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ABSTRACT

Maintaining semantic label consistency across multiple views is a persistent chal-
lenge in 3D semantic object detection. Existing zero-shot approaches that com-
bine 2D detections with vision-language features often suffer from bias toward
non-descriptive viewpoints and require a fixed label list to operate on. We pro-
pose a truly open-vocabulary algorithm that uses large language model (LLM)
reasoning to relabel multi-view detections, mitigating errors from poor, ambigu-
ous viewpoints and occlusions. Our method actively samples informative views
based on feature diversity and uncertainty, generates new label hypotheses via
LLM reasoning, and recomputes confidences to build a spatial-semantic represen-
tation of objects. Experiments on controlled single-object and diverse multi-object
scenes show over 40% improvement, in accuracy and sampling rate over ubiqui-
tous fusion methods using YOLO, and CLIP. We demonstrate in multiple cases
that our LLM-guided Active Detection and Reasoning (LADR) balances detail
preservation with reduced ambiguity and a low sampling rate.

1 INTRODUCTION

Consistently detecting objects across multiple viewpoints is a crucial task for autonomous agents,
such as drones and robots. A single object may appear vastly different depending on the viewpoint,
lighting, or degree of occlusion, and visual features extracted from such views often drift in embed-
ding space. As a result, inconsistent labels emerge when fusing detections across views, leading to
degraded spatial-semantic representations and downstream performance.

Recent zero-shot approaches (Jatavallabhula et al., 2023; Peng et al., 2023; Cartillier et al., 2021),
address this by combining off-the-shelf detectors (Redmon et al., 2016) with vision-language mod-
els (Radford et al., 2021; Cherti et al., 2023) to assign open-vocabulary labels in 3D. While these
methods avoid task-specific retraining, they rely heavily on two components: (1) the accuracy of the
underlying detector, and (2) the similarity between extracted image features and a user-defined list
of candidate labels. Both dependencies introduce bottlenecks. First, misdetections or low-quality
views (such as those from the back of an object) can dominate the fused feature representation, bi-
asing the final label. Second, reliance on a user-defined list of labels limits true open-vocabulary
capability, hampers generalization to novel categories, and constrains the level of detail that can be
captured for each object.

We propose a different approach referred to as LADR (LLM-guided Active Detection and
Reasoning). LADR uses large language model (LLM) reasoning to actively refine and reweight
multi-view detections. Instead of passively aggregating features, our method iteratively samples
informative viewpoints based on feature diversity, prompts an LLM to generate and refine label
hypotheses from available visual evidence, and recomputes label confidences accordingly. This rea-
soning process reduces the influence of misleading views, removes the need for a fixed label set, and
enables a more robust spatial-semantic representation of the scene.

Our contributions are as follows:

• LLM-guided relabeling for 3D consistency: An open-vocabulary method that uses LLM
reasoning to correct viewpoint-induced misclassifications without retraining.

• Smart sampling strategy: An active selection of views based on feature diversity, balanc-
ing detail preservation with reduced context ambiguity, and lower sampling rate.
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• Spatial-semantic mapping: A representation that integrates refined labels with object ge-
ometry, suitable for downstream 3D tasks.

• Comprehensive evaluation: single-object experiments, and multi-object scene experi-
ments across diverse environments, showing improvement of over 40%, respectively, in 3D
semantic label accuracy and sampling rate, over ubiquitous fusion methods using YOLO,
and CLIP.

Our contributions establish a framework for open-vocabulary 3D understanding that combines se-
mantic reasoning, efficient view selection, and spatial integration, leading to more robust and con-
sistent labeling across diverse scenarios.

2 RELATED WORK

2.1 FOUNDATION MODELS IN OBJECT DETECTION

Object detection has rapidly advanced from region-based CNNs and single-stage detectors to foun-
dation models, which enable more general and flexible representations beyond closed-set training.
Architectures such as YOLO-World and YOLOE (Cheng et al., 2024; Wang et al., 2025) lever-
age large-scale pretraining to improve detection accuracy and adaptability across diverse scenarios.
Vision-language models (VLMs) like CLIP (Radford et al., 2021; Cherti et al., 2023) provide open-
vocabulary capabilities by connecting visual features with text embeddings, while models such as
Segment Anything (Kirillov et al., 2023) offer class-agnostic segmentation that can be integrated
into detection pipelines. Multimodal large language models like GPT-4V (OpenAI, 2024) further
complement these approaches by enabling zero-shot reasoning over visual inputs, making them use-
ful for refining labels and guiding exploration. These approaches demonstrate the potential to reduce
reliance on task-specific training and expand detection to previously unseen categories.

2.2 OPEN-VOCABULARY 3D OBJECT DETECTION

ConceptFusion (Jatavallabhula et al., 2023) builds open-vocabulary 3D object maps by combining
pretrained VLMs with 3D scene representations. The method uses YOLO-World as an initial object
detector and Segment Anything for segmentation, attaching VLM features (e.g., from CLIP) to 3D
points reconstructed from RGB-D scans, with features from multiple 2D observations aggregated
via simple averaging (which ignores the 3D consistency problem). While it aims to assign open-
vocabulary labels, the object categories are ultimately constrained to a fixed set. Peng et al. (2023)
takes a voxel-based approach, backprojecting per-pixel CLIP features into a 3D voxel grid and
fusing multiple views using different pooling strategies (random, median, or mean) among these
approaches, mean pooling yields the most stable results. Kassab et al. (2024) revisits design choices
for open-vocabulary 3D labeling by selecting a single “best” view per object based on a confidence
metric, with the entropy of CLIP similarities with category embeddings performing best. In contrast,
LADR leverages LLM reasoning to iteratively identify and reweight informative views, producing
a more robust spatial-semantic representation that is less sensitive to viewpoint bias and not limited
by a fixed label set.

2.3 ACTIVE EXPLORATION

Active exploration in embodied agents aims to optimize camera or agent trajectories to reduce
uncertainty and collect informative observations. SEAL Chaplot et al. (2021) and subsequent
works Scarpellini et al. (2024) introduce a self-supervised framework in which agents explore their
environment to learn semantic segmentation without manual labels, leveraging 3D spatial consis-
tency. These methods train an exploration policy to target novel or uncertain areas, optimizing
coverage of diverse object views. Features from multiple viewpoints are reprojected into a shared
3D space using depth and camera poses, and a 3D consistency loss ensures that features correspond-
ing to the same physical point remain consistent across views. This supervision enables learning
of a semantic segmentation function directly from RGB-D frames, without human annotations, and
replaces random or fixed path planning with informed, targeted exploration. While effective, these
approaches often require reinforcement learning policies and multiple rollouts, which can be compu-
tationally expensive. In contrast, zero-shot LLM-based methods can reason about object semantics
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directly from observations without task-specific policy training, avoiding the overhead and sample
inefficiency inherent to learned exploration strategies.

3 THE 3D CONSISTENCY PROBLEM

Achieving consistent object labeling across multiple viewpoints remains a key obstacle in 3D per-
ception. In multi-view pipelines, each observation of an object is processed independently before
being fused into a unified label. When these observations are heterogeneous (due to varying view-
points, occlusions, or lighting) the resulting feature embeddings can drift toward non-representative
appearances. This drift can overweight misleading views, leading to label instability.

In zero-shot approaches such as those combining YOLO detections with CLIP embeddings, the
problem is exacerbated by two factors:

1. Viewpoint sensitivity: Descriptive views (e.g., the front of a piano) and non-descriptive
views (e.g., the back of the same piano) contribute equally to the aggregated embedding.
If the majority of views lack discriminative features, the resulting label can shift toward
incorrect categories.

2. Label space constraints: Even in open-vocabulary settings, relying on a fixed set of can-
didate labels constrains the level of detail that can be captured for each object, e.g., labeling
a chair simply as ‘furniture’ rather than distinguishing it as an ‘office swivel chair.’

To illustrate the severity of this issue, we consider a controlled example where images are taken
around a piano. We define good views as those from the front, containing distinctive features, and
bad views as those from the back, lacking such cues. In a progressive experiment, we start with
three good views and incrementally replace them with bad ones, testing multiple labeling strategies.
The task is to assign a single label to the object, given all current views.

Method 3 Good / 0 Bad 2 Good / 1 Bad 1 Good / 2 Bad
YOLOE Constrained piano (0.25) piano (0.21) crate (0.26)

YOLOE ScanNet200 cabinet (0.78) cabinet (0.61) cabinet (0.51)

YOLOE RAM chiffonier (0.90) wall (0.16) wall (0.17)

CLIP Constrained piano (0.31) piano (0.27) crate (0.26)

CLIP ScanNet200 piano (0.31) piano (0.27) crate (0.26)

CLIP RAM piano (0.31) piano (0.27) oak (0.27)

LLM acoustic piano acoustic piano acoustic piano

Table 1: Piano viewpoint bias experiment. “Good” images show the piano front, while “Bad” images
show the back. Each cell reports the predicted label (confidence), with correct predictions shown in bold.
For YOLOE baselines, the most frequent label is selected, whereas CLIP baselines choose the label with the
highest similarity. The “Constrained” setting restricts candidate labels to “piano” and “crate,” while “Scan-
Net200” (Rozenberszki et al., 2022) and “RAM” (Recognize Anything Model class list of over four thousand
categories, (Zhang et al., 2023)) use their respective class lists to select the most probable label. The LLM is
prompted to give a more specific label than a simple class label.”

As shown in Table 1, methods relying solely on YOLO or CLIP degrade quickly as bad views
increase. In the 1-good / 2-bad case, CLIP-based methods incorrectly label the piano as “crate” or
“oak,” while YOLO struggles even more, particularly when the label space is large, producing highly
inconsistent predictions. In contrast, the LLM-based approach consistently selects the correct and
more detailed label across all conditions. However, the LLM does not provide calibrated confidence
values, making it difficult to assess the reliability of its predictions on its own. This observation mo-
tivates LADR’s hybrid strategy: combining the reasoning capabilities of LLMs with the quantitative
confidence scores from CLIP allows for both robust label selection and informed weighting across
views, mitigating the effects of viewpoint bias and constrained label spaces.
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4 NOTATION AND WORKFLOW

We consider multi-view object labeling in 3D scenes. For simplicity, and without loss of generality,
we address a single object. Let I = {I1, . . . , IN} denote the initial set of RGB-D images captured
around a target object, where N is the number of views. Each image Ii is accompanied by depth
information Di and camera pose Pi. For each image, object observations are extracted using a
combination of a detector, a feature extractor and a segmentation model as

Oi = DetectAndSegment(Ii, Di, Pi),

and merged across all views into a spatial-semantic map

M = MergeObservations({O1, . . . , ON}),
which accumulates object points, labels, and features into a coherent 3D representation, analogous
to ConceptFusion’s fusion (Jatavallabhula et al., 2023). We define a function for relabeling as

Mrefined, Pnext = RefineAndPropose(M, I),
which applies LLM reasoning to refine labels in M and selects the most informative next viewpoint.

Our workflow proceeds iteratively: images are captured and merged into M, refined, and used to
propose the next viewpoint. This repeats until labels reach sufficient confidence or a maximum
number of views, forming the basis for all experiments.

5 METHODOLOGY

In this section, we present our algorithm for LLM-guided multi-view object labeling. As described
in Section 4 , our images are first processed with the DetectAndSegment function, which we imple-
ment in a fully open-vocabulary manner. We use YOLOE (Wang et al., 2025) in a prompt-free setup
for object detection, which produces candidate labels across thousands of object classes. OpenCLIP
(Cherti et al., 2023) is employed for feature extraction, and SAM2 (Ravi et al., 2024) for segmenta-
tion. The resulting detections are spatially merged with the MergeObservations function, yielding a
structured map of objects, each associated with detection images and embeddings. Next, the map is
passed to LADR’s reasoning step, RefineAndPropose, which operates as an inner-loop implemented
with GPT-4V (OpenAI, 2024). To clarify the contribution of each component, we introduce the
method incrementally through two ablated versions before presenting our complete algorithm.

5.1 LLM-RANDOM: BASIC HYPOTHESIS PROPOSAL AND KILLING

The first ablated version, LLM-Random, introduces the fundamental hypothesis-proposal and it-
erative image removal procedure. In multi-view labeling, the evolving set of detection images at
each iteration often contains a mix of highly informative canonical views, ambiguous perspectives,
and redundant observations. Presenting all available images to the LLM simultaneously is prob-
lematic: it risks pushing the model toward a generic, lowest-common-denominator label, substan-
tially increases computational cost, and may even exceed the LLM’s context window. A possible
workaround is to tile multiple views into a single composite image, but this forces downsampling
that discards fine-grained details, an issue that becomes increasingly severe as the number of de-
tections grows. To address these challenges, we adopt an iterative inner loop that samples a small
subset of images to form a hypothesis and then prunes away views that conflict with it. The LLM-
Random variant implements this process using the simplest possible sampling strategy: uniform
random selection. The workflow of the algorithm is illustrated in Figure 1. At each iteration:

1. Randomly sample a minimal set Isample from the detection images (e.g., N = 2 from I).
2. Isample are fed to the LLM, which is queried to perform three tasks:

• Propose a label Mrefined based on Isample and return confidence, with the LLM
prompted to report confidence only if the label is clear from all sampled images.

• Identify which image Ikill is the least descriptive of the current label from Isample.
• Suggest the next best view Pnext to capture, based on the provided camera angles P .

3. Remove Ikill from the detection set.

4
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Figure 1: Workflow of the LLM-guided multi-view labeling algorithm. The system iteratively refines the
semantic map and proposes the next viewpoint to be collected.

The process repeats until either (1) the LLM reports confidence in its label, or (2) the detection set I
has been reduced to fewer than N images (3) a maximum number of iterations is reached; in which
case the algorithm returns the refined map Mrefined along with the next proposed viewpoint Pnext.
The LLM prompt used for this algorithm is provided in Appendix A.8.

5.2 LLM-SAMPLING: CLIP-GUIDED SELECTION AND CONFIDENCE

The LLM-Sampling algorithm follows similar structure as LLM-Random, but improves upon it by
leveraging image embeddings provided by a contrastive VLM (eg. CLIP, Cherti et al. (2023)) for
both image selection and confidence assessment; we refer to these embeddings as CLIP features in
the remainder of the text. In the following descriptions, we illustrate the method using two sampled
images per iteration for clarity. In practice, this generalizes to two subsets of images, sampled in the
same way as individual images. We provide a sketch of an iteration in Figure 2.

Sampling Instead of randomly selecting images, the algorithm identifies two images Irep, Iamb ⊂ I
based on their cosine similarity of CLIP features relative to the current label hypothesis: the closest
(most representative) and the farthest (potentially ambiguous) image. The initial hypothesis can
be set using the most common detection label (eg. YOLO detections) or any starting label. The
selected images Irep and Iamb are then fed to the LLM to generate a new label hypothesis Mrefined
and propose the next best view Pnext. This sampling procedure balances exploitation (focusing on
the most representative view) with exploration (including a diverse, informative view).

Confidence Computation and Removal A global object representation is computed by averaging
CLIP features across all current images in I . Cosine similarity between this global feature and the
LLM label embedding Mrefined provides a confidence score for the proposed label. Similarities
are computed between Mrefined and the sampled detections Irep, Iamb. If removing the less similar
detection improves global confidence, it is discarded from I. To determine whether the current label
is reliable enough to be accepted or if further iterations with new images are required, a confidence
threshold is applied (see Appendix A.1 for its calibration).

Sampling New Hypothesis
and Removal

Confidence
Computation

Detections

Initial Hypothesis

Best/Worst Detection
for Initial Hypothesis

New Hypothesis

Similarity

Global Averaged Feature

"crate"

"piano"

Figure 2: Visualization of the LLM-Sampling algorithm: (left) two images are selected based on feature
distance from current hypothesis, (middle) a new label hypothesis is generated from the two images, and the
less similar detection is removed, (right) a global averaged feature and global confidence are computed.
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Recovering the Final Hypothesis via Caching In some cases, the LLM may generate an ac-
curate label early on, but it cannot yet be accepted due to insufficient supporting evidence. The
CLIP-similarity-based confidence computation allows for the re-evaluation of previously generated
hypotheses. Specifically, at each iteration, the current label hypothesis and its associated CLIP em-
bedding are stored in a cache. The cache enables the algorithm to efficiently compute similarity
scores (i.e., confidences) between past hypotheses and the current detections without re-querying
the LLM. When new images are introduced or when the hypothesis-proposal loop concludes, the
most confident hypothesis is retrieved from the cache. Empirically, this mechanism reduces noise
from LLM hallucinations, prevents sudden label shifts, and improves convergence consistency.

Advantages By selecting images uing CLIP feature distances, the LLM receives more informative
samples instead of random subsets, reducing redundancy and improving efficiency. At the same
time, confidence derived from CLIP features offers a more reliable measure than the LLM’s self-
reported confidence in LLM-Random. Hypothesis caching ensures that all candidate labels are
tracked and reconsidered efficiently, allowing the system to leverage past insights without repeated
LLM calls. Together, these strategies efficiently leverage the generative capabilities of LLMs and
the contrastive capabilities of CLIP models.

5.3 LLM-POLYGON: SPATIALLY GROUNDED REFINEMENT

The complete algorithm, LLM-Polygon, extends LLM-Sampling by incorporating spatial ground-
ing into the label refinement process. This addition allows the algorithm to reason about coverage
of the object’s geometry and to prioritize views that reduce semantic uncertainty, see Figure 3.

Spatial Assignment A right-prism polygon (or an icosahedron) is constructed around the object
to approximate its spatial extent. Each detection is associated with the polygon faces it observes,
determined by projecting camera rays on the polygon faces. This partition grounds the detections
into spatially meaningful subsets and prevents over-representation of individual sides.

Per-Face Confidence For each polygon face, CLIP features of the associated detections are aver-
aged to form a local feature representation. Unobserved faces are assigned an uncertainty weight,
a hyperparameter that trades off exploration and exploitation: lower uncertainty weights promote
taking additional views, while higher values enable faster convergence by downweighting unseen
sides (see Appendix A.1 for a calibration guide). Global confidence is then computed as the average
similarity between the current label hypothesis and the per-face features. Faces with only removed
images are not taken into account when computing the global average confidence.

Iterative Refinement Label proposal and image pruning proceed as in LLM-Sampling, but the
next viewpoint is chosen using spatial confidence and coverage. Specifically, Pnext is selected as
the face whose neighboring faces exhibit the largest confidence difference, with priority given to
previously unseen sides. This active mechanism directs exploration toward underrepresented object
regions while reducing the influence of redundant or uninformative views.

Object
Bounding

Box

New Hypothesis: "Piano"💡

Next Proposed View 👀

❌
To be removed

Sample  Sample 

Figure 3: Illustration of LLM-Polygon: Object detections are spatially grounded to polygon faces. Per-face
confidence is computed based on CLIP features: green sides correspond to high visual similarity to the current
label (“piano”), red sides indicate low similarity, and yellow sides represent unseen faces. The next camera
viewpoint is selected to reduce uncertainty, prioritizing unseen faces.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

6 EXPERIMENTS

We evaluate our proposed method, LADR, against several baseline algorithms in both single-object
and multi-object settings. The experiments are designed to assess each method’s ability to infer
object semantic labels accurately under controlled multi-view scenarios. On single-object scenes, we
demonstrate that reasoning with a large language model is crucial for consistent 3D object detection
and that active view selection greatly improves both sample efficiency and stability. In addition to
single-object experiments, we evaluate all methods on multi-object scenes, a realistic setting for
robot exploration. Here, we isolate the impact of our label generation mechanism by using off-
the-shelf exploration policies rather than proposing next-best views. This setup highlights that our
representation still improves multi-object labeling as an offline refinement process. Full details of
all hyperparameters used are provided in Appendix A.2.

6.1 BASELINES

We compare methods that rely solely on YOLO detections, CLIP embeddings, or LLM reasoning
with LADR, which leverages multi-view aggregation, spatial grounding, and confidence-based label
selection. Here, LADR refers to our three algorithms: LLM-Random, LLM-Sampling, and LLM-
Polygon. Apart from these, only the LLM-Angle baseline explicitly proposes the next best view;
for all other baselines, random view sampling is used when not otherwise specified.

’YOLO’: uses the most common label (provided by YOLO detections) as the final label. This is the
aggregation policy in ConceptFusion (Jatavallabhula et al., 2023).

’CLIP’: takes the average of the CLIP embeddings of all images and compares it to an extensive list
of CLIP-embedded labels of the RAM class list (Zhang et al., 2023). The final label is the one with
the highest cosine similarity to the average embedding.

’LLM-Label’: analyzes the YOLO-generated detection labels using an LLM. The LLM reasons
over the set of labels, their frequencies, and possible semantic relationships to infer the most plausi-
ble final label. No visual data is used, only text-based outputs from the object detector.

’LLM-Tiled’: creates a single composite image by arranging all input images on a single frame
with optimal tiling. This layout is then analyzed by a large language model with vision capabilities
to produce the final label. The spatial layout enables the model to reason about object appearance
from all sides simultaneously. (We provide example in Appendix A.7).

’LLM-Angle’: creates a single composite image by arranging all input images around a circle
based on their relative positions to the object. This panoramic-style layout is then analyzed by a
large vision model to produce the final label. The spatial layout enables the model to reason about
object appearance from all sides simultaneously. Unlike the other baselines, the LLM also provides
the angle for the next best view to take an image from. (We provide example in Appendix A.7).

6.2 DATASET

We evaluate our methods on a single-object dataset, a subset of the OmniObjects3D (Wu et al., 2023)
dataset of annotated 3D object models. These objects are rendered in NVIDIA Isaac Sim under
controlled conditions to generate multi-view image sequences. We focus on five object classes:
backpack, cup, cabinet, sofa, and suitcase. For each class, we include five distinct instances, several
of which are deliberately misleading in appearance (e.g., a mug shaped like a cartoon character) to
test the robustness of semantic labeling methods.

We also constructed a multi-object dataset in the same simulation environment. These scenes contain
multiple objects arranged in varied environments, including SimpleRoom, Commercial, Industrial,
Residential, and Vegetation, providing more complex scenarios with occlusions. For simplicity,
these are single-room scenes, and the objects were selected to include both easy and more challeng-
ing cases to label.

Each object in the datasets is annotated with both its class name and a concise descriptive phrase,
for example a chair labeled as chair with the description wooden dining chair with a cushioned seat.
We provide examples for both datasets in Appendix A.4.

7
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6.3 EXPERIMENTAL SETUP

Single-Object Experiment We evaluate all baselines on single-object datasets under controlled
conditions, simulating a robotic-agent use case. For each object, we provide two initial views cap-
tured at a fixed height against a white background. Each algorithm is tested with three different
random seeds per object instance, corresponding to three distinct pairs of these initial views. We set
a maximum budget of five additional views.

Multi-Object Experiment The multi-object setting evaluates LADR in more complex environ-
ments with multiple objects and occlusions, geared towards more realistic robotic-agent settings. We
restrict experiments to single-room scenarios and define robot positions as the unit of exploration.
At each position, the robot acquires k = 8 uniformly spaced RGB-D images. Instead of proposing
next-best views, we employ global exploration policies over a 2D occupancy grid to determine the
robot’s next position. We investigate three strategies: random, selecting a free cell uniformly at
random; medial axis (van der Walt et al., 2014), sampling a random point on the medial axis of the
free space using scikit-image; and frontier-based (Yamauchi, 1997), prioritizing frontier cells
or selecting a random free cell if no frontiers remain. Exploration starts from a randomly chosen
initial position and continues until the maximum budget of three additional positions is reached.

6.4 EVALUATION METRICS

To assess labeling performance, the predicted labels are compared against both the ground-truth
object class names and longer, descriptive phrases for each object (e.g., ”yellow cartoon character-
shaped mug”). As LADR operates in a fully open-vocabulary setting, direct comparison with
ground-truth labels is not sufficient: the LLM may propose synonyms of the annotated class, which
should be accepted as correct. Empirically, we found that the CLIP model used for image–text
similarity is overly sensitive to lexical variation (e.g., number of words in a label), leading to un-
reliable synonym matching. Instead, we employ a Sentence Transformer (Reimers & Gurevych,
2019) model to evaluate label equivalence. The final similarity score for each prediction is defined
as the maximum of the similarity to the class name and the similarity to the description, capturing
both category-level and instance-level alignment. To evaluate success rates rather than raw similar-
ities, we adopt the similarity value 0.5 as the threshold for label correctness (based on preliminary
experiments; see Appendix A.3), while also considering thresholds of 0.3, 0.7, and 0.9.

To evaluate detections in the multi-object setting, we establish one-to-one matches between ground-
truth objects and predicted detections from the global map. Matching is based on a semantic-spatial
similarity score, defined as a weighted sum of label similarity and spatial overlap between ground-
truth and predicted bounding boxes. Once matches are established, evaluation metrics follow the
same procedure as in the single-object setting, ensuring comparability.

Figure 4: Single-Object Experiment Results (a) Averaged success rates across different success thresholds
for each algorithm. (b) Evolution of success rates over data collection steps for each algorithm, using 0.5 as the
threshold.

8
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Figure 5: Multi-Object Experiment Results (a) Averaged success rates across different success thresholds.
(b) Averaged success rates across scenes, using 0.5 as the threshold.

6.5 SUMMARY OF FINDINGS

We provide our results for the single- and multi-object cases in Figures 4 and 5, respectively. We
provide detailed results, including per-object examples for each setting in Appendices A.5 and A.6.
Figure 4a shows the averaged success rates based on different success thresholds, and Figure 4b
shows how success rates evolve over the data collection steps with 0.5 as the threshold.

Similar trends are observed for single- and multi-object cases. The first observation is that they
show over 40% improvements, respectively, compared to ubiquitous fusion methods using YOLO,
and CLIP. YOLO and LLM-Label rely solely on YOLOE predictions, resulting in consistently
low success rates. This is likely due to their lack of multi-view image-based reasoning. Notably,
LLM reasoning alone offers little improvement over simply taking the most frequent YOLO la-
bel. CLIP performs comparably to YOLO, but struggles with the vast label set and the ambiguity
introduced by averaging embeddings across views, often leading to confused predictions. LLM-
Tiled achieves higher success rates by leveraging all views simultaneously. However, its accuracy
lags behind LADRs, suggesting that the tiled representation either loses fine-grained detail or in-
troduces structural incoherence that limits reasoning. LLM-Angle adds structural consistency by
composing views in an ordered layout, yet provides no improvement over LLM-Tiled. This indi-
cates that the performance gap is more likely due to loss of visual detail than to layout incoherence.
LLM-Random and LLM-Sampling analyze images in greater detail, leading to stronger descrip-
tive accuracy. However, LLM-Random often declares detections prematurely, and LLM-Sampling
cannot fully mitigate this instability despite its confidence-based pruning. Finally, LLM-Polygon
achieves the best overall performance, with near-perfect success at a 0.5 threshold. By combining
detailed reasoning with active exploration of informative views and consistency across unseen sides,
it avoids the pitfalls of LLM-Only and LLM-Sampling. Figure 4 /b shows how active exploration
of unseen sides leads to success rate improvement. LADR’s combination of smart view sampling,
confidence computation, and spatial grounding is key to outperform approaches that naively provide
multiple images to the LLM, as in LLM-Tile and LLM-Angle.

7 CONCLUSION

Our contributions in this work center on a scalable framework for iterative sampling with LLM-
guided active refinement and exploration in open-vocabulary 3D object detection. By integrating
the generative reasoning of LLMs with the quantitative similarity assessment of contrastive VLMs,
our approach substantially improves label consistency, establishing a foundation for future research
in robust and efficient 3D perception. The method also serves as a drop-in extension to existing
object detection pipelines, allowing zero-shot re-evaluation of detections.

Despite these advantages, the methods presented require multiple inner-loop queries, which in-
creases computational cost. This limitation could be mitigated through batch sampling strategies, or
pruning multiple detections simultaneously, as well as by employing more efficient vision-language
models, e.g., FastVLM (Vasu et al., 2025), to enable inference on resource-constrained hardware.
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A APPENDIX

A.1 HYPERPARAMETER CALIBRATION

We calibrate the two key hyperparameters, the confidence threshold and uncertainty weight, using
a held-out subset of 5k COCO images. Matching (image–correct label) and non-matching (image–
incorrect label) pairs are used to compute CLIP similarities, with distributions estimated via kernel
density estimation (KDE). As shown in Figure 6, the distributions are well-separated (Cohen’s d =
5.06).

The confidence threshold is set to the mean similarity of matching pairs (µ+ = 0.311, rounded
to 0.32), and the uncertainty weight is set to the intersection of the distributions (rounded to 0.2),
corresponding to the Bayes-optimal decision boundary.

Figure 6: CLIP Feature Space: Similarity Distributions. The plot shows the kernel density estimates
(KDE) of cosine similarity distributions for matching (image–correct label) and non-matching (image–incorrect
label) pairs within the CLIP feature space, using a held-out subset of COCO. The green distribution represents
matching pairs, and its mean (µ+ = 0.311) is used as the confidence threshold (dashed green line), rounded
to 0.32. This ensures that accepted labels correspond to in-distribution confidence levels. The red distribution
represents non-matching pairs. The intersection point of the two distributions, which corresponds to the Bayes-
optimal decision boundary, is used to set the uncertainty weight, rounded to 0.2.

A.2 HYPERPARAMETERS

We present the hyperparameters used in our experiments at each step of the workflow. All images
are 1920x1080 to preserve high-level detail.

DetectAndSegment YOLOE (Wang et al., 2025) in prompt-free mode is used to generate object
bounding boxes. Detections with fewer than 5,000 pixels or confidence below 0.15 are discarded.
Features are extracted using OpenCLIP (Cherti et al., 2023) ViT-H-14 with the ”laion2b s32b b79k”
weights, and segmentation is performed with Segment Anything 2 (Ravi et al., 2024).

MergeObservations In single-object experiments, all detections are assumed to correspond to the
same object and are merged. In multi-object experiments, observations are merged based on se-
mantic (visual and textual) and spatial similarity. Visual semantic similarity is computed as the
average CLIP features of detections (excluding removed ones from the RefineAndPropose step)
with a threshold of 0.6. Textual similarity is the cosine similarity of CLIP-encoded current object
labels, thresholded at 0.25. Spatial similarity is measured via point cloud overlap, with a threshold
of 0.1 to allow minimal overlap. Objects exceeding all three thresholds are merged.

RefineAndPropose For both experiments, we set the maximum number of inner-loop iterations
between data collection steps to 3, the confidence threshold to 0.32, the uncertainty weight to 0.2,
and the number of polygon faces in the spatial partitioning algorithm to 8.
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A.3 EVALUATION

A.3.1 SETTING THE SUCCESS THRESHOLD

As LADR is fully open-vocabulary, direct comparison with ground-truth labels is insufficient: the
LLM may propose synonyms, which should be accepted. Since CLIP is sensitive to lexical varia-
tions, we use a Sentence Transformer (Reimers & Gurevych, 2019) to evaluate label equivalence.
The final similarity for each prediction is the maximum of its similarity to the class name or de-
scription. To convert similarities into success rates, we construct a small set of synonym and non-
synonym pairs, compute their similarities in the Sentence Transformer feature space, and visualize
the distributions using kernel density estimation (KDE). The results show clear separation: while
matching pairs can occasionally fall below 0.5, non-matching pairs never exceed 0.5. Based on this,
we adopt 0.5 as the default threshold for evaluating label correctness.

To provide a more nuanced view, we also evaluate success rates at multiple thresholds:

• 0.3: Almost all word pairs are detected as synonyms, including weakly related or contex-
tually distant ones.

• 0.5: Serves as a baseline, capturing meaningful synonyms while avoiding unrelated pairs.
• 0.7: Mostly multi-word phrases with strong semantic alignment; loosely related pairs are

excluded.
• 0.9: Captures nearly identical or identical pairs, useful for exact matches.

By reporting success rates at these thresholds, we provide a more detailed picture of the model’s
behavior across varying levels of semantic similarity, from broad synonym detection to nearly exact
matches.

Figure 7: Synonym Distance Analysis (a) A cosine similarity heatmap for the word ’plant’ and a set
of related terms. The diagonal entries show high similarity for synonyms and near-synonyms (e.g.,
’plant’, ’potted plant’, ’indoor plant’). Non-synonyms (e.g., ’car’, ’banana’, ’planet’) exhibit low
similarity. (b) Kernel density estimate (KDE) plots of cosine similarity distributions for synonym
(blue) and non-synonym (red) pairs. The distributions show a clear separation, with a default thresh-
old of 0.5 effectively distinguishing between the two. The dashed lines indicate various thresholds
(0.3, 0.5, 0.7, and 0.9) used to evaluate the model’s performance at different levels of semantic sim-
ilarity, from broad synonym detection to near-exact matches.

A.3.2 MATCHING DETECTIONS TO GROUND TRUTH

To evaluate multi-object detections, we assign each ground-truth object to the best-matching pre-
diction based on a semantic-spatial similarity score, computed as a weighted combination of label
similarity and spatial overlap. Only matches with similarity above 0.1 are considered; lower values
count as unsuccessful detections. Among eligible matches, the final assignment uses a bias-adjusted
aggregation with phys bias = 0.2 to select the best match.
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A.4 DATASETS

A.4.1 SINGLE-OBJECT DATASET

The single-object dataset comprises five instances for each of the five selected object classes from
the OmniObjects3D dataset (Wu et al., 2023). These instances are used to generate multi-view image
sequences, with representative examples shown in Figure 8.

Figure 8: Examples of five object instances from the single-object experiments.

A.4.2 MULTI-OBJECT DATASET

The multi-object dataset consists of custom 3D scenes created in NVIDIA Isaac Sim and manu-
ally labeled by the authors. To demonstrate the flexibility of our approach, we designed diverse
environments using simulator-provided asset packs. The included room types are:

• SimpleRoom: open indoor spaces with a mix of miscellaneous objects,
• Residential: home-like settings with rug, chairs, and decorative items,
• Commercial: office area with a counter, a coffee-table and a storage unit,
• Industrial: warehouse-inspired space with shelving, crates, and utility equipment,
• Vegetation: outdoor theme featuring plants, trees, and garden elements.

Each scene contains multiple objects of interest, with dense arrangements to test robustness under
occlusions, see Figure 9.

Figure 9: Five room scenes used in the multi-object experiments

A.4.3 EXPERIMENT CONFIGURATION

In the single-object experiments, we average over 75 detections (5 classes × 5 instances × 3 seeds),
starting with two initial views and allowing a budget of five additional views. In the multi-object
setting, we average over 300 detections (5 scenes × 10 objects × 3 exploration policies × 2 seeds).
At each position, eight new images are captured, beginning from a single initial position with a
budget limit of three additional positions.
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A.5 SINGLE-OBJECT EXPERIMENT RESULTS

A.5.1 DETAILED RESULTS

Algorithm Class Sim Desc Sim Best Sim Avg Sim Succ@0.3 Succ@0.5 Succ@0.7 Succ@0.9 Avg Tokens
YOLO 0.41 ± 0.25 0.31 ± 0.22 0.43 ± 0.26 0.36 ± 0.23 0.60 0.31 0.20 0.04 0
CLIP 0.51 ± 0.29 0.35 ± 0.20 0.52 ± 0.28 0.43 ± 0.23 0.64 0.39 0.31 0.16 0
LLM-Label 0.49 ± 0.28 0.38 ± 0.21 0.50 ± 0.28 0.42 ± 0.24 0.65 0.47 0.27 0.07 237
LLM-Angle 0.68 ± 0.31 0.59 ± 0.21 0.74 ± 0.27 0.64 ± 0.23 0.91 0.79 0.67 0.40 1575
LLM-Tiled 0.72 ± 0.27 0.62 ± 0.17 0.78 ± 0.23 0.67 ± 0.19 0.97 0.85 0.69 0.40 1008
LLM-Random 0.66 ± 0.26 0.62 ± 0.17 0.73 ± 0.21 0.64 ± 0.19 0.96 0.85 0.63 0.23 2182
LLM-Sampling 0.71 ± 0.30 0.63 ± 0.17 0.79 ± 0.23 0.67 ± 0.20 0.95 0.91 0.72 0.43 16115
LLM-Polygon 0.73 ± 0.24 0.66 ± 0.14 0.80 ± 0.17 0.69 ± 0.15 1.00 0.99 0.72 0.35 22176

Table 2: Detailed evaluation results for different algorithms. Similarity metrics are reported as mean
± standard deviation, followed by success rates at various thresholds and average LLM tokens used.

A.5.2 SAMPLE RESULTS

Figure 10: A per-object example showing algorithm performance. The bar charts on the left present
class and description similarity, averaged over the seeds, while the right provides a qualitative ex-
ample for an object in the ‘cabinet’ category from the single-object dataset. This example highlights
that the generic ‘cabinet’ label is not sufficiently descriptive for this particular object.

Figure 11: A per-object example showing algorithm performance. The bar charts on the left present
class and description similarity, averaged over the seeds, while the right provides a qualitative ex-
ample for an object in the ”sofa” category in the single-object dataset.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.6 MULTI-OBJECT EXPERIMENT RESULTS

A.6.1 DETAILED RESULTS

Algorithm Class Sim Desc Sim Best Sim Avg Sim Succ@0.3 Succ@0.5 Succ@0.7 Succ@0.9 Avg Tokens
YOLO 0.45 ± 0.24 0.34 ± 0.18 0.46 ± 0.24 0.39 ± 0.21 0.76 0.27 0.16 0.09 0
CLIP 0.51 ± 0.28 0.40 ± 0.23 0.52 ± 0.28 0.45 ± 0.24 0.77 0.40 0.28 0.16 0
LLM-Label 0.48 ± 0.26 0.38 ± 0.20 0.49 ± 0.25 0.43 ± 0.22 0.79 0.33 0.21 0.12 2965
LLM-Angle 0.56 ± 0.28 0.54 ± 0.28 0.63 ± 0.30 0.55 ± 0.26 0.82 0.62 0.47 0.26 8350
LLM-Tiled 0.57 ± 0.27 0.56 ± 0.28 0.64 ± 0.30 0.57 ± 0.26 0.82 0.62 0.47 0.25 6412
LLM-Random 0.56 ± 0.27 0.57 ± 0.28 0.64 ± 0.29 0.57 ± 0.26 0.80 0.63 0.48 0.26 12496
LLM-Sampling 0.59 ± 0.28 0.56 ± 0.28 0.65 ± 0.29 0.58 ± 0.26 0.84 0.64 0.50 0.29 14278
LLM-Polygon 0.59 ± 0.26 0.61 ± 0.28 0.67 ± 0.28 0.60 ± 0.25 0.86 0.69 0.55 0.27 17633

Table 3: Detailed evaluation results for different algorithms. Similarity metrics are reported as mean
± standard deviation, followed by success rates at various thresholds and average LLM tokens used.

A.6.2 SAMPLE RESULTS

Figure 12: A per-object example showing algorithm performance. The bar charts on the left present
class and description similarity, averaged over the exploration policies, while the right provides a
qualitative example for an object with ”fuse box” as the ground truth label in the multi-object dataset.

Figure 13: A per-object example showing algorithm performance. The bar charts on the left present
class and description similarity, averaged over the exploration policies, while the right provides a
qualitative example for an object with ”camera” as the ground truth label in the multi-object dataset.
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A.7 LLM IMAGERY INPUT DATA

We provide examples of the LLM-Angle, and LLM-Tile in Figure 14.

Figure 14: Top: input for LLM-Angle. Bottom: Input for LLM-Tile.

A.8 LLM PROMPT

Example of the prompt provided to the LLM for object labeling. We provide the prompt used for
LLM-Random. The prompts for other LADR algorithms are largely similar, with a few differences:
neither LLM-Sampling nor LLM-Polygon requests a confidence score or the more descriptive view,
and LLM-Polygon also does not request the next-best-view suggestion.

You will receive two images of the same object taken from (different) viewpoints, along with
the angles (in degrees) from which they were captured. Analyze both images together
considering their angles and return a single JSON object with these fields:

↪→
↪→

confident: true or false, indicating whether you are fully confident in the objects class
based on the two views.↪→

label: a brief class name of the object.
description: a clear, detailed description of the object for CLIP encoding. Focus on visually

distinctive features (shape, material, color, texture, patterns) observable in at least
one image.

↪→
↪→
next_best_angle: an integer in the range [-180, 180] suggesting the single most informative

angle for revealing any ambiguous or missing features.↪→
more_descriptive: either "left" or "right", indicating which image shows features most

representative of the labeled class.↪→
explanation: a short rationale covering:

- why you set confident to true or false;
- how you chose label and description;
- why the proposed next_best_angle will improve clarity;
- why the chosen image (\left" or \right") is more descriptive.

Guidelines:

Focus on the Main Object.
Each image is a crop around the objects bounding box, and the object fills most of the frame.

Ignore background elements or smaller occluded items.↪→

Combine Both Views and Angles.
Use both images and their provided angles to form a complete understanding. One view may

reveal overall shape, while the other shows texture or details. Identify any remaining
ambiguity or blind spots when choosing your next_best_angle.

↪→
↪→

Avoid Misidentifying from Partial Views.
If one image shows only a fragment (e.g., a handle), defer to the other image for overall

class identification. Do not let a partial segment mislead your label.↪→
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Highlight Distinctive Features.
Describe only the most visually salient characteristics clearly visible in at least one image.

Write in plain, factual language similar to alt-text or OpenCLIP-style captions.↪→

Assess Confidence.
Set confident to true only if both images clearly support the same object class. If you

suspect the label might change from another viewpoint or if one view is ambiguous, set
confident to false and propose a next_best_angle that would resolve that ambiguity.

↪→
↪→

Determine \More Descriptive" View.
Compare the two images (left vs. right). Whichever one shows features most representative of

the labeled classwhether by revealing overall shape, distinctive markings, or full
extentshould be marked in more_descriptive. If both show equal detail, choose the one
closest to the objects canonical appearance.

↪→
↪→
↪→

Next-Best-View Proposal.
Recommend a single integer angle in [-180, 180] that would most improve clarity of class or

reveal missing features. Base your suggestion on the two given angles. For example, if the
provided images are at 45 (left) and 60 (right), proposing 0 might reveal the front;
proposing 90 might reveal the opposite side.

↪→
↪→
↪→

Be Precise and Concise.
Write factually. Avoid speculation beyond what the two views suggest. Do not use generic class

labels unsupported by the images.↪→

Output Format
Return exactly one JSON object, for example:
{

"confident": false,
"label": "ceramic vase",
"description": "a rounded ceramic vase with a narrow neck and blue floral patterns on a

white background",↪→
"next_best_angle": 0,
"more_descriptive": "right",
"explanation": "The right image clearly shows the floral pattern and vase shape, but the

left image only reveals the neck. Because the base is not visible from either 30 or 45,
a 0 angle would show the full body and confirm the class."

↪→
↪→

}

Ensure that your JSON is valid, that all fields are present with the correct types, and that
your response is accurate, well-structured, and concise.↪→

Return only the raw JSON object.
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