predictions using our GeminiFusion exhibit more natural
patterns and are smoother and clearer in terms of colors and
details. This demonstrates GeminiFusion’s capability to pre-
serve a more complete spectrum of the shade information.

4.3. Applying to Swin Transformer

The proposed GeminiFusion module is a plug-and-play
module that can be inserted into existing multimodal ar-
chitectures (predominantly into encoders) for enhancing the
model’s cross-modal learning capabilities. This modular

Table 8: Multimodal semantic segmentation results on NYUDv2
and SUN RGB-D datasets by adding our GeminiFusion only to
last k layers. All models use the MiT-B3 backbone. All training
epoch numbers are aligned. Latency is measured by averaging all
validation samples in the NYUDv2 dataset.

Method k Param(M) GFLOPs Latency(ms) NYUDv2
mIoU

SUN RGB-D
mIoU

TokenFusion 28 45.9 108 126 54.2 51.4

GeminiFusion 28 75.8 174 153 56.8 52.7
GeminiFusion 22 75.1 165 144 56.5 52.5
GeminiFusion 16 69.3 152 129 56.4 52.5
GeminiFusion 10 62.5 138 116 56.4 52.2
GeminiFusion 4 55.7 124 103 56.1 51.9
GeminiFusion 1 48.8 119 102 55.1 51.9
GeminiFusion 0 45.9 108 95 53.3 51.2

Table 9: Ablation about different parts of GeminiFusion on the
NYUDv2 dataset. PWC: point-wise cross-attention, NSA: noised
self-attention, ARD: attention relation discriminator.

PWC NSA ARD mIoU
✗ ✗ ✗ 53.3
✓ ✗ ✗ 55.4
✓ ✓ ✗ 56.3
✓ ✓ ✓ 56.8

approach allows GeminiFusion to take advantage of differ-
ent architectures to improve the model’s performance in
multimodal tasks. In the previous experiments, we follow
the TokenFusion codebase, which uses the SegFormer (Xie
et al., 2021) as the encoder and a simple FFN as the de-
coder. However, in addition to SegFormer, models such
as Swin Transformer (Liu et al., 2021b) can also be used
as encoder models, which together with the decoder form
a complete segmentation model. We further conducts sev-
eral experiments on the Swin Transformer. Specifically,
we inserts GeminiFusion into the SwinBlock. The official
checkpoints of Swin Transformer pre-trained on the Ima-
geNet classification task can also be loaded directly without
degradation of accuracy, which demonstrates the advantages
of our approach. The experimental results are shown in Ta-
ble 4. It can be seen that GeminiFusion is also applicable
in frameworks such as Swin Transformer, and in the case
of using the Swin-Large-22k model, which was pre-trained
on a larger ImageNet-22k dataset and with a larger num-
ber of parameters, as the baseline model, GeminiFusion
also achieves optimal results among encoders, which re-
flects the plug-and-play nature of GeminiFusion in different
frameworks, as well as its ability to successfully leverage
the better representational capabilities provided by larger
encoders.

4.4. Comparisons with state-of-the-art methods

In this paper, GeminiFusion is benchmarked against state-
of-the-art multimodal segmentation methods on NYUDv2,
SUN RGB-D, and DeLiVER datasets, and the results are
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detailed in Table 5. To ensure the fairness of the compari-
son, all methods that use pre-training methods and training
strategies other than pre-training on the ImageNet classi-
fication tasks are labeled as “Additional Strategies”, such
as PolyMax (Yang et al., 2024) (pre-training is performed
using ImageNet-22K and Taskonomy), DPLNet (Dong
et al., 2023) (using pre-trained segmentation model), Om-
niVec (Srivastava & Sharma, 2024) (pre-trained based on
self-supervision of large-scale masks), DFormer (Yin et al.,
2023) (utilizes an RGB-D pre-trained backbone), EM-
SANet (Seichter et al., 2023) and OMNIVORE (Girdhar
et al., 2022) (both of which utilize a strategy of multi dataset
pre-training coupled with fine-tuning of individual datasets).
In particular, we likewise attempts an additional pre-training
strategy, using a GeminiFusion model (Swin Large-22k
backbone) trained on the SUN RGBD dataset and fine-tuned
on the NYUDv2 dataset.

As can be seen from the experimental results, GeminiFusion
using the Swin-Large-22k backbone network achieves the
highest level of performance on both NYUDv2 and SUN
RGB-D datasets. Moreover, when fusing modalities such
as RGB with Depth, Event and LiDAR data, GeminiFusion
with the MiT-B2 backbone secures substantial gains over
CMNeXt, attesting to the efficacy of our pixel-wise fusion
methodology in handling highly aligned modalities. Addi-
tionally, we juxtapose the performance of the MiT-B4-based
GeminiFusion with CMNeXt on the NYUDv2 dataset, as
illustrated in Figure 6. Here, GeminiFusion not only attains
marginally superior results but also boasts significantly re-
duced latency, even in the absence of multi-scale and flip
testing augmentations typically employed by CMNeXt.

4.5. Effect of each component on GeminiFusion

We present an ablation study on the NYUDv2 dataset to
assess the contribution of each component within our Gemi-
niFusion framework. Table 9 shows our implementation of
point-wise cross-attention yields a 2.1% increase in mIoU
compared to the baseline, demonstrating that direct infor-
mation exchange between modalities can lead to substantial
gains. Additionally, the effectiveness of the noise-adaptive
self-attention mechanism is evidenced by its ability to pre-
serve intra-modal features, thereby preventing the loss of
valuable information. The proposed relation discriminator
can help refine the generation process of key features within
the attention mechanism, ensuring more precise adjustments
that improve overall performance.

4.6. Discussion on Inference Latency

Contrary to the TokenFusion approach as documented
in (Wang et al., 2022b), our GeminiFusion method does
not require integration at every layer within the network
architecture. As evidenced by the experiments in Table 8,

implementing GeminiFusion in only the final 10 layers still
yields faster inference speeds while preserving accuracy,
outperforming the benchmark method. Incorporating Gem-
iniFusion even in just the last layer alone surpasses To-
kenFusion in terms of both inference latency and accuracy.
However, it should be noted that the optimal results are
achieved when GeminiFusion is applied across every layer.

Figure 6 graphically represents the trade-off between perfor-
mance and latency. The comparison clearly demonstrates
that our GeminiFusion significantly outperforms TokenFu-
sion in terms of efficiency by a considerable margin.

4.7. 3D Object Detection task

We choose the MVX-Net (Sindagi et al., 2019) framework
and the KITTI dataset for our 3D object detection experi-
ments for vehicles. The experiments use images and depth
maps as inputs for the detection of vehicle categories in the
KITTI dataset, which is aligned with other works (Zhang
et al., 2023c; Zheng et al., 2021). For the processing of
the KITTI dataset, we choose the same dataset division and
data processing methods as MVX-Net. GeminiFusion is
inserted into the original fusion layer of MVX-Net, and the
experimental results are shown in Table 3, which show that
GeminiFusion achieves significant improvement in most
of the performance indexes with almost no increase in the
number of parameters, and a few performance indexes are
almost the same as the benchmark model.

5. Conclusion
In this paper, we comprehensively examine exchange-based
cross-modal transformers and point out their intrinsic de-
ficiency in achieving comparable performance of cross-
attention mechanisms. Furthermore, we propose a pixel-
wise fusion approach named GeminiFusion, combining
intra-modality and inter-modality attention for dynamic
integration of complementary information across modal-
ities. GeminiFusion achieves state-of-the-art performance
across various multimodal semantic segmentation bench-
mark datasets, and also proved its effectiveness on image-
to-image translation and 3D object detection tasks. It is
worth noting that GeminiFusion operates with linear com-
plexity with respect to the number of input tokens, achieving
efficiency comparable with unimodal counterparts.
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outperforms exchange-based fusion by effectively preserv-
ing core information among features from different modal-
ities. Additionally, we propose an efficient GenimiFusion
approach to reduce the computational overhead associated
with cross-attention. There are many potential societal con-
sequences of our work, none which we feel must be specifi-
cally highlighted here.

References
Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick,

C. L., and Parikh, D. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on computer
vision, 2015.

Atrey, P. K., Hossain, M. A., El Saddik, A., and Kankanhalli,
M. S. Multimodal fusion for multimedia analysis: a survey.
Multimedia systems, 2010.
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A. Implementation Details
• In the context of multimodal semantic segmentation, our training hyper-parameters are developed by following

the methodologies from the TokenFusion (Wang et al., 2022b) and CMNeXt (Zhang et al., 2023b) codebases. For
model training, we employ NVIDIA V100 GPUs in configurations of 3, 4, and 8 units for the NYUDv2, SUN RGB-D,
and DeLiVER datasets, respectively, adhering to the same environmental settings as specified in the original papers.
Our encoder design is an adaptation from SegFormer (Xie et al., 2021), which has been pre-trained solely on the
ImageNet-1K (Deng et al., 2009) dataset for classification tasks. For experiments on the NYUDv2 and SUN RGB-D
datasets, we utilize the setup from the TokenFusion, maintaining consistency in batch size, optimizer, learning rate, and
learning rate scheduler. Within our proposed GeminiFusion model, we configure the number of attention heads to 8. To
mitigate the risk of overfitting, we set the drop path rate to 0.4, while the drop rate remains at 0.0. Conversely, for the
DeLiVER dataset, our foundation training hyper-parameters are the same with CMNeXt, which necessitates a smaller
backbone. Consequently, we reduce the drop path rate to 0.2. All other parameters, including batch size, optimizer,
weight decay, and learning rate scheduler, remain in line with CMNeXt’s original configuration, except for the learning
rate, which is modified to 2e−4.

• For the image-to-image translation task, we also follow the setting in TokenFusion and set the same hyper-parameters
as the TokenFusion. We use one NVIDIA V100 card for all image-to-image translation experiments.

• For the 3D object detection task, we also follow the setting in MVX-Net and set the same hyper-parameters as the
MVX-Net. We use 4 NVIDIA V100 cards for all experiments.

B. More Visualization Results

(a) Input-0 (b) Input-1 (c) TokenFusion (d) Ours (e) GT

Figure 7: Shade+Texture→RGB. Image-to-image translation results on the validation split of Taskonomy (Zamir et al., 2018).
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(a) Input-0 (b) Input-1 (c) TokenFusion (d) Ours (e) GT

Figure 8: RGB+Edge→Depth. Image-to-image translation results on the validation split of Taskonomy.

(a) Input-0 (b) Input-1 (c) TokenFusion (d) Ours (e) GT

Figure 9: Depth+Normal→RGB. Image-to-image translation results on the validation split of Taskonomy.
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(a) Input-0 (b) Input-1 (c) TokenFusion (d) Ours (e) GT

Figure 10: RGB+Shade→Normal. Image-to-image translation results on the validation split of Taskonomy.
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