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Abstract

We present AstroCLiP, a strategy to facilitate the construction of astronomical
foundation models that bridge the gap between diverse observational modalities.
In particular, we demonstrate that a cross-modal contrastive learning approach
between images and spectra of galaxies yields highly informative embeddings of
both modalities. We apply our method to multi-band images and spectrograms
from the Dark Energy Spectroscopic Instrument (DESI), and show that: (1) these
embeddings are well-aligned between modalities and can be used for accurate
cross-modal searches, and (2) these embeddings encode valuable physical informa-
tion about the galaxies - in particular redshift and stellar mass - that can be used to
achieve competitive zero- and few- shot predictions without further finetuning. Ad-
ditionally, we develop the first transformer-based model and pretraining approach
for galaxy spectra. 2

∗Contact: flanusse@flatironinstitute.org
2Code: https://github.com/PolymathicAI/AstroCLIP
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Figure 1: Illustration of the AstroCLIP cross-modal training strategy. We embed the images and
optical spectra of galaxies into a shared embedding space, and use cross-modal contrastive learning
to align these embeddings around shared semantics. Once trained, these embeddings allow us to
connect and compare cross-modal representations. Moreoever, they possess physically meaningful
high-level information which can then be used for a variety of downstream tasks.

1 Introduction

Astronomical datasets continue to enjoy a rapid expansion in size and complexity. However, the
objects in these datasets often lack high-quality labels or representations, which makes the detailed
analysis of such large volumes of data increasingly challenging for researchers. While crowd-sourced
campaigns [e.g. Willett et al., 2013] have been used on the scales of tens of thousands of galaxies,
they fall short by several orders of magnitude of the scale of modern surveys, which encompass tens
of millions of objects for the ongoing Dark Energy Spectroscopic Instrument (DESI) [Dey et al.,
2019] and several billions of objects for the upcoming Vera C. Rubin Legacy of Surveys of Space
and Time (LSST) [Ivezić et. al., 2019].

As such, a wide array of computational approaches have been developed to help process the data
from these surveys [Ivezić et al., 2020]. In recent years, a growing subset of these approaches have
involved using advances in machine learning (ML) across a variety of classification or regression
tasks (see Huertas-Company and Lanusse [2023] for a recent review). However, most of the proposed
ML-backed models have relied on a supervised training regime and thus remain intrinsically limited
by the quality and quantity of labelled training samples available.

To overcome this reliance on labeled data, researchers have developed a variety of approaches that do
not rely on data labels for training. For example, unsupervised strategies with auto-encoders [e.g.
Portillo et al., 2020] have been used to embed galaxy spectra into low-dimensional representations,
and self-supervised contrastive learning - inspired by recent advances in computer vision [He et al.,
2020, Chen et al., 2020a] - has been employed to extract semantically meaningful representations
from galaxy images [Huertas-Company et al., 2023]. These embedded representations can then be
used both in their own right - for similarity searches, outlier removal, etc. - and as “foundations” for
downstream tasks [Hayat et al., 2020, Stein et al., 2021b].

To date, these approaches have been limited to embedding objects from a single modality, which
typically relies on creating artificial augmented views of the same data. However, in an astrophysical
context, there exist a number of complementary observations of the same physical objects (galaxies);
for example, images obtained in different filters (i.e. at different optical wavelengths), or even different
kinds of observations entirely such as optical spectra3. These different observational modalities can
be thought of as different views of the same objects and as such, a universal embedding of these

3Optical spectra correspond to the flux of a galaxy as a function of the wavelength of its light.
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objects should be able to simultaneously embed cross-modal representations of the same object into a
shared embedding space.

Contributions. To that end, we introduce AstroCLIP, a cross-modal contrastive learning approach
applied to astronomical datasets, inspired by the Contrastive Language-Image Pretraining model
[Radford et al., 2021]. In particular, our approach takes information about galaxies from two separate
modalities - images and optical spectra - and embeds and aligns both into a shared embedding space,
which can be used for both cross-modal searches and as a foundation for downstream tasks, as
illustrated in Fig. 1. Our specific contributions are:

• We develop AstroCLIP, an approach that embeds both the optical spectra and the images of
galaxies into a shared embedding space, and aligns spectra and images of the same galaxy
through self-supervised contrastive learning.

• We develop the first transformer-based model for galaxy spectra, along with an effective
pre-training strategy for this model.

• We demonstrate that our cross-modal embeddings are well-aligned and can be used for
accurate cross-modal searches.

• We demonstrate that our embeddings encode valuable high-level information that can be
used for downstream tasks, as even simple techniques like k-nearest neighbor prediction can
predict physical properties of galaxies like mass and redshift4 from the learned embeddings.

2 Related work

Contrastive Learning In recent years, contrastive learning has emerged as an effective paradigm
for learning meaningful representations of data in a self-supervised context. By bringing similar
data closer and pushing dissimilar data apart in the embedding space, the model learns robust
representations of the underlying data. The success has been exemplified both in single-modal tasks,
like in computer vision [He et al., 2020, Chen et al., 2020b], as well as in cross-modal domains,
where it has been used to connect language and image representations [Radford et al., 2021].

Foundation Models for Astronomical Images One of the earliest works in this direction is the
application of large-scale, self-supervised contrastive learning to galaxy images using a MoCo
framework [Hayat et al., 2020, Stein et al., 2021b]. This framwork learns embeddings which can
be used to predict galaxy properties (such as redshift in Hayat et al. [2021]) as well as to perform
similarity searches, including the identification of rare, scientifically interesting events like strong
gravitational lenses [Stein et al., 2021a]. Another prominent example in this field is the application of
a similar BYOL self-supervised training strategy [Grill et al., 2020] for pretraining networks than
can further be easily fine-tuned, even in the low data regime, for the task of classifying galaxies
according to their morphologies [Walmsley et al., 2022, Slijepcevic et al., 2023]. For a more detailed
overview, we direct the reader to the recent review of contrastive learning in astrophysics from
Huertas-Company et al. [2023].

Representation Learning for Galaxy Spectra Traditionally, techniques like Principal Component
Analysis (PCA) have proven widely successful for extracting information from galaxy spectra.
However, a new line of inquiry using unsupervised machine learning techniques has recently emerged.
For example, Portillo et al. [2020] use a variational auto-encoder (VAE) to reduce the dimensionality
of galaxy spectra to a small latent space, and demonstrate that the learned embeddings of the spectra
can be used for downstream tasks like outlier detection, interpolation, and galaxy class classification.
Teimoorinia et al. [2022] improve upon the existing VAE by introducing convolutional elements
into the AutoEncoder to extract correlated features from the spectra. Melchior et al. [2023] add an
attentive convolutional encoder and include elements of physical modeling of observational factors
into the AutoEncoder; their embeddings are then similarly useful for downstream tasks like anomaly
detection [Liang et al., 2023b,a]. Presently, only a couple of attempts have been made so far at
connecting images and spectra, but only from the point of view of attempting to generate spectra
conditioned on images [Wu and Peek, 2020, Doorenbos et al., 2022].

4The particular redshift corresponds to the distance of the galaxy from the observer. Galaxies that are further
away will see their spectrum shifted further red.
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3 Methodology

3.1 Training Objective

At the core of our work is the idea that different observational modalities can be thought of as
filtered views of the same underlying physical objects and therefore intrinsically possess a shared
physical latent space. Thus, we aim to construct embeddings of both modalities that maximize the
mutual information about the underlying object, and then to use that mutual information to align
representations from different modalities around shared semantics.

Formally, let x ∈ RN and y ∈ RM be two examples from two different modalities. We aim to
construct a pair of models fθ : RN → Rd and gθ : RM → Rd that compress these two examples
to a shared d-dimensional space such that the mutual information between these representations,
I(fθ(x), gθ(y)), is maximized. To that end, we employ contrastive training under an InfoNCE loss
[van den Oord et al., 2018, Gutmann and Hyvärinen, 2010], where we consider that both modalities
represent noisy views of the same underlying physical object. This loss is given by

L(x,y, τ) = −
∑
i

log
exp(fθ(xi)

tgθ(yi)/τ)

exp(fθ(xi)tgθ(yi)/τ) +
∑

i ̸=j exp(fθ(xi)tgθ(yj)/τ)
, (1)

where τ represents a smoothing parameter (sometimes referred to as temperature) and j represent
the indices of negative examples, not associated with the object i. We consider the spectrum and the
image of the same object a pair, as exemplified by objects highlighted by the same color on Fig. 1,
and all other combinations of spectra and images from different galaxies to be negative samples.

Ultimately, training under this objective should extract embeddings from both modalities that contain
the shared physical information between the galaxy images and spectra. Additionally, as shown by a
variety of examples in computer vision, the learned embeddings typically exhibit highly structured
information about the underlying object, going beyond the strict intersection of information between
modalities. This is an emerging property we hope to witness in our model as well.

3.2 Implementation

As our representation pairs are different modalities, we deploy a pair of models to perform the
embeddings. We start with a pretrained image embedder and a pretrained spectrum embedder which
embed the galaxy image/spectrum into a shared embedding space Z ∈ R128. We then fine-tune both
models using the contrastive InfoNCE loss to align the embedded spectra and image of the same
galaxy around shared semantics. The details of both pretrained models and the alignment strategy are
given below.

Pretrained spectrum embedder: As our architecture for the spectrum embedder, we adopt a
transformer model structured similar to GPT-2 [Radford et al., 2019]5. To format the spectra
appropriately for the transformer, we first reshape their T dimensional native representation (where
T ≈ 7,000) to a sequence of shape (T mod 10) × 20, where each element of this new sequence is
a contiguous 20-element segment of the original sequence, and adjacent elements have an overlap
of size 10. Since the dataset includes samples of highly different overall amplitudes, in order to
make it easier for the network to process all samples, we Z-score each individual sample. We
include the mean (µ) and standard deviation (σ) information by appending it to the sequence as
follows: Using a sequence of length x = (1 + T mod 10) × 22, we embed µ and σ in the first
element (x0,0 = µ, x0,1 = σ) and let x1:,2: be equal to the Z-scored (T mod 10) × 20 sequence
described above. After this reformatting step, we use a transformer with embedding dimension 768,
6 transformer block layers with 6 heads, totalling 43.2M parameters.

We pretrain this transformer only on spectra first, using a self-supervised learning paradigm. We
randomly replace 6 contiguous segments of length 30 (equivalent to length 600 in the original spectra

5In particular, we use absolute positional embeddings and a pre-attention layer norm. However, we deviate
from GPT-2 in that we initialize all the weights of the transformer blocks with a normal distribution with standard
deviation given by (2× fan-in × num-layers)−1/2. The dependence of the standard deviation on the number of
transformer blocks is to counteract the effect of having a series of residual connections.
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representation) with zeros and train the model to minimize the Mean Square Error loss between
the predictions and the ground truth on the replaced segments of the sequence. For details on the
performance of this mask-filling model see Supplementary Materials Appendix C.

Once this mask-filling model has been trained, we freeze its weights and use a single cross-attention
block (cross-attention layer with 4 heads and embedding dim 128 followed by an MLP) to extract a
short embedding vector. We use the output of the final transformer block of the mask-filling model
as the key and value and use a learnable sequence of size 1× 128 as the query vector. The output
of this procedure is a single vector of length 128. The weights of this cross-attention block and the
128 parameters of the query vector amount to 362k total parameters which are then trained via the
contrastive training training procedure described below.

Pretrained image embedder: We use the pretrained galaxy image encoder from Stein et al. [2021a].
This model is based on MoCo V2 [Chen et al., 2020b], and uses a ResNet50 backbone as the encoder.
The model is pretrained in a self-supervised regime, using augmented pairs of galaxies that have
undergone a variety of augmentations, including galactic extinction, rotation, size scaling, point-
spread function blur, jittering and cropping, and Gaussian noise. Pretraining is performed on a curated
subset of 3.5 million galaxies sampled uniformly by z-band magnitude from the the DESI Legacy
Survey. For more details on the model, we refer the reader to Stein et al. [2021a]. This model has
28M parameters in total, during our contrastive training phase, we keep the convolutional part of the
model frozen and only finetune the dense final layers which amount to 4.5M parameters.

Contrastive Training: The pretrained models are frozen and fed into our unified AstroCLIP model.
We unfreeze the fully connected layers of the pretrained image encoder and attach an additional
trainable single-layer, four-head transformer to the pretrained spectrum encoder. Both models are then
trained such that the embedded representations z for each galaxy image/spectrum are aligned. This
training is performed using the InfoNCE objective of Equation 1, where embedded representations
are considered pairs if they pertain to the same galaxy, and are considered negative examples if they
pertain to different galaxies. We set the queue length to K = 512 image-spectrum pairs, and perform
basic data augmentation with random vertical and horizontal flips, random rotationson the images.
We train our models for 15,000 iterations, which takes roughly 5 hours on a single h100 gpu. Finally,
similarly to findings of similar works [Girdhar et al., 2023] we find better performance by fixing the
value of the temperature parameter τ as opposed to letting it free.

3.3 Data

For this work, we use the DESI Legacy Survey 6 Data Relase 9 imaging data [Dey et al., 2019] as
prepared by Stein et al. [2021b]. This corresponds to an initial set of 41 million (g, r, z) 152× 152
images, which we center crop to 96× 96. In complement, we cross-match galaxy spectra from the
DESI Early Data Release [Collaboration et al., 2023], which yields a total subset of 197,976 pairs of
images and spectra. Finally, for the experiments involving the extraction of physical information from
these embeddings, we further cross-match this sample with physical properties for these galaxies
reported in the PRObabilistic Value-Added Bright Galaxy Survey (PROVABGS) Catalog from Hahn
et al. [2023].

4 Results

4.1 Example retrieval by cosine similarity

To visualize our embedding scheme’s ability to align representations of galaxies, we query galaxies
and find the nearest neighbors in our embedding space using a cosine similarity search. For example,
the cross-modal similarity SC(z

sp
i , zimj ) between a query spectrum zspi = gθ(x

sp
i ) and an image

zimj = fθ(x
im
j ) is given computed as:

SC(z
sp
i , zimj ) = (zspi · zimj )/ ∥ zspi ∥∥ zimj ∥ (2)

6https://www.legacysurvey.org/
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Figure 2: Example retrieval from both in-modality and cross-modality examples. For the experiments
involving spectra, we only show here the paired image associated to the spectrum.
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Figure 3: Retrieved spectra for a randomly chosen query image for two different query galaxies. The
spectra are found using a cosine similarity search between the AstroCLIP embedding of the query
image and those of the spectra in our dataset.

This is performed for both in-modality similarity search, where we determine the neighbors
according to the similarity between embeddings derived from the same modality (i.e. image-image
or spectrum-spectrum), and cross-modality similarity search, where we consider the similarity
between embeddings derived from different modalities (i.e. image-spectrum or spectrum-image).
These are presented for all four possible embedding pairs in Fig. 2 for a set of four randomly selected
query examples. Ultimately, these examples demonstrate that the model is able to represent the same
types of objects similarly, regardless of the original modality in which that object is represented. We
note that, by construction, the closest match for an in-modal similarity search is indeed the object
itself.

Additionally, we further illustrate the result of in-modal retrieval and cross-modal retrieval in Fig. 6
and Fig. 3 respectively, where we present the retrieved spectra for a randomly chosen query spec-
trum/image for two different query galaxies. These results demonstrate a strong correlation between
the semantic content of the image, such as the red quiescent galaxy or a blue star forming galaxy, and
the shape of the recovered spectra.

4.2 Zero-shot regression of physical properties

To reach more quantitative statements about the performance of AstroCLIP pretraining, we consider
our ability to perform zero-shot prediction on a variety of downstream tasks from the embedded
galaxy samples. In particular, we use simple k-Nearest Neighbour (k-NN) regression of our embedded
images and spectra to infer the particular redshift and the stellar mass of our galaxies. Specifically,
k-NN regression is performed on the autocorrelated AstroCLIP image and spectrum embeddings, as
well as on the correlated image-spectrum embeddings.
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(a) Image Embeddings (b) Cross-modal Similarity (c) Spectral Embeddings

Figure 4: Redshift regression by k-NN for both in-modality and cross-modality similarity. In (b) the
query domain is images.

(a) Image Embeddings (b) Cross-modal Similarity (c) Spectral Embeddings

Figure 5: Stellar mass regression by k-NN for both in-modality and cross-modality similarity. In (b)
the query domain is images.

We present in Fig. 4 and Fig. 5 a comparison of the performance of k-NN regression from the
AstroCLIP embeddings for either in-modality or cross-modality similarity. We note a variety of
important observations. For one, neighbors in our embedded space indeed share similar physical
properties as demonstrated by the ability of our k-NN regressor to make accurate predictions. This
indicates that our model is able to organize our galaxy samples according to high-level, physically
meaningful features. Additionally, in-modality similarity appears to outperform cross-modality
similarity as an input for the k-NN regression, indicating that, although our our contrastive training
aims to connect embeddings between modalities, it has the emergent property of helping to structure
the embeddings space within respective modalities. This is particularly evident for the redshift
prediction by similarity between spectra which is near perfect, even though redshift is not an
information perfectly contained in images. This means that redshift has naturally emerged as a
fundamental property which helps the spectral encoder to structure its embedding space.

We present the numerical results of our k-NN regression on both the AstroCLIP image embeddings
and spectrum embeddings in Tab. 1. We compare our results to the predictions of an MLP from
3-band photometry alone, i.e. a model which is only sensitive to the overall flux of the galaxy in
each color band and ignores any aspects of morphology. Additionally, we compare our results to
the out-of-the-box image embeddings of the ResNet-50 pretrained model from [Stein et al., 2021a],
which was pretrained in a single-modal contrastive setting on augmentations of the images alone.

Ultimately, we demonstrate that our image embeddings are roughly as informative as simple photome-
try for the tasks at hand. Conversely, these embeddings far outperform the self-supervised pretraining
approach from Stein et al. [2021b] without the need for any further finetuning. Interestingly, we note
that our zero-shot approach (using the k-NN) outperforms our few-shot approach with the MLP; this
occurs due to the fact that the k-NN results are tighter but slightly biased, a phenomena which is
not fully reflected and penalized in the R2 metric. Finally, we note that our spectrum embeddings
outperform all other embeddings, and reach close to perfect accuracy on the redshift regression.
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Regression method Redshift R2 Stellar Mass R2

(r, g, z) Photometry + MLP 0.69 0.56
Stein et al. [2021b] Image Embedding + MLP 0.39 0.45

Image Embedding + k-NN (ours) 0.71 0.66
Spectrum Embedding + k-NN (ours) 0.97 0.86

Image Embedding + MLP (ours) 0.63 0.57
Spectrum Embedding + MLP (ours) 0.99 0.86

Table 1: Performance of different regression methods, including our zero-shot learning k-NN predic-
tion, on predicting two different physical properties of galaxies, their redshift (which corresponds to
the distance from the observer) and their stellar mass. (Higher metrics are better)

5 Discussion

Our results demonstrate the potential for cross-modal contrastive pre-training to achieve high quality
foundation models for astronomical data, which can be used for further downstream tasks even
without fine-tuning. We contend that this is a key property to allow the community to build higher-
level compositional models that can rely on off-the-shelf frozen embedding models, just as frozen
CLIP embeddings have enabled a wide variety of downstream applications.

Reinforcing our optimism for this approach, our results also show that even if diverse modalities are
not perfectly informative about each other, the contrastive learning task still allows the embedding of
each modality to discover relevant physical patterns in the data. This is exemplified by the fact that
our spectral embeddings exhibit an emergent ability to retain information about redshift that extends
beyond the information captured in the images. This opens an interesting avenue for further research
to build informative embeddings from a wider array of data modalities, even in the absense of strong
connection between each of the individual modalities.

Finally, our work is one of the first to describe a transformer-based model for the modeling of galaxy
spectra. We believe that the success of our experiment will pave the way for a broader adoption of
transformer-based architectures for similar tasks, which have so far been overwhelmingly perfomed
using 1D convolutional models. This transition may also facilitate the scaling of these models to the
volume of data promised by DESI and LSST.
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A Additional results

Fig. 6 shows examples of retrieval using similarity of the spectrum encoding.

B Attention maps of spectra encoder

We look at the attention maps of the cross-attention layer of the spectrum encoder, described in
Sec. 3.2. These plots can help interpret what information the model is looking at when building its
represenation of the spectrum.

Fig. 7 shows a number of examples of these attention maps. We see that the different attention heads
have specialized to look for different features. Head 1 seems to be looking at the two extremes of the
spectrum which would make it sensitive to different spectral tilts. Head 3 seems to be sensitive to
peaks around the 9kÅ range. However, it is important to note that this cross-attention layer comes
after the 6 layers of self-attention of the pre-trained model. At this stage of the network, information
about different sections of the spectrum have likely diffused throughout the entire sequence and
therefore the attention maps potentially access information from parts of the spectrum where the
attention is zero.
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Figure 6: Retrieved spectra for a randomly chosen query spectrum for two different query galaxies.
The spectra are found using a cosine similarity search between the AstroCLIP embedding of the
query spectrum and those of the spectra in our dataset.

C Performance of the Mask-Filling spectrum encoder

The performance of the mask-filling model pretrained on the spectra can be seen in Fig. 8 to Fig. 12.
In these figures, the shaded region denotes the area where the spectrum was zerod out when passed to
the model. The various inserts show close-ups of the smoothed ground-truth (by taking averages of
20 bins) as well as the prediction of the model. We see that the model has learned to reproduce the
prominent features of the spectru. For example, in both Fig. 8 and Fig. 12 a number of the masked
regions have fallen on absorption and emmission lines. We see that the model can reproduce these
features with high precision.
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Figure 7: Examples of attention maps of the cross-attention layer of the spectrum encoder.
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Figure 8: Example of the performance of the mask filling model.

Figure 9: Example of the performance of the mask filling model.
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Figure 10: Example of the performance of the mask filling model.

Figure 11: Example of the performance of the mask filling model.
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Figure 12: Example of the performance of the mask filling model.
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