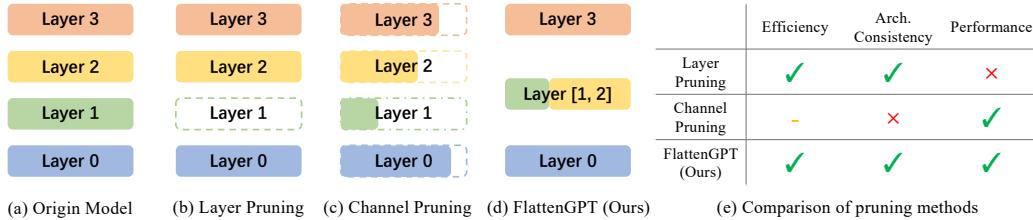


FLATTENGPT: DEPTH COMPRESSION FOR TRANSFORMER WITH LAYER FLATTENING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 This work proposes **FlattenGPT**, a novel depth compression method for transform-
012 ers. Recent works have observed redundancy across transformer blocks, prompting
013 the research of depth compression to prune less crucial blocks. However, existing
014 works mostly follow the entire-block pruning paradigm and suffer from risks of
015 discarding knowledge learned in those blocks, leading to substantial performance
016 degradation. On the other hand, channel pruning can better preserve performance,
017 while it cannot compress model depth and is challenged by inconsistent pruning
018 ratios for each layer. To address those issues, this paper introduces a novel compres-
019 sion strategy named layer flattening, which bridges the gap between layer pruning
020 and channel pruning. By converting two adjacent blocks into one, it compresses
021 the network depth and enables more effective parameter redundancy detection
022 and removal. FlattenGPT strives to preserve the knowledge learned in all blocks
023 and remain consistent with the original architecture, enhancing model efficiency
024 with a decent trade-off to performance. Extensive experiments demonstrate that
025 FlattenGPT outperforms existing pruning methods in both zero-shot accuracies
026 and WikiText-2 perplexity across various model types and parameter sizes. It also
027 outperforms other pruning methods in accelerating LLM inference, making it a
028 promising approach for enhancing the efficiency of transformers.



030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: Comparison of pruning methods. (a) The original architecture. (b) Layer pruning removes
the entire block and discards all knowledge in it. (c) Channel pruning cannot compress model depth
and leads to inconsistent architecture across layers. (d) Our method bridges the gap, producing a
compact model with little performance degradation. (e) A comprehensive comparison.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Brown et al., 2020; Zhang et al., 2022; Chowdhery et al., 2023; Touvron et al., 2023a,b; Dubey et al., 2024) have led to breakthroughs in understanding and generation of natural language (Hadi et al., 2023; Zhao et al., 2023; Minaee et al., 2024). However, the cost of heavy computation and extremely large memory consumption makes it very challenging to deploy on resource-limited devices. To mitigate these issues, model compression has emerged as a popular post-training solution, reducing model size and complexity by removing model redundancy (Gupta & Agrawal, 2022; Zhu et al., 2023).

Depth compression (Song et al., 2024; Men et al., 2024) is a technique aimed at reducing the redundancy across transformer blocks. This redundancy manifests itself in the cross-layer similarity (Gromov et al., 2024; Sun et al., 2024; 2025). Figure 2(a) illustrates that the input of adjacent

blocks has high similarity in LLMs, which is caused by the residual path spanning the entire LLM. This similarity is particularly evident in LLMs, indicating that there is a certain amount of redundancy within them. Depth compression methods aim to reduce this cross-layer redundancy to achieve a compact network architecture. Besides, compared to other pruning methods such as channel pruning (Ma et al., 2023; Ashkboos et al., 2024) or 2:4 pruning (Frantar & Alistarh, 2023; Sun et al., 2023), depth compression methods have an evident advantage in inference speed with the same number of parameters (Song et al., 2024). However, previous depth comparison methods usually adopt layer or block pruning, which removes the entire block selected by measuring how crucial the blocks are (Men et al., 2024; Samragh et al., 2023; Kim et al., 2024; Song et al., 2024; Zhong et al., 2024; Zhang et al., 2024a). It may also remove the useful knowledge learned in the pruned blocks simultaneously, leading to serious performance degradation.

Channel pruning (Ma et al., 2023; Ashkboos et al., 2024; van der Ouderaa et al., 2024; Lin et al., 2024), on the other side, conducts a fine-grained parameter preservation and thus leads to better performance. However, these methods usually assign different pruning ratio for each layer. This inconsistency in module architecture will cause inconvenience in hyperparameter tuning or model deployment, such as LoRA hyperparameters (Hu et al., 2022). Moreover, channel pruning cannot utilize the redundancy across layers, resulting in a deeper architecture and higher latency in practice.

In this paper, we propose a fine-grained depth compression method called FlattenGPT, which preserves crucial knowledge while reducing the model depth. FlattenGPT is composed of two stages. In the first stage, we propose a new operation named flattening, to merge adjacent transformer blocks by concatenating their parameters and hidden states. This operation changes the sequential execution of transformer blocks to parallel execution, with only the input of the blocks being altered. Since the input features of each layer in LLMs are inherently of high similarity, flattening the blocks has little impact on the model’s performance. The subsequent stage employs a channel pruning method to streamline the merged transformer blocks. Channel pruning can identify the critical channels within the merged blocks, allowing for a fine-grained removal of redundancy while preserving the learned knowledge of each block.

FlattenGPT has clear advantages over previous pruning methods. As shown in Figure 1, unlike layer pruning methods, flattening preserves the knowledge embedded in each layer, raising the performance ceiling of the depth compression. Compared with channel pruning, FlattenGPT produces a consistent architecture with lower depth, leading to higher efficiency and easier tuning and deployment. This method bridges the gap between depth compression and channel pruning, allowing for a more comprehensive model compression. Extensive experiments demonstrate that FlattenGPT preserves up to 96% of zero-shot performance with a compression rate of 20% on LLaMA 2 (Touvron et al., 2023b), outperforming prior depth compression approaches. To the best of our knowledge, FlattenGPT is an original effort on transformer compression through layer flattening. It shows potential to establish a novel comprehensive framework that enhances the depth compression of transformer architectures.

2 PRELIMINARY AND ANALYSIS

2.1 PRELIMINARY OF TRANSFORMER ARCHITECTURE

The Pre-LN transformer architecture in LLMs (Touvron et al., 2023a) consists of multiple decoder layers, each composed of two blocks, *i.e.*, Multi-Head Attention (MHA) and Multi Layer Perceptron (MLP). Concretely, let $l \in \{0, 1, \dots, L - 1\}$ denote the layer index, T , d_h , d_{int} and H denote the sequence length, hidden dimension, intermediate dimension, and the number of attention heads, respectively. The formulation of a Transformer layer is denoted as

$$\tilde{\mathbf{H}}^{l-1} = \mathbf{H}^{l-1} + \text{MHA}^l \left(\text{LN}_a^l \left(\mathbf{H}^{l-1} \right) \right), \quad \mathbf{H}^l = \tilde{\mathbf{H}}^{l-1} + \text{MLP}^l \left(\text{LN}_p^l \left(\tilde{\mathbf{H}}^{l-1} \right) \right), \quad (1)$$

where $\mathbf{H}^l \in \mathbb{R}^{T \times d_h}$ denotes the output of the l -th layer, MHA^l , MLP^l , LN_a^l , and LN_p^l denote the MHA block, MLP block, MHA normalization, and MLP normalization of the l -th Transformer layer, respectively. The normalization layers are usually composed of a root mean square normalization and an element-wise refinement:

$$\text{LN}_a^l(\mathbf{X}) = \text{RMSNorm}(\mathbf{X}) \text{diag}(\boldsymbol{\alpha}_a^l), \quad \text{LN}_p^l(\mathbf{X}) = \text{RMSNorm}(\mathbf{X}) \text{diag}(\boldsymbol{\alpha}_p^l), \quad (2)$$

where $\text{RMSNorm}(\mathbf{X})$ applies $\mathbf{X} \leftarrow \mathbf{X} / \|\mathbf{X}\|$ to each row of \mathbf{X} , $\boldsymbol{\alpha}_a \in \mathbb{R}^{d_h}$ and $\boldsymbol{\alpha}_p \in \mathbb{R}^{d_h}$ are the parameters of refinement.

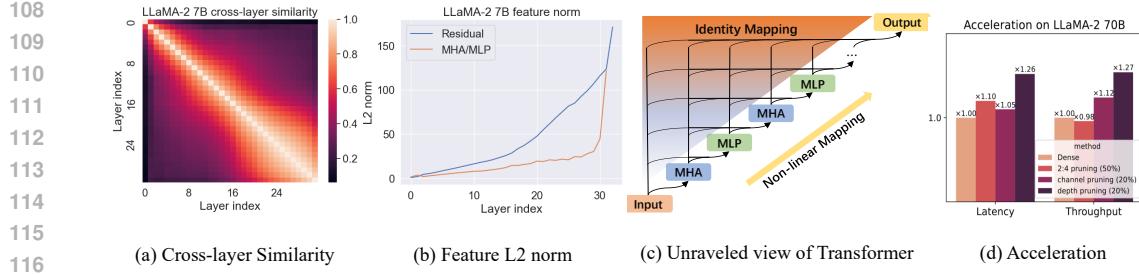


Figure 2: Redundancy in transformer blocks. (a) LLaMA-2 7B exhibits high cross-layer similarity. (b) The scale of the residual path grows faster than the MHA/MLP blocks, which dominates the deep hidden states. (c) The unraveled view of transformer architecture, where the residual path traversing the entire network leads to the cross-layer similarity. (d) The acceleration comparison between different pruning methods.

MHA block The MHA block is defined as

$$\text{MHA}^\ell(\mathbf{X}) = \sum_{i=1}^H \text{Softmax}(\sigma_r(\mathbf{X}\mathbf{W}_{Q,i}^\ell) \sigma_r^\top(\mathbf{X}\mathbf{W}_{K,i}^\ell)) \mathbf{X}\mathbf{W}_{V,i}^\ell \mathbf{W}_{O,i}^\ell, \quad (3)$$

where $\mathbf{X} \in \mathbb{R}^{T \times d_h}$ denotes the input feature, $\mathbf{W}_{Q,i}^\ell, \mathbf{W}_{K,i}^\ell, \mathbf{W}_{V,i}^\ell \in \mathbb{R}^{d_h \times \frac{d_h}{H}}$, and $\mathbf{W}_{O,i}^\ell \in \mathbb{R}^{\frac{d_h}{H} \times d_h}$ denote the query, key, value, and output matrices of the i -th head in the ℓ -th layer, respectively. For simplicity, we denote $\mathbf{W}_Q = [\mathbf{W}_{Q,1} \ \mathbf{W}_{Q,2} \ \dots \ \mathbf{W}_{Q,H}]$ as the horizontal concatenation of query parameters from all heads, and similar to \mathbf{W}_K and \mathbf{W}_V . We denote $\mathbf{W}_O = [\mathbf{W}_{O,1}^\top \ \mathbf{W}_{O,2}^\top \ \dots \ \mathbf{W}_{O,H}^\top]^\top$ as the vertical concatenation of output parameters. σ_r denotes the positional embedding function.

MLP block The MLP block is defined as

$$\text{MLP}^\ell(\mathbf{X}) = \sigma_s(\mathbf{X}\mathbf{W}_U^\ell) \mathbf{W}_D^\ell, \quad (4)$$

where $\mathbf{W}_U^\ell \in \mathbb{R}^{d_h \times d_{int}}$ and $\mathbf{W}_D^\ell \in \mathbb{R}^{d_{int} \times d_h}$ denotes the up and down matrix and σ_s is the non-linear activation function. $\mathbf{X} \in \mathbb{R}^{T \times d}$ is the input matrix. Prevailing LLMs (Touvron et al., 2023a;b; Bai et al., 2023) employ a gated MLP. Its up matrix is composed of a up matrix and gate matrix $\mathbf{W}_U^\ell = [\mathbf{W}_u \ \mathbf{W}_g]$, where the non-linear function is defined as $\sigma_s(\mathbf{X}\mathbf{W}_U^\ell) = \mathbf{X}\mathbf{W}_u^\ell \odot \sigma_g(\mathbf{X}\mathbf{W}_g^\ell)$. For the following discussions, we take the gated MLP as the baseline architecture.

2.2 ANALYSIS ON THE REDUNDANCY IN DEPTH

As illustrated in Figure 2(a), deep transformer architecture exhibits high cross-layer similarity. This is caused by the curse of depth (Sun et al., 2025), which implies that the deep layers are dominated by the residual path, *i.e.*, identity mapping. As shown in Figure 2(b), the L2 norm of the residual path is much larger than the MHA/MLP output in deep layers, dominating the forward propagation. An intuitive interpretation is shown in the triangle-shaped unraveled view of transformer architecture in Figure 2(c). The amount of residual features increases in deep layers and surpasses the non-linear blocks, leading to approximately identity mapping. This analysis shows the cross-layer redundancy in the transformers.

We provide a theoretical analysis of layer redundancy in deep transformers. We assume that the input feature \mathbf{H}^ℓ , intermediate vectors $\tilde{\mathbf{H}}^\ell$, and the model parameter matrix \mathbf{W}^ℓ follow normal and independent distributions with mean 0 for all layers. First, we model the growth of the hidden states in a transformer architecture:

Theorem 2.1 (The growth of the hidden state variance). *Let $\sigma_{\mathbf{H}^\ell}^2$ and $\sigma_{\tilde{\mathbf{H}}^\ell}^2$ denote the variance of \mathbf{H}^ℓ and $\tilde{\mathbf{H}}^\ell$, respectively. These two variances exhibit the same growth trend, which is*

$$\Theta(\ell) \leq \sigma_{\mathbf{H}^\ell}^2 = \sigma_{\mathbf{H}^0}^2 \Theta \left(\prod_{k=1}^{\ell} \left(1 + \frac{1}{\sigma_{\mathbf{H}^k}} \right) \right) \leq \Theta(\exp(\ell)), \quad (5)$$

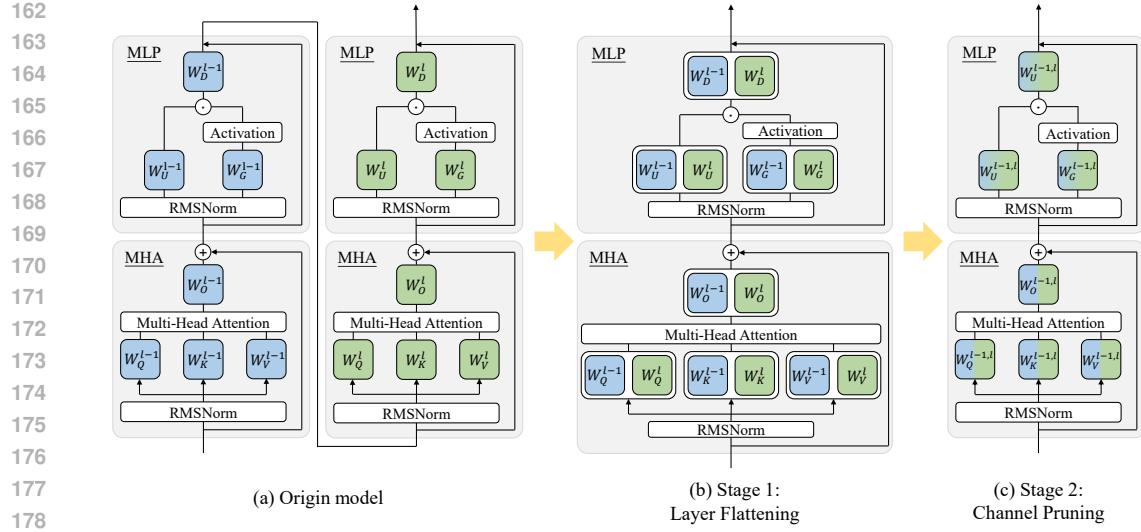


Figure 3: Framework of FlattenGPT. (a) Original stacks of transformer blocks with high similarity. (b) Layer flattening merges two adjacent blocks into one single block with little performance degradation. (c) Flattening bridges the gap between depth compression and channel compression.

This theorem implies that the variance of hidden states could grow as an exponential function of ℓ . This conclusion is verified by the empirical results in Figure 2(b). Then the following theorem gives the reason why deeper layers are redundant:

Theorem 2.2 (The norm of gradient). *Let $\frac{\partial y}{\partial \mathbf{H}^\ell}$ denote the partial derivative of the model output y to the ℓ -th hidden states \mathbf{H}^ℓ . The Euclidean norm of this partial derivative is bounded by*

$$\left\| \frac{\partial y}{\partial \mathbf{H}^\ell} \right\|_2 \leq \prod_{k=\ell}^L \left(1 + \frac{1}{\sigma_{\mathbf{H}^\ell}} A + \frac{1}{\sigma_{\mathbf{H}^\ell}^2} B \right), \quad (6)$$

where A and B are constants for the Transformer network. Specifically, when $\ell = L - c$, where c is a constant number, the limitation of the right-hand side is 1.

This conclusion implies that for very large L , the gradient of deeper layers x_ℓ , $\left\| \frac{\partial y}{\partial \mathbf{H}^\ell} \right\|_2$ is dominated by **identity mapping**, thereby limiting the model's expressivity and hindering its ability to learn meaningful transformations. This conclusion is verified by the empirical results as shown in Figure 2(a), where deeper layers exhibit high cross-layer similarity. The complete proof and more empirical results are given in Appendix A and B, respectively.

Due to this redundancy, previous layer pruning methods delete the entire redundant blocks, *i.e.*, MHA^ℓ or MLP^ℓ (Song et al., 2024; Men et al., 2024). Although these methods achieve promising acceleration as shown in Figure 2(d), pruning at such high granularity will inevitably remove the useful knowledge within the blocks, resulting in a massive performance degradation.

3 FLATTENGPT

FlattenGPT strives for a fine-grained parameter removal in depth compression. As illustrated in Figure 3, FlattenGPT employs a two-stage approach to compress the depth in a fine-grained manner. In the first stage, FlattenGPT merges the selected adjacent layers into a single wide layer, flattening the arrangement of layers. Due to the high similarity across layers, the flattening operation hardly alters the inner calculation, reducing the model depth with minimal performance degradation. In the second stage, FlattenGPT adaptively prunes the redundant parameters for the flattened layers, demonstrating less information loss compared with entire layer pruning methods. FlattenGPT produces the same architecture as layer pruning, but preserves important parameters from all layers. It not only runs fast in inference but also maintains high performance, which is a promising way for model compression.

216 3.1 ITERATIVE LAYER FLATTENING
217

218 Layer flattening aims to merge layers with high similarity. Since the inputs of the two layers are
219 highly similar, the inner calculation will not be significantly changed by the flattening, therefore
220 preserving better performance. We need to address two issues in this stage: 1) *how to select the layers*
221 *to flatten*, and 2) *how to merge the selected layers*.

222 **Layer Selection:** We collect cross-layer feature similarity on a small calibration dataset. Then
223 we design a greedy algorithm to find adjacent layers with the highest similarities iteratively. The
224 algorithm is shown in Algorithm 1. Let $\mathbf{S} \in \mathbb{R}^{L \times L}$ denote the similarity matrix, where $S_{i,j}$ denote
225 the cosine similarity between the input feature of layer i and layer j . We try to find the two adjacent
226 layers $\{l-1, l\}$ with the highest similarity for each iteration. Then we need to modify the similarity
227 matrix to \mathbf{S} for the next iteration. If the next flattened layers $m-1$ and m are not adjacent to the
228 current flattened layers $l-1$ and l , there is no problem with directly merging these layers. However,
229 if the next flattened layer are consecutive to the current ones, *i.e.* flattening $\{l-2, l-1, l\}$ (where
230 $m = l-1$) or $\{l-1, l, l+1\}$ (where $m-1 = l$), the similarity between the first and the last layer
231 need to be considered. If the input similarity between the first and the last layer is too large, the
232 output of the last layer will be significantly altered, leading to performance degradation. We can
233 modify the similarity matrix $S_{i,j}$ to avoid this problem. For the layers before $l-1$, we remove their
234 similarity with layer $l-1$. Thus, if the flattened layers are consecutive, we can only access their
235 similarity with layer l . Similarly, for the layers after l , we remove their similarity with the layer l .
The above steps are iterated until the target number of layers is flattened.

236 **Layer Flattening:** Flattening aims to merge the selected layers into a single wide layer. To be
237 compatible with the current implementation and AI infrastructure, we construct the flattened layers
238 with the same architecture as the original transformers. Let us denote the target layers as layer $l-1$
239 and layer l . First, we fuse the parameters of refinement in the normalization layer LN with the linear
240 projections in the MHA and MLP. For the MHA layers, we fuse α_a^{l-1} with the query, key, and value
241 matrix:

$$242 \tilde{\mathbf{W}}_{Q,i}^{l-1} = \text{diag}(\alpha_a^{l-1}) \mathbf{W}_{Q,i}^{l-1}, \quad \tilde{\mathbf{W}}_{K,i}^{l-1} = \text{diag}(\alpha_a^{l-1}) \mathbf{W}_{K,i}^{l-1}, \quad \tilde{\mathbf{W}}_{V,i}^{l-1} = \text{diag}(\alpha_a^{l-1}) \mathbf{W}_{V,i}^{l-1}. \quad (7)$$

244 For the MLP layers, we fuse α_p^{l-1} with the up and gate matrix:

$$245 \tilde{\mathbf{W}}_u^{l-1} = \text{diag}(\alpha_p^{l-1}) \mathbf{W}_u^{l-1}, \quad \tilde{\mathbf{W}}_g^{l-1} = \text{diag}(\alpha_p^{l-1}) \mathbf{W}_g^{l-1}. \quad (8)$$

247 Similar fuse operations are conducted on layer l . After these fusions, the refinement parameters are
248 set to $\mathbf{1}_{d_h}$. This step does not change the output of the network but facilitates the next flattening steps.

249 **MHA flattening** We simply add the output of the two MHA blocks.

$$251 \text{MHA}^{l-1,l}(\mathbf{X}) = \sum_{i=1}^H \text{Softmax} \left(\sigma_r \left(\mathbf{X} \tilde{\mathbf{W}}_{Q,i}^{l-1} \right) \sigma_r^\top \left(\mathbf{X} \tilde{\mathbf{W}}_{K,i}^{l-1} \right) \right) \mathbf{X} \tilde{\mathbf{W}}_{V,i}^{l-1} \mathbf{W}_{O,i}^{l-1} \\ 252 + \sum_{i=1}^H \text{Softmax} \left(\sigma_r \left(\mathbf{X} \tilde{\mathbf{W}}_{Q,i}^l \right) \sigma_r^\top \left(\mathbf{X} \tilde{\mathbf{W}}_{K,i}^l \right) \right) \mathbf{X} \tilde{\mathbf{W}}_{V,i}^l \mathbf{W}_{O,i}^l. \quad (9)$$

256 It is equivalent to concatenating the attention heads from two layers to form an attention block of
257 $2H$ heads. The flattened MHA block can also be calculated by the original implementation, which
258 utilizes a single query, key, value, and output projection matrix.

$$259 \mathbf{W}_Q^{l-1,l} = \left(\tilde{\mathbf{W}}_{Q,1}^{l-1} \tilde{\mathbf{W}}_{Q,2}^{l-1} \cdots, \tilde{\mathbf{W}}_{Q,H}^{l-1} \tilde{\mathbf{W}}_{Q,1}^l \tilde{\mathbf{W}}_{Q,2}^l \cdots, \tilde{\mathbf{W}}_{Q,H}^l \right) \quad (10)$$

261 and similar to the matrix $\tilde{\mathbf{W}}_K^{l-1,l}$, $\tilde{\mathbf{W}}_V^{l-1,l}$ and $\tilde{\mathbf{W}}_O^{l-1,l}$.

263 **MLP flattening** We simply add the output of two MLP blocks.

$$264 \text{MLP}^{l-1,l}(\mathbf{X}) = \mathbf{X} \tilde{\mathbf{W}}_u^{l-1} \sigma_g \left(\mathbf{X} \tilde{\mathbf{W}}_g^{l-1} \right) \mathbf{W}_D^{l-1} + \mathbf{X} \tilde{\mathbf{W}}_u^l \sigma_g \left(\mathbf{X} \tilde{\mathbf{W}}_g^l \right) \mathbf{W}_D^l \quad (11)$$

266 It is equivalent to concatenating the hidden states from two layers to form an MLP layer of $2d_{int}$
267 hidden channels. The full process of layer flattening is shown in Algorithm 1. These steps flatten the
268 layers, which reduces the layers of the original parameters. Flattening does not change the number of
269 parameters and calculations, thus we need a further pruning method to compress the models. We
adopt a channel pruning method to compress the parameters in the following part.

270 **Algorithm 1 Iterative layer flattening**

271 **Require:** Base model, number of layers to flatten N , calibration set \mathcal{D}

272 1: Calculate the input similarity between each pair of layers $\mathbf{S} \in \mathbb{R}^{L \times L}$

273 2: **while** $N \geq 0$ **do** ▷ Iterative search

274 3: Identify the index $(l-1, l)$ of the largest similarity in \mathbf{S} ▷ Select adjacent layers

275 4: $\tilde{\mathbf{W}}_m^j \leftarrow \text{diag}(\alpha_a^j) \mathbf{W}_m^j$, for $m \in \{Q, K, V\}, j \in \{l-1, l\}$ ▷ Fuse refinement parameters in MHA

276 5: $\mathbf{W}_m^{l-1, l} \leftarrow [\tilde{\mathbf{W}}_m^{l-1} \tilde{\mathbf{W}}_m^l]$, for $m \in \{Q, K, V\}$ ▷ Flatten MHA

277 6: $\mathbf{W}_O^{l-1, l} \leftarrow [\mathbf{W}_O^{l-1, \top} \mathbf{W}_O^{l, \top}]^\top$

278 7: $\tilde{\mathbf{W}}_m^j \leftarrow \text{diag}(\alpha_p^j) \mathbf{W}_m^j$, for $m \in \{u, g\}, j \in \{l-1, l\}$ ▷ Fuse refinement parameters in MLP

279 8: $\mathbf{W}_m^{l-1, l} \leftarrow [\tilde{\mathbf{W}}_m^{l-1} \tilde{\mathbf{W}}_m^l]$, for $m \in \{u, g\}$ ▷ Flatten MLP

280 9: $\mathbf{W}_D^{l-1, l} \leftarrow [\mathbf{W}_D^{l-1, \top} \mathbf{W}_D^{l, \top}]^\top$

281 10: Delete $\{\mathbf{S}_{i, l-1} | i < l\}$ and $\{\mathbf{S}_{l, i} | i > l-1\}$ from distance matrix \mathbf{S} ▷ Prepare for next iteration

282 11: $N \leftarrow N - 1$

283 12: **end while**

286

287 3.2 CHANNEL PRUNING

288

289 Layer flattening has produced a high-performance model with fewer layers, and then we need to
290 remove redundant parameters. Previous channel pruning methods are compatible with layer flattening.
291 However, this paper aims to keep the pruned architecture consistent with the original one, thus
292 requiring specific pruning methods. This consistency will simplify the implementation, facilitating
293 the reuse of tuning hyperparameters and deployment. We employ two pruning methods for MHA and
294 MLP blocks, respectively. For the MHA blocks, we prune redundant heads to keep the number of
295 heads and head size unchanged. For the MLP blocks, we prune individual channels with nyström
296 approximation (Gittens & Mahoney, 2016; Musco & Musco, 2017). In this section, we omit the layer
297 index in the formulation for simplicity.

298

MHA pruning Since the number of heads in the flattened layer is more than the original layer, we
299 aim to prune heads to keep the number of heads the same as the other MHA blocks. We design a
300 metric to compare the importance of head i :

301
$$f_i = \mathbb{E}_{\mathcal{D}} \left[\text{Softmax} \left(\sigma_r(\mathbf{X} \mathbf{W}_{Q,i}) \sigma_r^\top(\mathbf{X} \mathbf{W}_{K,i}) \right) \mathbf{X} \mathbf{W}_{V,i} \text{diag}(\mathbf{W}_{O,i} \mathbf{W}_{O,i}^\top)^{1/2} \right]. \quad (12)$$

302

303 This metric estimates the expectation of the attention activation value by multiplying the L2 norm of
304 each line of the output matrix. It measures the impact of the head i on the output of this MHA block.
305 By comparing the impact of each head, we can remove the unimportant heads to prune the MHA
306 block. The complete compression process is shown in Algorithm 2.

307

308 **Algorithm 2 MHA pruning** by removing heads

309

Require: Query, key, value matrix $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d_h \times d}$, output matrix $\mathbf{W}_O \in \mathbb{R}^{d \times d_h}$, rank k , calibration
310 dataset \mathcal{D}

311 1: $f_i = \sum_{i=1}^N \text{Softmax} \left(\sigma_r(\mathbf{X} \mathbf{W}_{Q,i}) \sigma_r^\top(\mathbf{X} \mathbf{W}_{K,i}) \right) \mathbf{X} \mathbf{W}_{V,i} \text{diag}(\mathbf{W}_{O,i} \mathbf{W}_{O,i}^\top)^{1/2}$, for $i \in \{1, 2, \dots, H\}$

312 2: Let $\mathbf{S}_k \in \mathbb{R}^{d \times k}$ be the matrix that selects the top k heads based on f_i scores

313 3: **return** $(\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V, \mathbf{W}_O) \leftarrow (\mathbf{W}_Q \mathbf{S}_k, \mathbf{W}_K \mathbf{S}_k, \mathbf{W}_V \mathbf{S}_k, \mathbf{S}_k^\top \mathbf{W}_O)$

314

315

316

MLP pruning The MLP blocks conduct important non-linear calculations in the transformer. A
317 simple channel selection is insufficient to maintain the performance of the original model. We
318 employ Nyström approximation (Gittens & Mahoney, 2016; Musco & Musco, 2017) to prune this
319 block. The compression method is shown in Algorithm 3. First, we calculate the ridge leverage
320 score (Musco & Musco, 2017) as the channel importance measurement. Then we select the important
321 channels and adjust the down matrix \mathbf{W}_D to compensate for the information loss with Nyström
322 approximation (Gittens & Mahoney, 2016). We have the following theorem which illustrates that
323 Nyström approximation is the best estimation under least squares with L2 regularization. The proof
is shown in Appendix A.3.

324 **Theorem 3.1.** Let \mathbf{S}_k denote a k -column selection matrix. Let \mathbf{C}_σ denote the covariance
 325 $\sum_{i=1}^N (\sigma_g(\mathbf{X}_i \mathbf{W}_U))^\top \sigma_s(\mathbf{X}_i \mathbf{W}_U)$. The optimal estimation of $\hat{\mathbf{W}}_D$ is defined by:
 326

$$327 \Delta \hat{\mathbf{W}}_D = \arg \min_{\Delta \mathbf{W}_D} \|\sigma_s(\mathbf{X}_i \mathbf{W}_U) \mathbf{S}_k (\mathbf{S}_k^\top \mathbf{W}_D + \Delta \mathbf{W}_D) - \sigma_s(\mathbf{X}_i \mathbf{W}_U) \mathbf{W}_D\|_2 + \lambda \|\Delta \mathbf{W}_D\|_2, \\ 328$$

$$329 \hat{\mathbf{W}}_D = \mathbf{W}_D + \mathbf{S}_k \Delta \hat{\mathbf{W}}_D, \\ 330$$

(13)

331 where λ is the coefficient for L2 regularization. $\Delta \hat{\mathbf{W}}_D$ has closed form solution:

$$332 \Delta \hat{\mathbf{W}}_D = (\mathbf{S}_k^\top \mathbf{C}_\sigma \mathbf{S}_k + \lambda \mathbf{I})^{-1} \mathbf{S}_k^\top \mathbf{C}_\sigma (\mathbf{I} - \mathbf{S}_k \mathbf{S}_k^\top) \mathbf{W}_D. \\ 333$$

336 **Algorithm 3 MLP pruning** by Nyström approximation

337 **Require:** Up and gated $\mathbf{W}_u, \mathbf{W}_g \in \mathbb{R}^{d_h \times d_{int}}$, down matrix $\mathbf{W}_D \in \mathbb{R}^{d_{int} \times d_h}$, rank k , calibration dataset \mathcal{D} ,
 338 and ridge intensity λ
 339 1: Calculate activation correlation $\mathbf{C}_\sigma = \sum_{i=1}^N (\mathbf{X}_i \mathbf{W}_u \sigma_g(\mathbf{X}_i \mathbf{W}_g))^\top \mathbf{X}_i \mathbf{W}_u \sigma_g(\mathbf{X}_i \mathbf{W}_g)$
 340 2: $s_i \leftarrow [\mathbf{C}_\sigma (\mathbf{C}_\sigma + \lambda \mathbf{I})]^{-1}$, for $i \in \{1, 2, \dots, d_{int}\}$ \triangleright Calculate the ridge leverage score
 341 3: Let $\mathbf{S}_k \in \mathbb{R}^{d_{int} \times k}$ be the matrix that selects the top k columns based on s_i scores
 342 4: **return** $(\mathbf{W}_u, \mathbf{W}_g, \mathbf{W}_D) \leftarrow (\mathbf{W}_u \mathbf{S}_k, \mathbf{W}_g \mathbf{S}_k, \mathbf{W}_D + (\mathbf{S}_k^\top \mathbf{C}_\sigma \mathbf{S}_k + \lambda \mathbf{I})^{-1} \mathbf{S}_k^\top \mathbf{C}_\sigma (\mathbf{I} - \mathbf{S}_k \mathbf{S}_k^\top) \mathbf{W}_D)$
 343

344
 345 3.3 PRUNING HYPERPARAMETERS

346 All architectural hyperparameters, including width/head count, are predefined to preserve structure
 347 consistency with the original transformer block. The target width of the pruned MLP is identical to
 348 the original MLP module, and the number of heads is the same as the original MHA module. This
 349 setting ensures compatibility with the original AI infrastructure, including GPUs, CUDA kernels,
 350 multi-machine communication, inference engine, etc. It is also a clear target for reproducibility.

351 4 EXPERIMENTS

352 4.1 EXPERIMENTAL SETUP

353 **Models:** We evaluate FlattenGPT on models that employ a sequential transformer block structure:
 354 LLaMA-2 (Touvron et al., 2023b), LLaMA-3 (Dubey et al., 2024), Qwen-1.5 (Bai et al., 2023), and
 355 Baichuan-2 (Yang et al., 2023), etc. These models share similar architectures of MHA and MLP.

356 **Implementations and environments:** All hyperparameters, including width/head count, are pre-
 357 defined to preserve structure consistency with the original transformer block. We implement our
 358 models using the HuggingFace Transformers library (Wolf et al., 2020). Model compression and
 359 performance testing were conducted on 8 NVIDIA A100 80GB GPUs.

360 **Datasets and Evaluations:** We follow the setup in previous works (Ashkboos et al., 2024; Song
 361 et al., 2024) for fairness. The calibration dataset is composed of 128 samples with 2048 tokens,
 362 randomly selected from the training split of WikiText-2 (Merity et al., 2016). The evaluation
 363 consists of perplexity and zero-shot task performance. The perplexity is evaluated on the test
 364 split of WikiText-2 (Merity et al., 2016) dataset. The zero-shot accuracies are evaluated with LM
 365 Evaluation Harness (Gao et al., 2024) on Winograd (Sakaguchi et al., 2019), HellaSwag (Zellers
 366 et al., 2019), Physical Interaction Question Answering (PIQA) (Bisk et al., 2020), and AI2 Reasoning
 367 Challenges (ARC-e, ARC-c) (Clark et al., 2018). We also investigate the effectiveness of recovery
 368 finetuning, which employs 50K samples of refined Alpaca (Taori et al., 2023) for instruction tuning
 369 with LoRA (Hu et al., 2022). More details are presented in Appendix C.

370 4.2 COMPARISON WITH DEPTH COMPRESSION

371 Table 1 shows a comprehensive comparison between FlattenGPT and the other depth compression
 372 methods. These methods (Yang et al., 2024; Song et al., 2024; Men et al., 2024; Samragh et al., 2023;

378

379

Table 1: Comparison of depth compression methods on WikiText-2 perplexity and zero-shot tasks.

Model	Method	Sparsity	PPL ↓	WinoG	HellaS	PIQA	ARC-e	ARC-c	Avg.
LLaMA-2 7B	Dense	0%	5.47	69.06	75.99	79.11	74.58	46.25	69.00
	SLEB (Song et al., 2024)	21.02%	9.14	58.96	62.47	73.07	56.48	33.02	56.80
	LaCo (Yang et al., 2024)	21.02%	50.39	60.46	54.08	68.34	55.39	35.84	54.82
	RM (Samragh et al., 2023)	21.02%	676.8	49.25	29.22	54.46	34.43	22.53	37.98
	ShortGPT (Men et al., 2024)	21.02%	18.45	65.90	62.63	70.24	56.06	36.09	58.18
	BlockPruner (Zhong et al., 2024)	21.99%	11.51	62.43	65.87	74.21	61.07	37.29	60.17
	FlattenGPT	21.02%	8.68	66.54	68.45	72.74	63.43	41.30	62.49
LLaMA-2 13B	Dense	0%	4.88	72.22	79.39	80.47	77.48	49.23	71.76
	LaCo (Yang et al., 2024)	24.37%	13.97	59.27	60.44	72.42	54.34	34.56	56.21
	RM (Samragh et al., 2023)	24.37%	10.08	66.61	66.80	73.72	66.12	41.98	63.05
	ShortGPT (Men et al., 2024)	24.37%	20.06	70.80	67.80	72.74	60.35	41.30	62.60
	BlockPruner (Zhong et al., 2024)	25.12%	8.16	66.30	72.20	76.93	65.82	41.38	64.53
	FlattenGPT	24.37%	6.68	71.11	73.44	76.33	72.10	44.54	67.50
	Dense	0%	7.95	66.46	76.92	79.22	62.16	42.66	65.48
Qwen-1.5 7B	LaCo (Yang et al., 2024)	20.97%	39.23	58.64	56.35	70.40	46.89	32.85	53.03
	RM (Samragh et al., 2023)	20.97%	2026	49.88	42.00	67.36	54.17	28.58	48.40
	ShortGPT (Men et al., 2024)	20.97%	49.88	62.12	58.87	69.53	43.60	32.17	53.26
	BlockPruner (Zhong et al., 2024)	21.83%	20.58	55.56	59.31	71.71	53.70	33.28	54.71
	FlattenGPT	20.97%	16.05	59.27	62.89	68.39	56.99	37.46	57.00
	Dense	0%	6.04	68.27	72.18	77.48	72.98	42.75	66.73
	LaCo (Yang et al., 2024)	21.57%	26.46	58.56	51.50	68.28	52.90	28.50	51.95
Baichuan-2 7B	RM (Samragh et al., 2023)	21.57%	189.8	52.33	30.87	59.96	38.17	23.63	40.99
	ShortGPT (Men et al., 2024)	21.57%	31.05	62.67	50.01	63.71	47.31	30.72	50.88
	BlockPruner (Zhong et al., 2024)	22.45%	15.38	61.48	58.09	69.75	58.08	33.02	56.08
	FlattenGPT	21.57%	20.55	64.33	61.50	69.42	56.27	35.24	57.35

400

401

Table 2: Comparison of pruning methods on throughput, latency, and mean accuracies on zero-shot tasks. Throughput and latency are measured with LLaMA-2 70B on 2 NVIDIA A100 80GB.

Method	Sparsity	Throughput	Latency	LLaMA-2		
		(Tokens/s)	(ms)	7B	13B	70B
Dense	0%	299.100×	1718.41.00×	69.00	71.76	76.57
2:4	SparseGPT	50%	293.0.98×	1555.5.1.10×	58.23	63.06
	Wanda	50%	293.0.98×	1555.5.1.10×	55.59	61.23
Width	LLM-Pruner	20%	314.1.05×	1534.3.1.12×	62.15	67.72
	SliceGPT	20%	314.1.05×	1658.7.1.04×	58.17	63.45
	SliceGPT	25%	331.1.11×	1440.7.1.19×	55.49	58.90
	SliceGPT	30%	343.1.15×	1364.21.26×	51.50	55.16
Depth	SLEB	10%	336.1.12×	1529.11.12×	62.24	66.77
	SLEB	20%	381.1.27×	1364.11.26×	56.80	62.96
	FlattenGPT	20%	381.1.27×	1364.11.26×	62.49	68.27
	FlattenGPT	20%	381.1.27×	1364.11.26×	73.94	

415

416

Zhong et al., 2024) remove the entire transformer blocks, resulting in massive information loss. Our method alleviates this problem by fine-grained parameter removal and shows superior performance on various model sizes (from 7B to 70B). It achieves the highest perplexity and improves the zero-shot accuracies by at least 2%. FlattenGPT has built a strong approach for depth compression.

421

422

4.3 COMPARISON WITH OTHER PRUNING METHODS

424

Table 2 compares the latency, throughput, and mean accuracies on zero-shot tasks of the compressed LLaMA-2 (Touvron et al., 2023b) models. 2:4 pruning methods lead to minor speedup (1.10×) and lower throughput (0.98× with a sparsity ratio of 50%). Width pruning methods, such as SliceGPT (Ashkboos et al., 2024), are more hardware-friendly and speed up the pruned model, while still lagging behind depth pruning methods. FlattenGPT inherits the advantages of acceleration in depth pruning and further improves the performance. Since the compressed model architecture of FlattenGPT is exactly the same as SLEB, the throughput and latency results are the same. FlattenGPT outperforms all other methods in throughput (1.27×), latency (1.26×), and zero-shot tasks performance (about 5% higher), yielding a better trade-off between speed and performance.

Table 3: Comparison of mean zero-shot accuracies with recovery fine-tuning. The sparsity ratio is 20% and † indicates fine-tuned on Alpaca (Taori et al., 2023) dataset.

Method	LLaMA-2	LLaMA-2	LLaMA-3
	7B	13B	8B
Dense	69.00	71.76	73.08
Width	Wanda-sp	64.53	67.37
	FLAP	59.51	64.70
	LLM-Pruner	61.34	65.66
	LLM-Pruner [†]	62.15	67.72
Depth	SLEB	59.25	62.96
	Shortened LLaMA	58.36	65.86
	Shortened LLaMA [†]	61.91	68.81
	FlattenGPT	63.83	68.27
	FlattenGPT [†]	66.24	70.53
	FlattenGPT [†]	70.43	

432 4.4 RECOVERY FINE-TUNING
433

434 The pruned model of FlattenGPT still contains the useful information from all blocks, making it
435 easier for the model to recover performance through Recovery Fine-Tuning (RFT). Table 3 presents
436 the mean accuracies of zero-shot tasks with and without RFT. The results show that the model
437 compressed by FlattenGPT maintains $> 96\%$ zero-shot performance of the dense model, far more
438 than other depth compression methods and some width pruning methods. Even without RFT, our
439 method achieves comparable performance with RFT-based methods. These results illustrate the
440 effectiveness of FlattenGPT.

441 **More experiments:** We present more experiments and discussions in Appendix D, including ad-
442 dditional experiments on various model types and sizes, more pruning methods (van der Ouderaa
443 et al., 2024; Lin et al., 2024), ablation studies, dependency on calibration dataset, and generalization
444 beyond language modeling and transformer architectures. Please kindly refer to this part.

445 5 RELATED WORKS
446

447 **Model Pruning** is an approach to compress the number of parameters and calculations in a deep
448 model. Unstructured pruning (LeCun et al., 1989; Hassibi et al., 1993; van der Ouderaa et al., 2024;
449 Dong et al., 2017; Frantar & Alistarh, 2022; 2023; Sun et al., 2023; Zhang et al., 2024b) removes
450 independent weights without pre-determined patterns, leading to sparse weight matrices within the
451 model. This sparsity enables a high pruning ratio but results in complex data access patterns, which
452 are not conducive to hardware acceleration. Structured pruning (Ashkboos et al., 2024; Ma et al.,
453 2023; An et al., 2024) removes elements to form dense matrices that are more efficiently processed
454 by hardware. These methods exhibit a remarkable acceleration but come with worse performance
455 degradation. This paper follows the structured pruning of LLMs, proposing a new depth compression
456 method that balances performance and efficiency.

457 **Depth compression** aims to reduce the number of layers and speed up inference. Layer pruning
458 approaches use layer importance metrics to remove redundant layers from the model (Men et al., 2024;
459 Samragh et al., 2023; Kim et al., 2024; Song et al., 2024; Zhong et al., 2024; Zhang et al., 2024a).
460 These methods remove the weights and knowledge of the entire layer, limiting the performance of
461 the pruned model. Layer merging methods fuse the parameters of different layers by addition (Yang
462 et al., 2024; Liu et al., 2024; Ding et al., 2025). While this type of method uses information from
463 different layers, simple addition can cause sharp performance degradation. LLM-Streamline (Chen
464 et al., 2025) This paper proposes FlattenGPT, a novel depth compression method that rearranges the
465 layers, which reduces the model depth while retaining the information of each layer and maintains
466 the performance well.

467 **Width Compression** reduces the number of parameters by reducing the width of the network.
468 LLM-Pruner (Ma et al., 2023) uses gradient magnitudes to estimate the importance of neurons and
469 efficiently fine-tune the performance of the recovery model with parameters. SliceGPT (Ashkboos
470 et al., 2024) and ModeGPT (Lin et al., 2024) employ matrix decomposition to compress the width of
471 each block in the Transformer. The attention head pruning and sharing methods (Michel et al., 2019)
472 were used to reduce the width of the attention module. However, these methods cannot compress
473 model depth, leading to higher inference latency. Our method bridges the gap between channel
474 pruning and layer pruning, which provides a fine-grained layer pruning method and improves the
475 performance.

476 6 CONCLUSION
477

478 We propose a novel LLM depth compression method, FlattenGPT, to address the challenges of
479 performance degradation under high-granularity layer pruning. Upon the high similarity of cross-
480 layer input features, we design a layer flattening operation to reduce the model depth with minimal
481 performance loss. Then we adopt channel pruning methods to reduce the number of parameters
482 and calculations in the model. Our proposed method performs well on LLM depth compression,
483 showcasing the effectiveness of fine-grained depth compression. We hope this work can inspire more
484 future efforts in depth compression on neural architectures from the perspective of layer flattening.

486 REFERENCES
487

488 Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
489 pruning for large language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
490 volume 38, pp. 10865–10873, 2024.

491 Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and James
492 Hensman. SliceGPT: Compress large language models by deleting rows and columns. In *The
493 Twelfth International Conference on Learning Representations*, 2024.

494 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
495 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

496

497 Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
498 about physical commonsense in natural language. *Proceedings of the AAAI Conference on
499 Artificial Intelligence*, 34(05):7432–7439, Apr. 2020. doi: 10.1609/aaai.v34i05.6239. URL
500 <https://ojs.aaai.org/index.php/AAAI/article/view/6239>.

501 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
502 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
503 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

504

505 Xiaodong Chen, Yuxuan Hu, Jing Zhang, Yanling Wang, Cuiping Li, and Hong Chen. Streamlining
506 redundant layers to compress large language models. In *The Thirteenth International Conference
507 on Learning Representations*, 2025. URL <https://openreview.net/forum?id=IC5RJvRoMp>.

508

509 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
510 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
511 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113,
512 2023.

513

514 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
515 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
516 *arXiv preprint arXiv:1803.05457*, 2018.

517

518 Xuan Ding, Yao Zhu, Yunjian Zhang, and Chuanlong Xie. A sliding layer merging method for
519 efficient depth-wise pruning in llms. *arXiv preprint arXiv:2502.19159*, 2025.

520

521 Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
522 optimal brain surgeon. *Advances in neural information processing systems*, 30, 2017.

523

524 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
525 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
526 *arXiv preprint arXiv:2407.21783*, 2024.

527

528 Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
529 quantization and pruning. *Advances in Neural Information Processing Systems*, 35:4475–4488,
530 2022.

531

532 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
533 one-shot. In *International Conference on Machine Learning*, pp. 10323–10337. PMLR, 2023.

534

535 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
536 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muenninghoff,
537 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
538 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
539 language model evaluation, 07 2024. URL <https://zenodo.org/records/12608602>.

540

541 Alex Gittens and Michael W Mahoney. Revisiting the nyström method for improved large-scale
542 machine learning. *The Journal of Machine Learning Research*, 17(1):3977–4041, 2016.

543

544 Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
545 unreasonable ineffectiveness of the deeper layers. *arXiv preprint arXiv:2403.17887*, 2024.

540 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 541 *preprint arXiv:2312.00752*, 2023.

542

543 Manish Gupta and Puneet Agrawal. Compression of deep learning models for text: A survey. *ACM*
 544 *Transactions on Knowledge Discovery from Data (TKDD)*, 16(4):1–55, 2022.

545 Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
 546 mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language
 547 models: Applications, challenges, limitations, and practical usage. *Authorea Preprints*, 2023.

548

549 Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
 550 pruning. In *IEEE international conference on neural networks*, pp. 293–299. IEEE, 1993.

551

552 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
 553 Chen, et al. Lora: Low-rank adaptation of large language models. In *International Confer-
 554 ence on Learning Representations*, 2022. URL <https://openreview.net/forum?id=nZeVKeFYf9>.

555

556 Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
 557 Hyo-Young-Kyu Song. Shortened llama: A simple depth pruning for large language models. In *ICLR*
 558 *2024 Workshop ME-FoMo*, 2024.

559

560 Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. *Advances in neural information
 561 processing systems*, 2, 1989.

562

563 Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen, Hongxia
 564 Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model compression.
 565 *arXiv preprint arXiv:2408.09632*, 2024.

566

567 Deyuan Liu, Zhanyue Qin, Hairu Wang, Zhao Yang, Zecheng Wang, Fangying Rong, Qingbin
 568 Liu, Yanchao Hao, Bo Li, Xi Chen, et al. Pruning via merging: Compressing llms via manifold
 569 alignment based layer merging. In *Proceedings of the 2024 Conference on Empirical Methods in
 570 Natural Language Processing*, pp. 17817–17829, 2024.

571

572 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
 573 language models. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.

574

575 Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
 576 Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
 577 *arXiv preprint arXiv:2403.03853*, 2024.

578

579 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 580 models. *arXiv preprint arXiv:1609.07843*, 2016.

581

582 Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? *Advances in
 583 neural information processing systems*, 32, 2019.

584

585 Shervin Minaee, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher, Xavier
 586 Amatriain, and Jianfeng Gao. Large language models: A survey. *arXiv preprint arXiv:2402.06196*,
 587 2024.

588

589 Douglas C Montgomery, Elizabeth A Peck, and G Geoffrey Vining. *Introduction to linear regression
 590 analysis*. John Wiley & Sons, 2021.

591

592 Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. *Advances in
 593 neural information processing systems*, 30, 2017.

594

595 Omiros Papaspiliopoulos. High-dimensional probability: An introduction with applications in data
 596 science, 2020.

597

598 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 599 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 600 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 601 2019.

594 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 595 adversarial winograd schema challenge at scale. *arXiv preprint arXiv:1907.10641*, 2019.
 596

597 Mohammad Samragh, Mehrdad Farajtabar, Sachin Mehta, Raviteja Vemulapalli, Fartash Faghri,
 598 Devang Naik, Oncel Tuzel, and Mohammad Rastegari. Weight subcloning: direct initialization of
 599 transformers using larger pretrained ones. *arXiv preprint arXiv:2312.09299*, 2023.

600 Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
 601 Streamlining llms through redundancy verification and elimination of transformer blocks. *arXiv
 602 preprint arXiv:2402.09025*, 2024.

603

604 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
 605 large language models. *arXiv preprint arXiv:2306.11695*, 2023.

606

607 Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. *arXiv
 608 preprint arXiv:2407.09298*, 2024.

609

610 Wenfang Sun, Xinyuan Song, Pengxiang Li, Lu Yin, Yefeng Zheng, and Shiwei Liu. The curse of
 611 depth in large language models. *arXiv preprint arXiv:2502.05795*, 2025.

612

613 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 614 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 615 https://github.com/tatsu-lab/stanford_alpaca, 2023.

616

617 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 618 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 619 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

620

621 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 622 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 623 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

624

625 Tycho F. A. van der Ouderaa, Markus Nagel, Mart Van Baalen, and Tijmen Blankevoort. The LLM
 626 surgeon. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 627 <https://openreview.net/forum?id=DYIIRgwg2i>.

628

629 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 630 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 631 systems*, 30, 2017.

632

633 Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deepnet:
 634 Scaling transformers to 1,000 layers. *IEEE Transactions on Pattern Analysis and Machine
 635 Intelligence*, 46(10):6761–6774, 2024.

636

637 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 638 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
 639 Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
 640 Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
 641 processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural Language
 642 Processing: System Demonstrations*, pp. 38–45, Online, October 2020. Association for Computational
 643 Linguistics. URL <https://www.aclweb.org/anthology/2020.emnlp-demos.6>.

644

645 Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
 646 Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. *arXiv preprint
 647 arXiv:2309.10305*, 2023.

648

649 Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse. In
 650 *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 6401–6417, 2024.

651

652 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 653 really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association for
 654 Computational Linguistics*, 2019.

648 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
 649 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
 650 models. *arXiv preprint arXiv:2205.01068*, 2022.

651
 652 Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
 653 Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
 654 In *Workshop on Machine Learning and Compression, NeurIPS 2024*, 2024a.

655
 656 Yuxin Zhang, Lirui Zhao, Mingbao Lin, Yunyun Sun, Yiwu Yao, Xingjia Han, Jared Tanner, Shiwei
 657 Liu, and Rongrong Ji. Dynamic sparse no training: Training-free fine-tuning for sparse llms. In
 658 *The Twelfth International Conference on Learning Representations*, 2024b.

659 Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
 660 Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. *arXiv*
 661 preprint *arXiv:2303.18223*, 2023.

662
 663 Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
 664 grained pruning for large language models. *arXiv preprint arXiv:2406.10594*, 2024.

665 Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
 666 large language models. *arXiv preprint arXiv:2308.07633*, 2023.

669 A PROOFS

670 A.1 PROOF OF THEOREM 2.1

671 *Proof.* Let σ_{Attn} denote the standard deviation of $\text{Attn} \left(\text{LN}_a^l \left(\mathbf{H}^\ell \right) \right)$, and σ_{MLP} denote the standard
 672 deviation of $\text{MLP} \left(\text{LN}_p^l \left(\mathbf{H}^\ell \right) \right)$. Given equation equation 1 we have:

$$673 \text{Var} \left(\tilde{\mathbf{H}}^\ell \right) = \text{Var} \left(\mathbf{H}^\ell \right) + \text{Var} \left(\text{Attn} \left(\text{LN} \left(\mathbf{H}^\ell \right) \right) \right) + \text{Cov} \left(\text{Attn} \left(\text{LN} \left(\mathbf{H}^\ell \right) \right), \mathbf{H}^\ell \right) \quad (15) \\ 674 = \sigma_{\mathbf{H}^\ell}^2 + \sigma_{\text{Attn}}^2 + \rho_1 \cdot \sigma_{\mathbf{H}^\ell} \cdot \sigma_{\text{Attn}},$$

$$675 \text{Var} \left(\mathbf{H}^{\ell+1} \right) = \text{Var} \left(\tilde{\mathbf{H}}^\ell \right) + \text{Var} \left(\text{MLP} \left(\text{LN} \left(\tilde{\mathbf{H}}^\ell \right) \right) \right) + \text{Cov} \left(\text{MLP} \left(\text{LN} \left(\tilde{\mathbf{H}}^\ell \right) \right), \tilde{\mathbf{H}}^\ell \right) \quad (16) \\ 676 = \sigma_{\tilde{\mathbf{H}}^\ell}^2 + \sigma_{\text{MLP}}^2 + \rho_2 \cdot \sigma_{\tilde{\mathbf{H}}^\ell} \cdot \sigma_{\text{MLP}},$$

677 where ρ_1, ρ_2 is the correlation factor. Thus, the evolve from $\text{Var} \left(\mathbf{H}^{\ell+1} \right)$ to $\text{Var} \left(\mathbf{H}^\ell \right)$ becomes

$$678 \sigma_{\mathbf{H}^{\ell+1}}^2 = \sigma_{\mathbf{H}^\ell}^2 + \sigma_{\text{Attn}}^2 + \sigma_{\text{MLP}}^2 + \rho_1 \cdot \sigma_{\mathbf{H}^\ell} \cdot \sigma_{\text{Attn}} + \rho_2 \cdot \sigma_{\tilde{\mathbf{H}}^\ell} \cdot \sigma_{\text{MLP}}. \quad (17)$$

679 Let n denote the number of head and d_{head} denote the dimension of each head. Following results in
 680 Sun et al. (2025), based on the independent distribution assumption of weights, we have

$$681 \text{Var} \left(\text{Attn} \left(\mathbf{Q}, \mathbf{k}, \mathbf{V} \right) \right) \sim \frac{1}{n} \sum_{i=1}^n d_{\text{head}} \text{Var} \left(\mathbf{V}_i \right) = \frac{1}{n} \cdot n \cdot \sigma_{\mathbf{V}}^2 \cdot d_{\text{head}} = \sigma_{\mathbf{W}}^2 d. \quad (18)$$

685 Using the conclusion obtained by Wang et al. (2024), we get

$$686 \sigma_{\tilde{\mathbf{H}}^\ell}^2 = \sigma_{\mathbf{H}^\ell}^2 + \sigma_{\mathbf{W}}^2 + \rho_2 \cdot \sigma_{\mathbf{H}^\ell} \cdot \sigma_{\mathbf{W}} \\ 687 = \sigma_{\mathbf{H}^\ell}^2 \left(1 + \frac{\sigma_{\mathbf{W}}}{\sigma_{\mathbf{H}^\ell}} + \rho_2 \cdot \frac{\sigma_{\mathbf{W}}^2}{\sigma_{\mathbf{H}^\ell}^2} \right) \\ 688 = \sigma_{\mathbf{H}^\ell}^2 \Theta \left(1 + \frac{1}{\sigma_{\mathbf{H}^\ell}} \right). \quad (19)$$

702 For simplicity, we set the numerator part to 1. Substitute $\sigma_{x'_\ell} = \sigma_{\mathbf{H}^\ell} \sqrt{1 + \frac{\sigma_{\mathbf{W}}^2}{\sigma_{\mathbf{H}^\ell}^2} + \rho_2 \cdot \frac{\sigma_{\mathbf{W}}}{\sigma_{\mathbf{H}^\ell}}}$, we can
 703 obtain the variance of
 704

$$\begin{aligned} 705 \sigma_{\mathbf{H}^{\ell+1}}^2 &= \sigma_{\mathbf{H}^\ell}^2 + \sigma_{\mathbf{W}}^2 + \sigma_{\mathbf{W}}^4 d^2 + \rho_1 \cdot \sigma_{\mathbf{H}^\ell} \cdot \sigma_{\mathbf{W}} + \rho_2 \cdot \sigma_{x'_\ell} \cdot \sigma_{\mathbf{W}}^2 d \\ 706 &= \sigma_{\mathbf{H}^\ell}^2 + \sigma_{\mathbf{W}}^2 + \sigma_{\mathbf{W}}^4 d^2 + \rho_1 \cdot \sigma_{\mathbf{H}^\ell} \cdot \sigma_{\mathbf{W}} + \rho_2 \cdot \sigma_{\mathbf{H}^\ell} \cdot \sigma_{\mathbf{W}}^2 d + \frac{\rho_2 \sigma_{\mathbf{W}}^4 d^2}{2 \sigma_{\mathbf{H}^\ell}} + \frac{\rho_2^2 \sigma_{\mathbf{W}}^3 d \sigma_{\mathbf{H}^\ell}}{2} \\ 707 &= \sigma_{\mathbf{H}^\ell}^2 \Theta\left(1 + \frac{1}{\sigma_{\mathbf{H}^\ell}}\right). \end{aligned} \quad (20)$$

710 The variance with regard to $\sigma_{\mathbf{H}}^2$ can be obtained by iteratively apply Equation equation 20:
 711

$$\sigma_{\mathbf{H}^\ell}^2 = \sigma_{\mathbf{H}^0}^2 \Theta\left(\prod_{k=1}^{\ell} \left(1 + \frac{1}{\sigma_{\mathbf{H}^k}}\right)\right). \quad (21)$$

712 Following the results in Sun et al. (2025), this conclusion could lead to the upper bound and lower
 713 bound. Please refer to Appendix A.1 in Sun et al. (2025) for details. \square
 714

715 A.2 PROOF OF THEOREM 2.2

716 *Proof.* For an L -layered Pre-LN Transformer, the partial gradient to the ℓ -th hidden states is given by
 717 the chain rule:
 718

$$\frac{\partial y}{\partial \mathbf{H}^\ell} = \prod_{k=\ell}^{L-1} \left(\frac{\partial \mathbf{H}^{k+1}}{\partial \tilde{\mathbf{H}}^k} \cdot \frac{\partial \tilde{\mathbf{H}}^k}{\partial \mathbf{H}^k} \right). \quad (22)$$

719 From Sun et al. (2025), we know that
 720

$$\frac{\partial \mathbf{H}^{k+1}}{\partial \tilde{\mathbf{H}}^k} \leq 1 + \frac{\sigma_{\mathbf{W}_U^\ell} \sigma_{\mathbf{W}_D^\ell}}{\sigma_{\tilde{\mathbf{H}}^k} (\sqrt{d} + \sqrt{d_{\text{MLP}}})^2} = 1 + \frac{\sigma_\ell^2}{\sigma_{\tilde{\mathbf{H}}^k} (\sqrt{d} + \sqrt{d_{\text{MLP}}})^2}. \quad (23)$$

721 From Papaspiliopoulos (2020), we get
 722

$$\frac{\partial \tilde{\mathbf{H}}^k}{\partial \mathbf{H}^k} \leq \left(1 + 2dh \left(\sqrt{s} + 2 + \frac{1}{\sqrt{s}}\right) \frac{\sigma^2}{\sigma_{\mathbf{H}^\ell}} \left(\sigma^2 d \sqrt{d_{\text{head}}} + (1 + \sqrt{d_{\text{head}}/d})\right)\right), \quad (24)$$

723 where h denotes the number of heads and s denotes the sequence length, respectively. Following the
 724 proof from Sun et al. (2025), the target equation can be expressed as
 725

$$\left\| \frac{\partial y}{\partial \mathbf{H}^\ell} \right\|_2 \leq \prod_{k=\ell}^L \left(1 + \frac{1}{\sigma_{\mathbf{H}^k}} A + \frac{1}{\sigma_{\mathbf{H}^k}^2} B\right), \quad (25)$$

726 where
 727

$$A = \frac{\sigma^2}{(\sqrt{d} + \sqrt{d_{\text{FFN}}})^2} + 2dh \left(\sqrt{s} + 2 + \frac{1}{\sqrt{s}}\right) \sigma^2 \left(d \sqrt{d_{\text{head}}} + 1 + \sqrt{d_{\text{head}}/d}\right), \quad (26)$$

$$B = 2dh \left(\sqrt{s} + 2 + \frac{1}{\sqrt{s}}\right) \sigma^4 d \sqrt{d_{\text{head}}}. \quad (27)$$

728 This conclusion indicates that for the deep layers in the model, the partial gradient $\frac{\partial y}{\partial \mathbf{H}^\ell}$ will be
 729 bounded. Considering the exponential growth in Theorem 2.1, the partial gradient will be bounded by
 730

$$\begin{aligned} 731 \left\| \frac{\partial y}{\partial \mathbf{H}^\ell} \right\|_2 &\leq \prod_{k=\ell}^L \left(1 + \frac{1}{\sigma_{\mathbf{H}^k}} A + \frac{1}{\sigma_{\mathbf{H}^k}^2} B\right) \\ 732 &\leq \prod_{k=\ell}^L \left(1 + \frac{1}{\sigma_{\mathbf{H}^\ell}} A + \frac{1}{\sigma_{\mathbf{H}^\ell}^2} B\right) \\ 733 &= \left(1 + \frac{1}{\sigma_{\mathbf{H}^\ell}} A + \frac{1}{\sigma_{\mathbf{H}^\ell}^2} B\right)^{L-\ell}. \end{aligned} \quad (28)$$

756 Let $L - \ell$ be a constant number c , which implies the c -th layer from the last. As ℓ grows, $\sigma_{\mathbf{H}^\ell}$ will
 757 grow to infinity. Then we get
 758

$$759 \lim_{\ell \rightarrow +\infty} \left\| \frac{\partial y}{\partial \mathbf{H}^\ell} \right\|_2 \leq \lim_{\ell \rightarrow +\infty} \left(1 + \frac{1}{\sigma_{\mathbf{H}^\ell}} A + \frac{1}{\sigma_{\mathbf{H}^\ell}^2} B \right)^c = 1. \quad (29)$$

761 \square

762

763 A.3 PROOFS OF THEOREM 3.1
 764765 *Proof.* The original solution for linear regression with L2 regularization is defined as follows:766 **Lemma A.1.** *Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be the design matrix, $\mathbf{y} \in \mathbb{R}^n$ be the response vector, and $\lambda > 0$ be
 767 the regularization parameter. The L2 regularized linear regression (Ridge Regression) minimizes the
 768 following objective function:*

769
$$\arg \min_{\boldsymbol{\theta}} \|\mathbf{X}\boldsymbol{\theta} - \mathbf{y}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_2^2, \quad (30)$$

770 where $\boldsymbol{\theta} \in \mathbb{R}^p$ is the coefficient vector. The closed-form solution for the optimal coefficient vector $\hat{\boldsymbol{\theta}}$
 771 is given by:
 772

773
$$\hat{\boldsymbol{\theta}} = (\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}, \quad (31)$$

774 provided that the matrix $(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I})$ is invertible. Here, \mathbf{I} denotes the $p \times p$ identity matrix. This
 775 solution always exists for $\lambda > 0$, even when $\mathbf{X}^\top \mathbf{X}$ is singular.
 776777 The proof of this lemma can be found in most linear algebra textbooks (Montgomery et al.,
 778 2021). As for Equation equation 13, substitute $\boldsymbol{\theta} = \Delta \mathbf{W}_D$, $\mathbf{X} = \sigma_s(\mathbf{X}_i \mathbf{W}_U) \mathbf{S}_k$, $\mathbf{y} =$
 779 $\sigma_s(\mathbf{X}_i \mathbf{W}_U) (\mathbf{I} - \mathbf{S}_k \mathbf{S}_k^\top) \mathbf{W}_D$, and then we will the solutions. \square 780 B EMPIRICAL RESULTS
 781782 We present more empirical results in various architectures, including LLaMA-2 (Touvron et al.,
 783 2023b) at {7B, 13B}, Qwen-1.5 (Bai et al., 2023) at {7B, 14B}, and Baichuan-2 at {7B, 13B} (Yang
 784 et al., 2023). As shown in Figure 4, the high cross-layer similarity and large feature norm is consistent
 785 across various model types and parameter sizes. According to the theoretical analysis above, this
 786 phenomenon is deeply related to the architecture of transformers.
 787788 C IMPLEMENTATIONS
 789790 C.1 MODIFIED ALGORITHMS FOR GROUPED QUERY ATTENTION
 791792 Some modern LLMs, such as LLaMA-3 (Dubey et al., 2024), utilize a shared key-value strategy
 793 to improve inference efficiency, which is denoted as Grouped Query Attention (GQA). To keep the
 794 pruned architecture the same as the original attention blocks, we modify the channel pruning on MHA.
 795 Instead of finding the least important attention head individually, we find the least important pair of
 796 key and value. Then we delete this pair and its corresponding queries. We apply this modification to
 797 LLaMA-3 8B compression in the paper.
 798799 C.2 IMPLEMENTATION DETAILS
 800801 **Setup** We utilize the HuggingFace generation library (Wolf et al., 2020) to implement our LLM
 802 models and use PyTorch (Paszke et al., 2019) Hooks for hidden states recording and correlation
 803 matrix estimations. Unless otherwise specified, the experiments were conducted on 8 NVIDIA H800
 804 80GB GPUs. The models use the BF16 data format. The calibration set consists of a random sample
 805 of 128 sequences, each of length 2048, from WikiText-2, following the common practice in the
 806 literature (Ashkboos et al., 2024).
 807808 **Datasets** We consider multiple tasks in LM Evaluation Harness (Gao et al., 2024), including ARC-e,
 809 ARC-c (Clark et al., 2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2019), and
 810 HellaSwag (Zellers et al., 2019).

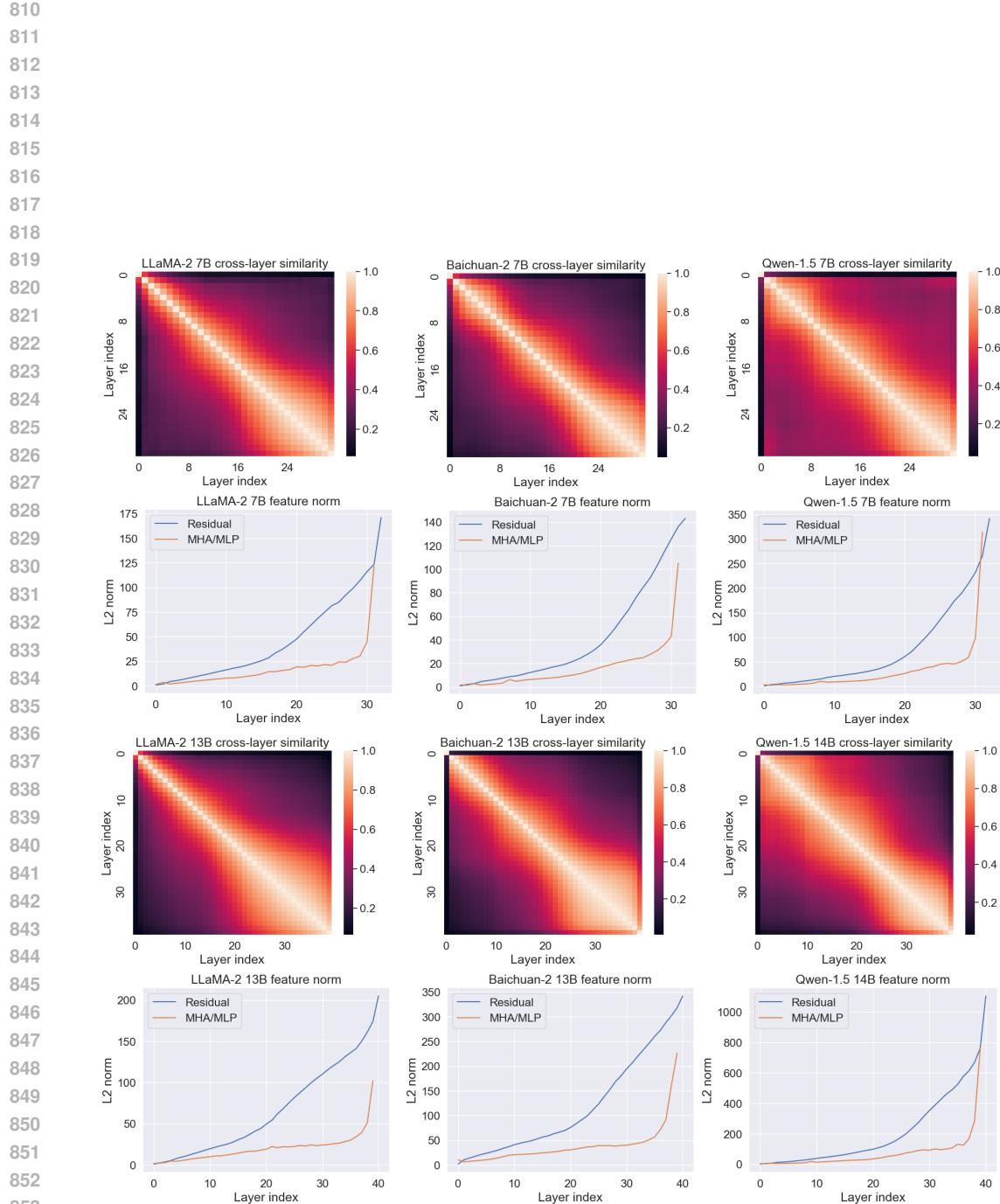


Figure 4: Cross-layer similarity and feature norm in multiple architectures.

864 **Correlation Matrix Estimations** Our algorithms utilize input correlation matrices in the MLP pruning
 865 method. We gather the empirical data from the calibration set by registering the PyTorch (Paszke
 866 et al., 2019) hooks in the model. Our process compresses the MLP blocks from all layers first, then
 867 compresses the MHA blocks from all layers.
 868

869 **Matrix Operations** We utilize ‘`torch.linalg.solve`’ in PyTorch for computing the inverse on tensors
 870 of dtype FP32.
 871

872 **MLP module** Our MLP pruning method requires a ridge leverage score parameter λ . We set λ to
 873 10 times the mean singular value of the correlation matrix across all experiments.
 874

875 **MHA module** Our MHA pruning method removes the entire group of query, key, and value
 876 matrices.
 877

878 **Recovery Fine-Tuning** We use 50K samples of refined Alpaca for instruction tuning. The learning
 879 rate is set to 1×10^{-4} . The other primary hyperparameters used are $lora_alpha = 16$, $lora_r = 8$,
 880 and $batch_size = 64$.
 881

882 **Latency and Throughput** We test the throughput and latency results on token generation and
 883 prompt processing, respectively. For token generation, we generate sentences with a length of 128
 884 tokens and a batch size of 64. For prompt processing, we measure the latency when processing an
 885 input sequence with 2048 tokens.
 886

887 C.3 THROUGHPUT AND LATENCY

888 Table 5 compares the latency, throughput, and perplexities of the compressed LLaMA-2 (Touvron
 889 et al., 2023b) models with other pruning methods. We test the throughput and latency results on token
 890 generation and prompt processing, respectively. For token generation, we generate sentences with a
 891 length of 128 tokens and a batch size of 64. For prompt processing, we measure the latency when
 892 processing an input sequence with 2048 tokens. Even with dedicated hardware support, 2:4 pruning
 893 methods still lead to minor speedup ($1.10\times$) and lower throughput ($0.98\times$ with a sparsity ratio of
 894 50%). Width pruning methods, such as SliceGPT (Ashkboos et al., 2024), are more hardware-friendly
 895 and speed up the pruned model, while still lagging behind depth pruning methods. FlattenGPT
 896 inherits the advantages of acceleration in depth pruning and further improves the performance. Since
 897 the compressed model architecture of FlattenGPT is exactly the same as SLEB, the throughput and
 898 latency results are the same. FlattenGPT outperforms all other methods in throughput ($1.27\times$) and
 899 latency ($1.26\times$), and achieves a comparable perplexities. These results demonstrate that FlattenGPT
 900 has a better trade-off between speed and performance.
 901

902 C.4 PRUNING COMPUTATION COST

903 Table 6 compares the compression times of FlattenGPT with the prevailing pruning methods, including
 904 SliceGPT (Ashkboos et al., 2024), LLM surgeon (van der Ouderaa et al., 2024), and MoDeGPT (Lin
 905 et al., 2024). LLM Surgeon requires the gradient information of the LLMs, leading to heavy
 906 computation. SliceGPT and ModeGPT do not leverage gradients, they can compress a model with
 907 fewer GPUs and computation time. Our approach, FlattenGPT, is even faster than these methods,
 908 as we collect the correlation matrix of all layers at the same time. Thus FlattenGPT is an efficient
 909 pruning method in this area.
 910

911 D EXPERIMENTS

912 D.1 ADDITIONAL COMPARISON OF TRAINING-FREE PRUNING METHODS

913 We compare the performance with other training-free pruning methods in Table 4, including both
 914 width compression and depth compression. The width compression includes the 2:4 pruning methods
 915 SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023), and structured channel pruning
 916 methods SliceGPT (Ashkboos et al., 2024). The depth compression includes LaCo (Yang et al.,
 917

918
919 Table 4: Comparison with training-free pruning methods on WikiText-2 perplexity and accuracies on
920 zero-shot tasks.

Method		Sparsity	PPL ↓	WinoG	HellaS	PIQA	ARC-e	ARC-c	Avg.
LLaMA-2 7B (original)		0%	5.47	69.06	75.99	79.11	74.58	46.25	69.00
Width	SpareGPT (Frantar & Alistarh, 2023)	2:4 (50%)	10.79	64.96	58.93	72.14	60.90	34.22	58.23
	Wanda (Sun et al., 2023)	2:4 (50%)	12.09	62.27	55.33	70.84	57.58	31.91	55.59
	SliceGPT (Ashkboos et al., 2024)	21.45%	7.02	59.91	56.04	72.42	63.64	37.12	57.83
Depth	SLEB (Song et al., 2024)	21.02%	9.14	58.96	62.47	73.07	56.48	33.02	56.80
	LaCo (Yang et al., 2024)	21.02%	50.39	60.46	54.08	68.34	55.39	35.84	54.82
	RM (Samragh et al., 2023)	21.02%	676.8	49.25	29.22	54.46	34.43	22.53	37.98
	ShortGPT (Men et al., 2024)	21.02%	18.45	65.90	62.63	70.24	56.06	36.09	58.18
	BlockPruner (Zhong et al., 2024)	21.99%	11.51	62.43	65.87	74.21	61.07	37.29	60.17
	FlattenGPT	21.02%	8.68	66.54	68.45	72.74	63.43	41.30	62.49
LLaMA-2 13B (original)		0%	4.88	72.22	79.39	80.47	77.48	49.23	71.76
Width	SpareGPT (Frantar & Alistarh, 2023)	2:4 (50%)	8.75	68.51	65.52	75.46	66.04	39.76	63.06
	Wanda (Sun et al., 2023)	2:4 (50%)	8.99	67.01	63.09	73.94	64.31	37.80	61.23
	SliceGPT (Ashkboos et al., 2024)	25%	6.63	67.48	58.10	68.55	62.50	37.88	58.90
Depth	LaCo (Yang et al., 2024)	24.37%	13.97	59.27	60.44	72.42	54.34	34.56	56.21
	RM (Samragh et al., 2023)	24.37%	10.08	66.61	66.80	73.72	66.12	41.98	63.05
	ShortGPT (Men et al., 2024)	24.37%	20.06	70.80	67.80	72.74	60.35	41.30	62.60
	BlockPruner (Zhong et al., 2024)	25.12%	8.16	66.30	72.20	76.93	65.82	41.38	64.53
	FlattenGPT	24.37%	6.68	71.11	73.44	76.33	72.10	44.54	67.50
LLaMA-2 70B (original)		0%	3.32	77.98	83.84	82.70	80.98	57.34	76.57
Width	SpareGPT (Frantar & Alistarh, 2023)	2:4 (50%)	5.70	76.56	76.09	80.03	76.94	49.74	71.87
	Wanda Sun et al. (2023)	2:4 (50%)	5.48	74.66	79.22	80.30	76.35	51.19	72.34
	SliceGPT Ashkboos et al. (2024)	20%	4.44	74.92	72.98	76.61	80.51	55.20	72.34
Depth	SLEB Song et al. (2024)	19.84%	4.88	72.93	77.21	80.14	75.38	48.38	70.81
	ShortGPT Ashkboos et al. (2024)	19.84%	66.33	71.96	78.87	76.02	76.02	52.95	71.68
	FlattenGPT	19.84%	4.79	77.35	81.42	80.36	77.48	53.07	73.94
Baichuan-2 7B (original)		0%	6.04	68.27	72.18	77.48	72.98	42.75	66.73
Depth	LaCo (Yang et al., 2024)	21.57%	26.46	58.56	51.50	68.28	52.90	28.50	51.95
	RM (Samragh et al., 2023)	21.57%	189.8	52.33	30.87	59.96	38.17	23.63	40.99
	ShortGPT (Men et al., 2024)	21.57%	31.05	62.67	50.01	63.71	47.31	30.72	50.88
	BlockPruner (Zhong et al., 2024)	22.45%	15.38	61.48	58.09	69.75	58.08	33.02	56.08
	FlattenGPT	21.57%	20.55	64.33	61.50	69.42	56.27	35.24	57.35
Baichuan-2 13B (original)		0%	6.66	70.40	75.23	78.84	74.07	47.70	69.25
Depth	LaCo (Yang et al., 2024)	22.68%	27.07	58.01	54.00	70.89	57.11	32.94	54.59
	RM (Samragh et al., 2023)	22.68%	17.70	67.88	63.78	68.99	57.49	37.54	59.14
	ShortGPT (Men et al., 2024)	22.68%	20.69	68.27	61.71	69.31	56.52	36.69	58.50
	BlockPruner (Zhong et al., 2024)	24.19%	15.36	64.01	64.20	71.44	59.81	37.88	59.47
	FlattenGPT	22.68%	13.71	68.19	65.27	71.22	58.75	37.03	60.09
Qwen-1.5 7B (original)		0%	7.95	66.46	76.92	79.22	62.16	42.66	65.48
Depth	LaCo (Yang et al., 2024)	20.97%	39.23	58.64	56.35	70.40	46.89	32.85	53.03
	RM (Samragh et al., 2023)	20.97%	2026	49.88	42.00	67.36	54.17	28.58	48.40
	ShortGPT (Men et al., 2024)	20.97%	49.88	62.12	58.87	69.53	43.60	32.17	53.26
	BlockPruner (Zhong et al., 2024)	21.83%	20.58	55.56	59.31	71.71	53.70	33.28	54.71
	FlattenGPT	20.97%	16.05	59.27	62.89	68.39	56.99	37.46	57.00
Qwen-1.5 14B (original)		0%	7.44	70.56	79.41	79.87	68.48	47.01	69.07
Depth	LaCo (Yang et al., 2024)	22.25%	16.32	58.33	60.16	71.55	53.70	34.04	55.56
	RM (Samragh et al., 2023)	22.25%	55.99	53.28	42.08	67.08	50.72	29.01	48.43
	ShortGPT (Men et al., 2024)	22.25%	1237	55.96	36.16	58.60	38.09	34.81	44.72
	BlockPruner (Zhong et al., 2024)	23.72%	15.67	61.48	66.92	75.24	59.51	39.08	60.45
	FlattenGPT	22.25%	11.55	65.59	68.57	74.10	65.03	40.78	62.81

961
962 2024), SLEB (Song et al., 2024), Relative magnitude (Samragh et al., 2023), ShortGPT (Men et al.,
963 2024), and BlockPruner (Zhong et al., 2024). FlattenGPT outperforms these methods on WikiText-2
964 perplexity and accuracy on the zero-shot downstream tasks, showcasing the effectiveness of our
965 method.

966 D.2 ADDITIONAL COMPARISON OF RECOVERY FINE-TUNING

967
968 Table 7 shows the impact of Recovery Fine-Tuning (RFT). Our method outperforms previous methods
969 after RFT. This is because the flattening method retains the knowledge from all layers and makes it
970 easier for fine-tuning.

972
973 Table 5: Throughput (tokens/s), latency (ms), and perplexity on WikiText-2 test split results. Through-
974 latency and perplexity are measured with LLaMA-2-70B on 2 NVIDIA A100 GPUs.

975 976 977 978 979 980 981 982 983 984	Method	Pruning Unit	Sparsity	Throughput (Tokens/s)	Improve \uparrow	Latency (ms)	Speedup \uparrow	LLaMA-2		
								7B	13B	70B
Dense	-	-	0%	299	1.00 \times	1718.4	1.00 \times	5.47	4.88	3.32
SparseGPT Wanda DSnoT	2:4	50%	293	0.98 \times	1555.5	1.10 \times	10.79	8.75	5.70	
	2:4	50%	293	0.98 \times	1555.5	1.10 \times	12.09	8.99	5.48	
	2:4	50%	293	0.98 \times	1555.5	1.10 \times	11.97	8.87	5.49	
LLM-Pruner SliceGPT SliceGPT SliceGPT	Width	20%	314	1.05 \times	1534.3	1.12 \times	10.58	8.56	-	
	Width	20%	314	1.05 \times	1658.7	1.04 \times	6.87	6.01	4.44	
	Width	25%	331	1.11 \times	1440.7	1.19 \times	7.55	6.63	4.89	
	Width	30%	343	1.15 \times	1364.2	1.26 \times	8.59	7.44	5.44	
SLEB FlattenGPT	Depth	20%	381	1.27 \times	1364.1	1.26 \times	9.14	6.80	4.88	
	Depth	20%	381	1.27 \times	1364.1	1.26 \times	8.68	6.50	4.79	

985
986 Table 6: Computation cost of pruning 20% with FlattenGPT and recovery fine-tuning on a NVIDIA
987 H800 80GB. The calibration dataset consists of 128 samples with a sequence length of 2048.

988 989 990 991 992 993 994 995 996	Method	Model	Time	Pruning GPUs		Time	RFT GPUs	Total
				990 991 992 993 994 995	990 991 992 993 994 995			
SliceGPT	LLaMA-2 7B LLaMA-2 13B	44m 1h08m	1 H100 80GB 1 H100 80GB	23m 44m	1 H100 80GB 1 H100 80GB	23m 44m	1 H100 80GB 1 H100 80GB	1h07m 1h52m
LLM surgeon	LLaMA-2 7B LLaMA-2 13B	17h08m 1d9h26m	4 H100 80GB 8 H100 80GB	-	-	-	-	-
ModeGPT	LLaMA-2 7B LLaMA-2 13B	4h09m 8h26m	1 A100 80GB 1 A100 80GB	31m -	1 A100 80GB	31m -	1 A100 80GB	4h40m -
FlattenGPT	LLaMA-2 7B LLaMA-2 13B	7m 24m	1 H800 80GB 1 H800 80GB	25m 45m	1 H800 80GB 1 H800 80GB	25m 45m	1 H800 80GB 1 H800 80GB	32m 1h09m

D.3 EFFECTIVENESS OF FLATTENING

1000 **Flattened layer indices:** We show which transformer blocks are chosen to be flattened in Figure 5.
1001 The location of flattened transformer blocks is highly consistent across various target models. The
1002 late blocks are almost flattened except the last one or two, whereas the early blocks are rarely selected.
1003 This is related to the similarity distribution in the model, where the late blocks have more similar
1004 input features.

1005 **Performance after flattening:** We need to answer the question: *How does flattening improve*
1006 *the performance of the depth-compressed model?* The answer is that **Flattening preserves more**
1007 **knowledge.** Compared with the layer pruning methods, flattening preserves the parameters and thus
1008 preserves the knowledge in the parameters. This knowledge facilitates performance maintenance
1009 during depth compression. Figure 6 illustrates the comparison of layer pruning and layer flattening on
1010 LLaMA-2 7B. We use the same layer index in both settings, *i.e.*, to prune the selected layer or merge
1011 the selected layer with the prior layer. In the flattening experiments, the model performance gradually
1012 drops as the number of flattened layers increases. After flattening 8 layers, it has maintained 98%
1013 of accuracy on zero-shot tasks and has a 19% degradation on perplexity. This result leaves plenty
1014 of room for channel pruning. However, on the contrary, layer pruning quickly loses performance
1015 with merely one or two pruned layers. It only maintains 80% of accuracy on zero-shot tasks and
1016 319% degradation on perplexity! With such information loss, layer-pruning-based methods are very
1017 limited and cannot achieve high performance. Our flattening method has alleviated this problem, thus
1018 providing an effective way of depth compression.

D.4 EFFECTIVENESS OF OUR CHANNEL PRUNING METHOD

1019 The flattening operation changes the depth compression task into a channel pruning task. This method
1020 shows an advantage of fine-grained depth compression, whereas it relies on the performance of the
1021 channel pruning method. In this paper, we use a simple yet effective channel pruning method. To
1022 validate the effectiveness of our channel pruning method, we conduct experiments with channel
1023 pruning only. We use the sparsity distribution described in ModeGPT (Lin et al., 2024), and compare
1024 the channel pruning performance with other channel pruning methods. As shown in Table 8, our

1026
1027 Table 7: Zero-shot task performance of recovery fine-tuning. \dagger indicates fine-tuned on Alpaca (Taori
1028 et al., 2023) dataset.

Method		Sparsity	WinoG	HellaS	PIQA	ARC-e	ARC-c	Avg.
LLaMA-2 7B (original)		0%	69.06	75.99	79.11	74.58	46.25	69.00
Width	Wanda-sp (Sun et al., 2023)	18.81%	63.77	70.66	76.44	69.61	42.15	64.53
	FLAP (An et al., 2024)	19.19%	64.72	64.69	73.39	62.25	32.51	59.51
	LLM-Pruner (Ma et al., 2023)	18.82%	61.17	66.13	76.66	64.86	37.88	61.34
	LLM-Pruner \dagger (Ma et al., 2023)	18.82%	61.88	67.13	77.48	65.78	38.48	62.15
Depth	SLEB (Song et al., 2024)	18.02%	59.75	63.95	73.94	63.47	35.15	59.25
	Shortened LLaMA (Kim et al., 2024)	18.02%	57.46	63.36	73.78	64.02	33.19	58.36
	Shortened LLaMA \dagger (Kim et al., 2024)	18.02%	58.80	67.99	76.06	68.81	37.88	61.91
	SLM (Ding et al., 2025)	18.02%	66.30	65.10	70.24	61.45	38.31	60.28
	SLM \dagger (Ding et al., 2025)	18.02%	67.09	70.48	73.67	69.11	41.21	64.31
	FlattenGPT	18.02%	67.40	70.74	74.59	64.44	41.98	63.83
	FlattenGPT \dagger	18.02%	68.75	73.01	74.97	67.40	45.05	66.24
LLaMA-2 13B (original)		0%	72.22	79.39	80.47	77.48	49.23	71.76
Width	Wanda-sp (Sun et al., 2023)	19.49%	67.01	74.75	77.48	73.48	44.11	67.37
	FLAP (An et al., 2024)	19.47%	68.35	69.07	74.65	70.83	40.61	64.70
	LLM-Pruner (Ma et al., 2023)	19.48%	64.17	72.02	78.51	69.99	43.60	65.66
	LLM-Pruner \dagger (Ma et al., 2023)	19.48%	67.32	74.84	79.16	73.49	43.77	67.72
Depth	SLEB (Song et al., 2024)	19.50%	64.96	70.55	76.61	64.35	38.31	62.96
	Shortened LLaMA (Kim et al., 2024)	19.50%	70.48	71.19	75.03	69.53	43.09	65.86
	Shortened LLaMA \dagger (Kim et al., 2024)	19.50%	71.11	75.20	76.28	74.79	46.67	68.81
	SLM (Ding et al., 2025)	19.50%	70.80	67.73	72.36	64.82	39.68	63.08
	SLM \dagger (Ding et al., 2025)	19.50%	71.67	76.37	77.42	76.56	48.55	70.11
	FlattenGPT	19.50%	71.43	75.26	77.58	71.68	45.39	68.27
	FlattenGPT \dagger	19.50%	71.82	77.85	78.73	75.08	49.15	70.53
LLaMA-3 8B (original)		0%	73.40	79.17	79.49	80.09	53.24	73.08
Width	FLAP (An et al., 2024)	16.30%	49.96	26.36	52.18	26.81	24.83	36.03
	LLM-Pruner (Ma et al., 2023)	15.39%	68.67	67.79	77.04	68.60	39.08	64.23
	LLM-Pruner \dagger (Ma et al., 2023)	15.39%	70.32	74.27	79.49	74.29	46.59	68.99
Depth	Shortened LLaMA (Kim et al., 2024)	16.30%	57.85	60.99	73.23	65.40	34.04	58.30
	Shortened LLaMA \dagger (Kim et al., 2024)	16.30%	62.75	72.70	78.07	75.30	44.80	66.72
	SLM (Ding et al., 2025)	16.30%	69.61	61.8	71.98	66.04	41.81	62.25
	SLM \dagger (Ding et al., 2025)	16.30%	71.74	73.77	77.64	76.60	50.94	70.14
	FlattenGPT	16.30%	71.82	70.63	72.91	69.1	46.59	66.21
	FlattenGPT \dagger	16.30%	73.09	75.93	77.09	75.72	50.34	70.43

1058
1059 Table 8: Zero-shot task performance of channel pruning methods calibrated with 128 samples from
1060 WikiText-2.

Method		Sparsity	WinoG	HellaS	PIQA	ARC-e	ARC-c	Avg.
LLaMA-2 7B (original)		0%	69.06	75.99	79.11	74.58	46.25	69.00
SliceGPT	20%	62.74	49.78	64.25	51.47	31.06		51.86
	20%	68.03	69.05	74.05	69.07	42.06		64.46
Our MLP pruning	20%	66.06	66.54	73.23	65.19	38.91		61.99
Our MHA pruning	21.02%	66.93	69.64	73.94	63.97	42.24		63.34
Our MHA + MLP Pruning	21.07%	68.03	71.64	76.17	68.98	44.28		65.82
LLaMA-2 13B (original)		0%	72.22	79.39	80.47	77.48	49.23	71.76
SliceGPT	20%	67.17	53.58	65.83	55.81	35.84		55.65
	20%	70.32	68.96	74.53	74.07	46.16		66.81
Our MHA + MLP Pruning	21.07%	71.43	75.26	77.58	71.68	45.39		68.94

1073
1074 channel pruning approach has a clear advantage over previous pruning methods. By combining the
1075 MHA pruning and MLP pruning, our method achieves the best performance, surpassing the previous
1076 channel pruning method, including SliceGPT (Ashkboos et al., 2024) and ModeGPT (Lin et al.,
1077 2024).

1078 We further make ablations on the effectiveness of Nyström approximation. As shown in Table 10,
1079 Nyström approximation outperforms the channel selection only method, demonstrating the effectiveness
of adjusting the down projection.

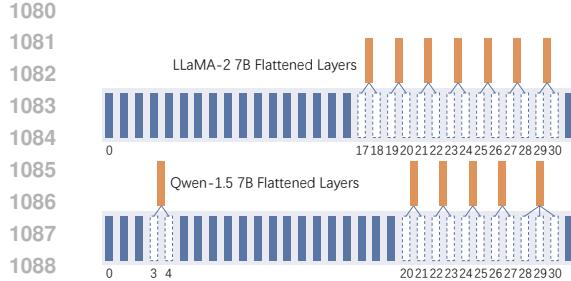


Figure 5: Flattened Layer indices.

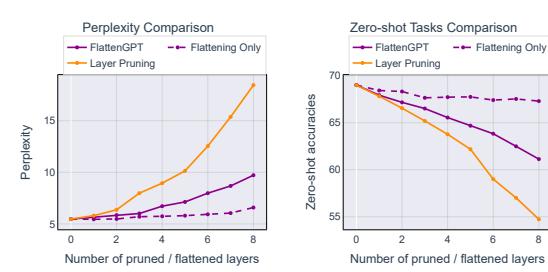


Figure 6: Comparison of layer pruning and flattening.

Table 9: Zero-shot task performance of channel pruning methods calibrated with 128 samples from WikiText-2. [†] indicates fine-tuned on Alpaca (Taori et al., 2023) dataset. ModeGPT (Lin et al., 2024) employs Alpaca as the calibration dataset. LLM Surgeon (van der Ouderaa et al., 2024) does not show the results but claims that LoRA cannot improve the performance.

Method	Sparsity	WinoG	HellaS	PIQA	ARC-e	ARC-c	Avg.
LLaMA-2 7B (original)	0%	69.06	75.99	79.11	74.58	46.25	69.00
LLM-Pruner	18.82%	61.17	66.13	76.66	64.86	37.88	61.34
LLM-Pruner [†]	18.82%	61.88	67.13	77.48	65.78	38.48	62.15
LLM Surgeon	20%	66.30	71.30	77.09	71.36	41.89	65.59
ModeGPT	20%	68.19	69.59	76.22	71.71	41.89	65.52
ModeGPT [†]	20%	66.30	68.07	77.20	70.45	42.92	64.99
FlattenGPT	20%	67.40	70.74	74.59	64.44	41.98	63.83
FlattenGPT [†]	20%	68.75	73.01	74.97	67.40	45.05	66.24

D.5 ADVANTAGES OF DEPTH COMPRESSION OVER WIDTH COMPRESSION

In this paper, we focus on the depth compression tasks. Although previous depth compression methods perform much worse than the width compression ones, FlattenGPT has built a novel approach to improve this performance greatly. In the main paper, we have shown that FlattenGPT achieves a better trade-off between performance and speed. In this part, we will further show that FlattenGPT shows promising performance compared with the latest width compression method after recovery fine-tuning. Table 9 shows the performance with or without RFT. LLM-pruner (Ma et al., 2023) shows little improvement with RFT. LLM Surgeon (van der Ouderaa et al., 2024) does not show the results, but it claimed that LoRA improves compression performance in the smallest OPT-125m model, but not in larger models. ModeGPT (Lin et al., 2024) even demonstrates performance loss after RFT, which illustrates that the model probably suffers from overfitting. FlattenGPT unifies the two tasks of deep compression and channel compression, making the pruned model more suitable for fine-tuning. This is more practical than previous pruning methods.

D.6 LOCATIONS OF FLATTENED LAYERS

We show which transformer blocks are chosen to be flattened in Table 11. The location of flattened transformer blocks is highly consistent across various target models. The late blocks are almost flattened, except the last one or two, whereas the early blocks are rarely selected. This is related to the similarity distribution in the model, where the late blocks have more similar input features.

D.7 DEPENDENCY ON CALIBRATION DATASET

We evaluate the dependency on the calibration dataset in Table 12. We use the calibration set size of 128 and sequence length of 2048 for WikiText-2 (Merity et al., 2016) and Alpaca datasets. The results show that WikiText-2 has a slightly better performance, probably due to the dataset quality. The alpaca dataset is not as representative as a high-quality dataset, thus the performance is slightly lower than WikiText-2.

1134

1135 Table 10: Comparison of channel selection and Nyström approximation.

Method	Sparsity	WinoG	HellaS	PIQA	ARC-e	ARC-c	Avg.
Channel Selection + Nyström approximation	20% 20%	66.46 66.54	65.48 68.45	71.22 72.74	63.13 63.43	39.93 41.30	61.24 62.49

1139

1140 Table 11: Locations of flattened Transformer blocks with target sparsity of 20%.

Models	Merged Layer Index
LLaMA-2 7B	[[17, 18], [19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30]]
LLaMA-2 13B	[[23, 24], [25, 26], [27, 28], [29, 30], [31, 32], [33, 34], [35, 36], [37, 38]]
LLaMA-2 70B	[[14, 15], [46, 47], [49, 50], [51, 52], [54, 55], [57, 58], [59, 60, 61], [62, 63, 64], [65, 66, 67], [68, 69], [70, 71], [72, 73], [74, 75]]
LLaMA-3 8B	[[16, 17], [18, 19], [20, 21], [23, 24], [25, 26], [27, 28], [29, 30]]
Qwen-1.5 7B	[[3, 4], [20, 21], [22, 23], [24, 25], [26, 27], [28, 29], [30, 31], [32, 33], [34, 35], [36, 37]]
Qwen-1.5 14B	[[7, 8], [10, 11], [19, 20], [24, 25], [26, 27], [28, 29], [30, 31], [32, 33], [34, 35], [36, 37]]

1150

1151 D.8 DEPENDENCY ON THE CALIBRATION DATASET SIZE

1152

1153 We test the size of the calibration dataset from 64 to 1024 samples as shown in Table 13. Results
1154 confirm that 128 samples suffice, as larger sets yield marginal gains (< 0.2%).

1155

1156 D.9 GENERALIZATION ON OTHER TASKS

1157

1158 We conduct experiments on InternVL-C 6B, which is a large vision transformer that exhibits a similar
1159 cross-layer similarity pattern to the LLMs. The results in Table 14 show that our method has good
1160 generalization ability on vision transformers. The multimodal transformers are usually composed
1161 of an LLM transformer and a vision encoder transformer. Therefore, it is reasonable to apply our
1162 method to the LLM and the vision encoder individually.

1163

1164 D.10 GENERALIZATION BEYOND TRANSFORMER ARCHITECTURE

1165

1166 Considering the various architectures available, it is far beyond the scope of this paper. Yet we
1167 can provide an analysis of the generalization of our method. Since most architectures use skip
1168 connections, the flattening stage is very general and should work on these architectures as well.
1169 However, there are not always appropriate channel pruning methods for these architectures. If there
1170 is an appropriate channel pruning method, our method would work on various architectures. Besides,
1171 transformer is a widespread baseline for many tasks, and our experiments on multiple transformer
1172 architectures and tasks have shown the effectiveness of our method.

1173

1174 E LIMITATION

1175

1176 FlattenGPT provides a novel approach for fine-grained LLMs depth compression, yet there are still
1177 some limitations. First, FlattenGPT is performed on uniform architectures, where flattening will not
1178 change the model architecture significantly. It is not trivial to compress the hybrid architectures, such
1179 as a combination of transformer Vaswani et al. (2017) and mamba (Gu & Dao, 2023). However,
1180 it is still worth researching the fine-grained depth compression method, as layer pruning methods
1181 operate on a very high granularity and cause performance degradation. Second, we use one of the
1182 channel pruning methods to implement our FlattenGPT, while our framework is not constrained to
1183 specific channel pruning methods. Developing better channel pruning methods will improve our
1184 depth compression method as well.

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

Table 12: Results on different calibration dataset.

Method	Dataset	PPL	Sparsity	WinoG	HellaS	PIQA	ARC-e	ARC-c	Avg.
LLaMA-2 7B (original)	-	0%	5.47	69.06	75.99	79.11	74.58	46.25	69.00
FlattenGPT	WikiText-2	21.02%	8.68	67.40	70.74	74.59	64.44	41.98	63.83
FlattenGPT	Alpaca	21.02%	11.84	67.64	67.92	72.31	62.54	39.25	61.93

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

Table 13: The zero-shot accuracies on LLaMA-2 7B with different calibration dataset size.

Num of Samples	64	128	256	512	1024
Accuracy	61.17	62.49	62.25	62.58	62.60

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

Table 14: The zero-shot accuracies on InternVL-C 6B.

Model	Method	IN-1K	IN-A	IN-R
InternVL-C	Dense	83.2	83.8	95.5
	ShortGPT	79.7	57.9	90.4
	FlattenGPT	81.6	74.6	93.7

1233

1234

1235

1236

1237

1238

1239

1240

1241