
Exploring Exchangeable Dataset Amortization for Bayesian Posterior Inference

Sarthak Mittal * 1 2 Niels L. Bracher * 3 Guillaume Lajoie 1 2 Priyank Jaini 4 Marcus A. Brubaker 3 5

Abstract
Bayesian inference provides a natural way of
incorporating uncertainties and different under-
lying theories when making predictions or ana-
lyzing complex systems. However, it requires
computationally expensive routines for approx-
imation, which have to be re-run when new
data is observed and are thus infeasible to effi-
ciently scale and reuse. In this work, we look
at the problem from the perspective of amor-
tized inference to obtain posterior parameter dis-
tributions for known probabilistic models. We
propose a neural network-based approach that
can handle exchangeable observations and amor-
tize over datasets to convert the problem of
Bayesian posterior inference into a single for-
ward pass of a network. Our empirical analy-
ses explore various design choices for amortized
inference by comparing: (a) our proposed varia-
tional objective with forward KL minimization,
(b) permutation-invariant architectures like Trans-
formers and DeepSets, and (c) parameterizations
of posterior families like diagonal Gaussian and
Normalizing Flows. Through our experiments,
we successfully apply amortization techniques to
estimate the posterior distributions for different
domains solely through inference.

1. Introduction
Bayesian analysis of data has become increasingly popular
and widely used in numerous scientific disciplines. For
example, in politics, predictive models based on public
polling and other factors play a crucial role in the discourse
around the state of a campaign. Throughout the COVID-19
pandemic, models which estimate the infectiousness of the
virus, the efficacy of public health measures, and the future

*Equal contribution 1MILA 2Université de Montréal 3York Uni-
versity 4Google DeepMind 5Vector Institute. Correspondence
to: Sarthak Mittal <sarthmit@gmail.com>, Niels L. Bracher
<nbracher@yorku.ca>.

Accepted to ICML workshop on Structured Probabilistic Inference
& Generative Modeling, Honolulu, Hawaii, USA. Copyright 2023
by the author(s).

course of the pandemic have become critical to government
planning and the public’s understanding of the pandemic.
In cryogenic electron microscopy (cryo-EM), the posterior
over an unknown 3D atomic-resolution molecular structure
is explored given the 2D image observations.

Unfortunately, these analyses are frequently burdensome, re-
quiring substantial amounts of computation. Further, these
computations often have to be re-run each time new data
becomes available, for instance, when new case counts be-
come available or previous measurements are corrected, or
when applied to different geographic regions. This leads
practitioners to adopt approximations (Welling & Teh, 2011;
Gelfand, 2000; Brooks, 1998), simplify their models (Hoff-
man et al., 2013; Blei et al., 2017) or reduce the frequency
with which they perform their analyses.

Here, we aim to address this through the use of amortized
inference (Morris, 2013; Paige & Wood, 2016; Kingma
& Welling, 2013; Rezende et al., 2014; Stuhlmüller et al.,
2013) which will allow for efficient and principled meth-
ods for posterior analysis. A common thread among the
above-mentioned examples is that the probabilistic model
defining the relationship between the unknown parameters
and the observed data is fixed. Poll aggregation models
use hierarchical time series models, infectious diseases are
studied using variations on compartment models, and cryo-
EM uses a linear image formation model. This makes these
models ideal candidates for amortized inference (Kingma &
Welling, 2013; Rezende et al., 2014).

Our goal is to learn a function that maps an observed dataset
to the corresponding posterior distributions without the need
to perform explicit Bayesian posterior inference, e.g., with
MCMC (Gelfand, 2000; Hoffman et al., 2014). This map-
ping aims at generalizing to families of datasets. As a result,
it is trained with several datasets which are inexpensive to
generate via simulation from the probabilistic model on
which we want to perform Bayesian inference.

Specifically, we consider the problem of estimating the pos-
terior distribution p(θ|D) for known probabilistic models
p(x,θ), where x ∈ Rd is observed through n independent
and identically distributed (IID) samples D = {xi}ni=1 and
θ ∈ Rk denotes the parameters of the model. Given p(x,θ),
it is possible to obtain paired samples (D,θ) for training
through simulations. However, our method is also applica-

Exploring Exchangeable Dataset Amortization

(a) Mean of Gaussian (b) Linear Regression (c) Nonlinear Regression (d) Gaussian Mixture (e) Linear Classification (f) Nonlinear Classification

Figure 1. Illustration of our proposed method on different underlying probabilistic models. We see that the learned amortized variational
distribution appropriately captures at least a mode of the posterior.

ble in the more realistic setting where parameters θ are not
observed, making it more aligned with real-world settings
where the underlying model for data streams is unknown,
but we still seek to estimate the posteriors of simple models.

We evaluate the effectiveness of our approach on several
domains, including estimating the posterior over (a) the
mean of a Gaussian, (b) parameters of a small Bayesian
Neural Network (BNN), and (c) the means of a Gaussian
Mixture Model (GMM). Our analysis provides insights into
the comparisons of various design choices for amortized
Bayesian inference, in particular the trade-offs between for-
ward vs. reverse KL as a training objective, the performance
obtained using different permutation-invariant architectures
for exchangeable data like DeepSets (Zaheer et al., 2017)
vs. Transformers (Vaswani et al., 2017), and the kind of
approximate posteriors considered like a diagonal Gaussian
assumption vs. normalizing flows.

2. Background
For a given probabilistic model p(x,θ) and observed IID
samples D, Bayesian inference refers to the problem of es-
timating the posterior distribution p(θ|D). This estimation
problem boils down to an application of Bayes’ rule

p(θ|D) =
p(θ)

p(D)

n∏
i=1

p(xi|θ). (1)

Analytically computing Equation 1 is problematic since
the normalization constant requires computing p(D) =∫
θ
p(θ,D) dθ, which is often intractable. Thus, practition-

ers rely on approximate approaches to estimating the poste-
rior, namely sampling and VI.

VI methods approximate the true posterior p(θ|D) with a
variational distribution qφ(θ) and convert the estimation
problem into the following optimization problem

φ∗ = argmin
φ

KL[qφ(·)||p(·|D)] (2)

which boils down to optimizing the well-known Evidence
Lower-Bound (ELBO)

φ∗ = argmax
φ

Eθ∼qφ(·)

[
log

p(D,θ)

qφ(θ)

]
. (3)

The reparameterization trick can resolve the dependence on
expectation for a class of popular parametric distributions.
However, a limitation of this approach is that for a given
model, computing the Bayesian posterior for a new dataset
requires solving a new optimization problem to learn qφ(·),
which is implicitly a function of D.

Variational Autoencoders (VAEs) (Kingma & Welling, 2013;
Rezende et al., 2014; Rezende & Mohamed, 2015) bypass
this problem in latent-variable models by amortizing the
variational distribution explicitly on different data points.
That is, they consider qφ(z|xi) where z is the latent vari-
able and the conditioning is explicitly done on xi by pre-
dicting the parameters of the distribution from xi, e.g.,
N (µφ(xi),Σφ(xi)).

Taking inspiration from VAEs and their use of amortiza-
tion, we turn back to the more general problem of learning
Bayesian posteriors for probabilistic models through VI.
However, for a given model, we rely on amortization at
the dataset level D, instead of a single data point xi, to
obtain the approximate Bayesian posterior directly through
inference.

Prior work achieves this objective by either solving the
forward KL objective KL [p(·|D)||qφ(·|D)] (Radev et al.,
2020) or performing Bayesian inference on some latent vari-
ables in predictive systems (Garnelo et al., 2018b). The
former cannot handle training with data whose underlying
model is unknown and hence cannot deal with model mis-
specification but enjoys the benefits of not requiring a com-
putable likelihood. The latter is predominantly designed
for predictive modeling and thus cannot be used to pro-
vide information and uncertainty about model parameters.
We propose a fully Bayesian approach, which like (Gar-
nelo et al., 2018b) requires a computable and differentiable
likelihood and reparameterizable qφ but approximates the
posterior through an explicit form in the parameter space
and can be used in cases of model misspecification.

3. Method
Our goal is to approximate the posterior distribution p(θ|D)
given a dataset D := {x1,x2, · · · ,xn} ⊆ Rd×n where
xi ∼ p(x|θ). To do this, we learn an amortized distribution
qφ(θ|D) conditioned explicitly on the full dataset.

Exploring Exchangeable Dataset Amortization

L2 Loss (↓) Accuracy (↑)
Objective qφ Model Gaussian Mean GMM LR NLR LC NLC

5D 25D 2D 2 cl 5D 100D 5D 25D 5D 100D 5D 25D

Baseline
- Random 11.7 54.3 1.8 5.4 69.6 85.1 286.4 50.5 50.0 50.0 49.8
- Optimization 1.6 4.6 0.1 0.3 8.6 1.0 30.1 95.6 69.1 92.1 79.3

Fwd.-KL

G
au

ss
ia

n DeepSets 1.6 4.4 0.8 0.3 50.0 69.4 238.8 80.2 50.1 59.3 57.0
Transformer 1.6 4.4 0.8 0.3 18.2 66.7 234.2 80.0 63.0 60.2 57.7

Rev.-KL
DeepSets 1.6 4.4 0.1 0.3 25.2 3.2 44.1 90.9 59.7 63.5 59.9

Transformer 1.6 4.4 0.1 0.3 11.0 2.1 31.3 91.2 66.2 82.2 75.0

Fwd.-KL

Fl
ow

DeepSets 1.6 4.5 0.1 0.3 52.0 57.6 246.7 91.6 50.5 60.9 57.1
Transformer 1.6 4.4 0.1 0.3 19.2 54.0 200.2 92.2 63.8 60.5 58.2

Rev.-KL
DeepSets 1.6 4.4 0.1 0.3 25.3 3.2 59.6 92.1 59.0 64.7 60.9

Transformer 1.6 4.4 0.1 0.3 10.6 1.7 31.3 92.4 66.8 83.3 74.5

Table 1. Summary of experimental results. Shown are the results for the following tasks: estimating the mean of a Gaussian with full
covariance (Gaussian Mean), estimating the mean of a Gaussian mixture model with full covariance (GMM), (non-)linear regression
(NLR/LR) and (non-)linear classification (NLC/LC). The tasks were tackled with different experimental setups, i.e., different parameterized
posteriors (diagonal Gaussian and Normalizing Flow) and different inference networks (DeepSets and Transformer). Furthermore, we
computed the results for forward and reverse KL objectives and used the prior (Random) and multiple dataset-specific maximum likelihood
training (Optimization) as baselines. The L2 Loss refers to the expected posterior-predictive L2 loss and Accuracy is the expected
posterior predictive accuracy.

Similar to standard VI approaches, we can train qφ by mini-
mizing the KL divergence between the approximate and the
true posterior, i.e., KL[qφ(·|D)||p(·||D)] which reduces to
maximizing the ELBO

argmax
φ

Eθ∼qφ(·|D)

[
log

p(D,θ)

qφ(θ|D)

]
(4)

While this is the case for VI on a single dataset, we are
interested in generalizing to a family of datasets {Di}Ki=1.
To obtain the posterior distribution for each, we consider a
mean-field assumption over the variational distribution qφ
and an IID assumption over the datasets

argmax
φ

Eθi∼qφ(·|Di)

[
log

K∏
i=1

p(Di, θi)
qφ(θi|D)

]
(5)

In particular, if we have a dataset generating distribution χ,
we can re-write Equation 5 as the optimization problem

argmax
φ

ED∼χEθ∼qφ(·|D)

[
log

p(D,θ)

qφ(θ|D)

]
. (6)

The choice of χ could just be obtained by sampling from

p(n)p(θ)
n∏
i=1

p(xi|θ) using ancestral sampling, where n is

the dataset cardinality and p(n) is a distribution over posi-
tive integers. Thus, given any model, obtaining a dataset-
generating distribution by sampling from the model is easy.

For this setup, the choice of qφ is up to the user. For ex-
ample, we can model qϕ as a Gaussian distribution. This
requires learning the mean µϕ : D → Rm and covariance

matrix Σϕ : D → Rm×m of the Gaussian distribution.
Importantly, to handle exchangeable datasets, these func-
tions take an arbitrarily sized dataset D as input and are
invariant to permutations in D. The exact same formulation
holds for obtaining posteriors when only some observed
variables are modeled, e.g., consider the model p(y,θ|x),
where the estimation problem is to approximate p(θ|D)
where D = {(xi,yi)}ni=1.

4. Experiments
We consider different well-known probabilistic models
p(D,θ) for our experiments and approximate the poste-
rior distribution with the variational distribution qφ(θ|D).
We consider two different families of distributions for qφ:
(a) Gaussian Distribution with a diagonal covariance matrix
and (b) Conditional Normalizing Flows. A permutation
invariant architecture takes D as input and outputs the pa-
rameters of qφ, e.g., the mean and diagonal variances in the
case of Gaussian distribution. We consider two different
permutation invariant architectures: DeepSets (Zaheer et al.,
2017) and Transformers, both with approximately the same
number of parameters (Appendix B) and train the models by
simulating data from p(D,θ) as outlined in Section 3 and
consider training with a forward-KL objective as a baseline.

For all our experiments, we sample 100 test datasets and
validate the efficacy of different methods by averaging their
performance over these datasets. Figure 1 visualizes the
zero-shot performance of our proposed method on different
modeling problems, and we compare numerical benefits

Exploring Exchangeable Dataset Amortization

(a) Forward KL (b) Reverse KL

Figure 2. Estimating the means of a Gaussian Mixture Model,
where red denotes samples from the prediction of the first mean
and green of the second mean. The cluster labeling switches in
forward KL, implying it can model the multi-modal distribution.
In contrast, in reverse KL, it only models one mode, i.e., the first
mean always corresponds to the same cluster.

against forward-KL and independent optimization routines
across different experimental settings in Table 1.

Mean of Gaussian: As a proof of concept, we consider the
simple setup of estimating the posterior distribution over
the mean of a Gaussian distribution given some observed
data. In this case, the probabilistic model p(x,θ) is given by
the likelihood p(x|µ) = N (x|µ,Σ) and the prior p(µ) =
N (µ|0, I), and Σ is known before-hand.

Linear Regression: We then look at the problem of esti-
mating the posterior over the weight vector for Bayesian
Linear Regression, where the underlying model is given
by the likelihood p(y|x,w) = N

(
y|wTx+ b, σ2

)
and the

prior p(w) = N (0, I), and the task is to estimate p(w, b|D)
with σ2 known before-hand.

Linear Classification: We now consider a setting where
the true posterior cannot be obtained analytically as the
likelihood and prior are not conjugate. In this case, we
consider the underlying probabilistic model by defining the
likelihood as p(y|x,W) = Categorical (y|Wx) and the
prior as W = N (W|0, I).

Nonlinear Regression: Next, we tackle the more complex
problem where the posterior distribution is multi-modal
and obtaining multiple modes or even a single good one is
challenging. For this, we consider the model as a BNN for
regression with fixed hyper-parameters like the number of
layers, dimensionality of the hidden layer, etc. Let the BNN
denote the function fθ where θ are the network parameters.
Then, for regression, we specify the probabilistic model
using the likelihood p(y|x,θ) = N

(
y|fθ(x), σ2

)
and the

prior p(θ) = N (θ|0, I), where σ2 is a known quantity, and
the estimation problem is to approximate p(θ|D).

Nonlinear Classification: Similar to regression, we con-
sider BNNs with fixed hyper-parameters for classification
problems. In this formulation, we consider the probabilistic
model as the likelihood p(y|x,θ) = Categorical (y|fθ(x))
and the prior p(θ) = N (θ|0, I), with the same estimation

task of approximating p(θ|D).

Gaussian Mixture Model: While we have mostly looked
at predictive problems, where the task is to model some
predictive variable y conditioned on some input x, we now
look at a well-known probabilistic model for unsupervised
learning, Gaussian Mixture Model (GMM), primarily used
to cluster data. Consider a K−cluster GMM with the like-

lihood p(x|µ1:K) =
K∑
k=1

πkN (x|µk,Σk) and the prior

p(µk) = N (µk|0, I), assuming known covariance matri-
ces Σk and mixing coefficients πk for all clusters k.

5. Discussion and Conclusion
For all our experiments, we consider two permutation-
invariant architectures: DeepSets and Transformers, two
kinds of variational distributions: diagonal Gaussian and
Normalizing Flows, as well as two optimization objectives:
forward and reverse KL.

Forward vs. Reverse KL: In our experiments on GMM,
which has multiple modes because of the exchangeabil-
ity of cluster labels, we see that the forward KL objective
does lead to learning of a multi-modal distribution. At the
same time, reverse KL only captures one mode (Figure 2).
However, we also see that in high-dimensional multi-modal
settings like learning the parameters of a BNN, the forward
KL objective does not lead to learning a reasonable distri-
bution as it attempts to cover all modes. In contrast, the
reverse KL objective does not cover multiple modes but can
better model one mode, which might be good enough for
solving the task (Table 1). Furthermore, unlike forward-KL,
the reverse-KL paradigm can be trained without observing θ
but does require a computable and differentiable likelihood.

Transformer vs. DeepSets: We consistently see that us-
ing Transformers as the permutation-invariant architecture
outperforms DeepSets. We believe that this is because a
transformer model allows learning an aggregation function,
as opposed to DeepSets, which relies on a fixed aggregation
function (in our case, the mean).

Gaussian vs. Flows: We see that increasing the capacity
of qφ with normalizing flows does not help for reverse-KL
objective but does for forward-KL. Given the mode-seeking
tendency for reverse-KL, we hypothesize that even with the
capacity to model different modes, finding both modes is,
as expected, challenging but possible (Liu & Wang, 2016;
Midgley et al., 2022).

We show that it is possible to amortize full Bayesian poste-
rior inference for a broad class of probabilistic models and
explore a variety of design decisions. We believe this ap-
proach could provide fast insights into Bayesian posteriors
in practice and help accelerate further refinements of the

Exploring Exchangeable Dataset Amortization

posterior estimates. A key benefit is that it can be trained
using both real and simulated data, with or without model
misspecification. We believe this is an exciting direction
of research that could lead to reducing the load of real-
world, complex Bayesian inference problems. Scaling this
approach to work on more complex probabilistic models is
a significant focus of future work.

Acknowledgements
SM would like to acknowledge the computing resources pro-
vided by the Mila cluster to enable the experiments outlined
in this work.

References
Ardizzone, L., Bungert, T., Draxler, F., Köthe, U., Kruse,

J., Schmier, R., and Sorrenson, P. FrEIA: Framework
for easily invertible architectures, 2018. URL https:
//github.com/vislearn/FrEIA.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Brooks, S. Markov chain monte carlo method and its appli-
cation. Journal of the royal statistical society: series D
(the Statistician), 47(1):69–100, 1998.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real NVP. 5th International Conference
on Learning Representations, ICLR 2017 - Conference
Track Proceedings, 2017. URL http://arxiv.org/
abs/1605.08803.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T.,
Saxton, D., Shanahan, M., Teh, Y. W., Rezende, D., and
Eslami, S. A. Conditional neural processes. In Interna-
tional conference on machine learning, pp. 1704–1713.
PMLR, 2018a.

Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F.,
Rezende, D. J., Eslami, S., and Teh, Y. W. Neural pro-
cesses. arXiv preprint arXiv:1807.01622, 2018b.

Gelfand, A. E. Gibbs sampling. Journal of the American
statistical Association, 95(452):1300–1304, 2000.

Gordon, J., Bruinsma, W. P., Foong, A. Y., Requeima, J.,
Dubois, Y., and Turner, R. E. Convolutional conditional
neural processes. arXiv preprint arXiv:1910.13556, 2019.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. Journal of Machine
Learning Research, 2013.

Hoffman, M. D., Gelman, A., et al. The no-u-turn sampler:
adaptively setting path lengths in hamiltonian monte carlo.
J. Mach. Learn. Res., 15(1):1593–1623, 2014.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A.,
Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive
neural processes. arXiv preprint arXiv:1901.05761, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, D. P., Welling, M., et al. An introduction to vari-
ational autoencoders. Foundations and Trends® in Ma-
chine Learning, 12(4):307–392, 2019.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. Normalizing
flows: An introduction and review of current methods.
IEEE transactions on pattern analysis and machine intel-
ligence, 43(11):3964–3979, 2020.

Liu, Q. and Wang, D. Stein variational gradient descent: A
general purpose bayesian inference algorithm. Advances
in neural information processing systems, 29, 2016.

Lorch, L., Sussex, S., Rothfuss, J., Krause, A., and
Schölkopf, B. Amortized inference for causal structure
learning. Advances in Neural Information Processing
Systems, 35:13104–13118, 2022.

Midgley, L. I., Stimper, V., Simm, G. N., Schölkopf, B.,
and Hernández-Lobato, J. M. Flow annealed importance
sampling bootstrap. arXiv preprint arXiv:2208.01893,
2022.

Morris, Q. Recognition networks for approximate inference
in bn20 networks. arXiv preprint arXiv:1301.2295, 2013.

Paige, B. and Wood, F. Inference networks for sequential
monte carlo in graphical models. In International Con-
ference on Machine Learning, pp. 3040–3049. PMLR,
2016.

Pakman, A., Wang, Y., Mitelut, C., Lee, J., and Paninski, L.
Neural clustering processes. In International Conference
on Machine Learning, pp. 7455–7465. PMLR, 2020.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. The Journal of
Machine Learning Research, 22(1):2617–2680, 2021.

https://github.com/vislearn/FrEIA
https://github.com/vislearn/FrEIA
http://arxiv.org/abs/1605.08803
http://arxiv.org/abs/1605.08803

Exploring Exchangeable Dataset Amortization

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., and
Köthe, U. Bayesflow: Learning complex stochastic mod-
els with invertible neural networks. IEEE transactions on
neural networks and learning systems, 33(4):1452–1466,
2020.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, pp. 1530–1538. PMLR, 2015.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochastic
backpropagation and approximate inference in deep gen-
erative models. In International conference on machine
learning, pp. 1278–1286. PMLR, 2014.

Stuhlmüller, A., Taylor, J., and Goodman, N. Learning
stochastic inverses. Advances in neural information pro-
cessing systems, 26, 2013.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Welling, M. and Teh, Y. W. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
international conference on machine learning (ICML-11),
pp. 681–688, 2011.

Zaheer, M., Kottur, S., Ravanbhakhsh, S., Póczos, B.,
Salakhutdinov, R., and Smola, A. J. Deep sets. In Ad-
vances in Neural Information Processing Systems, vol-
ume 2017-December, 2017.

Exploring Exchangeable Dataset Amortization

A. Related Work
Variational Autoencoders (VAEs). VAEs (Kingma & Welling, 2013; Rezende et al., 2014; Rezende & Mohamed, 2015;
Kingma et al., 2019) are latent variable models which model observations x conditioned on latent variables z through the
joint distribution pθ(x, z) = pθ(x|z)p(z) where p(z) is generally chosen as N (0, I). Training the model is done through
VI where qφ(z) is obtained by explicit amortization over the data point, that is, qφ(z|x) = N (µφ(x),Σφ(x)). Training
this system on a dataset D is done by similarly optimizing the Evidence Lower-Bound, which boils down to the following
optimization problem

argmax
θ,φ

Ex∼DEz∼q(·|x)

[
log

pθ(x, z)

qφ(z|x)

]
(7)

which can be easily optimized using gradient-based learning and reparameterization trick. While typically, a diagonal
Gaussian distribution is considered for qφ, more complex distributions utilizing normalizing flows can also be used.

Neural Processes. Neural processes (Garnelo et al., 2018a;b; Kim et al., 2019; Pakman et al., 2020; Gordon et al., 2019)
(NPs) can be seen as a more flexible and powerful extension of Gaussian processes that leverage a neural network-based
encoder-decoder architecture for learning to model a distribution over functions that approximate a stochastic process.
However, while we are interested in approximating the posterior distribution over the parameters, neural processes are used
to approximate the posterior predictive distribution to make predictions based on observed data. Similar to our setup, NPs
rely on amortized VI for obtaining the predictive posterior. Still, instead of working with a known probabilistic model, they
train the probabilistic model primarily for prediction-based tasks through approaches analogous to variational expectation
maximization. Thus, they cannot provide explicit posterior over the parameters but are more applicable in tasks where we
only care about predictive posteriors for tasks that are more akin to supervised learning. NPs, in their most basic form,
accomplish this by training for the objective:

argmax
θ,φ

ED∼χEz∼qφ(·|D)

[
log

pθ(D, z)

qφ(z|D)

]
(8)

where z ∈ Rp is an arbitrary latent variable often uninterpretable, and the parameters of the probabilistic model θ do not
get a Bayesian treatment. In particular, NPs are more suited to modeling datasets of the form D = {xi,yi}ni=1, where all
probabilities in Equation 8 are conditioned on the input x’s, and only the predictive over y’s is modeled, and pθ is modeled
as a Neural Network.

BayesFlow. In the case of likelihood-free inference, when the likelihood p(x|θ) is not available in closed form,
BayesFlow (Radev et al., 2020) and similar methods (Lorch et al., 2022) provide a solution framework to amortize
Bayesian inference of parameters in complex models. Starting from the forward KL divergence between the true and
approximate posteriors, the resulting objective is to optimize for parameters of the approximate posterior distribution
that maximize the posterior probability of data-generating parameters θ given observed data D for all θ and D. Density
estimation of the approximate posterior can then be done using the change-of-variables formula and a conditional invertible
neural network that parameterizes the approximate posterior distribution.

argmin
φ

KL[p(θ|D)||qφ(θ|D)] = argmin
φ={ν,ψ}

E(θ,D)∼p(θ,D) [− log pz(fν(θ;hψ(D)))− log |det Jfν |] (9)

Since their goal is to learn a global estimator for the probabilistic mapping from D to data generating θ, the information
about the observed dataset is encoded in the output of a summary network hψ. It is used as conditional input to the
normalizing flow fν . Although the likelihood function does not need to be known in this case, the method requires access to
paired observations (x,θ) for training, which is sometimes unavailable.

B. Architecture Details
B.1. Transformer

We use a transformer model (Vaswani et al., 2017) as a permutation invariant architecture by removing positional encodings
from the setup and using multiple layers of the encoder model. We append the set of observations with a [CLS] token
before passing it to the model and use its output embedding to predict the parameters of the variational distribution. Since
no positional encodings or causal masking is used in the whole setup, the final embedding of the [CLS] token becomes
invariant to permutations in the set of observations, thereby leading to permutation invariance in the parameters of qφ.

Exploring Exchangeable Dataset Amortization

We use 4 encoder layers with a 256 dimensional attention block and 1024 feed-forward dimensions, with 4 heads in each
attention block for our Transformer models to make the number of parameters comparative to the one of the DeepSets
model.

B.2. DeepSets

Another framework that can process set-based input is Deep Sets (Zaheer et al., 2017). In our experiments, we used an
embedding network that encodes the input into representation space, a mean aggregation operation, which ensures that the
representation learned is invariant concerning the set ordering, and a regression network. The latter’s output is either used to
directly parameterize a diagonal Gaussian or as conditional input to a normalizing flow, representing a summary statistics of
the set input.

For DeepSets, we use 4 layers each in the embedding network and the regression network, with a mean aggregation function,
ReLU activation functions, and 627 hidden dimensions to make the number of parameters comparative to the one of the
Transformer model.

B.3. Normalizing Flows

Assuming that the approximate posterior distribution is Gaussian often leads to poor results as the true posterior distribution
can be far from Gaussian shape. To allow for more flexible posterior distributions, we use normalizing flows (Kingma &
Dhariwal, 2018; Kobyzev et al., 2020; Papamakarios et al., 2021; Rezende & Mohamed, 2015) for approximating qφ(θ|D)
conditioned on the output of the summary network hψ. Specifically, let gν : z 7→ θ be a diffeomorphism parameterized
by a conditional invertible neural network (cINN) with network parameters ν such that θ = gν(z;hψ(D)). With the
change-of-variables formula it follows that p(θ) = p(z)

∣∣det ∂
∂zgν(z;hψ(D))

∣∣−1
= p(z)|det Jν(z;hψ(D))|−1, where Jν

is the Jacobian matrix of gν . Further, integration by substitution gives us dθ = |det Jν(z;hψ(D)|dz to rewrite the objective
from eq. 6 as:

argmin
φ

KL[qφ(θ|D)||p(θ|D)] = argmin
φ

ED∼χEθ∼qφ(θ|D) [log qφ(θ|D)− log p(θ,D)] (10)

= argmin
φ={ψ,ν}

ED∼χEz∼p(z)

[
log

qν(z|hψ(D))

|det Jν(z;hψ(D))|
− log p(gν(z;hψ(D)),D)

]
(11)

As shown in BayesFlow (Radev et al., 2020), the normalizing flow gν and the summary network hψ can be trained
simultaneously. The AllInOneBlock coupling block architecture of the FrEIA Python package (Ardizzone et al., 2018),
which is very similar to the RNVP style coupling block (Dinh et al., 2017), is used as the basis for the cINN. AllInOneBlock
combines the most common architectural components, such as ActNorm, permutation, and affine coupling operations.

For our experiments, four coupling blocks, each with a 2-layered non-linear feed-forward subnetworks with ReLU non-
linearity and 256 hidden dimensions, define the normalizing flow network. We also include a starting linear transformation
to allow for modeling an arbitrary diagonal Gaussian distribution in the first layer.

C. Experiment Details
For all our experiments, we do not yet consider model misspecification and obtain a stream of datasets by simply sampling
from χ, where the number of observations n is sampled uniformly from in the range [64, 128]. For efficient mini-batching
over datasets with different cardinalities, we sample datasets with maximum cardinality (128) and implement different
cardinalities by masking out different numbers of observations for different datasets whenever required.

For all our experiments on supervised setups, we sample xi ∼ N (0, I) for simplicity, but it is possible to explore other
proposal distributions (e.g., heavy-tailed distributions) too. In our Bayesian Neural Networks experiments, we considered
a single-layered neural network with Tanh activation function and 32 hidden dimensions. We considered the likelihood
function as either a Gaussian or a categorical distribution using the logits, depending on regression and classification.

We do not consider explicit hyperparameter optimization for our experiments and simply use a learning rate of 1e-4 with
the Adam optimizer (Kingma & Ba, 2014). For smaller experiments like estimating the mean of a Gaussian distribution or
linear regression, we trained the model for 25, 000 iterations, while for more complex systems like non-linear regression, we
trained the inference model for 100, 000 iterations.

