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Abstract

Planning is a critical step in advancing
artificial intelligence (AI) systems toward
higher levels of intelligence and is one
of the core capabilities of autonomous
decision-making systems, involving com-
plex processes of understanding, reasoning,
and decision-making. Current research on
planning with AI mostly focuses on simu-
lated environments. Although significant
progress has been made, its application
in the real world remains limited due to
the unpredictable and complex nature of
real-world scenarios. Travel planning, as a
practical task, is a prime example of these
challenges, involving the coordination of fac-
tors such as destination selection, budget
constraints, and personalized preferences,
while also requiring adaptation to changes
in external conditions. This review, based
on the key roles of LLMs in travel plan-
ning tasks, presents a taxonomy of existing
methodologies, categorizing them into three
types: planner, reformulator, and knowl-
edge source. Furthermore, it outlines di-
rections for future research. We hope this
review will provide valuable background in-
formation and guidance for researchers in
the field, driving the development of this
emerging topic.

Keywords: Large Language Models, Travel
Planning, Tourist Trip Design Problem,
Natural Language Processing, Agent

1 Introduction

Planning is a critical step in advancing Al sys-
tems toward higher levels of intelligence and a
core capability of autonomous decision-making
systems (Huang et al., 2024a), encompassing
complex processes of understanding, reasoning,
and decision-making (Long, 2005). In recent
years, the development of LLMs has driven
a paradigm shift in the AI field (Zhao et al.,

2024). These models demonstrate exceptional
intelligence in reasoning, tool use, and planning,
offering new possibilities for enhancing the plan-
ning capabilities of autonomous agents (Dagan
et al., 2023). With continuous breakthroughs
in LLMs capabilities, researchers have proposed
various methods to integrate these models into
planning modules, such as task decomposition,
plan selection, external modules, reflection, and
memory, boosting Al planning to higher lev-
els (Huang et al., 2024Db).

However, most current Al planning research
remains focused on simulated environments,
such as ALFWorld (Shridhar et al., 2020), Sci-
enceWorld (Wang et al., 2022). While these
studies have achieved significant progress, they
face considerable challenges in real-world appli-
cations. The complexity and unpredictability
of real-world scenarios far exceed the scope of
simulated environments, limiting the broader
application of these studies. Consequently,
applying planning technologies to real-world
tasks, particularly complex scenarios like travel
planning, holds significant research value.

Meanwhile, tourism, as a vital component of
the global economy, contributed 9.1% to global
GDP in 2023, driving economic development
through job creation and business opportuni-
ties (Herzog et al., 2019; Analytica, 2024). To
enhance the travel experience, tourists usu-
ally need to plan under multiple constraints,
including budget, time, transportation, accom-
modation, restaurant, and the attractiveness
of the destinations (Zheng and Liao, 2019; Ro-
driguez et al., 2012). However, the overwhelm-
ing amount of travel information has led to
information overload, making manual travel
planning extremely challenging. Users often
struggle to identify the best solutions that meet
their needs, which requires Al technologies to
optimize this process.



Traditional travel planning methods are
based on fixed templates and perform poorly
when handling unstructured natural language
queries (Bhowmick et al., 2012; Zhu et al.,
2012). Extracting key information and convert-
ing it into structured data is a cumbersome pro-
cess, and these methods often provide generic
solutions that fail to account for users’ personal-
ized preferences (de la Rosa et al., 2024). More-
over, traditional planning systems rely on static
databases, which limits their ability to update
information in real time and respond to user
needs (Hsueh and Huang, 2019). They also
lack the capacity to handle dynamic changes
and complex constraints (Bubeck et al., 2023;
Silver et al., 2017).

The emergence of LLMs offers innovative
solutions to these challenges. First, LLMs
can understand and process queries in natu-
ral language, allowing users to describe their
needs and constraints directly in natural lan-
guage (Sumers et al., 2023), greatly simplifying
the interaction between user and system. By
combining LLMs with traditional constraint-
solving techniques, these systems retain the
flexibility of natural language processing (NLP)
while ensuring the rigor of constraint solvers,
thereby delivering end-to-end travel planning
solutions (Hao et al., 2024; de la Rosa et al.,
2024). Furthermore, LLMs can dynamically
retrieve the latest external information, user
feedback, and evolving requirements, adjust-
ing plans in real time to meet personalized
needs (Ma et al., 2024). With their extensive
knowledge base and robust planning capabili-
ties, LLMs can also address complex constraint
problems, providing users with more precise
and flexible travel planning services (Xie et al.,
2024; Miin and Wei, 2024).

Although some research has applied LLMs
to travel planning (Xie et al., 2024; Hao et al.,
2024; de la Rosa et al., 2024; Zheng et al., 2024;
Ma et al., 2024; Miin and Wei, 2024), there has
yet to be a systematic review of travel planning
solutions in the era of LLMs. Therefore, this
paper summarizes the main application sce-
narios, available datasets, evaluation methods
for LLM-powered travel planning, and point
out future directions. In Section 2, we analyze
different scenarios of travel planning. Then,
Section 3 reviews available datasets and evalu-
ation methods. Section 4 provides a detailed

overview of the application of LLMs in travel
planning. We highlight the opportunities in
the era of LLMs in Section 5 and conclude this
review in Section 6. The review of traditional
travel planning is provided in the Appendix A.

In summary, the main contributions of this
review are as follow:

1. We first provide a taxonomy of existing
works on LLMs-powered travel planning,
which can be categorized into planner, re-
formulator, and knowledge source, filling
a research gap in this field.

2. We propose future research directions for
travel planning in the era of LLMs, aiming
to expand research horizons and encourage
further exploration.

2 Travel Planning Scenarios

In travel planning, different scenarios often cor-
respond to varying travel needs and levels of
complexity. To better highlight these distinc-
tions, this section categorizes travel scenarios
along two key dimensions: travel type (individ-
ual vs. group trip) and travel duration (day
tour vs. multi-day tour). This classification
helps clarify the basic requirements of each
scenario type.

2.1 Travel Type
2.1.1 Individual Trip

Individual trips are a key focus in travel plan-
ning research, primarily centered on creating
personalized itineraries tailored to a user’s
preferences. Most traditional research on the
Tourist Trip Design Problem (TTDP) has con-
centrated on individual trip (Ruiz-Meza and
Montoya-Torres, 2022; Woérndl et al., 2017;
Souffiau et al., 2009; Vansteenwegen et al.,
2009), as the planning process only considers
the needs of a single user, making it less com-
plex than group travel. Current research on
travel planning with LLMs is mostly conducted
in this scenario.

2.1.2 Group Trip

In real-world scenarios, tourists may also travel
in groups, making it necessary for travel plan-
ning to account for the diverse preferences of
group members and to find solutions that meet
the ends of the entire group. Compared to



individual trip, planning for group trip is more
complex, as the system must balance the var-
ied needs of members while ensuring fairness.
However, research on this problem remains lim-
ited (Lim et al., 2016; Anagnostopoulos et al.,
2017).

2.2 Travel Duration
2.2.1 Day Tour

A day tour refers to an itinerary that can be-
gin at any time during the day and be com-
pleted within the same day, e.g., city tour.
These tours require careful consideration of
time constraints, information gathering, point-
of-interests (POI) selection, route planning,
and the personalization of arrangements accord-
ing to user preferences (Halder et al., 2024).

The key factors in day tour planning can
be summarized into two main aspects (Tang
et al., 2024): dynamic information adjustment
and personalized planning. Due to the flexi-
ble start and end times of day tours, dynamic
information adjustment is particularly impor-
tant. The planning process must account for
real-time changes in attractions and adapt to
unexpected events, such as changes in opening
hours or extreme weather conditions. Addition-
ally, personalized planning requires tailoring
the itinerary to the specific preferences and
time constraints of a user to ensure an opti-
mized experience for them.

2.2.2 Multi-day Tour

Planning a multi-day tour is inherently a com-
plex task as it involves a series of interdepen-
dent decisions across various aspects, including
destinations, accommodations, transportation,
and restaurant arrangements (Xie et al., 2024;
Zheng et al., 2024). Compared to single-day
trips, multi-day itinerary planning is more chal-
lenging, as it requires the careful allocation
of daily activities to ensure both coherence
and variety, while also considering the trav-
elers’ stamina and need for rest. Arranging
a multi-day itinerary often entails sequential
optimization of locations, taking into account
the distances between destinations, transporta-
tion conditions, and daily schedules to avoid
overexertion or overly tight timelines, therefor
providing travelers with a rich and comfortable
experience.

Due to the complexity of multi-day travel

planning, LLMs struggle to deliver an optimal
solution that meets the intricate requirements,
and thus their accuracy on this task remains
relatively low (Xie et al., 2024; Zheng et al.,
2024).

3 Datasets and Evaluation

3.1 Datasets

In the context of travel planning, high-quality
datasets specifically designed for LLMs remain
scarce. Traditional travel planning datasets
often rely on structured data, supporting only
limited rules and constraints, which falls short
of meeting the complex requirements of prac-
tical scenarios. To comprehensively evaluate
the actual performance of LLMs in travel plan-
ning tasks, it is essential to develop special-
ized datasets that can encompass multi-level
constraints and support natural language in-
teraction. This section introduces an publicly
available dataset that is specially designed for
travel planning tasks with LLMs: TravelPlan-
ner (Xie et al., 2024)

TravelPlanner (Xie et al., 2024) was con-
structed by integrating approximately 4 mil-
lion data points from various open data sources,
creating a sandbox environment that supports
diverse travel planning tasks. Data sources in-
clude the Kaggle Flight dataset, Zomato restau-
rant dataset, Airbnb accommodations dataset,
Google Distance Matrix API (for calculating
inter-city distances), and Google Places API
(for obtaining POI information). All data have
been cleaned and adapted to simulate complex
travel scenarios.

It features 1,225 user-generated natural lan-
guage queries, each incorporating different com-
binations of constraints and reference plans
that cover key elements of a trip such as depar-
ture location, destination, and timeframe. For
example, “I’d like to travel from Hong Kong to
Tokyo from December 8 to 15, 2024. I prefer a
more relaxed pace. My budget is $2,000, and I
would like a single room.” To increase planning
complexity, queries are categorized by travel
duration (3-day, 5-day, and 7-day trips).Task
difficulty is further divided into simple (bud-
get constraints only), medium (budget plus
restaurant or lodging requirements), and diffi-
cult (multiple constraints such as budget and
transportation preferences), thereby testing a



model’s adaptability and planning abilities un-
der varying constraint combinations.

To ensure data quality and consistency, all
queries and corresponding reference plans were
meticulously designed by professional annota-
tors, with each plan taking an average of 12
minutes to design. Only plans meeting all pre-
defined constraints were accepted. The data
construction process involved multi-stage qual-
ity control to guarantee the accuracy and va-
lidity of generated plans, providing a reliable
benchmark for evaluating LLMs on travel plan-
ning tasks.

3.2 Evaluation

To evaluate LLMs for travel planning, we sum-
marize evaluation metrics across two primary
dimensions: offline and online assessments.
These evaluations comprehensively assessment
both the model’s efficacy in generating travel
plans and user experience.

3.2.1 Offline Evaluation

Offline evaluation focuses on assessing the
structural and contextual accuracy of the gen-
erated travel plans, emphasizing the model’s
ability to meet task requirements. Key metrics
include:

1. Delivery Rate (Xie et al., 2024): This
metric measures the model’s ability to success-
fully generate a complete plan within a prede-
fined step limit, ensuring an efficient planning
process that avoids from looping or repeated
failures.

2. Final Pass Rate (Xie et al., 2024): This
represents the proportion of plans that meet all
task-specific constraints, reflecting the model’s
applicability and the practical feasibility of the
generated plans.

3. Exact Match Score (Zheng et al., 2024):
By comparing the model’s output to the
ground-truth plan, this score assesses the level
of detail accuracy, quantifying how closely the
generated plan aligns with a standard answer.

4. Plan Utility (Li, 2013): This metric ag-
gregates the utility scores of the POIs included
in the plan, as an indicator of the quality and
relevance of the recommendations in the plan.

3.2.2 Online Evaluation

Online evaluation centers on user interaction,
measuring whether the generated plans align

with user expectations. Key metrics include:

1. User Satisfaction: Based on user ratings
of the generated plans, this metric assesses the
practical usefulness and appeal of the plans,
providing direct feedback of user acceptance.

2. System Usability and User Experience
Questionnaires: Utilizing established question-
naires such as the System Usability Scale
(SUS) (Brooke, 1996) and the User Experience
Questionnaire (UEQ) (Laugwitz et al., 2008),
this approach collects structured feedback on
usability and user satisfaction, offering insights
into the overall interactive quality.

By summarizing the offline and online eval-
uation metrics, we establish a comprehensive
framework to assess the performance of LLMs
on travel planning. It provides a reference for
future research and applications in the field,
facilitating a balanced focus on both technical
effectiveness and user-centered design.

4 How to Apply LLMs to Travel
Planning

LLMs, such as GPT-4 and Gemini, have
brought about revolutionary changes in NLP
and reasoning tasks, demonstrating signifi-
cant potential in areas like natural language
understanding, reasoning, and optimization.
(Ge et al., 2024; Team et al., 2023). These
models, leveraging the vast knowledge accu-
mulated from extensive public resources and
training data, can effectively understand user
needs and execute complex instructions. This
makes LLMs particularly well-suited for intri-
cate tasks that require broad domain knowl-
edge, such as travel planning. (Valmeekam
et al., 2024; Song et al., 2023; Xie et al., 2023a).

Regarding the capabilities of LLMs in plan-
ning tasks, three mainstream perspectives exist
in the academic community:

1. Optimists believe that LLMs not only
possess excellent language comprehension
abilities but also have the potential to au-
tonomously plan Research has explored
the feasibility of applying LLMs for au-
tonomous planning in classic environments
such as Blocksworld (Valmeekam et al.,
2024), as well as in tasks involving embod-
ied agents (Wang et al., 2023) and web
agents (Deng et al., 2024), demonstrating
their potential for planning.



2. Pessimists are skeptical of the planning
capabilities of LLMs, arguing that these
models essentially function as advanced
translators. They convert reasoning prob-
lems embedded in text into symbolic rep-
resentations, which are then processed by
traditional symbolic solvers. (Xie et al.,
2023b; Liu et al., 2023; Pan et al., 2023).

3. Realists take a more balanced view, as-
serting that while LLMs cannot indepen-
dently complete planning tasks, their role
extends beyond merely serving as “trans-
lators”. These models, acting as powerful
cognitive assistants, can provide a rich
source of knowledge and support planning
tasks (Kambhampati et al., 2024). For in-
stance, (Guan et al., 2023) demonstrated
that LLMs can act as world models and
user preference models in supervised envi-
ronments, aiding real-world planning tasks
and improving planning efficiency.

This diversity of perspectives is also fully re-
flected in research on travel planning. Based on
the three types of attitudes mentioned above,
existing methodologies can be categorized into
three types according to the roles of LLMs in
travel planning tasks: Planner, Reformulator,
and Knowledge Source (see Figure 1).

4.1 Planner

The perspective of viewing LLMs as planners
reflects the optimistic viewpoint, exploring the
potential of LLMs to independently complete
planning tasks. As planners, LLMs are tasked
with generating a personalized travel itinerary
based on natural language inputs from users
and external dynamic information. The left
side of Figure 1 illustrates the overall frame-
work of such systems, summarizing findings
from several studies in recent years (Xie et al.,
2024; Tang et al., 2024; Mo et al., 2023; Zheng
et al., 2024; Miin and Wei, 2024). Current re-
search mainly distinguishes between two modes:
the “Two-Stage Mode” (i.e., tool-use and plan-
ning) and the “Sole-Planning Mode”. The key
difference between them lies in whether the
agent utilizes tools to gather information be-
fore generating a travel plan.

4.1.1 Two-stage Mode

In this mode, an LLM first employs external
tools to gather relevant information, e.g., call-
ing a flight query API to retrieve real-time
flight data, and then proceeds to plan based
on the collected information. Xie et al. (2024)
proposed TravelPlanner, a study that simulates
real travel scenarios, creating a sandbox envi-
ronment with multiple constraints like flights,
accommodations, restaurants, and attractions
to evaluate the LLM agents’ tool-use capabil-
ities as well as their abilities to create rea-
sonable travel plans under various constraints
(e.g., budget, time and user preferences). Ex-
periments were conducted using multiple LLMs
(e.g., GPT-3.5 and GPT-4) and different plan-
ning strategies (e.g., Direct, ZS-CoT (Wei et al.,
2022), ReAct (Yao et al., 2022), and Reflex-
ion (Shinn et al., 2024)). The results showed
that even the most advanced model GPT-4
only achieved a 0.6% success rate in the two-
stage mode, with most issues stemming from
errors in tool usage and insufficient information
gathering. This highlights the limitations of
LLMs in handling complex planning tasks.

4.1.2 Sole-planning Mode

In the solo-planning mode, an LLM generates
plans based solely on the available informa-
tion, without the need for external tools. For
example, Tang et al. (2024) applied LLMs
to open-domian single-day city itinerary plan-
ning. In this study, an LLM generated travel
plans that align with user preferences and spa-
tial coherence through reasoning and planning,
based on the available information. Mo et al.
(2023) explored the ability of LLMs to predict
individual travel behavior in a sole-planning
mode. They designed prompts that included
task descriptions, travel features, and personal
attributes, incorporating chain-of-thought and
plan-solving strategies. Even without training
samples, the predictions made by LLMs were
highly competitive, achieving strong accuracy
and F1 scores compared to traditional super-
vised learning methods such as multinomial
logistic regression, random forests, and neural
networks. Zheng et al. (2024) incorporated in-
tercity flight connectivity information into the
LLMs’ context to generate travel plans. They
found that LLMs could effectively complete
travel planning in the sole-planning mode, with
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Figure 1: Based on the roles of LLMs in travel planning tasks, existing methodologies can be categorized
into three frameworks: Planner, Reformulator, and Knowledge Source.

GPT-4 and Gemini 1.5 Pro achieving 31.1%
and 34.8% success rates, respectively. However,
as the complexity of the task increased (e.g., in-
volving more cities, people, or days), the perfor-
mance of LLMs decreased significantly. When
it involved 10 cities, the performance of all mod-
els dropped below 5%, highlighting the signifi-
cant gap in current state-of-the-art LLMs’ abil-
ity to handle natural language-based planning.
Miin and Wei (2024) developed a framework
incorporating a “human-in-the-loop” feedback
mechanism. In this framework, LLMs generate
initial prompts, which are iteratively refined
with human feedback. The results showed that
after one round of human-in-the-loop optimiza-
tion, the success rate of GPT-40 on the Trav-
elPlanner dataset increased significantly, from
2.78% to 6.67%, demonstrating the potential of
human feedback in enhancing the travel plan-
ning capabilities of LLMs.

4.2 Reformulator

The view of LLMs as reformulators reflects
the pessimist perspective. This line of re-
search leverages LLMs to transform travel plan-
ning problems expressed in natural language
into structured representations that symbolic
solvers, e.g., Planning Domain Description Lan-
guage (PDDL), then address the complex multi-

constraint solving tasks. Previous research
(Liu et al., 2023) has demonstrated that LLMs
are capable of generating effective PDDL files.
The overall framework of such systems is illus-
trated in the middle of Figure 1. These studies
argue that while LLMs excel at parsing human
input and facilitating interaction, they are lim-
ited in strictly handling all constraints. On
the other hand, symbolic solvers are sound and
complete when dealing with multi-constraint
satisfiability problems but struggle with flexi-
ble, general, and sometimes vague natural lan-
guage demands. Therefore, a framework that
combines LLMs with symbolic solvers effec-
tively leverages the strengths of both, overcom-
ing the limitations of LLMs in managing com-
plex constraints and enhancing the efficiency
of the entire travel planning process.

Hao et al. (2024) proposed a framework
that converts natural language travel plan-
ning inputs into Satisfiability Modulo Theories
(SMT) problems using an LLM and then solves
them with an SMT solver. This framework
efficiently solved complex travel planning prob-
lems, achieving an impressive 97.0% success
rate on the TravelPlanner dataset. When the
input query is unsatisfiable, the SMT solver
identifies the issue, and the LLM suggests mod-
ifications, interacting with the user to refine



the query until the constraints are satisfied.
Similarly, de la Rosa et al. (2024) introduced
the TRIP-PAL framework, which utilizes natu-
ral language interactions with users and lever-
ages the broad knowledge of LLMs to identify
POIs and user preferences. The user infor-
mation and travel details are then converted
into a data structure that the planner can pro-
cess. Subsequently, an automated planner gen-
erates the optimal travel plan that satisfies the
constraints. Experimental results show that
TRIP-PAL performs more robustly in complex
scenarios compared to using only an LLM for
travel planning, particularly when handling
more POIs or longer travel durations, effec-
tively maximizing user utility.

4.3 Knowledge Source

The perspective of viewing LLMs as Knowledge
source reflects the realists stance, suggesting
that LLMs not only possess excellent natural
language processing capabilities but also lever-
age their extensive open-world and domain-
specific knowledge to provide knowledge for
complex tasks, thereby assisting in planning
tasks. The right side of Figure 1 illustrates the
overall framework of such a system. In this
model, LLMs generate an initial plan, which is
critiqued by external critics. These critics may
be either the user or another model. Based on
the feedback, LLMs subsequently adjust and
optimize the plan, iterating through multiple
rounds of interaction to ultimately generate a
high-quality travel plan.

Ma et al. (2024) proposed the ExploreLLM
system, which uses LLMs as a knowledge
source. In this system, LLMs decompose users’
travel planning needs into multiple subtasks,
such as determining dates and duration, book-
ing hotels and flights, etc. For each subtask,
LLMs generate multiple alternative options for
users to evaluate and select via an interactive
interface that can express their preferences.
Once all subtasks are completed, ExploreLLM
generates a comprehensive travel plan. Experi-
mental results show that ExploreLLM greatly
improved planning efficiency and user satisfac-
tion in complex planning tasks.

Kambhampati et al. (2024) further extended
this approach with the LLM-Modulo frame-
work, enabling iterative interactions between
LLMs and external critics (Gundawar et al.,

2024). Within this framework, LLMs first gen-
erate an initial travel plan based on contextual
information (e.g., flights and hotels). Critics
then evaluate the plan, and if it doesn’t meet
the requirements, LLMs iteratively refine it
based on the feedback, generating candidate
solutions until consensus or the maximum num-
ber of iterations is reached. Experimental re-
sults on the TravelPlanner dataset show that
LLM-Modulo achieved a final success rate of
20.6%, a 4.6-fold improvement over using LLMs
alone, highlighting its effectiveness in handling
complex planning tasks.

5 Future Directions

5.1 Datasets for Travel Planning

Traditional itinerary planning typically re-
lies on structured data and predefined rules,
whereas LLMs can understand vague require-
ments and adapt to dynamic contexts through
natural language interaction, enabling more
flexible planning capabilities. This shift has
brought about a demand for new datasets to
support LLMs in handling interactive tasks
under complex, multi-constraint travel scenar-
ios. However, there is a significant lack of
open-source datasets for LLMs-powered travel
planning, with TravelPlanner being the only
one available benchmark.

While TravelPlanner provides crucial sup-
port for evaluating LLMs’ performance in
travel planning, it has certain limitations, par-
ticularly in assessing these models’ ability to
handle unsatisfiable queries. TravelPlanner
is lack of example scenarios where the initial
user query cannot be satisfied, which limits the
comprehensive evaluation of LLMs’ interactive
planning capabilities. Specifically, TravelPlan-
ner does not verify LLMs’ ability to identify
the reasons for unsatisfiability, nor their com-
petence to adjust and optimize plans based on
user feedback to better meet user preferences.
To bridge this gap, Hao et al. (2024) modified
12 constraints in the TravelPlanner dataset to
create unsatisfiable scenarios, and developed
an international travel dataset that contains
39 unsatisfiable queries to explore LLMs’ re-
pair capabilities when handling such queries.
However, this dataset has not been released.

Future research should build more diverse
datasets that cover a wide range of travel sce-



narios and various types of user constraints,
especially those that involve complex situa-
tions with unsatisfiable queries. Such datasets
will not only support the evaluation of LLMs’
performance in terms of adaptability and inter-
active planning but also advance the develop-
ment of LLMs in intelligent user-centric travel
planning systems as well as promoting the ap-
plications of LLMs in real-world scenarios.

5.2 Human-in-the-Loop (HITL)

The degree of human supervision, feedback,
and intervention for an LLM-based agent dur-
ing task execution can be viewed as a con-
tinuum. At one end of the spectrum, users
have full control and validation over all out-
puts; in the middle, users intervene only when
errors occur; and at the other end, the agent
can autonomously complete all aspects of the
task, including complex causal reasoning. Re-
search by Xie et al. (2024) on the TravelPlanner
dataset shows that the success rate of GPT-
4 in fully autonomous planning is only 0.6%,
revealing the limitations of LLMs in handling
complex travel planning tasks and their diffi-
culty in independently completing plans under
intricate scenarios.

In certain situations, incorporating human
input to enhance Al inference is particularly
effective, especially for tasks involving ethical
considerations, creative tasks, or ambiguous
situations (Durante et al., 2024). Humans can
provide critical guidance to the agent, correct
errors, and supplement insights that the agent
might struggle to infer (Kapoor et al., 2024).
For example, Shi et al. (2024) found that
simple user feedback improved GPT-4’s perfor-
mance in complex programming tasks from 0%
to over 86%, transforming it from nearly ineffec-
tive to nearly perfect. Therefore introducing a
HITL mechanism to travel planning tasks may
also significantly enhance task success rates.

5.3 Multi-agents for Group Travel
Planning

In practice, tourists may travel in groups, but
research on group travel planning remains rel-
atively limited. Compared to individual travel
planning, it needs to accommodate the diverse
needs of multiple members that can increase
the task complexity.

The application of LLLM-based agents in au-

tonomous travel planning represents a promis-
ing direction for future research. Intelligent
agents are Al-driven systems capable of in-
tegrating external knowledge, multimodal in-
puts, and human feedback, enabling them to
autonomously execute complex tasks (Xi et al.,
2023). As noted by Zaharia et al. (2024), “Al
agents could be the most influential Al trend
of 2024, with the potential to maximize Al ef-
ficiency in unprecedented ways.” Furthermore,
Al agents are regarded as a key avenue to-
ward achieving Artificial General Intelligence
(AGI) (Durante et al., 2024). With their abili-
ties in contextual understanding, human-like
text generation, and complex reasoning, LLM-
powered agents facilitate more engaging and
smooth interactions between users and travel
planning systems, offering them a better expe-
rience than traditional methods.

Recent studies show that multi-agent nego-
tiation frameworks based on LLMs perform
well in group recommendation tasks (Ji and
Ma, 2023; Alves et al., 2023), which may shed
light on group travel planning. In a multi-
agent system, each agent represents a mem-
ber, negotiating with each other to generate
an itinerary that meets the requirements of
the majority. Future research could explore
LLM-driven multi-agent frameworks to simu-
late member preferences and reconcile conflicts.

6 Conclusion

In this paper, we provide a comprehensive re-
view of the application of LLMs in travel plan-
ning, and discuss their potential in delivering
personalized and efficient solutions. Based on
the key roles of LLMs in travel planning tasks,
we present a taxonomy of existing methodolo-
gies, categorizing them into three types: Plan-
ner, Reformulator, and Knowledge Source. In
the meantime, we summarize the main appli-
cation scenarios, available datasets, and evalu-
ation methods for LLMs-powered travel plan-
ning, and point out future directions. We be-
lieve that, with the continuous advancement
of AI, LLMs-powered travel planning can offer
more practical and efficient solutions for the
tourism industry. We hope that this review
can provide valuable background information
and guidance for practitioners in the field to
advance its development.



Limitations

Nevertheless, this paper presents several lim-
itations. Firstly, our discussion is limited to
travel planning and does not extend to other
aspects such as transportation planning dur-
ing the trip. Secondly, available open-source
datasets for travel planning with LLMs are
limited, leading Section 3 to list only a single
dataset.
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A Appendix

Traditional TTDP solutions are generally clas-
sified into two categories: recommender sys-
tems and operations research methods. Recom-
mender systems frame TTDP as a recommen-
dation problem, such as POI recommendation
or travel plan recommendation. They typically



leverage common techniques from the recom-
mendation domain, including collaborative fil-
tering and deep learning, to address it (Halder
et al., 2024). The solutions leverage common
operations research techniques, including ex-
act algorithms, heuristic algorithms, and meta-
heuristic algorithms. The solutions leverage
common operations research techniques, includ-
ing exact algorithms, heuristic algorithms, and
metaheuristic algorithms.  (Ruiz-Meza and
Montoya-Torres, 2022).

Substantial research has been conducted in
the field of traditional travel planning. For ex-
ample, Ruiz-Meza and Montoya-Torres (2022)
developed a taxonomy of existing TTDP re-
search based on the type of optimization objec-
tives (single-objective vs. multi-objective) and
conducted a comprehensive analysis of TTDP
modeling approaches from an operations re-
search perspective, covering major OP vari-
ants and their associated solution techniques.
Similarly, Gavalas et al. (2014) discussed the
models, algorithms, and methodologies for the
Tourist Route Design Problem, gradually ex-
tending the basic OP from an operations re-
search perspective.

Additionally, Herzog et al. (2019) re-
viewed TTDP research from the perspective of
itinerary recommender systems, highlighting
advancements in recommendation techniques,
data analysis, and user interfaces. Halder et al.
(2024) Reviewed the entire process of itinerary
recommendation, covering data processing and
evaluation methods, as well as algorithms tai-
lored for individual tourists and tourist groups.
Meanwhile, Kontogianni and Alepis (2020)
summarized key concepts in the field of smart
tourism, including social media, context aware-
ness, and the Internet of Things.

A.1 Recommender systems

In the context of recommender systems, travel
planning can be further divided into two cat-
egories: POI recommendation and itinerary
recommendation. POI recommendation aims
to suggest a series of attractions to users,
while itinerary recommendation integrates mul-
tiple POIs into a comprehensive trip plan,
considering time, distance, and other con-
straints (Halder et al., 2024). Research on POI
recommendation has been extensively explored.
For instance, Jorro-Aragoneses et al. (2017)
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introduced the Madrid Live context-aware rec-
ommender system, which combines user prefer-
ences, location, and weather factors to recom-
mend tourist and leisure activities in Madrid.
Zheng et al. (2011) designed a personalized Ge-
ographic Information System (GIS) that pre-
dicts user preferences for unvisited locations by
analyzing the user’s location history and the
location data of similar tourists. The CAPE
model (Chang et al., 2018) recommends POIs
based on users’ check-in records and textual
information about POIs but does not account
for personalized preferences. In contrast, Pang
et al. (2020) proposed a POI recommendation
method based on a hierarchical attention mech-
anism to improve recommendation accuracy.
Significant progress has also been made in
the area of itinerary recommendation. Lim
et al. (2018) proposed the PersTour system,
which combines POI visit times with user inter-
est preferences to provide personalized itinerary
recommendations. Their study demonstrates
that time-based interests play a more signifi-
cant role than frequency-based interests in trip
planning. Brilhante et al. (2015) introduced
the TripBuilder algorithm, which models the
travel recommendation problem as a Gener-
alized Maximum Coverage (GMC) problem,
aiming to optimize POI popularity and user
preferences within the user’s available time.
Gasmi et al. (2024) used multi-objective evolu-
tionary algorithms (such as NSGA-II, SPEA2,
and IBEA) to generate personalized itinerary
recommendations, aiming to balance POI pop-
ularity and user interests for tourists unfamil-
iar with a city. Comparative studies based on
Flickr datasets from different cities showed that
NSGA-II performed particularly well in pro-
viding personalized itinerary recommendations
that meet tourists’ needs. Vansteenwegen et al.
(2011) developed the City Trip Planner, a web
application for planning multi-day trips, which
generates recommended itineraries based on
the opening and closing times of each POI.

A.2 Operations research methods

Operations research methods typically model
the TTDP as an OP or one of its variants (Ruiz-
Meza and Montoya-Torres, 2022). The OP in-
volves selecting from multiple candidate POls,
considering both the score of each POI and
time constraints, with the goal of planning the



optimal route that maximizes the total score
of the visited POIs within the available time
budget (Souffiau et al., 2009; Vansteenwegen
et al., 2009).

Based on Rodriguez et al. (2012); Ruiz-Meza
and Montoya-Torres (2022), when modeling
TTDP as an OP, the objective is to select a
subset of POIs from a set of locations p; (where
i € {1,2,...,N}, and N is the total number
of locations), and maximize the sum of the
POI scores s; within a time budget Ti,.x. The
objective function can be expressed as:

N-1 N

max Z Zpil‘ij

i=2 j=2

(1)

where x;; is a binary variable, z;; = 1 if POl ¢
is visited from POI j, and z;; = 0 otherwise.
The route must start at the origin p; and end
at the destination ppy, with each location being
visited only once. Meanwhile, the total travel

time must not exceed the time budget Tinax.

Additionally, route coherence must be ensured:
if a POI 4 is visited, it must be reached from
another node, and a next node must be visited
from it. No sub-tours are allowed in the path,
subject to the following constraints:

1. Start and end constraints:

N N-1
d =1 ) av=l
j=2 i=1

. Single visit constraint:

N-1
Y wy <1, j=2,.,N
=1

3. Total time constraint:
N-1 N
Z th’jﬂﬁi]’ < Thax (4)
i=1 j=2
4. Route coherence constraint:
N-1 N
Z Tim = mej, Ym=2,.,.N—1 (5)
i=1 j=2
5. Sub-tour elimination constraint:
2<u; <N, Vi=2,..,N (6)
ui—uj—i—lg (N—].)(]_—Iij), Vi, =2,...,N

17

where ;; denotes the travel time from POI ¢
to POI j, Tiax represents the maximum travel
time budget, and wu; represents the position of
node ¢ in the path.

Through these formulas, the OP-based travel
planning problem is defined as an optimization
problem, with the objective of selecting ap-
propriate POIs to maximize the score within
the time budget and generating an optimal
travel route. As the number of POIs increases,
the complexity of this problem grows, making
it an NP-hard problem. Therefore, in practi-
cal applications, heuristic algorithms are often
used to solve the problem within a reasonable
time frame, providing feasible route planning
solutions.

Significant research has been conducted on
the TTDP based on the OP. Worndl et al.
(2017) developed an algorithm for planning
short city trips on foot, modeling the problem
as an OP and solving it using a variant of Di-
jkstra’s algorithm. Karbowska-Chilinska and
Chociej (2019) applied a greedy heuristic to the
multi-stage electric vehicle TTDP, replacing ho-
tels with electric charging stations to address
the specific needs of electric vehicles. Toledo
et al. (2019) They proposed a hyper-heuristic
algorithm for the OP with hotel selection, com-
bining heuristics like insertion, 2-opt, and hotel
improvements to improve solution quality. Ab-
baspour and Samadzadegan (2009) applied a
Genetic Algorithm (GA) to solve the TTDP,
emphasizing time constraints and multi-modal
transportation.

Recently, researchers have shifted their fo-
cus to various OP variants. One such example
is the Orienteering Problem with Time Win-
dows (OPTW), where each location can only
be visited within a designated time window,
often corresponding to the attraction’s open-
ing hours. (Kantor and Rosenwein, 1992).
The Time-Dependent Orienteering Problem
(TDOP) assumes that the travel time between
two locations varies depending on the depar-
ture time from the first location. (Fomin
and Lingas, 2002). This extension is valuable
for modeling itinerary recommendations, par-
ticularly when accounting for the impact of
different modes of transportation. Fomin and
Lingas (2002) provided a (24 €)-approximation
algorithm to solve the TDOP problem. Gao
et al. (2023) studied route planning in large-



scale urban networks, focusing on time and
utility variations. Vathis et al. (2023) com-
bined multi-level clustering with dynamic pro-
gramming to define and solve a geographically
constrained travel planning problem (VPP).

However, traditional methods rely on rigid
templates and struggle with unstructured nat-
ural language queries. They often provide
generic solutions that don’t account for per-
sonalized preferences and are cumbersome in
extracting and structuring data. Travel plan-
ning requires dynamic POI management, real-
time updates, and adaptability to unforeseen
events, which static systems cannot handle.
Additionally, conventional systems lack human-
like cognitive abilities, making them inflexible
in addressing complex, open-domain problems
and diverse constraints such as time, budget,
and accessibility.
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