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Abstract

Dyna-style off-policy model-based reinforcement
learning (DMBRL) algorithms are a family of
techniques for generating synthetic state transition
data and thereby enhancing the sample efficiency
of off-policy RL algorithms. This paper identifies
and investigates a surprising performance gap ob-
served when applying DMBRL algorithms across
different benchmark environments with proprio-
ceptive observations. We show that, while DM-
BRL algorithms perform well in control tasks in
OpenAl Gym, their performance can drop signifi-
cantly in DeepMind Control Suite (DMC), even
though these settings offer similar tasks and iden-
tical physics backends. Modern techniques de-
signed to address several key issues that arise in
these settings do not provide a consistent improve-
ment across all environments, and overall our re-
sults show that adding synthetic rollouts to the
training process — the backbone of Dyna-style
algorithms — significantly degrades performance
across most DMC environments. Our findings
contribute to a deeper understanding of several
fundamental challenges in model-based RL and
show that, like many optimization fields, there is
no free lunch when evaluating performance across
diverse benchmarks in RL.

1. Introduction

Colloquially, the “no free lunch theorem” states that no
optimization algorithm can be universally optimal across
all problem instances. In reinforcement learning (RL), this
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implies that performance will vary depending on the envi-
ronment and problem characteristics. In that light, this paper
begins with a simple, yet novel and unexpected observation:
Model-Based Policy Optimization (MBPO) (Janner et al.|
2019), a popular Dyna-style (Sutton, |1991) model-based
reinforcement learning (DMBRL) algorithm, demonstrates
strong performance across tasks in OpenAI Gym (Brockman
et al.,[2016), but performs significantly worse than its base
off-policy algorithm, Soft Actor Critic (SAC) (Haarnoja
et al., 2019a), when trained in DeepMind Control Suite
(DMC) (Tassa et al, [2020) — cf. Figure[]

Interestingly, the Gym and DMC benchmarks feature sim-
ilar tasks and identical physics backends (Todorov et al.,
2012). Yet, despite the popularity of MBPO, with around
1k citations (as of late 2024), only two studies report eval-
uating MBPO in DMC (Wang et al., [2024} |Voelcker et al.|
2024)), and a performance gap has only been noted in the
hopper-hop task (Voelcker et al.,[2024). Our results gen-
eralize these findings, and call into question the robustness
of MBPO, and of Dyna-style algorithms more broadly.
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Figure 1. Comparison of normalized final return for two different
DMBRL algorithms with and without Dyna-style enhancements.
Results are averaged across 6 random seeds per task, with 6 tasks
from OpenAl Gym (Brockman et al., 2016) and 15 from DMC
(Tassa et al| 2020). For training curves, cf. Figures[3]and[T7]

Beyond robustness, these discrepancies raise critical ques-
tions for us in the RL community. First, is the perfor-
mance gap fundamental, or merely an artifact we can “fix”
with modern techniques applied to predictive models, other
model-based RL components, and/or the base off-policy
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algorithms?

Our extensive results indicate: “yes they are fundamental,
and no we cannot.” Figure [T| shows that this gap persists
more broadly than in just MBPO, but also in another re-
cent DMBRL algorithm, Aligned Latent Models (ALM)
(Ghugare et al., [2022). These algorithms have contrasting
design philosophies: MBPO is built on SAC (Haarnoja et al.|
2019a), a stochastic policy algorithm leveraging entropy-
based exploration, while ALM is built on DDPG (Lillicrap
et al.l 2019), a deterministic policy algorithm that relies
on additive Gaussian noise for exploration. These differ-
ences in exploration strategies, combined with their distinct
architectures and objectives, make MBPO and ALM com-
plementary test cases for assessing whether the observed
gap is inherent to Dyna-based methods rather than specific
to a particular implementation. While our findings raise
serious concerns about these instantiations, our intent is not
to challenge the theoretical soundness of the Dyna frame-
work itself, but rather to evaluate how well its practical
realizations hold up under realistic, high-fidelity conditions.

Using MBPO as a surrogate for a subclass of DMBRL
algorithms that underperform in DMC, we analyze the
Gym/DMC performance gap and try to close it by address-
ing some possible sources of this discrepancy including
overestimation bias, neural network plasticity, and environ-
ment modeling fidelity. Despite these efforts, there remains
a substantial gap in performance on these two benchmarks,
which suggests that the generalization challenges of MBPO
— and, by extension, a subclass of DMBRL algorithms —
are more deeply rooted.

Second, this oversight remaining unnoticed for several years
highlights a significant, pervasive issue which has also noted
in several other Al subfields (Haibe-Kains et al., [2020; Ben+
der et al., 20215 |Agarwal et al.| 2021; /Ahmed et al.,2023;
Jordan et al.} 2024): a lack of reasonable access which pre-
vents scientists from reproducing and verifying key results.
For instance, per the calculations in Appendix [B] gener-
ating just Figure [ of this manuscript using the original
MBPO implementation (Janner, [2019) would require over
100 GPU-days, assuming optimistic runtime estimates from
prior work (Ghugare et al.| [2022; |Xu et al., 2022).

Such computational barriers limit experimentation and
cross-comparison, leaving critical issues, like those we high-
light, unexamined. To address this, we developed a MBPO
implementation built on a high-performance SAC imple-
mentation (D’Oro et al.| 2023)), leveraging JAX (Bradbury
et al.,2018)) for efficient parallelization. This new implemen-
tation reduces training time for the experiments in Figure []
to approximately 4 GPU-days, a 26 x speedup compared to
the original Pytorch implementation (Janner et al., 2019).

Our implementation also compares favorably to Aligned

Latent Models (ALM), a model-based algorithm known
for its high wall-clock speed, as shown in Figure[2] These
improvements over previous model-based RL implementa-
tions empower researchers with limited resources to conduct
extensive DMBRL studies using just a single GPU.
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Figure 2. Comparison of seconds per environment step across mul-
tiple DMBRL implementations when deployed on 6 OpenAl Gym
environments. Compared to Pytorch MBPO and ALM, our imple-
mentation takes ~40x and ~4x less time, respectively.

In summary, our main contributions are:

1. Demonstrating that DMBRL methods can suffer from a
significant performance gap when training from scratch
in OpenAl Gym versus DMC environments.

2. Analyzing potential causes for this discrepancy and ap-
plying modern mitigation approaches, which ultimately
fail to consistently resolve these problems. These re-
sults provide insight into the factors affecting perfor-
mance across different environments.

3. Dramatically accelerating the DMBRL experimen-
tation process with a new JAX-based implemen-
tation, which achieves up to a ~40x decrease
in wall-clock time. This acceleration lowers
the computational barrier for researchers to de-
velop (and comprehensively evaluate) DMBRL al-
gorithms. We have released our code here:
https://github.com/CLeARoboticsLab/STFL!.

2. Background

2.1. Reinforcement Learning, Model-Based RL, and
Dyna-style Algorithms

Reinforcement learning (RL) models agent-environment in-
teractions as a Markov Decision Process (MDP), defined by
the tuple (S, A, p,r,v). Here, S is the state space, A is the
action space, probability distribution p(s’|s, a) represents
the transition dynamics, (s, a) is the reward function, and
~ € [0,1) is the discount factor. The goal of the agent is to
learn a policy 7(a|s) that maximizes the expected cumula-
tive reward.
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Learning an effective policy often requires extensive inter-
action with the environment, which can be prohibitively
costly and time-consuming. To address this, model-based
RL algorithms aim to learn a model of the environment’s
dynamics, py(s’, r|s, a), to reduce the need for direct envi-
ronment interaction. Within this family of algorithms exists
the Dyna architecture (Sutton, |1991)), which aims to learn a
world model py, predict hypothetical transitions under that
world model, and then use those imagined experiences to ac-
celerate training. One such method is Model-Based Policy
Optimization (MBPO) (Janner et al., 2019), which trains an
ensemble of probabilistic neural networks to approximate
the environment’s dynamics and rewards.

Like most off-policy methods, MBPO maintains a replay
buffer of the transitions it has experienced in the environ-
ment. MBPO supplements this real world data by gener-
ating synthetic on-policy rollouts that branch from states
in the replay buffer, thereby augmenting the replay data
with “imagined” transitions. This partially synthetic dataset
is then used to train both the actor, a neural network that
determines the optimal action based on the current state,
and the critic, a neural network that estimates the expected
return given a choice of action and state. For MBPO this
process is done using the model-free algorithm Soft Actor-
Critic (SAC) (Haarnoja et al.,|2019a)), a widely used, reliable
method for continuous control tasks. MBPO has demon-
strated strong performance on OpenAl Gym benchmarks,
often greatly surpassing traditional model-free approaches
in sample efficiency. Due to its reputation for strong per-
formance, many recent algorithms are based on MBPO, e.g.
(Lai et al., |2020; [Li et al., |2024; Dong et al., 2024} [Zheng
et al.,[2023; [Wang et al.| 2023} |Lai et al., [2021)).

Another recent extension of the Dyna line of model-based
RL is Aligned Latent Models (ALM) (Ghugare et al., [2022).
Rather than generating synthetic data in the true state-action
space like MBPO, ALM jointly learns observation repre-
sentations, a world model that predicts next representations
given the current representation, and a policy that acts in the
representation space. It then uses the Deep Deterministic
Policy Gradient (DDPG) algorithm (Lillicrap et al.|[2019))
for off-policy learning and uses synthetic trajectories to train
the latent policy only. Like MBPO, ALM has demonstrated
strong performance across OpenAl Gym tasks, while also
requiring substantially less wall clock time than MBPO for
training, as shown in Figure 2]

Finally, a particularly notable DMBRL approach is Dream-
erV3 (Hatner et al., |2025), which, unlike the other DMBRL
methods presented in this work, was not tested in Gym, but
has state-of-the-art sample efficiency in DMC. Like ALM,
DreamerV3 optimizes a policy in the latent space using
imagination-based trajectories and actor-critic learning. Un-
like ALM, which uses a single objective for optimizing both

the policy and latent model, DreamerV3 separates these
processes and learns a latent world model using multiple
objectives. Please refer to Appendix [A]for further details.

2.2. Benchmarks: OpenAI Gym and DeepMind Control

OpenAl Gym (Brockman et al.| 2016) is a widely-used
benchmark suite for RL algorithms, providing a variety of
environments, including continuous control tasks with and
without the MuJoCo physics engine (Todorov et al.l|2012)) as
the physics backend (in this paper, we restrict our attention
to Gym environments which use MuJoCo). The DeepMind
Control (DMC) Suite (Tassa et al.l2020) provides a larger
set of continuous control tasks based on MuJoCo and is
designed to provide a more challenging and comprehensive
evaluation of control algorithms.

Significant differences exist between DMC and OpenAl
Gym in terms of physical parameters, reward structures, and
termination conditions. We present an extended discussion
of modeling differences and their possible connections to the
performance gap we investigate in this paper in Appendix [C|

3. Performance Gap of Dyna-based MBRL
Across Benchmarks

In this section, we put forth the following hypothesis: incor-
porating Dyna-style modifications into otherwise successful
off-policy algorithms can prevent them from improving be-
yond their performance at initialization — that of a randomly
initialized policy. In support of this hypothesis we present
empirical evaluations of MBPO’s performance across six
OpenAl Gym tasks and six challenging robotics tasks (Nik{
ishin et al., [2022)) from DMC using our JAX-based (Brad/{
bury et al.| 2018) implementation of MBPO. For the OpenAl
Gym benchmark, we demonstrate that our implementation
matches the performance produced by the original PyTorch
(Paszke et al.,|2019) MBPO implementation (Janner et al.,
2019) and ALM (Ghugare et al., [2022). Furthermore, we
show that MBPO dramatically outperforms its “no Dyna’
base off-policy algorithm in OpenAl Gym, Soft Actor-Critic
(SAC) (Haarnoja et al.}2019a), even when both share iden-
tical hyperparameters and architectures.

>

In contrast, in DMC (Tassa et al., 2020) we observe that
MBPO struggles to achieve any policy improvements in six
out of ﬁfteerﬂ of the challenging environments that we tested
on when training from scratch. Because MBPO differs from
SAC only due to Dyna-style “enhancements,” these results
demand a deeper investigation into whether the default SAC
hyperparameters, the model ensemble, or other factors in-
duce an otherwise healthy SAC implementation to fail.

"Training curves for MBPO in all fifteen challenging DMC
environments are provided in Appendix|G|in Figure[TT]
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Figure 3. 1-step MBPO consistently achieves higher final episodic
returns and demonstrates faster convergence compared to SAC.
Likewise, 1-step MBPO either matches or surpasses ALM in terms
of sample efficiency across all but one task. Solid curves cor-
respond to the mean and shaded regions represent the standard
deviation across six trials. The dotted line represents the episodic
return of the original n-step MBPO at the end of training.

This performance gap extends beyond MBPO into other
model-based RL algorithms in the Dyna family (Sutton)
1991). To this end, we deploy the recently developed ALM
(Ghugare et al.,[2022) method across the same sixE] challeng-
ing DMC tasks and observe the same phenomenon.

3.1. Results in OpenAlI Gym

As depicted in Figure [3] when training from scratch our
implementation of MBPO using 1-step synthetic rollouts
consistently outperforms SAC across six OpenAlI Gym en-
vironments, and achieves the same sample efficiency as
the original n-step Pytorch MBPO implementation. These
findings agree with those of the original MBPO paper —
augmenting policy training with single-step synthetic roll-
outs produces an algorithm with strong performance (Janner|
et al., 2019). This affirms both the accuracy of our re-
implementation and the sample efficiency gains of 1-step
MBPO in OpenAl Gym tasks.

Here, 1-step and n-step refer to the length of synthetic roll-
outs simulated using the learned world model. It is common
to prefer shorter rollouts, however, in order to mitigate com-
pounding model errors (Janner et al., [2019; Sikchi et al.|
2022); indeed, we demonstrate that these errors are quite
substantial in Section f.1] Combining the results in Fig-
ure 2] and Figure [3| we can conclude that our JAX-based
implementation of 1-step MBPO matches the original im-
plementation’s (Janner, [2019) n-step MBPQO’s performance
with much greater wall-clock speed, and as such we will
henceforth refer to 1-step MBPO as simply “MBPO.”

Training curves for ALM in all fifteen challenging DMC envi-
ronments are provided in Appendix[G|in Figure[T7}
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Figure 4. Performance of MBPO and SAC on six DMC bench-
marks. MBPO exhibits no policy improvement across these envi-
ronments when Dyna-style enhancements are used, but can imme-
diately make policy improvements without them (i.e. SAC).

3.2. Results in the DeepMind Control Suite

In contrast, MBPO’s performance when training from
scratch drops significantly in the DMC environments despite
using the exact same hyperparameters and model structure
as for the successes in OpenAl Gym. Full results across
all fifteen challenging DMC environments are provided in
Figure[IT)in Appendix[G] These results show the complete
range of MBPO’s performance, including scenarios where
MBPO solves tasks more slowly than SAC, matches SAC’s
sample efficiency, or fails to make any policy improvements.

In this section, we focus on six continuous control tasks
where MBPO fails to improve the policy when training from
scratch, cf. Figure[d] These results are particularly striking
because several of these tasks have high-level analogues
in OpenAl Gym when accounting for reward structures,
termination conditions, and physics parameter differences.

These results indicate that the recent observation of (Voel{
cker et al.}|2024) — i.e., that MBPO cannot reliably solve
the hopper-hop environment in DMC — indicates a
much broader trend. Moreover, unlike prior work, when we
consider these findings alongside the results in Section 3.1}
we see that across multiple environments and two seemingly
similar benchmarks, MBPO consistently struggles to im-
prove upon a random policy, let alone train a competent
one. Because one can recover SAC from MBPO by remov-
ing the Dyna-style actor/critic updates based on synthetic
data, we can conclude that these Dyna-style “enhancements”
are the culprit behind MBPO’s failure in the DMC environ-
ments shown in Figure 4]

3.3. Beyond MBPO: Another Dyna-based Algorithm

In this section, we show that the conclusions in Section[3.2]
extend beyond MBPO to another member of the Dyna fam-
ily, Aligned Latent Models (ALM) (Ghugare et al.,[2022).
We choose ALM for two reasons. First, unlike MBPO,
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no policy improvement with Dyna-style enhancements, but per-
forms strongly without them (6 trials, & std).

ALM is built on top of DDPG, which allows us to test Dyna
in a deterministic policy framework, in contrast to SAC’s
stochastic approach. Second, DDPG’s reliance on Gaussian
action noising offers a distinct exploration strategy com-
pared to SAC’s entropy-based exploration.

To evaluate whether Dyna-based “enhancements” nega-
tively impact ALM, we repeated the same experiment as for
MBPO across sixﬂ challenging DMC tasks. We train ALM
with and without Dyna-style enhancements using identi-
cal hyperparameters, and compare their performance. This
“no-Dyna” variant of ALM is inspired by (Ghugare et al.,
2022) where the authors replaced actor training via synthetic
model rollouts with a TD3 (Fujimoto et al.| 2018)) actor loss
that relies only on real transitions.

The results of this experiment are shown in Figure@ and, as
with MBPO, the base off-policy algorithm performs quite
well, while its Dyna-style counterpart (i.e. ALM) fails to
make any policy improvements when training from scratch.
This result, when combined with those of Section@ pro-
vides clear evidence that Dyna-style enhancements can pre-
vent improvement beyond the performance of a randomly
initialized policy across many environments.

Throughout the remainder of this paper, we analyze the un-
derlying causes of these performance discrepancies through
the lens of MBPO, and explore potential solutions. By doing
so, we aim to identify whether these challenges are intrinsic
limitations of Dyna-style algorithms in certain settings or if
they can be mitigated in a general manner.

3Training curves for ALM in all fifteen challenging DMC envi-
ronments are provided in Appendix[G|in Figure[T7}

Key insights:

* MBPO consistently matches or outperforms
the sample efficiency and final episodic return
of its “no Dyna” variant (i.e. SAC), across
OpenAl Gym environments.

* MBPO consistently underperforms the sam-
ple efficiency and final episodic return of its
“no Dyna” variant (i.e. SAC), across DMC
environments.

This same performance gap can be observed
for ALM, another Dyna-based RL algorithm,
suggesting these issues may be endemic to a
larger subclass of the Dyna algorithm family.

4. The Effect of the Predictive Model on
Algorithm Performance

4.1. Is High Model Error the Problem?

In Section we saw that Dyna-style “enhancements”
caused both MBPO and ALM to dramatically underper-
form their “no Dyna” counterparts in DMC, whereas the
same enhancements led to performance gains in OpenAl
Gym. Since the predictive model ensemble is central to
MBPO’s sample efficiency gains over model-free methods,
we focus on this first as a source of MBPO'’s issues. Studies
have shown that high model error causes significant per-
formance degradation (Gu et al., 2016} Rajeswaran et al.,
2017), and models are most effective over short to moderate
planning horizons (Sikchi et al.| 2022; |[Holland et al., [2019)
if compounding model errors can be mitigated (Talvitie,
2014} |Buckman et al.| 2018). We find that severe model er-
ror in many DMC environments makes even 1-step rollouts
unrealistic, rendering multi-step methods unproductive.

To quantify this effect, we introduce the percent model error,
defined as:

g =yl

[yll2

where ¢ denotes the model’s predicted next observation and
reward, and y is the corresponding ground-truth target. This
normalized metric allows for fair comparison across tasks
with differing scales.

x 100,

The relationship between percent model error and perfor-
mance degradation in MBPO is challenging to assess, par-
ticularly within DMC environments. We investigated this
via comparisons of percent model errors across the training
distribution (i.e., the replay buffer) for six tasks in both Ope-
nAI Gym and DMC (cf. Figures[I2]and[I3]in Appendix [G)
instead of relying on computationally expensive on-policy
rollouts. We observed that in all six OpenAl Gym tasks
the model error converges significantly below 25%. In con-
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trast, for the six DMC tasks where MBPO fails, the tasks
fall into two categories. The hopper tasks exhibit model
errors that converge above 100%, while the remaining tasks
have model errors converging above 25% as training pro-
gresses. Notably, all of these environments fail to improve
policy performance beyond that of a random policy (recall

Figure[d).

While modeling errors in MBPO for DMC environments
are not universally larger than those in OpenAl Gym, their
impact is difficult to contextualize without further analy-
sis. To investigate this impact, and inspired by previous
work (Kalweit & Boedecker;, |2017), we vary the synthetic-
to-real data ratio, .S, which represents the proportion of
synthetic rollouts in each training batch. By varying S,
we can evaluate a spectrum between MBPO (S — 0.95)
and SAC (S — 0), thereby systematically studying the ef-
fect of synthetic data on policy performance and assessing
the significance of modeling errors in degrading MBPO’s
performance (Gu et al.| 2016).

Focusing on hopper—-stand and humanoid-stand,
which represent the two categories of model error magni-
tude and highlight where MBPO consistently fails with a
learned model, we find a clear trend: increasing S reduces
episodic returns (cf. Figure[I4]in Appendix [G). This effect
is particularly evident for humanoid-stand, where even
minimal synthetic data severely degrades performance, high-
lighting the detrimental effect of model errors on MBPO.

To rule out tuning issues, we performed comprehen-
sive hyperparameter sweeps for hopper—-stand and
humanoid-stand (cf. Appendix [F), since introducing
any synthetic data can induce failures in MBPO with the
default hyperparameters. We swept over the key hyperpa-
rameters related to the training and utilization of the predic-
tive model, including the size of the model’s hidden layers,
the interval at which the model is retrained, the learning
rate, and the number of training steps. None provided any
improvement to policy performance across training despite
reductions in model-error, which suggests that deeper archi-
tectural and algorithmic changes are required. Reduction of
model bias remains an open issue in the broader MBRL lit-
erature (Wang et al., 2019; |Deisenroth & Rasmussen, 2011}
Luo et al., 2024} and we aim to address this in future work
as part of a broader solution to Dyna-style algorithm issues
identified here.

4.2. What If We Had a Perfect Model?

These results raise a fundamental question: if we had ac-
cess to a perfect model of the environment, would MBPO
outperform SAC in DMC, as it does in OpenAl Gym? Ad-
dressing this question allows us to bypass the long-standing
challenge of training a reliable predictive model (Atkeson
& Schaall [1997)), and directly evaluate whether MBPO with
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Figure 6. Comparing MBPO with a perfect predictive model to
SAC and MBPO with a learned model. Solid curves correspond
to the mean and shaded regions represent the standard deviation
across six trials.

the default hyperparameters and access to perfect rollouts
can improve upon its base off-policy method (i.e., SAC)
across multiple environments in DMC.

To answer this question, we modified the reset procedure
of the DMC simulator to process arbitrary initial states pro-
vided by the user. Using this augmented simulator, we gener-
ated real trajectories starting from states sampled randomly
from the replay buffer during training. All other hyperpa-
rameters for MBPO were left unchanged. The results for
six DMC environments are presented in Figure [6]

Access to a perfect predictive model produces compelling
yet unsatisfying results. In particular, across these six envi-
ronments — which include a mix of cases settings in which
MBPO previously had either promising results or no policy
improvements — even with a perfect model, MBPO cannot
outperform its base off-policy method consistently.

In OpenAl Gym, even MBPO with a learned model achieves
sample efficiency comparable to or exceeding SAC across
all environments (cf. Figure E]) However, in DMC, while a
perfect model enables policy improvement in environments
where MBPO with a learned ensemble fails completely, it
does not consistently surpass SAC’s sample efficiency in
four out of the six environments shown in Figure [6]

It becomes clear that even with an idealized model, model-
ing errors alone cannot fully explain the failings of MBPO in
DMC. The hopper tasks exhibit significantly larger model
errors compared to humanoid-stand and other tasks
(Figure[I3)), yet even with the perfect model, MBPO does
not achieve the same level of success for hoppe r (Figure[6)
as SAC. This observation indicates that further analysis is
needed to investigate other sources of these shortcomings.
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Figure 7. Mean Q-values (6 seeds) with shaded regions showing
min-max range. MBPO’s critic either massively underestimates
or predicts no return when compared to SAC. Overestimation is
magnified in quadruped tasks with Dyna-style enhancements.
Results across all 15 DMC tasks are provided in Figure

4.3. Investigating Underlying Failure Mechanisms
Induced By Model Bias

Since even access to the true environment dynamics fails to
resolve MBPO’s poor performance in DMC, we explored
additional possible failure modes beyond model bias that
could hinder MBPQO’s success. These additional failure
modes relate to the concept of replay ratio (RR).

In off-policy reinforcement learning, the replay ratio refers
to the frequency of RL training updates relative to the num-
ber of environment interactions. For example, SAC per-
forms one update per environment interaction (RR=1), while
MBPO performs twenty updates (RR=20), resulting in a
much higher replay ratio. MBPO’s high replay ratio, com-
bined with its lack of performance improvement beyond
the randomly initialized policy, suggests the presence of
critic divergence — a well-known challenge in off-policy
RL (Thrun & Schwartz,[1993) which is often exacerbated by
overly-replaying stale data during training. Recent studies
in high replay ratio off-policy RL (Nauman et al., 2024;
Hussing et al.| [2024) have highlighted two forms of critic
divergence: overestimation and underestimation.

Overestimation, common in offline and online off-policy
methods with high replay ratios, arises when a learned Q-
function is queried for state-action pairs that are out-of-
distribution for the training data (Thrun & Schwartz, [1993).
Online methods typically mitigate this by using real experi-
ences to explore high-reward regions, naturally correcting
overestimation through interaction. Conversely, underesti-
mation occurs in unseen regions where the Q-function is
overly pessimistic. Unlike overestimation, underestimation
is harder to address, as it requires purely exploratory actions
to visit these regions, which policies inherently avoid due to
their focus on maximizing expected return.

To investigate critic divergence, we measured the average

critic Q-values throughout training for SAC and MBPO
in DMC environments where MBPO fails, and report the
results in Figure[7]] MBPO’s Q-values exhibited significantly
greater divergence despite identical hyperparameters. This
suggests that inaccurate synthetic transitions drive the Q-
value estimation issues and, by extension, hinder learning.

Since the MBPO model predicts both next states and re-
wards inaccurately even on its training distribution, and
because synthetic data dominates the training set by default
in MBPO, the actor and critic repeatedly encounter infeasi-
ble transitions and unrealistic returns. We hypothesize that
these synthetic transitions conflict with actual replay data,
causing severe critic target non-stationarity and substantial
Q-value estimation errors.

To validate this hypothesis, we compared the Q-values ob-
tained using both a learned model and a perfect model
throughout trainingE] With a perfect model, massive un-
derestimation is much less pronounced, implicating mod-
eling errors as the primary driver of this issue. However,
per the discussion of Section even without massive
underestimation MBPO fails to match SAC’s performance.

Since critic divergence stems from learned functions extrap-
olating in an unconstrained manner, we employed Layer
Normalization (Ba et al.| [2016a) as a regularization tech-
nique as in (Ball et al.l 2023) to bound the critic output.
This technique has proven quite successful in previous work
(Nauman et al., 2024, but even after partly mitigating critic
divergence, MBPO still cannot outperform SAC consistently
as shown in Appendix [G]in Figure 20}

Key Insights:

* MBPO’s learned model struggles to make ac-
curate predictions in DMC, even on the train-
ing distribution.

* A perfect 1-step model improves MBPO in
DMC but still fails to match or outperform
SAC, as was previously achieved in Gym.

* Predictive model errors and non-stationary
critic targets induce critic divergence.

* Layer Normalization mitigates critic diver-
gence, but does not allow MBPO to succeed.

5. If It’s Not Just The Model Could It Be The
Learning Dynamics?

Section [] suggests that errors in the predictive model con-
tribute to MBPO’s poor performance in DMC, but cannot
fully explain the issues identified in Section [3] This obser-

“These results are in Appendix in Figure
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vation leads us to investigate how learning dynamics and
network plasticity in MBPO might impact the predictive
model or the base off-policy method’s abilities.

Plasticity loss — where prolonged training diminishes a
network’s capacity to learn new tasks — has been studied
in off-policy RL (Lyle et al., [2022)) and model-based RL
(Qiao et al} 2023), with successful applications in DMC
(Nikishin et al.} 20225 |D’Oro et al.,|2023)). High replay ratios
in off-policy RL are known to exacerbate plasticity issues,
as both the predictive model and the learned Q-function
face continually changing data distributions and using a
high replay ratio forces them to learn to solve a sequence of
similar, but distinct, tasks (Dabney et al.,[2021).

Qiao et al. (2023) demonstrate that periodic reinitialization
of the learned model parameters can mitigate the loss of
plasticity in model-based RL and enhance model accuracy.
Therefore, to determine if a loss of plasticity is contributing
to MBPO’s failures, we completely reset all parameters
of the predictive model every 2 x 10* environment steps,
which is a frequency aligned with recommendations from
previous work (Qi1ao et al., 20235 |D’Oro et al., [2023) for a
replay ratio of 128. We also experimented with both more
conservative intervals (e.g., every 1.28 x 10° environment
steps) and intermediate values, but found that results were
indistinguishable from those in Figure @] regardless of reset
interval. These findings suggest that model plasticity is not
the primary cause of low model accuracy in MBPOE]

Next, we investigated whether plasticity issues were affect-
ing the networks that comprise the off-policy base of MBPO
— the actor, critic, target critic, and the automatically tuned
temperature in SAC. Unlike the investigation of the model
losses due to plasticity, we reset all of the aforementioned
networks, except the predictive model, every 2 x 10% in-
teractions. In Figure [8] we see that in both quadruped
tasks performing periodic resets allows MBPO to not only
improve its policy from the initial random policy, but out-
perform SAC by a large margin. Additionally we see that
in the humanoid-walk task performing periodic resets
allows MBPO to improve from the initial random policy,
but it still underperforms SAC. In all other tasks MBPO
with periodic resets still cannot improve its policy beyond
the initial random policy. We can conclude that plasticity
issues related to these base off-policy components do, at
least partially, account for some failings of MBPO.

Nevertheless, alleviating plasticity loss is not a universal
solution. Of even more significance, the periodic resets ap-
plied in MBPO are equally applicable to SAC. As shown in
Figure[8] SAC with periodic resets significantly outperforms
MBPO with the same resets on most tasks. This highlights

>Training curves for model resets every 2 x 10* environment
steps may be found in Figure [20]in Appendix [G|
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Figure 8. Comparison of MBPO and SAC with and without peri-
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temperature. While periodic resets help MBPO improve policy
performance beyond the random initial policy in some environ-
ments, SAC with resets consistently outperforms MBPO across all
tasks. Full results are in Appendix [G]and Figure[T5]

that Dyna-style enhancements can degrade the performance
of their off-policy base algorithm in DMC.

Key Insights:

* Loss of plasticity in the predictive model does
not contribute to MBPO’s failures.

¢ Loss of plasticity in the off-policy base (actor,
critic, target critic, and temperature) is only
partially responsible for MBPO’s limitations.

* MBPO’s Dyna-style enhancements exacerbate
plasticity loss in the off-policy base, leading
to worse performance compared to SAC.

* SAC continues to significantly outperform
MBPO in DMC when periodic resets are ap-
plied to both algorithms.

6. Conclusion

In this work, we have illustrated a surprising and consistent
performance gap of Dyna-style model-based reinforcement
learning algorithms when applied across diverse benchmark
environments. While these algorithms can excel in Ope-
nAl Gym benchmark tasks, their performance degrades
significantly in the DeepMind Control Suite (DMC), even
though tasks in these benchmarks share broadly similar
characteristics and the same underlying physics engine. Our
extensive experiments, reinforced by modern techniques
designed to bolster both model-free and model-based meth-
ods, reveal that synthetic rollouts — central to Dyna’s gains
in OpenAl Gym — can arrest policy improvement rather
than enhance it when deployed across more diverse envi-
ronments. Concretely, for all 15 DMC tasks we examined,
adding model-generated samples consistently undermined
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both sample efficiency and wall-clock performance relative
to simpler, model-free off-policy algorithms with identical
hyperparameters. In short, there is no free lunch.

These findings suggest that our community’s reliance on
a limited set of benchmarks may have contributed to an
inflated view of the generality and robustness of Dyna-style
approaches. Just as importantly, our results highlight sys-
temic issues within the research community and publica-
tion ecosystem: there are few incentives — monetary or
otherwise — for conferences, journals, and researchers to
invest in the critical re-examination of widely cited methods.
Model-Based Policy Optimization (MBPO), in particular,
is an instructive example. Although it is frequently repro-
duced, highly cited, and even featured in a reproducibility
study accepted at a major conference (Liu et al., [2020), our
analysis shows that its touted advantages fail to carry over
to an equally conventional testbed (DMC). This underscores
the need for a cultural shift towards more rigorous, critical,
and comprehensive evaluation practices, including active
self-policing of influential algorithms and promoting rigor-
ous follow-up studies that challenge established claims.

Looking ahead, we have not solved the pervasive issues
underlying the subclass of Dyna-style methods investigated
in this work, but we have made progress towards facilitating
such work by identifying that there is a problem, investi-
gating potential causes and solutions, and providing code
that significantly speeds up evaluation procedures. We hope
that this work provides a building block from which our
community can dissect, diagnose, and ultimately address
the shortcomings that currently limit Dyna’s utility.

Recognizing that our work is not exhaustive, we also have
included a frequently asked questions section in Appendix[A]
to address common questions, provide context, and foster
collaboration. We intend to update it continually, incor-
porating insights and feedback from the broader research
community as we refine our methods.
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This paper underscores the importance of robust and di-
verse benchmarking in the Machine Learning community
to ensure that reported progress translates to meaningful
advances. By pointing to the limitations of Dyna-style meth-
ods in broader contexts, we encourage the community to
critically re-evaluate widely adopted approaches and the
systems that reward them. Addressing systemic issues, such
as the incentives for replicating influential results without
deeper scrutiny, is essential to fostering meaningful progress
in the field.

Furthermore, our work highlights the barriers to accessibility
in reproducibility and evaluation. Many influential methods,
including those analyzed in this study, remain difficult to
reproduce due to the significant computational resources
required to replicate results or run new experiments. Such
challenges prevent broader participation in the refinement
and critical evaluation of algorithms, especially from re-
searchers with limited access to cutting-edge hardware. To
help address these concerns for Dyna-style methods, we pro-
vide efficient, open-source code that significantly reduces
evaluation costs and facilitates more inclusive collaboration
within the research community.

From an ethical standpoint, this work does not present
immediate societal risks, but rather focuses on improving
the methodological rigor within reinforcement learning re-
search. By advocating for more comprehensive evaluation
practices, reducing resource requirements, and fostering
transparency, we hope to encourage accountability and ac-
cessibility in research practices.

We believe this work holds value for the community by
drawing attention to challenges in generalization, overfitting
to benchmarks, accessibility, and the broader need for a cul-
ture that prioritizes the evaluation of actual progress. While
our study is not exhaustive, we provide a framework for fur-
ther investigation and invite collaboration to refine and build
upon our findings. By enabling the community to address
these shortcomings, we aim to facilitate research that leads
to more robust, impactful, and accessible algorithms.

References

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,
and Bellemare, M. G. Deep reinforcement learning at

10

the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34:29304-29320, 2021.

Ahmed, N., Wahed, M., and Thompson, N. C. The
growing influence of industry in ai research. Sci-
ence, 379(6635):884—-886, 2023. doi: 10.1126/science.
ade2420. URL https://www.science.org/
doi/abs/10.1126/science.ade2420.

Amos, B., Stanton, S., Yarats, D., and Wilson, A. G. On
the model-based stochastic value gradient for continuous
reinforcement learning. In Proceedings of the 3rd Con-
ference on Learning for Dynamics and Control, volume
144 of Proceedings of Machine Learning Research, pages
6-20. PMLR, 2021.

Atkeson, C. and Schaal, S. Learning tasks from a single
demonstration. In Proceedings of International Confer-
ence on Robotics and Automation, volume 2, pp. 1706—
1712 vol.2, 1997. doi: 10.1109/ROBOT.1997.614389.

Ba, J. L., Kiros, J. R, and Hinton, G. E. Layer normal-
ization, 2016a. URL https://arxiv.org/abs/
1607.06450.

Ball, P. J., Smith, L., Kostrikov, 1., and Levine, S. Effi-
cient online reinforcement learning with offline data. In
Proceedings of the International Conference on Machine
Learning, pages 1577-1594. PMLR, 2023.

Bender, E. M., Gebru, T., McMillan-Major, A., and
Shmitchell, S. On the dangers of stochastic parrots:
Can language models be too big? In Proceedings
of the 2021 ACM Conference on Fairness, Account-
ability, and Transparency, FAccT 21, pp. 610-623,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450383097. doi: 10.1145/
3442188.3445922. URL https://doi.org/10.
1145/3442188.3445922.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/jax—-ml/jax.

Brockman, G., Cheung, V., Pettersson, L., Schneider,
J., Schulman, J., Tang, J., and Zaremba, W. Ope-
nai gym, 2016. URL https://arxiv.org/abs/
1606.01540.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H.
Sample-efficient reinforcement learning with stochastic
ensemble value expansion. Advances in Neural Informa-
tion Processing Systems, 31, 2018.


https://www.science.org/doi/abs/10.1126/science.ade2420
https://www.science.org/doi/abs/10.1126/science.ade2420
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://github.com/jax-ml/jax
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540

Stealing That Free Lunch: Exposing the Limits of Dyna-Style Reinforcement Learning

Dabney, W., Barreto, A., Rowland, M., Dadashi, R.,
Quan, J., Bellemare, M. G., and Silver, D. The value-
improvement path: Towards better representations for
reinforcement learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, number 8§,
pages 7160-7168, 2021.

Deisenroth, M. P. and Rasmussen, C. E. Pilco: a model-
based and data-efficient approach to policy search. In Pro-
ceedings of the 28th International Conference on Inter-
national Conference on Machine Learning, ICML’11, pp.
465-472, Madison, WI, USA, 2011. Omnipress. ISBN
9781450306195.

Dong, K., Luo, Y., Wang, Y., Liu, Y., Qu, C., Zhang,
Q., Cheng, E., Sun, Z., and Song, B. Dyna-
style model-based reinforcement learning with
model-free policy optimization. Knowledge-Based

Systems, 287:111428, 2024. ISSN 0950-7051.
doi: https://doi.org/10.1016/j.knosys.2024.111428.
URL https://www.sciencedirect.com/

science/article/pii/S0950705124000637.

D’Oro, P., Schwarzer, M., Nikishin, E., Bacon, P.-L., Belle-
mare, M. G., and Courville, A. Sample-efficient rein-
forcement learning by breaking the replay ratio barrier.
In Proceedings of the Eleventh International Conference
on Learning Representations, 2023.

Fujimoto, S., Hoof, H., and Meger, D. Addressing func-
tion approximation error in actor-critic methods. In Pro-
ceedings of the International Conference on Machine
Learning, pages 1587-1596. PMLR, 2018.

Ghugare, R., Bharadhwaj, H., Eysenbach, B., Levine, S.,
and Salakhutdinov, R. Simplifying model-based rl: learn-
ing representations, latent-space models, and policies
with one objective. In International Conference on Learn-
ing Representations, 2022.

Gu, S., Lillicrap, T., Sutskever, 1., and Levine, S. Continu-
ous deep g-learning with model-based acceleration. In
Proceedings of the International Conference on Machine
Learning, pages 2829-2838. PMLR, 2016.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha,
S., Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P,
and Levine, S. Soft actor-critic algorithms and appli-
cations, 2019a. URL https://arxiv.org/abs/
1812.05905.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: learning behaviors by latent imagination. In
Proceedings of the International Conference on Learning
Representations, 2020.

11

Hafner, D., Pasukonis, J., Ba, J., et al. Mastering diverse
control tasks through world models. Nature, 640:647—
653, 2025. doi: 10.1038/s41586-025-08744-2.

Haibe-Kains, B., Adam, G. A., Hosny, A., Khodakarami,
F., Waldron, L., Wang, B., McIntosh, C., Goldenberg, A.,
Kundaje, A., Greene, C. S., et al. Transparency and re-
producibility in artificial intelligence. Nature, 586(7829):
E14-E16, 2020. doi: 10.1038/s41586-020-2766-y.

Hansen, N. A., Su, H., and Wang, X. Temporal difference
learning for model predictive control. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 8387-8406. PMLR,
17-23 Jul 2022. URL|https://proceedings.mlr.
press/v162/hansen22a.html.

Holland, G. Z., Talvitie, E. J., and Bowling, M. The
effect of planning shape on dyna-style planning in
high-dimensional state spaces, 2019. URL https:
//arxiv.org/abs/1806.01825.

Hussing, M., Voelcker, C. A., Gilitschenski, I., Farahmand,
A.-m., and Eaton, E. Dissecting deep RL with high update
ratios: Combatting value divergence. In Proceedings of
the Reinforcement Learning Conference, 2024,

Janner, M. Mbpo: Model-based policy optimization,
2019. URL https://github.com/jannerm/
mbpol Accessed: 2024-12-11.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to
trust your model: Model-based policy optimization. In
Proceedings of the 33rd International Conference on Neu-
ral Information Processing Systems, pp. 1122—-1133, Red
Hook, NY, USA, 2019. Curran Associates Inc.

Jordan, S. M., White, A., da Silva, B. C., White, M., and
Thomas, P. S. Position: Benchmarking is limited in
reinforcement learning research, 2024. URL https
//arxiv.org/abs/2406.16241.

Kalweit, G. and Boedecker, J. Uncertainty-driven imagi-
nation for continuous deep reinforcement learning. In
Levine, S., Vanhoucke, V., and Goldberg, K. (eds.),
Proceedings of the Ist Annual Conference on Robot
Learning, volume 78 of Proceedings of Machine Learn-
ing Research, pp. 195-206. PMLR, 13-15 Nov 2017.
URLhttps://proceedings.mlr.press/v78/
kalweitl7a.htmll

Lai, H., Shen, J., Zhang, W., and Yu, Y. Bidirectional
model-based policy optimization. In Proceedings of the

International Conference on Machine Learning, pages
5618-5627. PMLR, 2020.


https://www.sciencedirect.com/science/article/pii/S0950705124000637
https://www.sciencedirect.com/science/article/pii/S0950705124000637
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://proceedings.mlr.press/v162/hansen22a.html
https://proceedings.mlr.press/v162/hansen22a.html
https://arxiv.org/abs/1806.01825
https://arxiv.org/abs/1806.01825
https://github.com/jannerm/mbpo
https://github.com/jannerm/mbpo
https://arxiv.org/abs/2406.16241
https://arxiv.org/abs/2406.16241
https://proceedings.mlr.press/v78/kalweit17a.html
https://proceedings.mlr.press/v78/kalweit17a.html

Stealing That Free Lunch: Exposing the Limits of Dyna-Style Reinforcement Learning

Lai, H., Shen, J., Zhang, W., Huang, Y., Zhang, X., Tang,
R., Yu, Y., and Li, Z. On effective scheduling ofmModel-
based reinforcement Learning. Advances in Neural Infor-
mation Processing Systems, 34:3694-3705, 2021.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
Advances in Neural Information Processing Systems, 33:
19884-19895, 2020.

Li, Y., Dong, Z., Luo, E., Wu, Y., Wu, S., and Han, S.
When to trust your data: Enhancing dyna-style model-
based reinforcement learning with data filter, 2024. URL
https://arxiv.org/abs/2410.12160.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning, 2019. URL
https://arxiv.org/abs/1509.02971.

Liu, Y., Xu, J., and Pan, Y. [Re] When to trust your model:
model-based policy optimization. ReScience C, 6(2),
2020. URL https://openreview.net/forum?
id=rkezvT9fo6r. Accepted at NeurIPS 2019 Repro-
ducibility Challenge.

Luo, F--M., Xu, T., Lai, H., Chen, X.-H., Zhang, W., and
Yu, Y. A survey on model-based reinforcement learning.
Science China Information Sciences, 67(2):121101, 2024.

Lyle, C., Rowland, M., and Dabney, W. Understanding and
preventing capacity loss in reinforcement learning. In
Proceedings of the International Conference on Learning
Representations, 2022.

Nauman, M., Bortkiewicz, M., Mitos, P., Trzcinski,
T., Ostaszewski, M., and Cygan, M. Overestima-
tion, overfitting, and plasticity in actor-critic: the
Bitter lesson of Reinforcement learning. In Pro-
ceedings of the 4lst International Conference on
Machine Learning, pp. 37342-37364. PMLR, July
2024. URL https://proceedings.mlr.press/
v235/nauman24a.html. ISSN: 2640-3498.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., and
Courville, A. The primacy bias in deep reinforcement
learning. In Proceedings of the International Conference
on Machine Learning, pages 16828-16847. PMLR, 2022.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative
style, high-performance deep learning library, 2019. URL
https://arxiv.org/abs/1912.01703.

12

Qiao, Z., Lyu, J., and Li, X. Mind the model, not the agent:
the primacy bias in model-based RL. In Proceedings of
the European Conference on Artificial Intelligence, 2023.

Rajeswaran, A., Ghotra, S., Levine, S., and Ravindran, B.
EPOpt: learning robust neural network policies using
model ensembles. In Proceedings of the International
Conference on Learning Representations, 2017.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation, 2015. URL https://arxiv,
org/abs/1506.02438.

Sikchi, H., Zhou, W., and Held, D. Learning off-policy with
online planning. In Proceedings of the Conference on
Robot Learning, pages 1622-1633. PMLR, 2022.

Laskin, M., Srinivas, A., and Abbeel, P. CURL: contrastive
unsupervised representations for reinforcement learning.
In Proceedings of the International Conference on Ma-
chine Learning, pages 5639-5650. PMLR, 2020.

Sutton, R. S. Dyna, an integrated architecture for learn-
ing, planning, and reacting. SIGART Bull., 2(4):
160-163, July 1991. ISSN 0163-5719. doi: 10.
1145/122344.122377. URL https://doi.org/10}
1145/122344.122377.

Talvitie, E. Model regularization for stable sample rollouts.
In Proceedings of the Thirtieth Conference on Uncer-
tainty in Artificial Intelligence, UAI’ 14, pp. 780-789,
Arlington, Virginia, USA, 2014. AUAI Press. ISBN
9780974903910.

Tassa, Y., Tunyasuvunakool, S., Muldal, A., Doron, Y.,
Trochim, P., Liu, S., Bohez, S., Merel, J., Erez, T.,
Lillicrap, T., and Heess, N. dm_control: Software
and Tasks for Continuous Control. Software Impacts,
6:100022, November 2020. ISSN 26659638. doi:
10.1016/j.simpa.2020.100022. URL http://arxiv,
org/abs/2006.12983. arXiv:2006.12983 [cs].

Thrun, S. and Schwartz, A. Issues in using function ap-
proximation for reinforcement learning. In Proceedings
of 4th Connectionist Models Summer School. Erlbaum
Associates, June 1993.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Sys-
tems, pp. 5026-5033, 2012. URL jhttps://apil
semanticscholar.org/CorpusID:5230692.

Voelcker, C. A., Hussing, M., and Eaton, E. Can we hop in
general? A discussion of benchmark selection and design
using the Hopper environment. In Finding the Frame: An
RLC Workshop for Examining Conceptual Frameworks,
2024.


https://arxiv.org/abs/2410.12160
https://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=rkezvT9f6r
https://openreview.net/forum?id=rkezvT9f6r
https://proceedings.mlr.press/v235/nauman24a.html
https://proceedings.mlr.press/v235/nauman24a.html
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1506.02438
https://doi.org/10.1145/122344.122377
https://doi.org/10.1145/122344.122377
http://arxiv.org/abs/2006.12983
http://arxiv.org/abs/2006.12983
https://api.semanticscholar.org/CorpusID:5230692
https://api.semanticscholar.org/CorpusID:5230692

Stealing That Free Lunch: Exposing the Limits of Dyna-Style Reinforcement Learning

Wang, C., Chen, Y., and Murphy, K. Model-based policy
optimization under approximate Bayesian inference. In
Proceedings of the 27th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS), volume 238.
PMLR, 2024.

Wang, T., Bao, X., Clavera, 1., Hoang, J., Wen, Y., Langlois,
E., Zhang, S., Zhang, G., Abbeel, P., and Ba, J. Bench-
marking model-based reinforcement learning, 2019. URL
https://arxiv.org/abs/1907.02057.

Wang, X., Wongkamjan, W., Jia, R., and Huang, F. Live in
the moment: learning dynamics model adapted to evolv-
ing policy. In Proceedings of the International Confer-
ence on Machine Learning, pages 36470-36493. PMLR,
2023.

Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik,
W., Garg, A., and Macklin, M. Accelerated policy learn-
ing with parallel differentiable simulation. In Proceedings

of the International Conference on Learning Representa-
tions, 2022.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Master-
ing visual continuous control: improved data-augmented
reinforcement learning. In Proceedings of the Tenth Inter-
national Conference on Learning Representations, 2022.

Zheng, R., Wang, X., Xu, H., and Huang, F. Is model en-
semble necessary? Model-based RL via a single model
with Lipschitz regularized value function. In Proceedings

of the International Conference on Learning Representa-
tions, 2023.

13


https://arxiv.org/abs/1907.02057

Stealing That Free Lunch: Exposing the Limits of Dyna-Style Reinforcement Learning

A. Frequently Asked Questions

Are you saying that no Dyna-style model-based RL algorithm can succeed in DMC?

No. As mentioned at the end of Section @ DreamerV3 (Hafner et al} 2025) achieves state-of-the-art performance in DMC
environments. This evidence suggests that there are two subclasses of DMBRL algorithms: those that succeed in DMC
and those that do not. This paper highlights two algorithms in the latter subclass, with the aim of inspiring future work to
identify algorithmic improvements that enable all DMBRL algorithms to perform successfully not only in OpenAI Gym or
DMC, but across a broader range of tasks.

Isn’t the poor performance of the models evidence that model learning, not Dyna, is the real problem?

No. Even if we ignore the results of Section[d.2] the difficulty of learning an accurate model is central to the viability of
Dyna-style methods (Sutton, [1991). While the learning of the model itself may lie outside the scope of methods based on
the Dyna architecture, these algorithms fundamentally rely on the model to generate useful synthetic experience. If the
model struggles, so does the entire method. The success of Dyna-style approaches, especially MBPO and ALM, hinges on
their ability to make progress even with imperfect models, making model learning an inseparable and integral part of their
evaluation.

Notably, the model learning architectures proposed alongside MBPO and ALM have demonstrated strong performance
in OpenAI Gym environments (cf. Section [3.1), yet they struggle in DeepMind Control (DMC) (cf. Section [3.2] and
Section[3.3). Given the similarities between these environments (cf. Appendix [C), this discrepancy highlights the need to
further investigate where and why these models falter in DMC, how to improve their robustness, and how to improve the
underlying Dyna algorithms’ ability tolerate inevitable model errors.

Did you consider overfitting of the model as a potential source of error?

Yes. We did not find any significant overfitting of the model in either the OpenAl Gym environments or in DMC. Further,
we performed intermittent model resets in Section [5]as a means to mitigate this issue if overfitting was occurring throughout
training (Qiao et al.,[2023). As discussed in Section 3] resets do not resolve the performance gap.

Did you consider running <insert experiment here>?
This paper does not (and cannot) exhaustively consider all potential of sources of the performance gap we observed. If you
can think of additional experiments to try, we would love to hear from you.

B. Timing Claim for MBPO Compared to Our Implementation

Based on previous work (Ghugare et al., 2022), MBPO’s average time per environment step was approximately 0.6 seconds
across Gym environments. Even if we optimistically reduce this to 0.5 seconds per step (to account for our usage of slightly
more modern computational hardware) the time required to run 6 seeds across the 6 DMC environments shown in Figure [

for 500k environment steps is: % = 104 days.

In contrast, our code was directly timed during experimentation. The total runtime for six seeds across six environments and
500k steps came out to approximately 4 days on an NVIDIA RTX A5000 GPU.

C. Extended Discussion on Benchmark Modeling Differences

As discussed in Section OpenAl Gym and DM Control (DMC) use different reward structures, physical parameters, and
termination conditions. These differences certainly could contribute to Dyna-style algorithms failing in DMC but not Gym.
However, both are equally conventional and widely accepted testbeds for reinforcement learning. This is evidenced by the
fact that DMC has been successfully used for demonstrating RL with not only proprioceptive observations (D’Oro et al.|
2023; Nikishin et al.} [2022)), but for visual observations too (Laskin et al., 2020; [Hatner et al., 2020; |[Laskin et al., [2020;
Yarats et al., [2022).

It is important to emphasize that the goal of this work is not to pinpoint specific environmental factors that might cause
DMBRL to fail. Instead, we aim to demonstrate that while DMBRL performs well on one benchmark, it largely fails
on another that, at first glance, appears quite similar. This observation raises concerns about the robustness of DMBRL
algorithms. Rather than delving into the algorithmic causes of this issue as we have for the majority of this paper, this
section highlights and discusses key differences between the two benchmarks, providing a foundation for future work to
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investigate environment-specific failures of DMBRL algorithms.

Gym environments typically feature unnormalized rewards and explicit termination conditions, while DMC provides
normalized rewards and lacks termination conditions. Despite these differences, our discussion below shows that reward and
termination conditions alone do not fully explain performance disparities. Given the substantial similarity between many
tasks across the two frameworks, we can compare their MDP specifications side-by-side, focusing on termination conditions
first.

In a unique experiment in the hopper environment, previous work (Voelcker et al., |2024) removed only termination
conditions from Gym and ran MBPO, ALM, and SAC. While removing termination conditions caused MBPO to fail, ALM
was still able to train a successful policy. However, as we show in Section[2.2] as soon as MBPO or ALM are deployed in
DMC, which also has no termination conditions, ALM fails. This evidence shows that at least for environments that are
broadly similar to hopper termination alone does not explain DMBRL failing in DMC.

Conversely, MBPO performed relatively well on walker tasks in both Gym and DMC environments, as shown in Figures[3]
and[6] despite DMC lacking termination conditions. Interestingly, ALM exhibited a different pattern, failing on walker in
DMC but succeeding in Gym. Additionally, switching frameworks reversed the relative performance of SAC and MBPO for
walker. In the humanoid environment, both MBPO and ALM succeeded in Gym but failed entirely in DMC. These
results indicate that termination conditions alone do not account for DMBRL method failures across multiple environments
that are broadly similar, as performance varies across frameworks and tasks.

The physical differences in robot models between the two frameworks are also notable, particularly in the configuration of
joints, actuators, and contact dynamics. For instance, at a high level, OpenAl Gym’s humanoid is built to be more stable
and controlled, using higher stiffness and damping to keep its movements steady and balanced. On the other hand, DMC’s
humanoid is designed for smoother and more natural motion, with lower stiffness and damping in peripheral joints (i.e.
the arms, legs), but still adding extra stiffness where needed for stability (i.e. in the hips and torso). The Gym humanoid
also has armature (rotational inertia added by actuators) values that vary by joint, which helps it move quickly and adjust
better to different tasks. DMC’s humanoid keeps the same armature value everywhere, making it simpler but less flexible
for specific challenges.

Similar trends are observed in the hopper environment. Gym’s model emphasizes precision and stability with higher
damping and armature values, while DMC’s design favors fluidity with lower damping and moderate, uniform armature
values. However, this trend does not extend to the walker model, where both frameworks use identical damping and
armature values.

These differences may very well contribute to the performance gap identified in Section[3] However, the analysis of Section[4]
— wherein we find that MBPO’s learned world model tends to exhibit substantially higher error in DMC than in Gym, but
that even with access to a perfect model MBPO cannot reliably outperform SAC — indicates that this is only part of the
story.

There are numerous other differences across the various environments in Gym and DMC that we cannot enumerate here,
but one final distinction lies in the numerical integration schemes used by the two frameworks. Across the environments
we have discussed in this section, Gym employs a smaller timestep and the 4th-order Runge-Kutta method for numerical
integration, while DMC uses MuJoCo’s default semi-implicit Euler method (Tassa et al., 2020). These differences result
in Gym having a shorter effective horizon for tasks that take identical numbers of environment steps and higher accuracy
in simulating dynamics. Such variations could induce significant discrepancies even in environments that are otherwise
identical in their physical specifications.

In summary, while termination conditions, physical parameters, and numerical integration schemes differ between OpenAl
Gym and DM Control, no single factor fully explains the performance variations observed in DMBRL methods. Instead,
the interplay between these elements, and likely ones we have not discussed, contributes to the disparities observed when
deploying DMBRL between different benchmarks.

If you have other ideas about how the differences between the Gym and DMC benchmarks may be contributing to the
performance gap we identify in this work, we would love to hear about them. Please reach out to the corresponding author.
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D. Implementation Details
D.1. ALM

The code|to run ALM was used with only minimal modifications introduced to allow interfacing with DMC environments.
No hyperparameters were changed in either our Gym experiments or in our DMC experiments from what was provided in the
original ALM repository. When applying ALM without Dyna-style enhancements we simply replaced the 1lambda svg
loss with the td loss that is provided in the |experimental branch of the ALM repository and kept all hyperparameters
fixed. The specific implementation details below are reproduced with minor modification from (Ghugare et al., 2022):

We implement ALM using DDPG (Lillicrap et al.l 2019) as the base algorithm. Following prior SVG methods (Amos et al.|
2021), we parameterize the encoder, model, policy, reward, classifier and Q-function as 2-layer neural networks, all with
512 hidden units except the model which has 1024 hidden units. The model and the encoder output a multivariate Gaussian
distribution over the latent-space with diagonal covariance. Like prior work (Hansen et al.2022;|Yarats et al.| [2022)), we
apply layer normalization (Ba et al.l 2016a) to the value function and rewards. Similar to prior work (Schulman et al., 2015}
Hafner et al.| 2020), we reduce variance of the policy objective by computing an exponentially-weighted average of the
objective for rollouts of length 1 to an integer K chosen as a hyperparameter. To train the policy, reward, classifier and
Q-function we use the representation sampled from the target encoder. For exploration, we use added normal noise with a
linear schedule for the standard deviation (Yarats et al., 2022). All hyperparameters are listed in Table[3]

For additional details see (Ghugare et al., [2022).

D.2. MBPO
The code for our MBPO implementation is available at https://github.com/CLeARoboticsLab/STFL.

E. Nominal Hyperparameters for SAC, MBPO, and ALM

Table 1. Hyperparameters used for SAC and the SAC component of MBPO.

Hyperparameters Value
Discount (vy) 0.99
Warmup steps 10000
Minibatch size 256
Optimizer Adam
Learning rate (o) 0.0003
Optimizer 3; 0.9
Optimizer [ 0.999
Optimizer € 0.00015
Networks activation ReLU
Number of hidden layers 2
Hidden units per layer 256
Initial temperature () 1
Replay buffer size 106
Updates per step 20
Target network update period 1

Soft update rate (7) 0.995
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Table 2. Hyperparameters used for training and deployment of Dyna-style enhancements in MBPO.

Hyperparameters Value
Ensemble retrain interval 250
Minibatch size 256
Optimizer Adam
Ensemble learning rate 0.0003
Optimizer 31 0.9
Optimizer [z 0.999
Optimizer e 0.00015
Networks activation Swish
Synthetic ratio 0.95
Model rollouts per environment step 400
Number of ensemble layers 2
Hidden units per layer 200
Number of elite models 5
Number of models in ensemble 7
Model horizon 1

Table 3. Hyperparameters used for ALM with and without Dyna-style enhancements and reproduced from (Ghugare et al.| 2022).

Hyperparameters Value

Discount () 0.99

Warmup steps 5000

Soft update rate (1) 0.005

Weighted target parameter (\) ~ 0.95

Replay buffer 106 for humanoid
10° otherwise

Batch size 512

Learning rate le-4

Max grad norm 100.0

Latent dimension 50

Coefficient of classifier rewards 0.1

Exploration stddev. clip 0.3

Exploration stddev. schedule linear(1.0, 0.1, 100000)

F. Hyperparameter Sweeps

We conducted a large-scale hyperparameter sweep to evaluate MBPO’s sensitivity in hopper—-stand. This sweep
comprised 93 hyperparameter configurations, with each configuration evaluated across three seeds to capture variation
due to initialization and training dynamics, resulting in a total of 279 runs. The full range of values is listed in Table [4]
All runs used a synthetic-to-real data ratio of 0.95 and were trained online for 50k environment steps. No combination of
hyperparameters in this sweep yielded consistent performance.

To test whether the findings central to our claims generalized across environments and longer training durations, we conducted
an additional sweep using single-seed runs on both hopper-stand and humanoid-stand. For each environment, we
evaluated 81 hyperparameter configurations for 200k environment steps (see Table[5). These experiments targeted learning
dynamics across a higher number of environment interactions and helped ensure that the lack of improvement was not
simply due to undertraining or insufficient data. No combination of hyperparameters yielded consistent performance.

Since none of the 174 hyperparameter variations across 2 environments and 441 runs led to meaningful performance gains,
we omit per-parameter plots for brevity. Instead, Figure[9]and Figure [I0]show unlabeled return curves for each configuration.
Despite substantial hyperparameter sweeps, return performance remained poor, reinforcing our claim that model-based
policy optimization fails to benefit from tuning in this setting.
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Table 4. Hyperparameter sweep ranges for MBPO on hopper-stand.

Hyperparameter

Values

ensemble_hidden
ensemble_lr
ensemble_interval
model _train_steps
model_rollouts_per_step
num_,elites

{50, 100, 200, 400}
{1.5e-4, 3e-4, 6e-4}

{125, 250, 500}

{1250, 2500, 5000, 10000}
{100, 200, 400, 800, 1600}
{1, 3,5}

Table 5. Hyperparameter sweep ranges used in single-seed runs on both hopper—stand and humanoid-stand.

Hyperparameter

Values

ensemble_hidden
ensemble_lr
ensemble_interval

{200, 400, 800}
{1.5e-4, 3e-4, 6e-4}
{125, 250, 500}

model_rollouts_per_step {200,400, 800}
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Figure 9. Hyperparameter sweep for MBPO trained on the hopper-stand environment across 93 hyperparameter configurations (3
trials each, + std). As none of these configurations yielded meaningful or consistent performance, we omit per-parameter plots for brevity.
Despite one seed of one configuration temporarily reaching a return of 93, the policy immediately collapses to near-random performance
after further training. For sake of comparison, after 50k environment steps a SAC policy in this same task has an average return of 300.
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Figure 10. Hyperparameter sweep for MBPO trained on the hopper-stand and humanoid-stand environment across 81 hyperpa-

rameter configurations each (1 trials each).
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G. Full Experimental Results
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Figure 11. Full performance of MBPO and SAC for 15 challenging DMC benchmark tasks as referenced in Section 3.2}
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Figure 17. Comparing performance of MBPO, SAC, ALM, and ALM without Dyna for 15 challenging DMC benchmark tasks.
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Figure 18. Mean Q-values across six seeds each for 6 challenging DMC benchmark tasks. Comparisons are of MBPO and SAC to MBPO
with a perfect predictive model as discussed in Section[#.3] Shaded regions correspond to minimum and maximum Q values across trials
and solid lines are the mean.
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Figure 19. Mean Q-values for 6 challenging DMC benchmark tasks across six seeds each. Comparisons are of MBPO and SAC to MBPO
with layer norm applied as discussed in Section[f.3] Shaded regions correspond to minimum and maximum Q values across trials and
solid lines are the mean.
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