
Re-Hamiltonian Generative Networks

Anonymous Author(s)
Affiliation
Address
email

Reproducibility Summary1

Scope of Reproducibility2

The main objective of the paper is to "learn the Hamiltonian dynamics of simple physical systems from high-dimensional3

observations without restrictive domain assumptions". To do so, the authors train a generative model that reconstructs4

an inputted sequence of images of the evolution of some physical system. For instance, they learn the dynamics of a5

pendulum, a body-spring system, and 2,3-bodies. In addition to these environments, we further expand the testing on6

two new environments and we explore architecture tweaks looking for performance gains.7

Methodology8

We implement the project with Python using Pytorch [11] as a deep learning library. Previous to ours, there was no9

public implementation of this work. Thus, we had to write the code of the simulated environments, the deep models, and10

the training process. The code can be found in this repository: https://github.com/CampusAI/Hamiltonian-Generative-11

Networks A single training takes around 4 hours and 1910MB of GPU memory (NVIDIA GeForce RTX2080Ti).12

Results13

We found the model’s input-output data slightly unclear in the original paper. First, it seems that the model reconstructs14

the same sequence that has been inputted. Nevertheless, further discussion with the authors seems to indicate that15

they input the first few frames to the network and reconstructed the rest of the rollout. We test both approaches and16

analyze the results. We generally obtain comparable results to those of the original authors when just reconstructing the17

input sequence (30% average absolute relative error w.r.t. to their reported values) and worse results when trying to18

reconstruct unseen frames (107% error). In this report, we include our intuition on possible reasons that would explain19

these observations.20

What was easy21

The architecture of the model and training procedure was easy to understand from the paper. Besides, creating simulation22

environments similar to those of the original authors was also straightforward.23

What was difficult24

While the overall model architecture and data generation were easy to understand, we encountered the optimization to25

be especially tricky to perform. In particular, finding a good balance between the reconstruction loss and KL divergence26

loss was challenging. We implemented GECO [12] to dynamically adapt the Lagrange multiplier but it proved to be27

surprisingly brittle to its hyper-parameters, resulting in very unstable behavior. We were unable to identify the cause of28

the problem and ended up training with simpler techniques such as using a fixed Lagrange multiplier as presented in [5].29

Communication with original authors30

We exchanged around 6 emails with doubts and answers with the original authors.31

Submitted to ML Reproducibility Challenge 2020. Do not distribute.

https://github.com/CampusAI/Hamiltonian-Generative-Networks
https://github.com/CampusAI/Hamiltonian-Generative-Networks
https://github.com/CampusAI/Hamiltonian-Generative-Networks

1 Introduction32

Consider an isolated physical system with multiple bodies interacting with each other. Let q ∈ Rn be the vector of their33

positions, and p ∈ Rn the vector of their momenta. The Hamiltonian formalism [3] states that there exists a function34

H : (q,p) ∈ Rn+n → R representing the energy of the system which relates q and p as:35

∂q

∂t
=
∂H
∂p

,
∂p

∂t
= −∂H

∂q
(1)

In this workH is modeled with an artificial neural network and property 1 is exploited to get the temporal derivatives of36

both q and p. One can then use a numerical integrator (see Section 4.1) to solve the ODE and infer the system evolution37

both forward and backward in time given some initial conditions (see Figure 2). These initial conditions are inferred38

from a natural image sequence of the system evolution (see Figure 1). The authors propose a generative approach to39

learn low-dimensional representations of the positions and momenta (q0,p0). This allows us to sample new initial40

conditions and unroll previously unseen system evolutions according to the learned Hamiltonian dynamics.41

2 Scope of reproducibility42

The main claim of the paper is that the proposed architecture is able to "learn the Hamiltonian dynamics of simple43

physical systems from high-dimensional observations without restrictive domain assumptions". This means that the44

architecture is capable of learning an abstract position and momentum in latent space from RGB images. Then, with the45

help of an integrator, the architecture will be capable of reconstructing the system evolution. Modifying the integrator46

time-step will result in a slow-motion or fast-forward evolution. Moreover, the architecture can generate previously47

unseen system evolutions through sampling. Briefly, we will evaluate the following claims:48

• The architecture reconstructs RGB frames of a physical system evolution with an error comparable to [14].49

• The architecture can generate new samples qualitatively similar to the originals.50

• The timescale of the predicted evolution can be tuned as an integrator parameter without significant degradation51

of the resulting video sequence.52

3 Methodology53

To date (Jan 1st 2021), authors did not release their code. Therefore, we fully re-implement the Hamiltonian architecture,54

the integrators, and the simulated environments. To further evaluate the system, we implement two additional55

environments and one additional integrator. We developed our implementation in Python3 using PyTorch [11] machine56

learning library for the Hamiltonian architecture and the Scipy [1] ODE solver for the simulated environments, as well57

as OpenCV [2] for image manipulation. Our code can be found in this repository1. We run most of the experiments58

using an NVIDIA GeForce RTX 2080Ti and some on an NVIDIA GTX 970.59

3.1 Hamiltonian Generative Network (HGN)60

The HGN [14] architecture can be split into two high-level components. The first (Figure 1) reads the initial k + 161

frames of an environment rollout and extracts the abstract positions and momenta (qk,pk) correspondent to the k-th62

step. Second, a recurrent model takes (qk,pk) as first input and performs integration steps of a fixed ∆t, predicting the63

evolution of the system in terms of abstract positions and momenta 2. For each step, the abstract position is decoded64

into an RGB image. As figures 1, 2 depict, this model is composed by four main networks:65

• Encoder: Parametrized by: φ. 8-layer 64-filter Conv2D network with ReLU activations that takes a sampled66

video rollout from the environment and outputs the mean and variance of the encoder distribution qφ(z)67

parametrized as a diagonal Gaussian with prior p(z) = N (0, I). The latent variable z is sampled from qφ with68

the reparametrization trick [9]. The input of this layer is constructed by concatenating all the rollout frames69

in the channel axis. Therefore, if working with RGB images, the input has shape: H ×W × 3 ·N . Where70

H,W,N are Height, Width, and Number of frames, respectively.71

1https://github.com/CampusAI/Hamiltonian-Generative-Networks
2In addition, we test how the network performs when trained as an autoencoder, ie: fit the complete sequence and reconstruct it.

(Section 4)

2

https://github.com/CampusAI/Hamiltonian-Generative-Networks

• Transformer: Parametrized by: ψ. Takes in the sampled latent variable z and transforms it into a lower-72

dimensional initial state sk = (qk,pk), by applying 3 Conv2D layers with ReLU activations, stride 2, and 6473

filters.74

• Hamiltonian: Parametrized by: γ. It is a 6-layer 64-filter Conv2D network with SoftPlus activations which75

takes in the abstract positions and momenta (qt,pt) and outputs the energy of the system et ∈ R. This network76

is used by the integrator (Section 4.1) to compute the system state at the next time-step (qt+1,pt+1) exploiting77

Eq. 1. Since Eq. 1 involves partial derivatives ofH w.r.t. q and p, the training process involves second-order78

derivatives of the Hamiltonian network weights. For this reason, SoftPlus activations are used instead of ReLU.79

• Decoder: Parametrized by: θ. 3-residual block upsampling Conv2D network (as in [7]) which converts the80

abstract position qt into an image close to the source domain.81

Given an input sequence: (x0, ...,xT) and a value k + 1 of input-length, the loss function 3 to optimize is:82

L(φ, ψ, γ, θ;x0, ...,xT) =
1

T + 1− k

T∑
t=k

(
Eqφ(z|x0,..xk)

[
log pψ,γ,θ(xt | qt)

])
− Λ ·KL

(
qφ(z) || p(z)

)
(2)

Notice that the loss is the combination of two terms: first, the error coming from the reconstruction of the images, and83

second, a term which forces the latent distribution qφ to be close to a standard Gaussian. It is interesting to see that there84

is no conditioning over the behavior of latent positions and momenta during the rollout. The architecture connections85

are enough to force qk to encode the position information and pk the momenta information at timestep k.86

We use the same optimizer as in [14]: Adam [8] with a constant learning rate of lr = 1.5e−4 with the GECO algorithm87

presented in [12] to adapt the Lagrange multiplier Λ during training. This Lagrange multiplier is dynamically updated88

according to an exponential moving average proportional to the reconstruction error of the assessed minibatch. The89

main parameters controlling the Lagrange multiplier are the exponential moving average constant α, the initial Lagrange90

multiplier, and a parameter to control its growth λ. The authors did not include the values used in the paper, so we91

performed a grid search to find the most adequate ones for each environment (see Section 6). In addition, we trained a92

version of the model with a fixed Lagrange multiplier.93

Figure 1: HGN network architecture to find the final abstract position and momentum (qk, pk) from the input sequence.
Tensors are represented in blue and operations in black. The encoder takes as input a sequence of k + 1 frames
concatenated along channels and samples the latent variable z ∼ qφ(z|x0, ...,xk) with the reparametrization trick. The
transformer network converts z into the state sk = (qk,pk) from which the system evolution will be predicted.

3.2 Integrator Modelling94

Since the Hamiltonian network always requires backpropagation, which is an expensive operation, we compare it95

against a baseline network that does not require backpropagation at evaluation time. We test an architecture almost96

identical to the HGN, but where the Hamiltonian Network is replaced by a CNN that directly computes ∆q and ∆p97

from qt and pt. Integration is then performed as an Euler step: qt+1 = qt + ∆t∆q and pt+1 = pt + ∆t∆p. In this98

architecture, therefore, we do not learn Hamiltonian-like dynamics anymore, but we directly learn the system dynamics99

in the abstract space. This approach achieves a similar reconstruction loss than HGN[14]. Results are presented in the100

additional experiments section. 4.1.101

3The formulation of the loss in Eq. 2 particularly w.r.t. the distribution qφ is different from that of the paper[14] where it was
written as qφ(z|x0, ...,xT), which initially led us to think that the encoder had access to the whole rollout. Discussion with the
authors clarified that the encoder reads only the first k frames. Therefore, we decided to slightly modify the loss notation in order to
avoid confusion. Still, we show results with both approaches to get a more complete idea of the differences.

3

Figure 2: Recurrent part of the HGN architecture. Blue cubes represent tensors. The integrator takes the position
and momentum for each time-step, computesH(qt,pt) and computes the abstract state in the next time-step st+1 =
(qt+1,pk+1) for t ≥ k exploiting the Hamiltonian equations of 1. The decoder takes the abstract position qt and
decodes it into the original image xt.

Figure 3: Representation and samples from the different physical systems considered in our experiments. Notice that
differing from [14], we also consider a damped mass-spring system and a double pendulum.

3.3 Datasets102

The datasets considered by the original authors consist of observations of the time evolution of four physical systems:103

mass-spring, simple pendulum, and two-/three-body systems [14]. Since the datasets are not available to us, we104

re-implement them following as closely as possible the information provided in the paper and by the authors. Moreover,105

we introduce two new physical systems to experiment with: damped harmonic oscillator and double pendulum (see106

Figure 3).107

The procedure for data generation is analogous to the one used by [4]. Given a physical system, we first randomly108

sample an initial state (q0,p0) in the phase space and generate a 30 step rollout following the Hamiltonian dynamics.109

Once the trajectory is obtained, we add Gaussian noise with standard deviation σ = 0.1 to each phase-space coordinate110

at each step and render 32x32 image observations. Objects in the systems are represented as circles and we use different111

colors to represent different objects. We generate 50000 train samples and 10000 test samples for each physical system.112

To sample the initial conditions (q0,p0), we first sample the total energy denoted as a radius r in phase space and113

then (q0,p0) are sampled uniformly on the circle of radius r. Note that here q and p represent the actual positions114

and momenta vectors of the bodies in the system. These are only used to generate the sequence of images and are not115

made available to the HGN architecture. The trajectories for each environment are computed using the ground-truth116

Hamiltonian dynamics and SciPy ODE solver [1].117

Mass-spring. Assuming no friction, the Hamiltonian of a mass-spring system is H = p2

2m + 1
2kq

2, where m is118

the object’s mass and k is the spring’s elastic constant. We generate our data considering m = 0.5, k = 2 and119

r ∼ U(0.1, 1.0).120

4

MODEL MASS-SPRING PENDULUM TWO-BODY THREE-BODY
TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

Orig. HGN (EULER) [14] 3.67± 1.09 6.2± 2.69 5.43± 2.53 10.93± 4.32 6.62± 3.93 15.06± 7.01 7.51± 3.49 9.4± 3.92
Orig. HGN (DETERM) [14] 0.23± 0.23 3.07± 1.06 0.79± 1.24 10.68± 3.19 2.34± 2.3 14.47± 5.24 4.1± 2.05 5.17± 1.96

Orig. HGN (LEAPFROG) [14] 3.84± 1.07 6.23± 2.03 4.9± 1.86 11.72± 4.14 6.36± 3.29 16.47± 7.15 7.88± 3.55 9.8± 3.72
HGN (EULER) ours 9.05± 0.02 9.06± 0.05 17.79± 0.06 17.86± 0.13 3.84± 0.01 3.85± 0.02 1.99± 0.01 1.99± 0.01

HGN (DETERM) ours 7.10± 0.01 7.10± 0.03 14.11± 0.05 14.14± 0.12 3.92± 0.02 3.93± 0.02 4.14± 0.01 4.13± 0.02
HGN (LEAPFROG) ours 7.11± 0.01 7.12± 0.03 14.89± 0.05 14.97± 0.1 3.36± 0.01 3.36± 0.02 8.81± 0.01 8.81± 0.01

HGN (EULER) ours 5-frame inference 42.09± 0.14 41.98± 0.32 47.06± 0.17 47.03± 0.39 6.46± 0.03 6.52± 0.06 8.18± 0.01 8.17± 0.01
HGN (DETERM) ours 5-frame inference 13.00± 0.05 13.04± 0.11 45.06± 0.19 44.89± 0.42 10.95± 0.02 10.97± 0.05 3.72± 0.01 3.72± 0.02

HGN (LEAPFROG) ours 5-frame inference 12.15± 0.05 12.21± 0.11 44.29± 0.19 44.12± 0.42 6.28± 0.03 6.33± 0.06 3.35± 0.01 3.35± 0.02

Table 1: Average pixel MSE of the reconstruction of a 30-frame rollout sequence on the test and train datasets of the
four physical systems presented by [14]. All the values are multiplied by 104. We show our results (second and third
group) along with the ones reported by the original authors (first group). In the second group, we train to reconstruct
the whole inputted sequence (as an autoencoder) and in the third group, we train by inputting only the first 5 frames.

Pendulum. An ideal pendulum is modelled by the HamiltonianH = p2

2ml2 + 2mgl(1− cos q), where l is the length121

of the pendulum and g is the gravity acceleration. The data is generated considering m = 0.5, l = 1, g = 3 and122

r ∼ U(1.3, 2.3).123

Two-/three- body problem. The n-body problem considers the gravitational interaction between n bodies in space.124

Its Hamiltonian is H =
∑n
i
||p

i
||2

2mi
−
∑n
i6=j

gmimj
||q

i
−q

j
|| , where mi corresponds to the mass of object i. In this dataset,125

we set {mi = 1}ni=1 and g = 1. For the two-body problem, we modify the observation noise to σ = 0.05 and set126

r ∼ U(0.5, 1.5). When considering three bodies, we set σ = 0.2 and r ∼ U(0.9, 1.2).127

Dobule pendulum The double pendulum consists of a system where we attach a simple pendulum to the end of128

another simple pendulum. For simplicity, we conider both simple pendulums with identical properties (equal mass129

and length). The Hamiltonian of this system isH = 1
2ml2

p21+p22+2p1p2cos(q1−q2)
1+sin2(q1−q2) +mgl

(
3− 2 cos q1 − cos q2

)
, where130

{q1, p1} and {q2, p2} refer to the phase state of the first and second pendulum respectively. Our data is generated by131

setting m = 1, l = 1, g = 3 and r ∼ U(0.5, 1.3). In this scenario we consider a very low intense source of noise132

σ = 0.05.133

Damped oscillator The damped mass-spring system is obtained by considering a dissipative term in the equations134

of motion of the ideal mass-spring system. For such systems, one can obtain its dynamics using the Caldirola-Kanai135

Hamiltonian H = eγt
(
p2

2m + 1
2kq

2
)

[13], where γ is the damping factor of the oscillator. In our experiments, we136

consider an underdamped harmonic oscillator and set γ = 0.3, m = 0.5, k = 2, r ∼ U(0.75, 1.4) and σ = 0.1.137

3.4 Hyperparameters138

We set the same hyperparameters for all experiments as the original paper [14] except for GECO parameters, which139

were not included. Thus, we perform a grid search on each environment to find the most adequate ones (see Section140

4.1).141

3.5 Computational requirements142

A standard training of 50K train samples using the Leapfrog integrator takes around 4 hours on an RTX 2080T GPU143

and requires around 1910MB.144

4 Results145

We first test whether the HGN [14] can learn the dynamics of the four presented physical systems by measuring the146

average mean squared error (MSE) of the pixel reconstructions of each predicted frame. Furthermore, we test the147

original HGN architecture along with different modifications: a version trained with Euler integration rather than148

Leapfrog integration (HGN Euler), and a version that does not include sampling from the posterior qφ(z|x0...xT)149

(HGN determ). Since we could not find suitable GECO[12] hyperparameters, we use a fixed Lagrange multiplier[5] in150

all the experiments.151

5

(a) (b)

Figure 4: (a) Reconstruction of a sequence of the 2-body system along with a backward unroll of the data from the final
state, and a forward rollout of the HGN trained using state inference from the first 5 frames. (b) Reconstruction of a
sequence of the pendulum system along with a sped up and a slowed down forward rollout.

Figure 5: Examples of sample rollouts from the latent space for different physical systems.

Table 1 shows the results of the experiments described previously along with the results of the original authors. As it152

can be seen, we achieve average pixel reconstruction errors that are similar (30% avg absolute error w.r.t. the reported153

values on the test set using Leapfrog integrator) to the ones reported in the original paper when reconstructing the154

same sequence that is inputted (we call this version autoencode). However, when attempting to train to reconstruct a155

rollout given only the first 5 frames our model performs poorly, with 107% average absolute error on the test set, using156

Leapfrog integrator.157

In Figure 4, we show some qualitative examples of the reconstructions obtained by the full version of HGN. The model158

can reconstruct the samples and its rollouts can be reversed in time, sped up, or slowed down by changing the value of159

the time step used in the integrator. Since the HGN is designed as a generative model, we can sample from the latent160

space to produce initial conditions and perform their time evolution. We show some rollouts obtained this way in figure161

5. We observe that our model is only able to generate plausible and diverse samples in the mass-spring dataset. This162

behavior is different than the one shown by [14] and might be caused by different hyper-parameter configurations in the163

training procedure or some implementation mistake.164

We achieve slightly larger MSE in the autoencode version and significantly larger in the 5-frame inference problem165

on both the mass-spring and pendulum. The latter presents roughly double MSE probably because of a wider span166

of movement. In general, these two environments show worse results in comparison to two/three-bodies. For these167

last cases, our implementation using the autoencode setting outperforms the original HGN [14], and when using the168

5-frame inference the results are similar. As we can see, these two environments show much less average pixel MSE169

compared to the first ones (almost one order of magnitude). We believe this may be due to the differences when170

rendering the instances of each dataset. The elements appearing in mass-spring and pendulum (represented by a large171

yellow ball) are larger than the ones present in the two/three bodies (two/three small coloured balls). Because of this,172

it would be reasonable to assume that localization errors are more penalized in the first two environments, since the173

total difference in areas is larger. Furthermore, the dynamics representing mass-spring and pendulum show faster174

movements in comparison to two/three-bodies, resulting in being harder to represent with our HGN. Consequently, we175

hypothesise the following: larger elements and faster dynamics, produces higher average MSE on our model regardless176

of the difficulty of the environment physics. However, this is not the case for the original author’s results, who seem to177

struggle more on the two/three-bodies. Surprisingly, it seems that our hyperparameter and architecture choices led to178

poorer reconstruction capabilities (higher MSE) but learning better physics (qualitatively more realistic movements).179

6

Figure 6: Reconstruction loss and KL divergence for different GECO parameters in the Pendulum environment.

EULER RUNGE-KUTA 4 LEAPFROG YOSHIDA

pixel MSE 17.86± 0.13 76.88± 0.08 14.97± 0.10 14.70± 0.10
H std 3.81 0 1961.93 1893.05

reconstr. time (s) 0.32 1.89 0.96 1.61

Table 2: Comparison between four different integrators used to perform the time evolution in the HGN. The results are
measured on the simple pendulum test set. The pixel MSE values have been multiplied by 104.

4.1 Additional experiments180

GECO parameter search The paper does not provide the values of GECO [12] used. In GECO, the Lagrangian181

multiplier is optimized at each step with a rate γ. Figure 6 shows the behavior of GECO for γ ∈ {0.1, 0.05, 0.01} in182

terms of reconstruction loss and KL divergence. Higher values of β give a better reconstruction loss but greatly increase183

the KL divergence. However, we found that hyperparameters were not consistent among different environments and184

integrators. For this reason, we do not use GECO in our experiments.185

Integrators Performing the integration step is key to generate the time evolution of a rollout given the initial state.186

In the HGN paper [14] the system is tested using Euler and Leapfrog integration. We wonder if using higher order187

integration methods might boost the performance of the rollout generation process. Therefore, we implement and test188

the HGN architecture with two additional numerical integration methods: the Runge-Kutta’s 4th-order integrator [6]189

and the 4th-order Leapfrog integrator (Yoshida’s algorithm [15]). Table 2 shows a comparison of all four integrators on190

the Pendulum dataset. Both Leapfrog and Yoshida are symplectic integrators: they guarantee to preserve the special191

form of the Hamiltonian over time [10].192

Table 2 shows the average pixel MSE, the averaged standard deviation of the output of the Hamiltonian network during193

testing, and the reconstruction time of a single batch (batch = 16) using the different integration methods that we have194

described previously. The model has been trained on the simple pendulum dataset. As we can see, the reconstruction195

time increases when using higher-order integration methods, since they require more integration steps. In general, we196

see that Euler integration offers a fast and sufficiently reliable reconstruction of the rollouts. Moreover, we observe that197

the fourth-order symplectic integrator (Yoshida) achieves the best performance. Surprisingly, the symplectic integration198

methods show more variance in the output of the Hamiltonian networks throughout a single rollout. This behavior is199

unexpected since using a symplectic integration method should ideally keep the value of the Hamiltonian invariant.200

We conclude that more experiments need to be performed to guarantee that the implementation of both Leapfrog and201

Yoshida integration methods are faithful to their formulation.202

Integrator modelling We train the modified architecture of Section 3.2 on the Pendulum dataset for 5 epochs. The203

architecture is the same as HGN, but the Hamiltonian Network now outputs ∆q and ∆p. The average MSE error204

over the whole Pendulum dataset is 1.485× 10−3, while in the test set it is 1.493× 10−3, which are both very close205

(∼ ±2%) to those of autoencoding HGN (see Table 1). The modified architecture is still capable of performing forward206

slow-motion rollouts by modifying ∆t. We set ∆t′ = ∆t
2 and we compute the average MSE of the slow-motion207

reconstruction over 100 rollouts. The modified architecture achieved an error of 8x10−4, while the standard HGN208

achieved 9x10−4. Note that reconstruction losses are smaller for slow-motion as the images change less between209

timesteps.210

Extra environments Apart from the four physical systems presented by [14] we test our re-implementation of the211

HGN with physical systems that do not have a simple Hamiltonian expression. As described previously, these are212

7

Figure 7: Examples of reconstructions of the double pendulum (left) and the damped harmonic oscillator (right).

the damped harmonic oscillator and the double pendulum. On one hand, we are interested in a damped system since213

it introduces a dissipative term to the equations of motion; a feature that differs from the previous systems. On the214

other hand, the double pendulum is modelled by a non separable Hamiltonian: H(q,p) 6= K(p) + V (q) as described215

previously. In figure 7 we show some visual examples of the reconstructions provided by the HGN trained on the216

two systems. As we can see, HGN is able to reconstruct the damped oscillator with high reliability. Regarding the217

double pendulum, we observe that the model reconstructs well small oscillations, but fails when the trajectory is too218

chaotic as expected. The average pixel MSE of the reconstructions of the damped oscillator and the double pendulum219

are 6.39 · 10−4 and 6.91 · 10−4 respectively. The HGN is able to provide better reconstructions for these systems in220

comparison to the mass-spring and pendulum systems.221

5 Discussion222

We were able to implement and train an Hamiltonian Generative Network with similar reconstruction performance223

of the ones of the original paper (30% average absolute relative error wrt to their reported values when treating it224

as an autoencoder). These results show that the network is capable of exploiting the Hamiltonian equations to learn225

dynamics of a physical system from RGB images. However, the value of the resulting Hamiltonian does not remain226

constant throughout the system evolution. This means that the network is learning something that is different from the227

Hamiltonian equations described in Section 3.3.228

To make the variational sampling work, we tried performing a grid search on the Geco[12] hyperparameters and using a229

fixed Lagrange multiplier as in [5]. However, despite our best efforts, the samples produced by the variational model230

have very poor quality. This is generally due to the difficulty in minimizing both KL divergence and reconstruction loss.231

We believe that further experiments are needed to understand better the behavior of the system and to improve it. Future232

work could include further testing on each network architecture, probably smaller networks would also be able to233

encode the needed information. Another next step is to try the approach on more challenging (and realistic-looking)234

environments. In addition, it would be interesting to tackle the transfer learning capabilities of such architecture between235

different environments. How re-usable each network is? How much faster the system is able to learn the new dynamics?236

Finally, another field which could benefit from this research is model-based reinforcement learning. A generative237

approach from which to sample example rollouts could be very useful for training agents without the need of directly238

interacting with the environment.239

5.1 What was easy240

Once we implemented the code it resulted quite easy to perform multiple experiments on different environments,241

architectures and hyper-parameters due to the code’s modularity and flexibility. We can define the the previously242

mentioned experiments and most common testing behaviors from a set of yaml files which can then be modified from243

command-line arguments. While this required extra planning and work at the beginning it really payed off when244

debugging and evaluating in later stages.245

5.2 What was difficult246

The main challenge we encountered is finding the correct tools to debug a model composed of so many interconnected247

networks. The fact that it has a variational component with a dynamic Lagrange multiplier term makes it especially248

tricky to train. Furthermore, no public implementation existed and some details and parameters were missing in the249

original paper leading to some necessary assumptions or parameter searches.250

8

5.3 Communication with original authors251

We first tried to understand and re-implement the code by ourselves. Nevertheless, at some point we had gathered a252

significant set of doubts and we decided to email them to the original authors, which they answered with great detail.253

From that point onwards, we sent a couple more set of doubts, also receiving answers.254

255

Most of our doubts were about network architecture clarifications (either of unclear or missing descriptions from the256

original paper), and loss function evaluation. Furthermore, they provided us with some of their environment images so257

we could more easily make our environments as similar as possible.258

5.4 Improving reproducibility259

Having worked in re-implementing the whole original work, we feel it is important to share our experience as well260

as providing a recommendation on how it could be made more easily reproducible. First, having the environments261

data or code to generate it available online would save the effort and, most importantly, it would constitute a baseline262

against which to compare future work. Secondly, publishing all the hyperparameters and more details of the networks263

architecture would make the whole work much easier to reproduce and require less training attempts, especially for264

what concerns GECO.265

Acknowledgements266

We thank Stathi Fotiadis for voluntarily contributing with a GECO [12] implementation draft to the public repo and267

his useful feedback on code structuring. We thank the KTH Robotics, Perception, and Learning (RPL) Lab for the268

computational resources provided to us. In addition, we would like to thank the original authors for providing further269

details on the implementation.270

References271

[1] Scipy.integrate.solve_ivp, accessed October 28, 2020.272

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.273

[3] Herbert Goldstein. Classical Mechanics. Addison-Wesley, 1980.274

[4] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks, 2019.275

[5] I. Higgins, Loïc Matthey, A. Pal, C. Burgess, Xavier Glorot, M. Botvinick, S. Mohamed, and Alexander Lerchner. beta-vae:276

Learning basic visual concepts with a constrained variational framework. In ICLR, 2017.277

[6] TE Hull, WH Enright, BM Fellen, and AE Sedgwick. Comparing numerical methods for ordinary differential equations. SIAM278

Journal on Numerical Analysis, 9(4):603–637, 1972.279

[7] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and280

variation, 2018.281

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.282

[9] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.283

[10] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo, 2(11):2, 2011.284

[11] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,285

Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan286

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,287

high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,288

editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.289

[12] Danilo Jimenez Rezende and Fabio Viola. Taming vaes, 2018.290

[13] Francis Segovia-Chaves. The one-dimensional harmonic oscillator damped with caldirola-kanai hamiltonian. Revista mexicana291

de física E, 64(1):47–51, 2018.292

[14] Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien Racanière, Aleksandar Botev, and Irina Higgins. Hamiltonian293

generative networks, 2020.294

[15] Haruo Yoshida. Symplectic integrators for hamiltonian systems: basic theory. In Symposium-International Astronomical Union,295

volume 152, pages 407–411. Cambridge University Press, 1992.296

9

https://github.com/CampusAI/Hamiltonian-Generative-Networks

	Introduction
	Scope of reproducibility
	Methodology
	Hamiltonian Generative Network (HGN)
	Integrator Modelling
	Datasets
	Hyperparameters
	Computational requirements

	Results
	Additional experiments

	Discussion
	What was easy
	What was difficult
	Communication with original authors
	Improving reproducibility

