
Travel Planning with Large Language Models: A Review and
Outlook

Anonymous ACL submission

Abstract

Planning is a critical step in advancing001
artificial intelligence (AI) systems toward002
higher levels of intelligence and is one003
of the core capabilities of autonomous004
decision-making systems, involving com-005
plex processes of understanding, reasoning,006
and decision-making. Current research on007
planning with AI mostly focuses on simu-008
lated environments. Although significant009
progress has been made, its application010
in the real world remains limited due to011
the unpredictable and complex nature of012
real-world scenarios. Travel planning, as a013
practical task, is a prime example of these014
challenges, involving the coordination of fac-015
tors such as destination selection, budget016
constraints, and personalized preferences,017
while also requiring adaptation to changes018
in external conditions. This review, based019
on the key roles of LLMs in travel plan-020
ning tasks, presents a taxonomy of existing021
methodologies, categorizing them into three022
types: planner, reformulator, and knowl-023
edge source. Furthermore, it outlines di-024
rections for future research. We hope this025
review will provide valuable background in-026
formation and guidance for researchers in027
the field, driving the development of this028
emerging topic.029

Keywords: Large Language Models, Travel030
Planning, Tourist Trip Design Problem,031
Natural Language Processing, Agent032

1 Introduction033

Planning is a critical step in advancing AI sys-034

tems toward higher levels of intelligence and a035

core capability of autonomous decision-making036

systems (Huang et al., 2024a), encompassing037

complex processes of understanding, reasoning,038

and decision-making (Long, 2005). In recent039

years, the development of LLMs has driven040

a paradigm shift in the AI field (Zhao et al.,041

2024). These models demonstrate exceptional 042

intelligence in reasoning, tool use, and planning, 043

offering new possibilities for enhancing the plan- 044

ning capabilities of autonomous agents (Dagan 045

et al., 2023). With continuous breakthroughs 046

in LLMs capabilities, researchers have proposed 047

various methods to integrate these models into 048

planning modules, such as task decomposition, 049

plan selection, external modules, reflection, and 050

memory, boosting AI planning to higher lev- 051

els (Huang et al., 2024b). 052

However, most current AI planning research 053

remains focused on simulated environments, 054

such as ALFWorld (Shridhar et al., 2020), Sci- 055

enceWorld (Wang et al., 2022). While these 056

studies have achieved significant progress, they 057

face considerable challenges in real-world appli- 058

cations. The complexity and unpredictability 059

of real-world scenarios far exceed the scope of 060

simulated environments, limiting the broader 061

application of these studies. Consequently, 062

applying planning technologies to real-world 063

tasks, particularly complex scenarios like travel 064

planning, holds significant research value. 065

Meanwhile, tourism, as a vital component of 066

the global economy, contributed 9.1% to global 067

GDP in 2023, driving economic development 068

through job creation and business opportuni- 069

ties (Herzog et al., 2019; Analytica, 2024). To 070

enhance the travel experience, tourists usu- 071

ally need to plan under multiple constraints, 072

including budget, time, transportation, accom- 073

modation, restaurant, and the attractiveness 074

of the destinations (Zheng and Liao, 2019; Ro- 075

dríguez et al., 2012). However, the overwhelm- 076

ing amount of travel information has led to 077

information overload, making manual travel 078

planning extremely challenging. Users often 079

struggle to identify the best solutions that meet 080

their needs, which requires AI technologies to 081

optimize this process. 082
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Traditional travel planning methods are083

based on fixed templates and perform poorly084

when handling unstructured natural language085

queries (Bhowmick et al., 2012; Zhu et al.,086

2012). Extracting key information and convert-087

ing it into structured data is a cumbersome pro-088

cess, and these methods often provide generic089

solutions that fail to account for users’ personal-090

ized preferences (de la Rosa et al., 2024). More-091

over, traditional planning systems rely on static092

databases, which limits their ability to update093

information in real time and respond to user094

needs (Hsueh and Huang, 2019). They also095

lack the capacity to handle dynamic changes096

and complex constraints (Bubeck et al., 2023;097

Silver et al., 2017).098

The emergence of LLMs offers innovative099

solutions to these challenges. First, LLMs100

can understand and process queries in natu-101

ral language, allowing users to describe their102

needs and constraints directly in natural lan-103

guage (Sumers et al., 2023), greatly simplifying104

the interaction between user and system. By105

combining LLMs with traditional constraint-106

solving techniques, these systems retain the107

flexibility of natural language processing (NLP)108

while ensuring the rigor of constraint solvers,109

thereby delivering end-to-end travel planning110

solutions (Hao et al., 2024; de la Rosa et al.,111

2024). Furthermore, LLMs can dynamically112

retrieve the latest external information, user113

feedback, and evolving requirements, adjust-114

ing plans in real time to meet personalized115

needs (Ma et al., 2024). With their extensive116

knowledge base and robust planning capabili-117

ties, LLMs can also address complex constraint118

problems, providing users with more precise119

and flexible travel planning services (Xie et al.,120

2024; Miin and Wei, 2024).121

Although some research has applied LLMs122

to travel planning (Xie et al., 2024; Hao et al.,123

2024; de la Rosa et al., 2024; Zheng et al., 2024;124

Ma et al., 2024; Miin and Wei, 2024), there has125

yet to be a systematic review of travel planning126

solutions in the era of LLMs. Therefore, this127

paper summarizes the main application sce-128

narios, available datasets, evaluation methods129

for LLM-powered travel planning, and point130

out future directions. In Section 2, we analyze131

different scenarios of travel planning. Then,132

Section 3 reviews available datasets and evalu-133

ation methods. Section 4 provides a detailed134

overview of the application of LLMs in travel 135

planning. We highlight the opportunities in 136

the era of LLMs in Section 5 and conclude this 137

review in Section 6. The review of traditional 138

travel planning is provided in the Appendix A. 139

In summary, the main contributions of this 140

review are as follow: 141

1. We first provide a taxonomy of existing 142

works on LLMs-powered travel planning, 143

which can be categorized into planner, re- 144

formulator, and knowledge source, filling 145

a research gap in this field. 146

2. We propose future research directions for 147

travel planning in the era of LLMs, aiming 148

to expand research horizons and encourage 149

further exploration. 150

2 Travel Planning Scenarios 151

In travel planning, different scenarios often cor- 152

respond to varying travel needs and levels of 153

complexity. To better highlight these distinc- 154

tions, this section categorizes travel scenarios 155

along two key dimensions: travel type (individ- 156

ual vs. group trip) and travel duration (day 157

tour vs. multi-day tour). This classification 158

helps clarify the basic requirements of each 159

scenario type. 160

2.1 Travel Type 161

2.1.1 Individual Trip 162

Individual trips are a key focus in travel plan- 163

ning research, primarily centered on creating 164

personalized itineraries tailored to a user’s 165

preferences. Most traditional research on the 166

Tourist Trip Design Problem (TTDP) has con- 167

centrated on individual trip (Ruiz-Meza and 168

Montoya-Torres, 2022; Wörndl et al., 2017; 169

Souffiau et al., 2009; Vansteenwegen et al., 170

2009), as the planning process only considers 171

the needs of a single user, making it less com- 172

plex than group travel. Current research on 173

travel planning with LLMs is mostly conducted 174

in this scenario. 175

2.1.2 Group Trip 176

In real-world scenarios, tourists may also travel 177

in groups, making it necessary for travel plan- 178

ning to account for the diverse preferences of 179

group members and to find solutions that meet 180

the ends of the entire group. Compared to 181
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individual trip, planning for group trip is more182

complex, as the system must balance the var-183

ied needs of members while ensuring fairness.184

However, research on this problem remains lim-185

ited (Lim et al., 2016; Anagnostopoulos et al.,186

2017).187

2.2 Travel Duration188

2.2.1 Day Tour189

A day tour refers to an itinerary that can be-190

gin at any time during the day and be com-191

pleted within the same day, e.g., city tour.192

These tours require careful consideration of193

time constraints, information gathering, point-194

of-interests (POI) selection, route planning,195

and the personalization of arrangements accord-196

ing to user preferences (Halder et al., 2024).197

The key factors in day tour planning can198

be summarized into two main aspects (Tang199

et al., 2024): dynamic information adjustment200

and personalized planning. Due to the flexi-201

ble start and end times of day tours, dynamic202

information adjustment is particularly impor-203

tant. The planning process must account for204

real-time changes in attractions and adapt to205

unexpected events, such as changes in opening206

hours or extreme weather conditions. Addition-207

ally, personalized planning requires tailoring208

the itinerary to the specific preferences and209

time constraints of a user to ensure an opti-210

mized experience for them.211

2.2.2 Multi-day Tour212

Planning a multi-day tour is inherently a com-213

plex task as it involves a series of interdepen-214

dent decisions across various aspects, including215

destinations, accommodations, transportation,216

and restaurant arrangements (Xie et al., 2024;217

Zheng et al., 2024). Compared to single-day218

trips, multi-day itinerary planning is more chal-219

lenging, as it requires the careful allocation220

of daily activities to ensure both coherence221

and variety, while also considering the trav-222

elers’ stamina and need for rest. Arranging223

a multi-day itinerary often entails sequential224

optimization of locations, taking into account225

the distances between destinations, transporta-226

tion conditions, and daily schedules to avoid227

overexertion or overly tight timelines, therefor228

providing travelers with a rich and comfortable229

experience.230

Due to the complexity of multi-day travel231

planning, LLMs struggle to deliver an optimal 232

solution that meets the intricate requirements, 233

and thus their accuracy on this task remains 234

relatively low (Xie et al., 2024; Zheng et al., 235

2024). 236

3 Datasets and Evaluation 237

3.1 Datasets 238

In the context of travel planning, high-quality 239

datasets specifically designed for LLMs remain 240

scarce. Traditional travel planning datasets 241

often rely on structured data, supporting only 242

limited rules and constraints, which falls short 243

of meeting the complex requirements of prac- 244

tical scenarios. To comprehensively evaluate 245

the actual performance of LLMs in travel plan- 246

ning tasks, it is essential to develop special- 247

ized datasets that can encompass multi-level 248

constraints and support natural language in- 249

teraction. This section introduces an publicly 250

available dataset that is specially designed for 251

travel planning tasks with LLMs: TravelPlan- 252

ner (Xie et al., 2024) 253

TravelPlanner (Xie et al., 2024) was con- 254

structed by integrating approximately 4 mil- 255

lion data points from various open data sources, 256

creating a sandbox environment that supports 257

diverse travel planning tasks. Data sources in- 258

clude the Kaggle Flight dataset, Zomato restau- 259

rant dataset, Airbnb accommodations dataset, 260

Google Distance Matrix API (for calculating 261

inter-city distances), and Google Places API 262

(for obtaining POI information). All data have 263

been cleaned and adapted to simulate complex 264

travel scenarios. 265

It features 1,225 user-generated natural lan- 266

guage queries, each incorporating different com- 267

binations of constraints and reference plans 268

that cover key elements of a trip such as depar- 269

ture location, destination, and timeframe. For 270

example, “I’d like to travel from Hong Kong to 271

Tokyo from December 8 to 15, 2024. I prefer a 272

more relaxed pace. My budget is $2,000, and I 273

would like a single room.” To increase planning 274

complexity, queries are categorized by travel 275

duration (3-day, 5-day, and 7-day trips).Task 276

difficulty is further divided into simple (bud- 277

get constraints only), medium (budget plus 278

restaurant or lodging requirements), and diffi- 279

cult (multiple constraints such as budget and 280

transportation preferences), thereby testing a 281
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model’s adaptability and planning abilities un-282

der varying constraint combinations.283

To ensure data quality and consistency, all284

queries and corresponding reference plans were285

meticulously designed by professional annota-286

tors, with each plan taking an average of 12287

minutes to design. Only plans meeting all pre-288

defined constraints were accepted. The data289

construction process involved multi-stage qual-290

ity control to guarantee the accuracy and va-291

lidity of generated plans, providing a reliable292

benchmark for evaluating LLMs on travel plan-293

ning tasks.294

3.2 Evaluation295

To evaluate LLMs for travel planning, we sum-296

marize evaluation metrics across two primary297

dimensions: offline and online assessments.298

These evaluations comprehensively assessment299

both the model’s efficacy in generating travel300

plans and user experience.301

3.2.1 Offline Evaluation302

Offline evaluation focuses on assessing the303

structural and contextual accuracy of the gen-304

erated travel plans, emphasizing the model’s305

ability to meet task requirements. Key metrics306

include:307

1. Delivery Rate (Xie et al., 2024): This308

metric measures the model’s ability to success-309

fully generate a complete plan within a prede-310

fined step limit, ensuring an efficient planning311

process that avoids from looping or repeated312

failures.313

2. Final Pass Rate (Xie et al., 2024): This314

represents the proportion of plans that meet all315

task-specific constraints, reflecting the model’s316

applicability and the practical feasibility of the317

generated plans.318

3. Exact Match Score (Zheng et al., 2024):319

By comparing the model’s output to the320

ground-truth plan, this score assesses the level321

of detail accuracy, quantifying how closely the322

generated plan aligns with a standard answer.323

4. Plan Utility (Li, 2013): This metric ag-324

gregates the utility scores of the POIs included325

in the plan, as an indicator of the quality and326

relevance of the recommendations in the plan.327

3.2.2 Online Evaluation328

Online evaluation centers on user interaction,329

measuring whether the generated plans align330

with user expectations. Key metrics include: 331

1. User Satisfaction: Based on user ratings 332

of the generated plans, this metric assesses the 333

practical usefulness and appeal of the plans, 334

providing direct feedback of user acceptance. 335

2. System Usability and User Experience 336

Questionnaires: Utilizing established question- 337

naires such as the System Usability Scale 338

(SUS) (Brooke, 1996) and the User Experience 339

Questionnaire (UEQ) (Laugwitz et al., 2008), 340

this approach collects structured feedback on 341

usability and user satisfaction, offering insights 342

into the overall interactive quality. 343

By summarizing the offline and online eval- 344

uation metrics, we establish a comprehensive 345

framework to assess the performance of LLMs 346

on travel planning. It provides a reference for 347

future research and applications in the field, 348

facilitating a balanced focus on both technical 349

effectiveness and user-centered design. 350

4 How to Apply LLMs to Travel 351

Planning 352

LLMs, such as GPT-4 and Gemini, have 353

brought about revolutionary changes in NLP 354

and reasoning tasks, demonstrating signifi- 355

cant potential in areas like natural language 356

understanding, reasoning, and optimization. 357

(Ge et al., 2024; Team et al., 2023). These 358

models, leveraging the vast knowledge accu- 359

mulated from extensive public resources and 360

training data, can effectively understand user 361

needs and execute complex instructions. This 362

makes LLMs particularly well-suited for intri- 363

cate tasks that require broad domain knowl- 364

edge, such as travel planning. (Valmeekam 365

et al., 2024; Song et al., 2023; Xie et al., 2023a). 366

Regarding the capabilities of LLMs in plan- 367

ning tasks, three mainstream perspectives exist 368

in the academic community: 369

1. Optimists believe that LLMs not only 370

possess excellent language comprehension 371

abilities but also have the potential to au- 372

tonomously plan Research has explored 373

the feasibility of applying LLMs for au- 374

tonomous planning in classic environments 375

such as Blocksworld (Valmeekam et al., 376

2024), as well as in tasks involving embod- 377

ied agents (Wang et al., 2023) and web 378

agents (Deng et al., 2024), demonstrating 379

their potential for planning. 380
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2. Pessimists are skeptical of the planning381

capabilities of LLMs, arguing that these382

models essentially function as advanced383

translators. They convert reasoning prob-384

lems embedded in text into symbolic rep-385

resentations, which are then processed by386

traditional symbolic solvers. (Xie et al.,387

2023b; Liu et al., 2023; Pan et al., 2023).388

3. Realists take a more balanced view, as-389

serting that while LLMs cannot indepen-390

dently complete planning tasks, their role391

extends beyond merely serving as “trans-392

lators”. These models, acting as powerful393

cognitive assistants, can provide a rich394

source of knowledge and support planning395

tasks (Kambhampati et al., 2024). For in-396

stance, (Guan et al., 2023) demonstrated397

that LLMs can act as world models and398

user preference models in supervised envi-399

ronments, aiding real-world planning tasks400

and improving planning efficiency.401

This diversity of perspectives is also fully re-402

flected in research on travel planning. Based on403

the three types of attitudes mentioned above,404

existing methodologies can be categorized into405

three types according to the roles of LLMs in406

travel planning tasks: Planner, Reformulator,407

and Knowledge Source (see Figure 1).408

4.1 Planner409

The perspective of viewing LLMs as planners410

reflects the optimistic viewpoint, exploring the411

potential of LLMs to independently complete412

planning tasks. As planners, LLMs are tasked413

with generating a personalized travel itinerary414

based on natural language inputs from users415

and external dynamic information. The left416

side of Figure 1 illustrates the overall frame-417

work of such systems, summarizing findings418

from several studies in recent years (Xie et al.,419

2024; Tang et al., 2024; Mo et al., 2023; Zheng420

et al., 2024; Miin and Wei, 2024). Current re-421

search mainly distinguishes between two modes:422

the “Two-Stage Mode” (i.e., tool-use and plan-423

ning) and the “Sole-Planning Mode”. The key424

difference between them lies in whether the425

agent utilizes tools to gather information be-426

fore generating a travel plan.427

4.1.1 Two-stage Mode 428

In this mode, an LLM first employs external 429

tools to gather relevant information, e.g., call- 430

ing a flight query API to retrieve real-time 431

flight data, and then proceeds to plan based 432

on the collected information. Xie et al. (2024) 433

proposed TravelPlanner, a study that simulates 434

real travel scenarios, creating a sandbox envi- 435

ronment with multiple constraints like flights, 436

accommodations, restaurants, and attractions 437

to evaluate the LLM agents’ tool-use capabil- 438

ities as well as their abilities to create rea- 439

sonable travel plans under various constraints 440

(e.g., budget, time and user preferences). Ex- 441

periments were conducted using multiple LLMs 442

(e.g., GPT-3.5 and GPT-4) and different plan- 443

ning strategies (e.g., Direct, ZS-CoT (Wei et al., 444

2022), ReAct (Yao et al., 2022), and Reflex- 445

ion (Shinn et al., 2024)). The results showed 446

that even the most advanced model GPT-4 447

only achieved a 0.6% success rate in the two- 448

stage mode, with most issues stemming from 449

errors in tool usage and insufficient information 450

gathering. This highlights the limitations of 451

LLMs in handling complex planning tasks. 452

4.1.2 Sole-planning Mode 453

In the solo-planning mode, an LLM generates 454

plans based solely on the available informa- 455

tion, without the need for external tools. For 456

example, Tang et al. (2024) applied LLMs 457

to open-domian single-day city itinerary plan- 458

ning. In this study, an LLM generated travel 459

plans that align with user preferences and spa- 460

tial coherence through reasoning and planning, 461

based on the available information. Mo et al. 462

(2023) explored the ability of LLMs to predict 463

individual travel behavior in a sole-planning 464

mode. They designed prompts that included 465

task descriptions, travel features, and personal 466

attributes, incorporating chain-of-thought and 467

plan-solving strategies. Even without training 468

samples, the predictions made by LLMs were 469

highly competitive, achieving strong accuracy 470

and F1 scores compared to traditional super- 471

vised learning methods such as multinomial 472

logistic regression, random forests, and neural 473

networks. Zheng et al. (2024) incorporated in- 474

tercity flight connectivity information into the 475

LLMs’ context to generate travel plans. They 476

found that LLMs could effectively complete 477

travel planning in the sole-planning mode, with 478
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Figure 1: Based on the roles of LLMs in travel planning tasks, existing methodologies can be categorized
into three frameworks: Planner, Reformulator, and Knowledge Source.

GPT-4 and Gemini 1.5 Pro achieving 31.1%479

and 34.8% success rates, respectively. However,480

as the complexity of the task increased (e.g., in-481

volving more cities, people, or days), the perfor-482

mance of LLMs decreased significantly. When483

it involved 10 cities, the performance of all mod-484

els dropped below 5%, highlighting the signifi-485

cant gap in current state-of-the-art LLMs’ abil-486

ity to handle natural language-based planning.487

Miin and Wei (2024) developed a framework488

incorporating a “human-in-the-loop” feedback489

mechanism. In this framework, LLMs generate490

initial prompts, which are iteratively refined491

with human feedback. The results showed that492

after one round of human-in-the-loop optimiza-493

tion, the success rate of GPT-4o on the Trav-494

elPlanner dataset increased significantly, from495

2.78% to 6.67%, demonstrating the potential of496

human feedback in enhancing the travel plan-497

ning capabilities of LLMs.498

4.2 Reformulator499

The view of LLMs as reformulators reflects500

the pessimist perspective. This line of re-501

search leverages LLMs to transform travel plan-502

ning problems expressed in natural language503

into structured representations that symbolic504

solvers, e.g., Planning Domain Description Lan-505

guage (PDDL), then address the complex multi-506

constraint solving tasks. Previous research 507

(Liu et al., 2023) has demonstrated that LLMs 508

are capable of generating effective PDDL files. 509

The overall framework of such systems is illus- 510

trated in the middle of Figure 1. These studies 511

argue that while LLMs excel at parsing human 512

input and facilitating interaction, they are lim- 513

ited in strictly handling all constraints. On 514

the other hand, symbolic solvers are sound and 515

complete when dealing with multi-constraint 516

satisfiability problems but struggle with flexi- 517

ble, general, and sometimes vague natural lan- 518

guage demands. Therefore, a framework that 519

combines LLMs with symbolic solvers effec- 520

tively leverages the strengths of both, overcom- 521

ing the limitations of LLMs in managing com- 522

plex constraints and enhancing the efficiency 523

of the entire travel planning process. 524

Hao et al. (2024) proposed a framework 525

that converts natural language travel plan- 526

ning inputs into Satisfiability Modulo Theories 527

(SMT) problems using an LLM and then solves 528

them with an SMT solver. This framework 529

efficiently solved complex travel planning prob- 530

lems, achieving an impressive 97.0% success 531

rate on the TravelPlanner dataset. When the 532

input query is unsatisfiable, the SMT solver 533

identifies the issue, and the LLM suggests mod- 534

ifications, interacting with the user to refine 535
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the query until the constraints are satisfied.536

Similarly, de la Rosa et al. (2024) introduced537

the TRIP-PAL framework, which utilizes natu-538

ral language interactions with users and lever-539

ages the broad knowledge of LLMs to identify540

POIs and user preferences. The user infor-541

mation and travel details are then converted542

into a data structure that the planner can pro-543

cess. Subsequently, an automated planner gen-544

erates the optimal travel plan that satisfies the545

constraints. Experimental results show that546

TRIP-PAL performs more robustly in complex547

scenarios compared to using only an LLM for548

travel planning, particularly when handling549

more POIs or longer travel durations, effec-550

tively maximizing user utility.551

4.3 Knowledge Source552

The perspective of viewing LLMs as Knowledge553

source reflects the realists stance, suggesting554

that LLMs not only possess excellent natural555

language processing capabilities but also lever-556

age their extensive open-world and domain-557

specific knowledge to provide knowledge for558

complex tasks, thereby assisting in planning559

tasks. The right side of Figure 1 illustrates the560

overall framework of such a system. In this561

model, LLMs generate an initial plan, which is562

critiqued by external critics. These critics may563

be either the user or another model. Based on564

the feedback, LLMs subsequently adjust and565

optimize the plan, iterating through multiple566

rounds of interaction to ultimately generate a567

high-quality travel plan.568

Ma et al. (2024) proposed the ExploreLLM569

system, which uses LLMs as a knowledge570

source. In this system, LLMs decompose users’571

travel planning needs into multiple subtasks,572

such as determining dates and duration, book-573

ing hotels and flights, etc. For each subtask,574

LLMs generate multiple alternative options for575

users to evaluate and select via an interactive576

interface that can express their preferences.577

Once all subtasks are completed, ExploreLLM578

generates a comprehensive travel plan. Experi-579

mental results show that ExploreLLM greatly580

improved planning efficiency and user satisfac-581

tion in complex planning tasks.582

Kambhampati et al. (2024) further extended583

this approach with the LLM-Modulo frame-584

work, enabling iterative interactions between585

LLMs and external critics (Gundawar et al.,586

2024). Within this framework, LLMs first gen- 587

erate an initial travel plan based on contextual 588

information (e.g., flights and hotels). Critics 589

then evaluate the plan, and if it doesn’t meet 590

the requirements, LLMs iteratively refine it 591

based on the feedback, generating candidate 592

solutions until consensus or the maximum num- 593

ber of iterations is reached. Experimental re- 594

sults on the TravelPlanner dataset show that 595

LLM-Modulo achieved a final success rate of 596

20.6%, a 4.6-fold improvement over using LLMs 597

alone, highlighting its effectiveness in handling 598

complex planning tasks. 599

5 Future Directions 600

5.1 Datasets for Travel Planning 601

Traditional itinerary planning typically re- 602

lies on structured data and predefined rules, 603

whereas LLMs can understand vague require- 604

ments and adapt to dynamic contexts through 605

natural language interaction, enabling more 606

flexible planning capabilities. This shift has 607

brought about a demand for new datasets to 608

support LLMs in handling interactive tasks 609

under complex, multi-constraint travel scenar- 610

ios. However, there is a significant lack of 611

open-source datasets for LLMs-powered travel 612

planning, with TravelPlanner being the only 613

one available benchmark. 614

While TravelPlanner provides crucial sup- 615

port for evaluating LLMs’ performance in 616

travel planning, it has certain limitations, par- 617

ticularly in assessing these models’ ability to 618

handle unsatisfiable queries. TravelPlanner 619

is lack of example scenarios where the initial 620

user query cannot be satisfied, which limits the 621

comprehensive evaluation of LLMs’ interactive 622

planning capabilities. Specifically, TravelPlan- 623

ner does not verify LLMs’ ability to identify 624

the reasons for unsatisfiability, nor their com- 625

petence to adjust and optimize plans based on 626

user feedback to better meet user preferences. 627

To bridge this gap, Hao et al. (2024) modified 628

12 constraints in the TravelPlanner dataset to 629

create unsatisfiable scenarios, and developed 630

an international travel dataset that contains 631

39 unsatisfiable queries to explore LLMs’ re- 632

pair capabilities when handling such queries. 633

However, this dataset has not been released. 634

Future research should build more diverse 635

datasets that cover a wide range of travel sce- 636
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narios and various types of user constraints,637

especially those that involve complex situa-638

tions with unsatisfiable queries. Such datasets639

will not only support the evaluation of LLMs’640

performance in terms of adaptability and inter-641

active planning but also advance the develop-642

ment of LLMs in intelligent user-centric travel643

planning systems as well as promoting the ap-644

plications of LLMs in real-world scenarios.645

5.2 Human-in-the-Loop (HITL)646

The degree of human supervision, feedback,647

and intervention for an LLM-based agent dur-648

ing task execution can be viewed as a con-649

tinuum. At one end of the spectrum, users650

have full control and validation over all out-651

puts; in the middle, users intervene only when652

errors occur; and at the other end, the agent653

can autonomously complete all aspects of the654

task, including complex causal reasoning. Re-655

search by Xie et al. (2024) on the TravelPlanner656

dataset shows that the success rate of GPT-657

4 in fully autonomous planning is only 0.6%,658

revealing the limitations of LLMs in handling659

complex travel planning tasks and their diffi-660

culty in independently completing plans under661

intricate scenarios.662

In certain situations, incorporating human663

input to enhance AI inference is particularly664

effective, especially for tasks involving ethical665

considerations, creative tasks, or ambiguous666

situations (Durante et al., 2024). Humans can667

provide critical guidance to the agent, correct668

errors, and supplement insights that the agent669

might struggle to infer (Kapoor et al., 2024).670

For example, Shi et al. (2024) found that671

simple user feedback improved GPT-4’s perfor-672

mance in complex programming tasks from 0%673

to over 86%, transforming it from nearly ineffec-674

tive to nearly perfect. Therefore introducing a675

HITL mechanism to travel planning tasks may676

also significantly enhance task success rates.677

5.3 Multi-agents for Group Travel678

Planning679

In practice, tourists may travel in groups, but680

research on group travel planning remains rel-681

atively limited. Compared to individual travel682

planning, it needs to accommodate the diverse683

needs of multiple members that can increase684

the task complexity.685

The application of LLM-based agents in au-686

tonomous travel planning represents a promis- 687

ing direction for future research. Intelligent 688

agents are AI-driven systems capable of in- 689

tegrating external knowledge, multimodal in- 690

puts, and human feedback, enabling them to 691

autonomously execute complex tasks (Xi et al., 692

2023). As noted by Zaharia et al. (2024), “AI 693

agents could be the most influential AI trend 694

of 2024, with the potential to maximize AI ef- 695

ficiency in unprecedented ways.” Furthermore, 696

AI agents are regarded as a key avenue to- 697

ward achieving Artificial General Intelligence 698

(AGI) (Durante et al., 2024). With their abili- 699

ties in contextual understanding, human-like 700

text generation, and complex reasoning, LLM- 701

powered agents facilitate more engaging and 702

smooth interactions between users and travel 703

planning systems, offering them a better expe- 704

rience than traditional methods. 705

Recent studies show that multi-agent nego- 706

tiation frameworks based on LLMs perform 707

well in group recommendation tasks (Ji and 708

Ma, 2023; Alves et al., 2023), which may shed 709

light on group travel planning. In a multi- 710

agent system, each agent represents a mem- 711

ber, negotiating with each other to generate 712

an itinerary that meets the requirements of 713

the majority. Future research could explore 714

LLM-driven multi-agent frameworks to simu- 715

late member preferences and reconcile conflicts. 716

6 Conclusion 717

In this paper, we provide a comprehensive re- 718

view of the application of LLMs in travel plan- 719

ning, and discuss their potential in delivering 720

personalized and efficient solutions. Based on 721

the key roles of LLMs in travel planning tasks, 722

we present a taxonomy of existing methodolo- 723

gies, categorizing them into three types: Plan- 724

ner, Reformulator, and Knowledge Source. In 725

the meantime, we summarize the main appli- 726

cation scenarios, available datasets, and evalu- 727

ation methods for LLMs-powered travel plan- 728

ning, and point out future directions. We be- 729

lieve that, with the continuous advancement 730

of AI, LLMs-powered travel planning can offer 731

more practical and efficient solutions for the 732

tourism industry. We hope that this review 733

can provide valuable background information 734

and guidance for practitioners in the field to 735

advance its development. 736
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Limitations737

Nevertheless, this paper presents several lim-738

itations. Firstly, our discussion is limited to739

travel planning and does not extend to other740

aspects such as transportation planning dur-741

ing the trip. Secondly, available open-source742

datasets for travel planning with LLMs are743

limited, leading Section 3 to list only a single744

dataset.745

References746

RA Abbaspour and F Samadzadegan. 2009.747
Itinerary planning in multimodal urban trans-748
portation network. Journal of Applied Sciences,749
9(10):1898–1906.750

Patrícia Alves, André Martins, Paulo Novais, and751
Goreti Marreiros. 2023. Improving group recom-752
mendations using personality, dynamic clustering753
and multi-agent microservices. In Proceedings754
of the 17th ACM Conference on Recommender755
Systems, pages 1165–1168.756

Aris Anagnostopoulos, Reem Atassi, Luca Bec-757
chetti, Adriano Fazzone, and Fabrizio Silvestri.758
2017. Tour recommendation for groups. Data759
Mining and Knowledge Discovery, 31(5):1157–760
1188.761

Oxford Analytica. 2024. Tourism in lebanon will762
take years to recover. Emerald Expert Briefings,763
(oxan-es).764

Plaban K Bhowmick, Soumyajit Dey, Abinash765
Samantaray, Debnath Mukherjee, and Prateep766
Misra. 2012. A temporal constraint based plan-767
ning approach for city tour and travel plan gen-768
eration. In 2012 4th International Conference on769
Intelligent Human Computer Interaction (IHCI),770
pages 1–6. IEEE.771

Igo Ramalho Brilhante, Jose Antonio Macedo,772
Franco Maria Nardini, Raffaele Perego, and773
Chiara Renso. 2015. On planning sightseeing774
tours with tripbuilder. Information Processing775
& Management, 51(2):1–15.776

J Brooke. 1996. Sus: A quick and dirty usability777
scale. Usability Evaluation in Industry.778

Sébastien Bubeck, Varun Chandrasekaran, Ronen779
Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-780
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott781
Lundberg, et al. 2023. Sparks of artificial gen-782
eral intelligence: Early experiments with gpt-4.783
arXiv preprint arXiv:2303.12712.784

Buru Chang, Yonggyu Park, Donghyeon Park,785
Seongsoon Kim, and Jaewoo Kang. 2018.786
Content-aware hierarchical point-of-interest em-787
bedding model for successive poi recommenda-788
tion. In IJCAI, volume 20, pages 3301–3307.789

Gautier Dagan, Frank Keller, and Alex Lascarides. 790
2023. Dynamic planning with a llm. arXiv 791
preprint arXiv:2308.06391. 792

Tomas de la Rosa, Sriram Gopalakrishnan, Alberto 793
Pozanco, Zhen Zeng, and Daniel Borrajo. 2024. 794
Trip-pal: Travel planning with guarantees by 795
combining large language models and automated 796
planners. arXiv preprint arXiv:2406.10196. 797

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, 798
Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. 799
2024. Mind2web: Towards a generalist agent 800
for the web. Advances in Neural Information 801
Processing Systems, 36. 802

Z Durante, Q Huang, N Wake, R Gong, JS Park, 803
B Sarkar, R Taori, Y Noda, D Terzopoulos, 804
Y Choi, et al. 2024. Agent ai: surveying the 805
horizons of multimodal interaction. arxiv. 806

Fedor V Fomin and Andrzej Lingas. 2002. Approx- 807
imation algorithms for time-dependent orienteer- 808
ing. Information Processing Letters, 83(2):57–62. 809

Liping Gao, Chao Chen, Feng Chu, Chengwu Liao, 810
Hongyu Huang, and Yasha Wang. 2023. Moop: 811
An efficient utility-rich route planning frame- 812
work over two-fold time-dependent road networks. 813
IEEE Transactions on Emerging Topics in Com- 814
putational Intelligence, 7(5):1554–1570. 815

Ines Gasmi, Makram Soui, Khaoula Barhoumi, and 816
Mourad Abed. 2024. Recommendation rules to 817
personalize itineraries for tourists in an unfamil- 818
iar city. Applied Soft Computing, 150:111084. 819

Damianos Gavalas, Charalampos Konstantopoulos, 820
Konstantinos Mastakas, and Grammati Pantziou. 821
2014. A survey on algorithmic approaches for 822
solving tourist trip design problems. Journal of 823
Heuristics, 20(3):291–328. 824

Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, 825
Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al. 826
2024. Openagi: When llm meets domain experts. 827
Advances in Neural Information Processing Sys- 828
tems, 36. 829

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, 830
and Subbarao Kambhampati. 2023. Leveraging 831
pre-trained large language models to construct 832
and utilize world models for model-based task 833
planning. Advances in Neural Information Pro- 834
cessing Systems, 36:79081–79094. 835

Atharva Gundawar, Mudit Verma, Lin Guan, 836
Karthik Valmeekam, Siddhant Bhambri, and 837
Subbarao Kambhampati. 2024. Robust planning 838
with llm-modulo framework: Case study in travel 839
planning. arXiv preprint arXiv:2405.20625. 840

Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and 841
Xiuzhen Zhang. 2024. A survey on personal- 842
ized itinerary recommendation: From optimisa- 843
tion to deep learning. Applied Soft Computing, 844
152:111200. 845

9



Yilun Hao, Yongchao Chen, Yang Zhang, and846
Chuchu Fan. 2024. Large language models can847
plan your travels rigorously with formal verifica-848
tion tools. arXiv preprint arXiv:2404.11891.849

Daniel Herzog, Linus W Dietz, and Wolfgang850
Wörndl. 2019. Tourist trip recommendations–851
foundations, state of the art and challenges. Per-852
sonalized Human-Computer Interaction, 6:159–853
182.854

Yu-Ling Hsueh and Hong-Min Huang. 2019. Per-855
sonalized itinerary recommendation with time856
constraints using gps datasets. Knowledge and857
information systems, 60(1):523–544.858

Xu Huang, Weiwen Liu, Xiaolong Chen, Xing-859
mei Wang, Defu Lian, Yasheng Wang, Ruiming860
Tang, and Enhong Chen. 2024a. Wese: Weak861
exploration to strong exploitation for llm agents.862
arXiv preprint arXiv:2404.07456.863

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei864
Wang, Hao Wang, Defu Lian, Yasheng Wang,865
Ruiming Tang, and Enhong Chen. 2024b. Un-866
derstanding the planning of llm agents: A survey.867
arXiv preprint arXiv:2402.02716.868

Pu Ji and Xiaoyu Ma. 2023. A fuzzy intelligent869
group recommender method in sparse-data envi-870
ronments based on multi-agent negotiation. Ex-871
pert Systems with Applications, 213:119294.872

Jose Luis Jorro-Aragoneses, Maria Belén Díaz873
Agudo, and Juan Antonio Recio García. 2017.874
Madrid live: a context-aware recommender sys-875
tems of leisure plans. In 2017 IEEE 29th In-876
ternational Conference on Tools with Artificial877
Intelligence (ICTAI), pages 796–801. IEEE.878

Subbarao Kambhampati, Karthik Valmeekam,879
Lin Guan, Mudit Verma, Kaya Stechly, Sid-880
dhant Bhambri, Lucas Saldyt, and Anil Murthy.881
2024. Llms can’t plan, but can help plan-882
ning in llm-modulo frameworks. arXiv preprint883
arXiv:2402.01817.884

Marisa G Kantor and Moshe B Rosenwein. 1992.885
The orienteering problem with time windows.886
Journal of the Operational Research Society,887
43(6):629–635.888

Sayash Kapoor, Benedikt Stroebl, Zachary S889
Siegel, Nitya Nadgir, and Arvind Narayanan.890
2024. Ai agents that matter. arXiv preprint891
arXiv:2407.01502.892

Joanna Karbowska-Chilinska and Kacper Chociej.893
2019. Optimization of multistage tourist route894
for electric vehicle. In Artificial Intelligence and895
Algorithms in Intelligent Systems: Proceedings of896
7th Computer Science On-line Conference 2018,897
Volume 2 7, pages 186–196. Springer.898

Aristea Kontogianni and Efthimios Alepis. 2020.899
Smart tourism: State of the art and literature900
review for the last six years. Array, 6:100020.901

Bettina Laugwitz, Theo Held, and Martin Schrepp. 902
2008. Construction and evaluation of a user ex- 903
perience questionnaire. In HCI and Usability 904
for Education and Work: 4th Symposium of the 905
Workgroup Human-Computer Interaction and Us- 906
ability Engineering of the Austrian Computer So- 907
ciety, USAB 2008, Graz, Austria, November 20- 908
21, 2008. Proceedings 4, pages 63–76. Springer. 909

Xun Li. 2013. Multi-day and multi-stay travel plan- 910
ning using geo-tagged photos. In Proceedings 911
of the second ACM SIGSPATIAL international 912
workshop on crowdsourced and volunteered geo- 913
graphic information, pages 1–8. 914

Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, 915
and Shanika Karunasekera. 2016. Towards next 916
generation touring: Personalized group tours. In 917
Proceedings of the International Conference on 918
Automated Planning and Scheduling, volume 26, 919
pages 412–420. 920

Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, 921
and Shanika Karunasekera. 2018. Personalized 922
trip recommendation for tourists based on user 923
interests, points of interest visit durations and 924
visit recency. Knowledge and Information Sys- 925
tems, 54:375–406. 926

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, 927
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 928
2023. Llm+ p: Empowering large language mod- 929
els with optimal planning proficiency. arXiv 930
preprint arXiv:2304.11477. 931

Derek Long. 2005. Automated planning: Theory 932
and practice. Assembly Automation, 25(2). 933

Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Ying 934
Su, Jilin Chen, Chinmay Kulkarni, Heng-Tze 935
Cheng, Quoc Le, and Ed Chi. 2024. Beyond 936
chatbots: Explorellm for structured thoughts 937
and personalized model responses. In Extended 938
Abstracts of the CHI Conference on Human Fac- 939
tors in Computing Systems, pages 1–12. 940

Annabelle Miin and Timothy Wei. 2024. Smart 941
language agents in real-world planning. arXiv 942
preprint arXiv:2407.19667. 943

Baichuan Mo, Hanyong Xu, Dingyi Zhuang, 944
Ruoyun Ma, Xiaotong Guo, and Jinhua Zhao. 945
2023. Large language models for travel behavior 946
prediction. arXiv preprint arXiv:2312.00819. 947

Liangming Pan, Alon Albalak, Xinyi Wang, and 948
William Yang Wang. 2023. Logic-lm: Empower- 949
ing large language models with symbolic solvers 950
for faithful logical reasoning. arXiv preprint 951
arXiv:2305.12295. 952

Guangyao Pang, Xiaoming Wang, Fei Hao, Liang 953
Wang, and Xinyan Wang. 2020. Efficient point- 954
of-interest recommendation with hierarchical at- 955
tention mechanism. Applied Soft Computing, 956
96:106536. 957

10



Beatriz Rodríguez, Julián Molina, Fátima Pérez,958
and Rafael Caballero. 2012. Interactive design959
of personalised tourism routes. Tourism Man-960
agement, 33(4):926–940.961

José Ruiz-Meza and Jairo R Montoya-Torres. 2022.962
A systematic literature review for the tourist trip963
design problem: Extensions, solution techniques964
and future research lines. Operations Research965
Perspectives, 9:100228.966

Quan Shi, Michael Tang, Karthik Narasimhan,967
and Shunyu Yao. 2024. Can language models968
solve olympiad programming? arXiv preprint969
arXiv:2404.10952.970

Noah Shinn, Federico Cassano, Ashwin Gopinath,971
Karthik Narasimhan, and Shunyu Yao. 2024. Re-972
flexion: Language agents with verbal reinforce-973
ment learning. Advances in Neural Information974
Processing Systems, 36.975

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre976
Côté, Yonatan Bisk, Adam Trischler, and977
Matthew Hausknecht. 2020. Alfworld: Aligning978
text and embodied environments for interactive979
learning. arXiv preprint arXiv:2010.03768.980

David Silver, Hado Hasselt, Matteo Hessel, Tom981
Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-982
Arnold, David Reichert, Neil Rabinowitz, Andre983
Barreto, et al. 2017. The predictron: End-to-end984
learning and planning. In International Con-985
ference on Machine Learning, pages 3191–3199.986
PMLR.987

Chan Hee Song, Jiaman Wu, Clayton Washington,988
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.989
Llm-planner: Few-shot grounded planning for990
embodied agents with large language models. In991
Proceedings of the IEEE/CVF International Con-992
ference on Computer Vision, pages 2998–3009.993

Wouter Souffiau, Joris Maervoet, Pieter Vansteen-994
wegen, Greet Vanden Berghe, and Dirk995
Van Oudheusden. 2009. A mobile tourist de-996
cision support system for small footprint de-997
vices. In Bio-Inspired Systems: Computational998
and Ambient Intelligence: 10th International999
Work-Conference on Artificial Neural Networks,1000
IWANN 2009, Salamanca, Spain, June 10-12,1001
2009. Proceedings, Part I 10, pages 1248–1255.1002
Springer.1003

Theodore R Sumers, Shunyu Yao, Karthik1004
Narasimhan, and Thomas L Griffiths. 2023. Cog-1005
nitive architectures for language agents. arXiv1006
preprint arXiv:2309.02427.1007

Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan,1008
Kebing Hou, Dingyi Zhuang, Xiaotong Guo, Jin-1009
hua Zhao, Zhan Zhao, and Wei Ma. 2024. Syner-1010
gizing spatial optimization with large language1011
models for open-domain urban itinerary planning.1012
arXiv preprint arXiv:2402.07204.1013

Gemini Team, Rohan Anil, Sebastian Borgeaud, 1014
Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, 1015
Johan Schalkwyk, Andrew M Dai, Anja Hauth, 1016
Katie Millican, et al. 2023. Gemini: a family 1017
of highly capable multimodal models. arXiv 1018
preprint arXiv:2312.11805. 1019

Alan Toledo, Maria-Cristina Riff, and Bertrand 1020
Neveu. 2019. A hyper-heuristic for the orienteer- 1021
ing problem with hotel selection. IEEE access, 1022
8:1303–1313. 1023

Karthik Valmeekam, Matthew Marquez, Alberto 1024
Olmo, Sarath Sreedharan, and Subbarao Kamb- 1025
hampati. 2024. Planbench: An extensible bench- 1026
mark for evaluating large language models on 1027
planning and reasoning about change. Advances 1028
in Neural Information Processing Systems, 36. 1029

Pieter Vansteenwegen, Wouter Souffriau, 1030
Greet Vanden Berghe, and Dirk Van Oud- 1031
heusden. 2009. Iterated local search for the 1032
team orienteering problem with time win- 1033
dows. Computers & Operations Research, 1034
36(12):3281–3290. 1035

Pieter Vansteenwegen, Wouter Souffriau, 1036
Greet Vanden Berghe, and Dirk Van Oud- 1037
heusden. 2011. The city trip planner: an 1038
expert system for tourists. Expert Systems with 1039
Applications, 38(6):6540–6546. 1040

Nikolaos Vathis, Charalampos Konstantopoulos, 1041
Grammati Pantziou, and Damianos Gavalas. 1042
2023. The vacation planning problem: A multi- 1043
level clustering-based metaheuristic approach. 1044
Computers & Operations Research, 150:106083. 1045

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 1046
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and 1047
Anima Anandkumar. 2023. Voyager: An open- 1048
ended embodied agent with large language mod- 1049
els. arXiv preprint arXiv:2305.16291. 1050

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté, 1051
and Prithviraj Ammanabrolu. 2022. Science- 1052
world: Is your agent smarter than a 5th grader? 1053
arXiv preprint arXiv:2203.07540. 1054

Jason Wei, Xuezhi Wang, Dale Schuurmans, 1055
Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, 1056
Denny Zhou, et al. 2022. Chain-of-thought 1057
prompting elicits reasoning in large language 1058
models. Advances in neural information process- 1059
ing systems, 35:24824–24837. 1060

Wolfgang Wörndl, Alexander Hefele, and Daniel 1061
Herzog. 2017. Recommending a sequence of in- 1062
teresting places for tourist trips. Information 1063
Technology & Tourism, 17:31–54. 1064

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei 1065
He, Yiwen Ding, Boyang Hong, Ming Zhang, 1066
Junzhe Wang, Senjie Jin, Enyu Zhou, et al. 1067
2023. The rise and potential of large language 1068
model based agents: A survey. arXiv preprint 1069
arXiv:2309.07864. 1070

11



Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,1071
Renze Lou, Yuandong Tian, Yanghua Xiao, and1072
Yu Su. 2024. Travelplanner: A benchmark for1073
real-world planning with language agents. arXiv1074
preprint arXiv:2402.01622.1075

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi,1076
Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-1077
ning Zhao, Qian Liu, Che Liu, et al. 2023a. Ope-1078
nagents: An open platform for language agents1079
in the wild. arXiv preprint arXiv:2310.10634.1080

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai,1081
Ze Gong, and Harold Soh. 2023b. Trans-1082
lating natural language to planning goals1083
with large-language models. arXiv preprint1084
arXiv:2302.05128.1085

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du,1086
Izhak Shafran, Karthik Narasimhan, and Yuan1087
Cao. 2022. React: Synergizing reasoning and1088
acting in language models. arXiv preprint1089
arXiv:2210.03629.1090

Matei Zaharia, Omar Khattab, Lingjiao Chen,1091
Jared Quincy Davis, Heather Miller, Chris1092
Potts, James Zou, Michael Carbin, Jonathan1093
Frankle, Naveen Rao, et al. 2024. The1094
shift from models to compound ai sys-1095
tems. Berkeley Artificial Intelligence Re-1096
search Lab. Available online at: https://bair.1097
berkeley. edu/blog/2024/02/18/compound-ai-1098
systems/(accessed February 27, 2024).1099

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024.1100
Large language models as commonsense knowl-1101
edge for large-scale task planning. Advances in1102
Neural Information Processing Systems, 36.1103

Huaixiu Steven Zheng, Swaroop Mishra, Hugh1104
Zhang, Xinyun Chen, Minmin Chen, Azade Nova,1105
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi,1106
et al. 2024. Natural plan: Benchmarking llms1107
on natural language planning. arXiv preprint1108
arXiv:2406.04520.1109

Weimin Zheng and Zhixue Liao. 2019. Using a1110
heuristic approach to design personalized tour1111
routes for heterogeneous tourist groups. Tourism1112
Management, 72:313–325.1113

Yu Zheng, Lizhu Zhang, Zhengxin Ma, Xing Xie,1114
and Wei-Ying Ma. 2011. Recommending friends1115
and locations based on individual location history.1116
ACM Transactions on the Web (TWEB), 5(1):1–1117
44.1118

Chenbo Zhu, Jian-Qiang Hu, Fengchun Wang, Yi-1119
fan Xu, and Rongzeng Cao. 2012. On the tour1120
planning problem. Annals of Operations Re-1121
search, 192:67–86.1122

References 1123

RA Abbaspour and F Samadzadegan. 2009. 1124
Itinerary planning in multimodal urban trans- 1125
portation network. Journal of Applied Sciences, 1126
9(10):1898–1906. 1127

Patrícia Alves, André Martins, Paulo Novais, and 1128
Goreti Marreiros. 2023. Improving group recom- 1129
mendations using personality, dynamic clustering 1130
and multi-agent microservices. In Proceedings 1131
of the 17th ACM Conference on Recommender 1132
Systems, pages 1165–1168. 1133

Aris Anagnostopoulos, Reem Atassi, Luca Bec- 1134
chetti, Adriano Fazzone, and Fabrizio Silvestri. 1135
2017. Tour recommendation for groups. Data 1136
Mining and Knowledge Discovery, 31(5):1157– 1137
1188. 1138

Oxford Analytica. 2024. Tourism in lebanon will 1139
take years to recover. Emerald Expert Briefings, 1140
(oxan-es). 1141

Plaban K Bhowmick, Soumyajit Dey, Abinash 1142
Samantaray, Debnath Mukherjee, and Prateep 1143
Misra. 2012. A temporal constraint based plan- 1144
ning approach for city tour and travel plan gen- 1145
eration. In 2012 4th International Conference on 1146
Intelligent Human Computer Interaction (IHCI), 1147
pages 1–6. IEEE. 1148

Igo Ramalho Brilhante, Jose Antonio Macedo, 1149
Franco Maria Nardini, Raffaele Perego, and 1150
Chiara Renso. 2015. On planning sightseeing 1151
tours with tripbuilder. Information Processing 1152
& Management, 51(2):1–15. 1153

J Brooke. 1996. Sus: A quick and dirty usability 1154
scale. Usability Evaluation in Industry. 1155

Sébastien Bubeck, Varun Chandrasekaran, Ronen 1156
Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka- 1157
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott 1158
Lundberg, et al. 2023. Sparks of artificial gen- 1159
eral intelligence: Early experiments with gpt-4. 1160
arXiv preprint arXiv:2303.12712. 1161

Buru Chang, Yonggyu Park, Donghyeon Park, 1162
Seongsoon Kim, and Jaewoo Kang. 2018. 1163
Content-aware hierarchical point-of-interest em- 1164
bedding model for successive poi recommenda- 1165
tion. In IJCAI, volume 20, pages 3301–3307. 1166

Gautier Dagan, Frank Keller, and Alex Lascarides. 1167
2023. Dynamic planning with a llm. arXiv 1168
preprint arXiv:2308.06391. 1169

Tomas de la Rosa, Sriram Gopalakrishnan, Alberto 1170
Pozanco, Zhen Zeng, and Daniel Borrajo. 2024. 1171
Trip-pal: Travel planning with guarantees by 1172
combining large language models and automated 1173
planners. arXiv preprint arXiv:2406.10196. 1174

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, 1175
Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. 1176

12



2024. Mind2web: Towards a generalist agent1177
for the web. Advances in Neural Information1178
Processing Systems, 36.1179

Z Durante, Q Huang, N Wake, R Gong, JS Park,1180
B Sarkar, R Taori, Y Noda, D Terzopoulos,1181
Y Choi, et al. 2024. Agent ai: surveying the1182
horizons of multimodal interaction. arxiv.1183

Fedor V Fomin and Andrzej Lingas. 2002. Approx-1184
imation algorithms for time-dependent orienteer-1185
ing. Information Processing Letters, 83(2):57–62.1186

Liping Gao, Chao Chen, Feng Chu, Chengwu Liao,1187
Hongyu Huang, and Yasha Wang. 2023. Moop:1188
An efficient utility-rich route planning frame-1189
work over two-fold time-dependent road networks.1190
IEEE Transactions on Emerging Topics in Com-1191
putational Intelligence, 7(5):1554–1570.1192

Ines Gasmi, Makram Soui, Khaoula Barhoumi, and1193
Mourad Abed. 2024. Recommendation rules to1194
personalize itineraries for tourists in an unfamil-1195
iar city. Applied Soft Computing, 150:111084.1196

Damianos Gavalas, Charalampos Konstantopoulos,1197
Konstantinos Mastakas, and Grammati Pantziou.1198
2014. A survey on algorithmic approaches for1199
solving tourist trip design problems. Journal of1200
Heuristics, 20(3):291–328.1201

Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan,1202
Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.1203
2024. Openagi: When llm meets domain experts.1204
Advances in Neural Information Processing Sys-1205
tems, 36.1206

Lin Guan, Karthik Valmeekam, Sarath Sreedharan,1207
and Subbarao Kambhampati. 2023. Leveraging1208
pre-trained large language models to construct1209
and utilize world models for model-based task1210
planning. Advances in Neural Information Pro-1211
cessing Systems, 36:79081–79094.1212

Atharva Gundawar, Mudit Verma, Lin Guan,1213
Karthik Valmeekam, Siddhant Bhambri, and1214
Subbarao Kambhampati. 2024. Robust planning1215
with llm-modulo framework: Case study in travel1216
planning. arXiv preprint arXiv:2405.20625.1217

Sajal Halder, Kwan Hui Lim, Jeffrey Chan, and1218
Xiuzhen Zhang. 2024. A survey on personal-1219
ized itinerary recommendation: From optimisa-1220
tion to deep learning. Applied Soft Computing,1221
152:111200.1222

Yilun Hao, Yongchao Chen, Yang Zhang, and1223
Chuchu Fan. 2024. Large language models can1224
plan your travels rigorously with formal verifica-1225
tion tools. arXiv preprint arXiv:2404.11891.1226

Daniel Herzog, Linus W Dietz, and Wolfgang1227
Wörndl. 2019. Tourist trip recommendations–1228
foundations, state of the art and challenges. Per-1229
sonalized Human-Computer Interaction, 6:159–1230
182.1231

Yu-Ling Hsueh and Hong-Min Huang. 2019. Per- 1232
sonalized itinerary recommendation with time 1233
constraints using gps datasets. Knowledge and 1234
information systems, 60(1):523–544. 1235

Xu Huang, Weiwen Liu, Xiaolong Chen, Xing- 1236
mei Wang, Defu Lian, Yasheng Wang, Ruiming 1237
Tang, and Enhong Chen. 2024a. Wese: Weak 1238
exploration to strong exploitation for llm agents. 1239
arXiv preprint arXiv:2404.07456. 1240

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei 1241
Wang, Hao Wang, Defu Lian, Yasheng Wang, 1242
Ruiming Tang, and Enhong Chen. 2024b. Un- 1243
derstanding the planning of llm agents: A survey. 1244
arXiv preprint arXiv:2402.02716. 1245

Pu Ji and Xiaoyu Ma. 2023. A fuzzy intelligent 1246
group recommender method in sparse-data envi- 1247
ronments based on multi-agent negotiation. Ex- 1248
pert Systems with Applications, 213:119294. 1249

Jose Luis Jorro-Aragoneses, Maria Belén Díaz 1250
Agudo, and Juan Antonio Recio García. 2017. 1251
Madrid live: a context-aware recommender sys- 1252
tems of leisure plans. In 2017 IEEE 29th In- 1253
ternational Conference on Tools with Artificial 1254
Intelligence (ICTAI), pages 796–801. IEEE. 1255

Subbarao Kambhampati, Karthik Valmeekam, 1256
Lin Guan, Mudit Verma, Kaya Stechly, Sid- 1257
dhant Bhambri, Lucas Saldyt, and Anil Murthy. 1258
2024. Llms can’t plan, but can help plan- 1259
ning in llm-modulo frameworks. arXiv preprint 1260
arXiv:2402.01817. 1261

Marisa G Kantor and Moshe B Rosenwein. 1992. 1262
The orienteering problem with time windows. 1263
Journal of the Operational Research Society, 1264
43(6):629–635. 1265

Sayash Kapoor, Benedikt Stroebl, Zachary S 1266
Siegel, Nitya Nadgir, and Arvind Narayanan. 1267
2024. Ai agents that matter. arXiv preprint 1268
arXiv:2407.01502. 1269

Joanna Karbowska-Chilinska and Kacper Chociej. 1270
2019. Optimization of multistage tourist route 1271
for electric vehicle. In Artificial Intelligence and 1272
Algorithms in Intelligent Systems: Proceedings of 1273
7th Computer Science On-line Conference 2018, 1274
Volume 2 7, pages 186–196. Springer. 1275

Aristea Kontogianni and Efthimios Alepis. 2020. 1276
Smart tourism: State of the art and literature 1277
review for the last six years. Array, 6:100020. 1278

Bettina Laugwitz, Theo Held, and Martin Schrepp. 1279
2008. Construction and evaluation of a user ex- 1280
perience questionnaire. In HCI and Usability 1281
for Education and Work: 4th Symposium of the 1282
Workgroup Human-Computer Interaction and Us- 1283
ability Engineering of the Austrian Computer So- 1284
ciety, USAB 2008, Graz, Austria, November 20- 1285
21, 2008. Proceedings 4, pages 63–76. Springer. 1286

13



Xun Li. 2013. Multi-day and multi-stay travel plan-1287
ning using geo-tagged photos. In Proceedings1288
of the second ACM SIGSPATIAL international1289
workshop on crowdsourced and volunteered geo-1290
graphic information, pages 1–8.1291

Kwan Hui Lim, Jeffrey Chan, Christopher Leckie,1292
and Shanika Karunasekera. 2016. Towards next1293
generation touring: Personalized group tours. In1294
Proceedings of the International Conference on1295
Automated Planning and Scheduling, volume 26,1296
pages 412–420.1297

Kwan Hui Lim, Jeffrey Chan, Christopher Leckie,1298
and Shanika Karunasekera. 2018. Personalized1299
trip recommendation for tourists based on user1300
interests, points of interest visit durations and1301
visit recency. Knowledge and Information Sys-1302
tems, 54:375–406.1303

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,1304
Shiqi Zhang, Joydeep Biswas, and Peter Stone.1305
2023. Llm+ p: Empowering large language mod-1306
els with optimal planning proficiency. arXiv1307
preprint arXiv:2304.11477.1308

Derek Long. 2005. Automated planning: Theory1309
and practice. Assembly Automation, 25(2).1310

Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Ying1311
Su, Jilin Chen, Chinmay Kulkarni, Heng-Tze1312
Cheng, Quoc Le, and Ed Chi. 2024. Beyond1313
chatbots: Explorellm for structured thoughts1314
and personalized model responses. In Extended1315
Abstracts of the CHI Conference on Human Fac-1316
tors in Computing Systems, pages 1–12.1317

Annabelle Miin and Timothy Wei. 2024. Smart1318
language agents in real-world planning. arXiv1319
preprint arXiv:2407.19667.1320

Baichuan Mo, Hanyong Xu, Dingyi Zhuang,1321
Ruoyun Ma, Xiaotong Guo, and Jinhua Zhao.1322
2023. Large language models for travel behavior1323
prediction. arXiv preprint arXiv:2312.00819.1324

Liangming Pan, Alon Albalak, Xinyi Wang, and1325
William Yang Wang. 2023. Logic-lm: Empower-1326
ing large language models with symbolic solvers1327
for faithful logical reasoning. arXiv preprint1328
arXiv:2305.12295.1329

Guangyao Pang, Xiaoming Wang, Fei Hao, Liang1330
Wang, and Xinyan Wang. 2020. Efficient point-1331
of-interest recommendation with hierarchical at-1332
tention mechanism. Applied Soft Computing,1333
96:106536.1334

Beatriz Rodríguez, Julián Molina, Fátima Pérez,1335
and Rafael Caballero. 2012. Interactive design1336
of personalised tourism routes. Tourism Man-1337
agement, 33(4):926–940.1338

José Ruiz-Meza and Jairo R Montoya-Torres. 2022.1339
A systematic literature review for the tourist trip1340
design problem: Extensions, solution techniques1341

and future research lines. Operations Research 1342
Perspectives, 9:100228. 1343

Quan Shi, Michael Tang, Karthik Narasimhan, 1344
and Shunyu Yao. 2024. Can language models 1345
solve olympiad programming? arXiv preprint 1346
arXiv:2404.10952. 1347

Noah Shinn, Federico Cassano, Ashwin Gopinath, 1348
Karthik Narasimhan, and Shunyu Yao. 2024. Re- 1349
flexion: Language agents with verbal reinforce- 1350
ment learning. Advances in Neural Information 1351
Processing Systems, 36. 1352

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre 1353
Côté, Yonatan Bisk, Adam Trischler, and 1354
Matthew Hausknecht. 2020. Alfworld: Aligning 1355
text and embodied environments for interactive 1356
learning. arXiv preprint arXiv:2010.03768. 1357

David Silver, Hado Hasselt, Matteo Hessel, Tom 1358
Schaul, Arthur Guez, Tim Harley, Gabriel Dulac- 1359
Arnold, David Reichert, Neil Rabinowitz, Andre 1360
Barreto, et al. 2017. The predictron: End-to-end 1361
learning and planning. In International Con- 1362
ference on Machine Learning, pages 3191–3199. 1363
PMLR. 1364

Chan Hee Song, Jiaman Wu, Clayton Washington, 1365
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023. 1366
Llm-planner: Few-shot grounded planning for 1367
embodied agents with large language models. In 1368
Proceedings of the IEEE/CVF International Con- 1369
ference on Computer Vision, pages 2998–3009. 1370

Wouter Souffiau, Joris Maervoet, Pieter Vansteen- 1371
wegen, Greet Vanden Berghe, and Dirk 1372
Van Oudheusden. 2009. A mobile tourist de- 1373
cision support system for small footprint de- 1374
vices. In Bio-Inspired Systems: Computational 1375
and Ambient Intelligence: 10th International 1376
Work-Conference on Artificial Neural Networks, 1377
IWANN 2009, Salamanca, Spain, June 10-12, 1378
2009. Proceedings, Part I 10, pages 1248–1255. 1379
Springer. 1380

Theodore R Sumers, Shunyu Yao, Karthik 1381
Narasimhan, and Thomas L Griffiths. 2023. Cog- 1382
nitive architectures for language agents. arXiv 1383
preprint arXiv:2309.02427. 1384

Yihong Tang, Zhaokai Wang, Ao Qu, Yihao Yan, 1385
Kebing Hou, Dingyi Zhuang, Xiaotong Guo, Jin- 1386
hua Zhao, Zhan Zhao, and Wei Ma. 2024. Syner- 1387
gizing spatial optimization with large language 1388
models for open-domain urban itinerary planning. 1389
arXiv preprint arXiv:2402.07204. 1390

Gemini Team, Rohan Anil, Sebastian Borgeaud, 1391
Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, 1392
Johan Schalkwyk, Andrew M Dai, Anja Hauth, 1393
Katie Millican, et al. 2023. Gemini: a family 1394
of highly capable multimodal models. arXiv 1395
preprint arXiv:2312.11805. 1396

14



Alan Toledo, Maria-Cristina Riff, and Bertrand1397
Neveu. 2019. A hyper-heuristic for the orienteer-1398
ing problem with hotel selection. IEEE access,1399
8:1303–1313.1400

Karthik Valmeekam, Matthew Marquez, Alberto1401
Olmo, Sarath Sreedharan, and Subbarao Kamb-1402
hampati. 2024. Planbench: An extensible bench-1403
mark for evaluating large language models on1404
planning and reasoning about change. Advances1405
in Neural Information Processing Systems, 36.1406

Pieter Vansteenwegen, Wouter Souffriau,1407
Greet Vanden Berghe, and Dirk Van Oud-1408
heusden. 2009. Iterated local search for the1409
team orienteering problem with time win-1410
dows. Computers & Operations Research,1411
36(12):3281–3290.1412

Pieter Vansteenwegen, Wouter Souffriau,1413
Greet Vanden Berghe, and Dirk Van Oud-1414
heusden. 2011. The city trip planner: an1415
expert system for tourists. Expert Systems with1416
Applications, 38(6):6540–6546.1417

Nikolaos Vathis, Charalampos Konstantopoulos,1418
Grammati Pantziou, and Damianos Gavalas.1419
2023. The vacation planning problem: A multi-1420
level clustering-based metaheuristic approach.1421
Computers & Operations Research, 150:106083.1422

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-1423
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and1424
Anima Anandkumar. 2023. Voyager: An open-1425
ended embodied agent with large language mod-1426
els. arXiv preprint arXiv:2305.16291.1427

Ruoyao Wang, Peter Jansen, Marc-Alexandre Côté,1428
and Prithviraj Ammanabrolu. 2022. Science-1429
world: Is your agent smarter than a 5th grader?1430
arXiv preprint arXiv:2203.07540.1431

Jason Wei, Xuezhi Wang, Dale Schuurmans,1432
Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,1433
Denny Zhou, et al. 2022. Chain-of-thought1434
prompting elicits reasoning in large language1435
models. Advances in neural information process-1436
ing systems, 35:24824–24837.1437

Wolfgang Wörndl, Alexander Hefele, and Daniel1438
Herzog. 2017. Recommending a sequence of in-1439
teresting places for tourist trips. Information1440
Technology & Tourism, 17:31–54.1441

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei1442
He, Yiwen Ding, Boyang Hong, Ming Zhang,1443
Junzhe Wang, Senjie Jin, Enyu Zhou, et al.1444
2023. The rise and potential of large language1445
model based agents: A survey. arXiv preprint1446
arXiv:2309.07864.1447

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,1448
Renze Lou, Yuandong Tian, Yanghua Xiao, and1449
Yu Su. 2024. Travelplanner: A benchmark for1450
real-world planning with language agents. arXiv1451
preprint arXiv:2402.01622.1452

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, 1453
Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun- 1454
ning Zhao, Qian Liu, Che Liu, et al. 2023a. Ope- 1455
nagents: An open platform for language agents 1456
in the wild. arXiv preprint arXiv:2310.10634. 1457

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, 1458
Ze Gong, and Harold Soh. 2023b. Trans- 1459
lating natural language to planning goals 1460
with large-language models. arXiv preprint 1461
arXiv:2302.05128. 1462

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, 1463
Izhak Shafran, Karthik Narasimhan, and Yuan 1464
Cao. 2022. React: Synergizing reasoning and 1465
acting in language models. arXiv preprint 1466
arXiv:2210.03629. 1467

Matei Zaharia, Omar Khattab, Lingjiao Chen, 1468
Jared Quincy Davis, Heather Miller, Chris 1469
Potts, James Zou, Michael Carbin, Jonathan 1470
Frankle, Naveen Rao, et al. 2024. The 1471
shift from models to compound ai sys- 1472
tems. Berkeley Artificial Intelligence Re- 1473
search Lab. Available online at: https://bair. 1474
berkeley. edu/blog/2024/02/18/compound-ai- 1475
systems/(accessed February 27, 2024). 1476

Zirui Zhao, Wee Sun Lee, and David Hsu. 2024. 1477
Large language models as commonsense knowl- 1478
edge for large-scale task planning. Advances in 1479
Neural Information Processing Systems, 36. 1480

Huaixiu Steven Zheng, Swaroop Mishra, Hugh 1481
Zhang, Xinyun Chen, Minmin Chen, Azade Nova, 1482
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, 1483
et al. 2024. Natural plan: Benchmarking llms 1484
on natural language planning. arXiv preprint 1485
arXiv:2406.04520. 1486

Weimin Zheng and Zhixue Liao. 2019. Using a 1487
heuristic approach to design personalized tour 1488
routes for heterogeneous tourist groups. Tourism 1489
Management, 72:313–325. 1490

Yu Zheng, Lizhu Zhang, Zhengxin Ma, Xing Xie, 1491
and Wei-Ying Ma. 2011. Recommending friends 1492
and locations based on individual location history. 1493
ACM Transactions on the Web (TWEB), 5(1):1– 1494
44. 1495

Chenbo Zhu, Jian-Qiang Hu, Fengchun Wang, Yi- 1496
fan Xu, and Rongzeng Cao. 2012. On the tour 1497
planning problem. Annals of Operations Re- 1498
search, 192:67–86. 1499

A Appendix 1500

Traditional TTDP solutions are generally clas- 1501

sified into two categories: recommender sys- 1502

tems and operations research methods. Recom- 1503

mender systems frame TTDP as a recommen- 1504

dation problem, such as POI recommendation 1505

or travel plan recommendation. They typically 1506

15



leverage common techniques from the recom-1507

mendation domain, including collaborative fil-1508

tering and deep learning, to address it (Halder1509

et al., 2024). The solutions leverage common1510

operations research techniques, including ex-1511

act algorithms, heuristic algorithms, and meta-1512

heuristic algorithms. The solutions leverage1513

common operations research techniques, includ-1514

ing exact algorithms, heuristic algorithms, and1515

metaheuristic algorithms. (Ruiz-Meza and1516

Montoya-Torres, 2022).1517

Substantial research has been conducted in1518

the field of traditional travel planning. For ex-1519

ample, Ruiz-Meza and Montoya-Torres (2022)1520

developed a taxonomy of existing TTDP re-1521

search based on the type of optimization objec-1522

tives (single-objective vs. multi-objective) and1523

conducted a comprehensive analysis of TTDP1524

modeling approaches from an operations re-1525

search perspective, covering major OP vari-1526

ants and their associated solution techniques.1527

Similarly, Gavalas et al. (2014) discussed the1528

models, algorithms, and methodologies for the1529

Tourist Route Design Problem, gradually ex-1530

tending the basic OP from an operations re-1531

search perspective.1532

Additionally, Herzog et al. (2019) re-1533

viewed TTDP research from the perspective of1534

itinerary recommender systems, highlighting1535

advancements in recommendation techniques,1536

data analysis, and user interfaces. Halder et al.1537

(2024) Reviewed the entire process of itinerary1538

recommendation, covering data processing and1539

evaluation methods, as well as algorithms tai-1540

lored for individual tourists and tourist groups.1541

Meanwhile, Kontogianni and Alepis (2020)1542

summarized key concepts in the field of smart1543

tourism, including social media, context aware-1544

ness, and the Internet of Things.1545

A.1 Recommender systems1546

In the context of recommender systems, travel1547

planning can be further divided into two cat-1548

egories: POI recommendation and itinerary1549

recommendation. POI recommendation aims1550

to suggest a series of attractions to users,1551

while itinerary recommendation integrates mul-1552

tiple POIs into a comprehensive trip plan,1553

considering time, distance, and other con-1554

straints (Halder et al., 2024). Research on POI1555

recommendation has been extensively explored.1556

For instance, Jorro-Aragoneses et al. (2017)1557

introduced the Madrid Live context-aware rec- 1558

ommender system, which combines user prefer- 1559

ences, location, and weather factors to recom- 1560

mend tourist and leisure activities in Madrid. 1561

Zheng et al. (2011) designed a personalized Ge- 1562

ographic Information System (GIS) that pre- 1563

dicts user preferences for unvisited locations by 1564

analyzing the user’s location history and the 1565

location data of similar tourists. The CAPE 1566

model (Chang et al., 2018) recommends POIs 1567

based on users’ check-in records and textual 1568

information about POIs but does not account 1569

for personalized preferences. In contrast, Pang 1570

et al. (2020) proposed a POI recommendation 1571

method based on a hierarchical attention mech- 1572

anism to improve recommendation accuracy. 1573

Significant progress has also been made in 1574

the area of itinerary recommendation. Lim 1575

et al. (2018) proposed the PersTour system, 1576

which combines POI visit times with user inter- 1577

est preferences to provide personalized itinerary 1578

recommendations. Their study demonstrates 1579

that time-based interests play a more signifi- 1580

cant role than frequency-based interests in trip 1581

planning. Brilhante et al. (2015) introduced 1582

the TripBuilder algorithm, which models the 1583

travel recommendation problem as a Gener- 1584

alized Maximum Coverage (GMC) problem, 1585

aiming to optimize POI popularity and user 1586

preferences within the user’s available time. 1587

Gasmi et al. (2024) used multi-objective evolu- 1588

tionary algorithms (such as NSGA-II, SPEA2, 1589

and IBEA) to generate personalized itinerary 1590

recommendations, aiming to balance POI pop- 1591

ularity and user interests for tourists unfamil- 1592

iar with a city. Comparative studies based on 1593

Flickr datasets from different cities showed that 1594

NSGA-II performed particularly well in pro- 1595

viding personalized itinerary recommendations 1596

that meet tourists’ needs. Vansteenwegen et al. 1597

(2011) developed the City Trip Planner, a web 1598

application for planning multi-day trips, which 1599

generates recommended itineraries based on 1600

the opening and closing times of each POI. 1601

A.2 Operations research methods 1602

Operations research methods typically model 1603

the TTDP as an OP or one of its variants (Ruiz- 1604

Meza and Montoya-Torres, 2022). The OP in- 1605

volves selecting from multiple candidate POIs, 1606

considering both the score of each POI and 1607

time constraints, with the goal of planning the 1608

16



optimal route that maximizes the total score1609

of the visited POIs within the available time1610

budget (Souffiau et al., 2009; Vansteenwegen1611

et al., 2009).1612

Based on Rodríguez et al. (2012); Ruiz-Meza1613

and Montoya-Torres (2022), when modeling1614

TTDP as an OP, the objective is to select a1615

subset of POIs from a set of locations pi (where1616

i ∈ {1, 2, ..., N}, and N is the total number1617

of locations), and maximize the sum of the1618

POI scores si within a time budget Tmax. The1619

objective function can be expressed as:1620

max
N−1∑
i=2

N∑
j=2

pixij (1)1621

where xij is a binary variable, xij = 1 if POI i1622

is visited from POI j, and xij = 0 otherwise.1623

The route must start at the origin p1 and end1624

at the destination pN , with each location being1625

visited only once. Meanwhile, the total travel1626

time must not exceed the time budget Tmax.1627

Additionally, route coherence must be ensured:1628

if a POI i is visited, it must be reached from1629

another node, and a next node must be visited1630

from it. No sub-tours are allowed in the path,1631

subject to the following constraints:1632

1. Start and end constraints:1633

N∑
j=2

x1j = 1,
N−1∑
i=1

xiN = 1 (2)1634

2. Single visit constraint:1635

N−1∑
i=1

xij ≤ 1, j = 2, ..., N (3)1636

3. Total time constraint:1637

N−1∑
i=1

N∑
j=2

tijxij ≤ Tmax (4)1638

4. Route coherence constraint:1639

N−1∑
i=1

xim =
N∑

j=2
xmj , ∀m = 2, ..., N − 1 (5)1640

5. Sub-tour elimination constraint:1641

2 ≤ ui ≤ N, ∀i = 2, ..., N (6)1642

1643
ui −uj +1 ≤ (N −1)(1−xij), ∀i, j = 2, ..., N

(7)1644

where tij denotes the travel time from POI i 1645

to POI j, Tmax represents the maximum travel 1646

time budget, and ui represents the position of 1647

node i in the path. 1648

Through these formulas, the OP-based travel 1649

planning problem is defined as an optimization 1650

problem, with the objective of selecting ap- 1651

propriate POIs to maximize the score within 1652

the time budget and generating an optimal 1653

travel route. As the number of POIs increases, 1654

the complexity of this problem grows, making 1655

it an NP-hard problem. Therefore, in practi- 1656

cal applications, heuristic algorithms are often 1657

used to solve the problem within a reasonable 1658

time frame, providing feasible route planning 1659

solutions. 1660

Significant research has been conducted on 1661

the TTDP based on the OP. Wörndl et al. 1662

(2017) developed an algorithm for planning 1663

short city trips on foot, modeling the problem 1664

as an OP and solving it using a variant of Di- 1665

jkstra’s algorithm. Karbowska-Chilinska and 1666

Chociej (2019) applied a greedy heuristic to the 1667

multi-stage electric vehicle TTDP, replacing ho- 1668

tels with electric charging stations to address 1669

the specific needs of electric vehicles. Toledo 1670

et al. (2019) They proposed a hyper-heuristic 1671

algorithm for the OP with hotel selection, com- 1672

bining heuristics like insertion, 2-opt, and hotel 1673

improvements to improve solution quality. Ab- 1674

baspour and Samadzadegan (2009) applied a 1675

Genetic Algorithm (GA) to solve the TTDP, 1676

emphasizing time constraints and multi-modal 1677

transportation. 1678

Recently, researchers have shifted their fo- 1679

cus to various OP variants. One such example 1680

is the Orienteering Problem with Time Win- 1681

dows (OPTW), where each location can only 1682

be visited within a designated time window, 1683

often corresponding to the attraction’s open- 1684

ing hours. (Kantor and Rosenwein, 1992). 1685

The Time-Dependent Orienteering Problem 1686

(TDOP) assumes that the travel time between 1687

two locations varies depending on the depar- 1688

ture time from the first location. (Fomin 1689

and Lingas, 2002). This extension is valuable 1690

for modeling itinerary recommendations, par- 1691

ticularly when accounting for the impact of 1692

different modes of transportation. Fomin and 1693

Lingas (2002) provided a (2+ϵ)-approximation 1694

algorithm to solve the TDOP problem. Gao 1695

et al. (2023) studied route planning in large- 1696

17



scale urban networks, focusing on time and1697

utility variations. Vathis et al. (2023) com-1698

bined multi-level clustering with dynamic pro-1699

gramming to define and solve a geographically1700

constrained travel planning problem (VPP).1701

However, traditional methods rely on rigid1702

templates and struggle with unstructured nat-1703

ural language queries. They often provide1704

generic solutions that don’t account for per-1705

sonalized preferences and are cumbersome in1706

extracting and structuring data. Travel plan-1707

ning requires dynamic POI management, real-1708

time updates, and adaptability to unforeseen1709

events, which static systems cannot handle.1710

Additionally, conventional systems lack human-1711

like cognitive abilities, making them inflexible1712

in addressing complex, open-domain problems1713

and diverse constraints such as time, budget,1714

and accessibility.1715
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