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ABSTRACT

This work proposes FlattenGPT, a novel depth compression method for transform-
ers. Recent works have observed redundancy across transformer blocks, prompting
the research of depth compression to prune less crucial blocks. However, existing
works mostly follow the entire-block pruning paradigm and suffer from risks of
discarding knowledge learned in those blocks, leading to substantial performance
degradation. On the other hand, channel pruning can better preserve performance,
while it cannot compress model depth and is challenged by inconsistent pruning
ratios for each layer. To address those issues, this paper introduces a novel compres-
sion strategy named layer flattening, which bridges the gap between layer pruning
and channel pruning. By converting two adjacent blocks into one, it compresses
the network depth and enables more effective parameter redundancy detection
and removal. FlattenGPT strives to preserve the knowledge learned in all blocks
and remain consistent with the original architecture, enhancing model efficiency
with a decent trade-off to performance. Extensive experiments demonstrate that
FlattenGPT outperforms existing pruning methods in both zero-shot accuracies
and WikiText-2 perplexity across various model types and parameter sizes. It also
outperforms other pruning methods in accelerating LLM inference, making it a
promising approach for enhancing the efficiency of transformers.
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Figure 1: Comparison of pruning methods. (a) The original architecture. (b) Layer pruning removes
the entire block and discards all knowledge in it. (c) Channel pruning cannot compress model depth
and leads to inconsistent architecture across layers. (d) Our method bridges the gap, producing a
compact model with little performance degradation. (e) A comprehensive comparison.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Brown et al.} 2020; |[Zhang et al., [2022;
Chowdhery et al., 2023} |Touvron et al., 2023a:bj |Dubey et al., 2024)) have led to breakthroughs in
understanding and generation of natural language (Hadi et al., [2023 |Zhao et al.| [2023; Minaee et al.|
2024)). However, the cost of heavy computation and extremely large memory consumption makes it
very challenging to deploy on resource-limited devices. To mitigate these issues, model compression
has emerged as a popular post-training solution, reducing model size and complexity by removing
model redundancy (Gupta & Agrawall, 2022; Zhu et al., 2023)).

Depth compression (Song et al.l [2024; [Men et al. 2024) is a technique aimed at reducing the
redundancy across transformer blocks. This redundancy manifests itself in the cross-layer similar-
ity (Gromov et al.l [2024; Sun et al., [2024; [2025). Figure a) illustrates that the input of adjacent
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blocks has high similarity in LLMs, which is caused by the residual path spanning the entire LLM.
This similarity is particularly evident in LLMs, indicating that there is a certain amount of redundancy
within them. Depth compression methods aim to reduce this cross-layer redundancy to achieve
a compact network architecture. Besides, compared to other pruning methods such as channel
pruning (Ma et al., 2023 |Ashkboos et al., 2024) or 2:4 pruning (Frantar & Alistarh, 2023};|Sun et al.,
2023), depth compression methods have an evident advantage in inference speed with the same
number of parameters (Song et al., 2024).However, previous depth comparison methods usually
adopt layer or block pruning, which removes the entire block selected by measuring how crucial the
blocks are (Men et al., [2024; [Samragh et al.| 2023} |Kim et al., 2024} Song et al., 2024; Zhong et al.,
2024; Zhang et al.|[2024a)). It may also remove the useful knowledge learned in the pruned blocks
simultaneously, leading to serious performance degradation.

Channel pruning (Ma et al., [2023} |Ashkboos et al.| [2024; van der Ouderaa et al.,2024; Lin et al.,
2024), on the other side, conducts a fine-grained parameter preservation and thus leads to better
performance. However, these methods usually assign different pruning ratio for each layer. This
inconsistency in module architecture will cause inconvenience in hyperparameter tuning or model
deployment, such as LoRA hyperparameters (Hu et al.,2022)). Moreover, channel pruning cannot
utilize the redundancy across layers, resulting in a deeper architecture and higher latency in practice.

In this paper, we propose a fine-grained depth compression method called FlattenGPT, which
preserves crucial knowledge while reducing the model depth. FlattenGPT is composed of two stages.
In the first stage, we propose a new operation named flattening, to merge adjacent transformer blocks
by concatenating their parameters and hidden states. This operation changes the sequential execution
of transformer blocks to parallel execution, with only the input of the blocks being altered. Since the
input features of each layer in LLMs are inherently of high similarity, flattening the blocks has little
impact on the model’s performance. The subsequent stage employs a channel pruning method to
streamline the merged transformer blocks. Channel pruning can identify the critical channels within
the merged blocks, allowing for a fine-grained removal of redundancy while preserving the learned
knowledge of each block.

FlattenGPT has clear advantages over previous pruning methods. As shown in Figure(l} unlike layer
pruning methods, flattening preserves the knowledge embedded in each layer, raising the performance
ceiling of the depth compression. Compared with channel pruning, FlattenGPT produces a consistent
architecture with lower depth, leading to higher efficiency and easier tuning and deployment. This
method bridges the gap between depth compression and channel pruning, allowing for a more
comprehensive model compression. Extensive experiments demonstrate that FlattenGPT preserves up
to 96% of zero-shot performance with a compression rate of 20% on LLaMA 2 (Touvron et al.,[2023b),
outperforming prior depth compression approaches. To the best of our knowledge, FlattenGPT is an
original effort on transformer compression through layer flattening. It shows potential to establish a
novel comprehensive framework that enhances the depth compression of transformer architectures.

2 PRELIMINARY AND ANALYSIS

2.1 PRELIMINARY OF TRANSFORMER ARCHITECTURE

The Pre-LN transformer architecture in LLMs (Touvron et al.,|2023a)) consists of multiple decoder
layers, each composed of two blocks, i.e., Multi-Head Attention (MHA) and Multi Layer Perceptron
(MLP). Concretely, letl € {0,1,--- , L — 1} denote the layer index, T', dj,, d;»+ and H denote the
sequence length, hidden dimension, intermediate dimension, and the number of attention heads,
respectively. The formulation of a Transformer layer is denoted as

A = ' MHA' (LN (H')) B = B MUP! (LN (B1)), ()

where H! € RT*dn denotes the output of the [-th layer, MHAZ, MLPZ, LNf;, and LNf, denote the
MHA block, MLP block, MHA normalization, and MLP normalization of the [-th Transformer layer,
respectively. The normalization layers are usually composed of a root mean square normalization and
an element-wise affinement:

LN} (X) = RMSNorm (X) diag (c5) ,LN? (X) = RMSNorm (X) diag (e),  (2)

where RMSNorm (X)) applies X < X/ || X | to each row of X, ct, € R% and v, € R are the
parameters of affinement.
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Figure 2: Redundancy in transformer blocks. (a) LLaMA-2 7B exhibits high cross-layer similarity.
(b) The scale of the residual path grows faster than the MHA/MLP blocks, which dominates the
deep hidden states. (c) The unraveled view of transformer architecture, where the residual path
traversing the entire network leads to the cross-layer similarity. (d) The acceleration comparison
between different pruning methods.

The MHA block is defined as
H
MHA® (X) =Y _ Softmax (o, (XW§,) o] (XWi ;) XW{, W, . 3)
=1

where X € RT*4n denotes the input feature, WQ i WK i WVZ € Rdnx # , and Wo , ERE P xdn
denote the query, key, value, and output matrices of the i-th head in the [-th layer respectlvely For
similicity, we denote Wy = [Wg 1 Wy 2 -+ W g as the horizontal concatenation of query pa-

T
rameters from all heads, and similar to Wx and Wy,. We denote W = [WO 1 Wo 9 Wo ul
as the vertical concatenation of output parameters. o, denotes the positional embeddmg function.

MLP block The MLP block is defined as
MLP* (X) =0s (XWé) Wé> 4)

where W, € Rén*dint and W, € R%int*dn denotes the up and down matrix and o is the non-
linear activation function. X € RT*4 ig the input matrix. Prevailing LLMs (Touvron et al., [2023azb;
Bai et al., 2023)) employ a gated MLP. Its up matrix is composed of a up matrix and gate matrix
W, = [W,, W], where the non-linear function is defined as o5 (X W) = XW/ © 0y (XW).
For the following discussions, we take the gated MLP as the baseline architecture.

2.2  ANALYSIS ON THE REDUNDANCY IN DEPTH

As illustrated in Figure[2a), deep transformer architecture exhibits high cross-layer similarity. This
is caused by the curse of depth (Sun et al.||2025)), which implies that the deep layers are dominated
by the residual path, i.e., identity mapping. As shown in Figure 2{b), the L2 norm of the residual path
is much larger than the MHA/MLP output in deep layers, dominating the forward propagation. An
intuitive interpretation is shown in the triangle-shaped unraveled view of transformer architecture in
Figure 2Jc). The amount of residual features increases in deep layers and surpasses the non-linear
blocks, leading to approximately identity mapping. This analysis shows the cross-layer redundancy
in the transformers.

We provide a theoretical analysis of layer redundancy in deep transformers. We assume that the
input feature H ¢ intermediate vectors H! , and the model parameter matrix W follow normal and
independent distributions with mean O for all layers. First, we model the growth of the hidden states
in a transformer architecture:

Theorem 2.1 (The growth of the hidden state variance). Let o3y, and 0%, denote the variance of

H' and H', respectively. These two variances exhibit the same growth trend, which is

14
@(6) S O'%_Iz = O'%Io@ (H <1 +

O Erk
k=1 H

)) < O(exp(0)), s)
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Figure 3: Framework of FlattenGPT. (a) Original stacks of transformer blocks with high similarity. (b)
Layer flattening merges two adjacent blocks into one single block with little performance degradation.
(c) Flattening bridges the gap between depth compression and channel compression.

This theorem implies that the variance of hidden states could grow as an exponential function of /.
This conclusion is verified by the empirical results in Figure 2[b). Then the following theorem gives
the reason why deeper layers are redundant:

Theorem 2.2 (The norm of gradient). Let % denote the partial derivative of the model output y to
the (-th hidden states H'. The Euclidean norm of this partial derivative is bounded by

L
1 1
H 0y §H<1+O_ A+ — B), (6)

I4
oH' ||, = 11 a0,

where A and B are constants for the Transformer network. Specifically, when { = L — ¢, where c is
a constant number, the limitation of the right-hand side is 1.

This conclusion implies that for very large L, the gradient of deeper layers zy, H %’ is domi-
2

nated by identity mapping, thereby limiting the model’s expressivity and hindering its ability to
learn meaningful transformations. This conclusion is verified by the empirical results as shown in
Figure[2(a), where deeper layers exhibit high cross-layer similarity. The complete proof and more
empirical results are given in Appendix [A]and [B] respectively.

Due to this redundancy, previous layer pruning methods delete the entire redundant blocks, i.e.,
MHA? or MLP? (Song et al.} 2024; Men et al., 2024)). Although these methods achieve promising
acceleration as shown in Figure [2(d), pruning at such high granularity will inevitably remove the
useful knowledge within the blocks, resulting in a massive performance degradation.

3 FLATTENGPT

FlattenGPT strives for a fine-grained parameter removal in depth compression. As illustrated in
Figure 3] FlattenGPT employs a two-stage approach to compress the depth in a fine-grained manner.
In the first stage, FlattenGPT merges the selected adjacent layers into a single wide layer, flattening the
arrangement of layers. Due to the high similarity across layers, the flattening operation hardly alters
the inner calculation, reducing the model depth with minimal performance degradation. In the second
stage, FlattenGPT adaptively prunes the redundant parameters for the flattened layers, demonstrating
less information loss compared with entire layer pruning methods. FlattenGPT produces the same
architecture as layer pruning, but preserves important parameters from all layers. It not only runs fast
in inference but also maintains high performance, which is a promising way for model compression.
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3.1 ITERATIVE LAYER FLATTENING

Layer flattening aims to merge layers with high similarity. Since the inputs of the two layers are
highly similar, the inner calculation will not be significantly changed by the flattening, therefore
preserving better performance. We need to address two issues in this stage: 1) how fo select the layers
to flatten, and 2) how to merge the selected layers.

Layer Selection: We collect cross-layer feature similarity on a small calibration dataset. Then
we design a greedy algorithm to find adjacent layers with the highest similarities iteratively. The
algorithm is shown in Algorithm Let S € RE*E denote the similarity matrix, where S; ; denote
the cosine similarity between the input feature of layer ¢ and layer j. We try to find the two adjacent
layers {I — 1,1} with the highest similarity for each iteration. Then we need to modify the similarity
matrix to S for the next iteration. If the next flattened layers m — 1 and m are not adjacent to the
current flattened layers [ — 1 and [, there is no problem with directly merging these layers. However,
if the next flattened layer are consecutive to the current ones, i.e. flattening {I — 2,1 — 1,1} (where
m=10—1)or{l —1,1,1 + 1} (where m — 1 = ), the similarity between the first and the last layer
need to be considered. If the input similarity between the first and the last layer is too large, the
output of the last layer will be significantly altered, leading to performance degradation. We can
modify the similarity matrix S; ; to avoid this problem. For the layers before I — 1, we remove their
similarity with layer [ — 1. Thus, if the flattened layers are consecutive, we can only access their
similarity with layer [. Similarly, for the layers after /, we remove their similarity with the layer [.
The above steps are iterated until the target number of layers is flattened.

Layer Flattening: Flattening aims to merge the selected layers into a single wide layer. To be
compatible with the current implementation and Al infrastructure, we construct the flattened layers
with the same architecture as the original transformers. Let us denote the target layers as layer [ — 1
and layer (. First, we fuse the parameters of affinement in the normalization layer LN with the linear
projections in the MHA and MLP. For the MHA layers, we fuse o/, with the query, key, and value
matrix:

Wé}l = diag (afl_l) Wéﬁl, Wllgil = diag (afl_l) Wllgil, W‘lfll = diag (afl_l) W‘lfll
)

For the MLP layers, we fuse aé‘l with the up and gate matrix:
Fr1-1 . -1 -1 F7l—1 . -1 -1
W, = =diag (ap ) W, ", W, =diag (ap ) W, ®)
Similar fuse operations are conducted on layer [. After these fusions, the affinement parameters are
set to 14, . This step does not change the output of the network but facilitates the next flattening steps.

We simply add the output of the two MHA blocks.

H
MHA'™M (X) =37 Softmax (o, (XW5 ) o] (XWi!)) XW WG]
i=1
. ~ ) ~ ©
+ 3 Softmax (ar (Xwéﬂ.) ol (XWIQ)) XWL,Wh,.
i=1
It is equivalent to concatenating the attention heads from two layers to form an attention block of

2H heads. The flattened MHA block can also be calculated by the original implementation, which
utilizes a single query, key, value, and output projection matrix.

=10 _ (yirl—1 yisl—1 i-1 virl Yl il
Wo 7~ = (WQ,l Wao  WouWoi1Waoa - ’WQ7H) (10)
and similar to the matrix W}(_l’l, VV‘l,_l’l and VNVCl)_l’l.

MLP flattening We simply add the output of two MLP blocks.
MLP M (X) = XW! g, (Xng_l) W5+ XWlo, (XVV;) wh (1)

It is equivalent to concatenating the hidden states from two layers to form an MLP layer of 2d,,,;
hidden channels. The full process of layer flattening is shown in Algorithm[I] These steps flatten the
layers, which reduces the layers of the original parameters. Flattening does not change the number of
parameters and calculations, thus we need a further pruning method to compress the models. We
adopt a channel pruning method to compress the parameters in the following part.
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Algorithm 1 Iterative layer flattening
Require: Base model, number of layers to flatten IV, calibration set D

1: Calculate the input similarity between each pair of layers S € RE*F

2: while N > 0do > Iterative search
3: Identify the index (I = 1,1) of the largest similarity in S > Select adjacent layers
4: W), « diag (o)) Wi, form € {Q,K,V},j € {l— 1,1} > Fuse affinement parameters in MHA
5. W [Wg;l W,ﬁl],form € {Q,K,V} > Flatten MHA
6: Wil [Wl—l,T WI,T]T

: o o o

7: W, « diag (o) Wi, form € {u,g},j € {l— 1,1} > Fuse affinement parameters in MLP
8: wi-bt [an_l VV,Z,L], form € {u, g} > Flatten MLP

9 WL [W};” WBT]T

10: Delete {S;,;—1]|¢ <} and {S;
11: N+ N-1
12: end while

¢ > [ — 1} from distance matrix S > Prepare for next iteration

3.2 CHANNEL PRUNING

Layer flattening has produced a high-performance model with fewer layers, and then we need to
remove redundant parameters. Previous channel pruning methods are compatible with layer flattening.
However, this paper aims to keep the pruned architecture consistent with the original one, thus
requiring specific pruning methods. This consistency will simplify the implementation, facilitating
the reuse of tuning hyperparameters and deployment. We employ two pruning methods for MHA and
MLP blocks, respectively. For the MHA blocks, we prune redundant heads to keep the number of
heads and head size unchanged. For the MLP blocks, we prune individual channels with nystrém
approximation (Gittens & Mahoney), 2016;|Musco & Muscol 2017). In this section, we omit the layer
index in the formulation for simplicity.

Since the number of heads in the flattened layer is more than the original layer, we
aim to prune heads to keep the number of heads the same as the other MHA blocks. We design a
metric to compare the importance of head ¢:

fi=Ep {Softmax (or (XWqi) o, (XWk,;)) XWy,; diag (Wo W ;) (12)

1/2}
This metric estimates the expectation of the attention activation value by multiplying the L2 norm of
each line of the output matrix. It measures the impact of the head ¢ on the output of this MHA block.
By comparing the impact of each head, we can remove the unimportant heads to prune the MHA
block. The complete compression process is shown in Algorithm 2]

Algorithm 2 by removing heads

Require: Query, key, value matrix Wg, Wi, Wy € R% X% output matrix Wo € R4*, rank k, calibration
datasetND
I: fi =3 Softmax (o, (X W) 0} (XWi.:)) XWy, diag (Wo,,Wg,)"? foric {1,2,---, H}
i=1
2: Let Sy, € RY** be the matrix that selects the top k heads based on f; scores
3: return (Wo, Wk, Wy, Wo) + (WqSk, Wk Sk, Wy Sk, Sy Wo)

MLP pruning The MLP blocks conduct important non-linear calculations in the transformer. A
simple channel selection is insufficient to maintain the performance of the original model. We
employ Nystrom approximation (Gittens & Mahoney, |2016; Musco & Musco, |2017) to prune this
block. The compression method is shown in Algorithm 3] First, we calculate the ridge leverage
score (Musco & Musco, [2017) as the channel importance measurement. Then we select the important
channels and adjust the down matrix Wp to compensate for the information loss with Nystrom
approximation (Gittens & Mahoney, [2016). We have the following theorem which illustrates that
Nystrom approximation is the best estimation under least squares with L2 regularization. The proof
is shown in Appendix
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Theorem 3.1. Let S; denote a k-column selection matrix. Let C, denote the covariance
Zﬁvzl (og (X, WU))T os (X;Wuy). The optimal estimation of Wp, is defined by:

AWp = arAgvgnn |os (XiWu) Sk (S Wp + AWp) — 0o (X;Wy) Wh||, + AM[AWD |,
D

Wp = Wp + S AWp,
) (13)
where X is the coefficient for L2 regularization. AW has closed form solution:

AWp = (S{ C, S + M)~ S C, (I - SpS{) Wp. (14)

Algorithm 3 MLP pruning by Nystrom approximation

Require: Up and gated W, W, € R *dint down matrix Wp € R%nt X9 rank k, calibration dataset D,
and ridge intensity A

: Calculate activation correlation Cy = SN (X; W0, (XiWy)) | XiW0, (X;W,)

8i 4 [Co (Co + A forie {1,2,- - dint} > Calculate the ridge leverage score

. Let S, € R%nt** be the matrix that selects the top k columns based on s; scores

: return (W,,, Wy, Wp) + (WuSk7 W,y Sk, Wo + (S{ CoSi. + >\I)71 50 Co, (I - 8xSy) WD)

AW N =

3.3 PRUNING HYPERPARAMETERS

All architectural hyperparameters, including width/head count, are predefined to preserve structure
consistency with the original transformer block. The target width of the pruned MLP is identical to
the original MLP module, and the number of heads is the same as the original MHA module. This
setting ensures compatibility with the original Al infrastructure, including GPUs, CUDA kernels,
multi-machine communication, inference engine, etc. It is also a clear target for reproducibility.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models: We evaluate FlattenGPT on models that employ a sequential transformer block structure:
LLaMA-2 (Touvron et al., 2023b)), LLaMA-3 (Dubey et al.,|[2024), Qwen-1.5 (Bai et al.,|2023), and
Baichuan-2 (Yang et al., 2023)), etc. These models share similar architectures of MHA and MLP.

Implementations and environments: All hyperparameters, including width/head count, are pre-
defined to preserve structure consistency with the original transformer block. We implement our
models using the HuggingFace Transformers library (Wolf et al. [2020). Model compression and
performance testing were conducted on 8 NVIDIA A100 80GB GPUs.

Datasets and Evaluations: We follow the setup in previous works (Ashkboos et al., [2024; |Song
et al.| [2024) for fairness. The calibration dataset is composed of 128 samples with 2048 tokens,
randomly selected from the training split of WikiText-2 (Merity et al., 2016). The evaluation
consists of perplexity and zero-shot task performance. The perplexity is evaluated on the test
split of WikiText-2 (Merity et al.l [2016) dataset. The zero-shot accuracies are evaluated with LM
Evaluation Harness (Gao et al.,[2024) on Winograd (Sakaguchi et al., 2019), HellaSwag (Zellers
et al.,|2019), Physical Interaction Question Answering (PIQA) (Bisk et al., 2020), and AI2 Reasoning
Challenges (ARC-e, ARC-c) (Clark et al.}2018)). We also investigate the effectiveness of recovery
finetuning, which employs S0K samples of refined Alpaca (Taori et al., [2023)) for instruction tuning
with LoRA (Hu et al.,2022). More detailes are presented in Appendix Q

4.2 COMPARISON WITH DEPTH COMPRESSION

Table[T] shows a comprehensive comparison between FlattenGPT and the other depth compression
methods. These methods (Yang et al.,[2024; |Song et al., 2024; | Men et al., [2024; |Samragh et al.,|2023;
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Table 1: Comparison of depth compression methods on WikiText-2 perplexity and zero-shot tasks.

Model | Method | Sparsity | PPL | | WinoG HellaS PIQA ARC-e ARC-c | Avg.
| Dense | 0% | 547 | 69.06 7599 79.11 7458 4625 | 69.00

SLEB (Song et al.||2024) 21.02% 9.14 58.96 62.47 73.07 56.48 33.02 56.80

LLaMA-2 7B LaCo (Yang et al.||2024) 21.02% 50.39 60.46 54.08 68.34 55.39 35.84 54.82
aVA- RM (Samragh et al.[|2023) 21.02% 676.8 49.25 29.22 54.46 3443 22.53 37.98
ShortGPT (Men et al.||2024) 21.02% 18.45 65.90 62.63 70.24 56.06 36.09 58.18

BlockPruner (Zhong et al.[[2024) 21.99% 11.51 62.43 65.87 74.21 61.07 37.29 60.17

FlattenGPT 21.02% 8.68 66.54 68.45 72.74 63.43 41.30 62.49

| Dense | 0% | 488 | 7222 7939 8047 7748 4923 | 7176

LaCo (Yang et al.|[2024) 24.37% 13.97 59.27 60.44 7242 54.34 34.56 56.21

LLaMA-2 13B | RM (Samragh et al.[[2023) 24.37% 10.08 66.61 66.80 73.72 66.12 41.98 63.05
ShortGPT (Men et al.}[2024) 24.37% 20.06 70.80 67.80 7274  60.35 4130 | 62.60

BlockPruner (Zhong et al.[[2024) 25.12% 8.16 66.30 72.20 76.93 65.82 41.38 64.53

FlattenGPT 24.37% 6.68 71.11 73.44 76.33 72.10 44.54 67.50

| Dense | 0% | 795 | 6646 7692 7922 6216 4266 | 6548

LaCo (Yang et al.|[2024) 20.97% 39.23 58.64 56.35 70.40 46.89 32.85 53.03

Qwen-1.57B RM (Samragh et al.[|2023) 20.97% 2026 49.88 42.00 67.36 54.17 28.58 48.40
ShortGPT (Men et al.[|2024) 20.97% 49.88 62.12 58.87 69.53 43.60 32.17 53.26

BlockPruner (Zhong et al.[|2024) 21.83% 20.58 55.56 59.31 71.71 53.70 33.28 54.71

FlattenGPT 20.97% 16.05 59.27 62.89 68.39 56.99 37.46 57.00

| Dense | 0% | 604 | 6827 7218 7748 7298 4275 | 66.73

. LaCo (Yang et al.|[2024) 21.57% 26.46 58.56 51.50 68.28 52.90 28.50 51.95
Baichuan-2 7B | RM (Samragh et al.}[2023) 21.57% 189.8 52.33 30.87 59.96 38.17 23.63 40.99
ShortGPT (Men et al.||2024) 21.57% 31.05 62.67 50.01 63.71 47.31 30.72 50.88

BlockPruner (Zhong et al.[[2024) | 22.45% 15.38 61.48 58.09 69.75 58.08 33.02 56.08

FlattenGPT 21.57% 20.55 64.33 61.50 69.42 56.27 35.24 57.35

Table 2: Comparison of pruning methods on through- Table 3: Comparison of mean zero-shot
put, latency, and mean accuracies on zero-shot tasks. accuracies with recovery fine-tuning. The
Throughput and latency are measured with LLaMA-2 sparsity ratio is 20% and T indicates fine-

70B on 2 NVIDIA A100 80GB. tuned on Alpaca (Taori et al., |2023) dataset.
...| Throughput| Latency LLaMA-2 LLaMA-2|LLaMA-2|LLaMA-3
it ‘Spa““y (Tokensls) | (ms) | 7B 13B 70B Method ‘ 7B 138 e
Dense | 0% | 2991.00x |1718.41.00x |69.00 71.76 76.57 Dense | 69.00 | 7176 | 73.08
2.4 | SParseGPT | 50% | 2930.95x [1555.51.10 |58.23 63.06 71.87 Wanda-sp 64.53 67.37 -
; Wanda 50% | 2930.0sx |1555.51.10[55.59 6123 72.34 .\ [FLAP 59.51 64.70 36.03
- . . 23
LLM-Pruner| 20% 3141 o5 [1534.31 154 ]62.1567.72 - tix lerunerf 2; i;‘ 23 gg gg 59
width| SHCeGPT | 20% | 3141 05 |1658.71 04 |58.17 63.45 72.34 “rruner : : :
1) SliceGPT | 25% | 331111 [1440.71 10 |55.49 58.90 69.75 SLEB 5925 62.96 _
SliceGPT | 30% | 3431 15+ |1364.21 96 |51.50 55.16 66.11 Shortened LLaMA | 5836 65.86 5830
SLEB 10% | 3361 10 |1529.11 10+ |62.24 66.77 73.14  Depth|Shortened LLaMAT| 61.91 68.81 66.72
Depth| SLEB 20% | 381107 |1364.11 56 |56.80 62.96 70.81 FlattenGPT 63.83 68.27 66.21
FlattenGPT | 20% | 381, 57 [1364.1, 5. |62.49 68.27 73.94 FlattenGPTT 66.24 70.53 70.43

Zhong et al., 2024) remove the entire transformer blocks, resulting in massive information loss. Our
method alleviates this problem by fine-grained parameter removal and shows superior performance on
various model sizes (from 7B to 70B). It achieves the highest perplexity and improves the zero-shot
accuracies by at least 2%. FlattenGPT has built a strong approach for depth compression.

4.3 COMPARISON WITH OTHER PRUNING METHODS

Table [2] compares the latency, throughput, and mean accuracies on zero-shot tasks of the com-
pressed LLaMA-2 (Touvron et al.l 2023b) models. 2:4 pruning methods lead to minor speedup
(1.10x) and lower throughput (0.98 x with a sparsity ratio of 50%. Width pruning methods, such
as SliceGPT (Ashkboos et al., [2024)), are more hardware-friendly and speed up the pruned model,
while still lagging behind depth pruning methods. FlattenGPT inherits the advantages of acceleration
in depth pruning and further improves the performance. Since the compressed model architecture
of FlattenGPT is exactly the same as SLEB, the throughput and latency results are the same. Flat-
tenGPT outperforms all other methods in throughput (1.27x), latency (1.26 %), and zero-shot tasks
performance (about 5% higher), yielding a better trade-off between speed and performance.
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4.4 RECOVERY FINE-TUNING

The pruned model of FlattenGPT still contains the useful information from all blocks, making it
easier for the model to recover performance through Recovery Fine-Tuning (RFT). Table [3| presents
the mean accuracies of zero-shot tasks with and without RFT. The results show that the model
compressed by FlattenGPT maintains > 96% zero-shot performance of the dense model, far more
than other depth compression methods and some width pruning methods. Even without RFT, our
method achieves comparable performance with RFT-based methods. These results illustrate the
effectiveness of FlattenGPT.

More experiments: We present more experiments and discussions in Appendix [D] including ad-
ditional experiments on various model types and sizes, more pruning methods (van der Ouderaa
et al.| [2024; [Lin et al.| 2024), ablation studies, dependency on calibration dataset, and generalization
beyond language modeling and transformer architectures. Please kindly refer to this part.

5 RELATED WORKS

Model Pruning is an approach to compress the number of parameters and calculations in a deep
model. Unstructured pruning (LeCun et al.l 1989} Hassibi et al.,|1993; ivan der Ouderaa et al., 2024;
Dong et al., 2017} [Frantar & Alistarhl 2022;|2023; Sun et al., [2023; Zhang et al., [2024b)) removes
independent weights without pre-determined patterns, leading to sparse weight matrices within the
model. This sparsity enables a high pruning ratio but results in complex data access patterns, which
are not conducive to hardware acceleration. Structured pruning (Ashkboos et al., [2024; Ma et al.}
2023 |An et al.,|2024) removes elements to form dense matrices that are more efficiently processed
by hardware. These methods exhibit a remarkable acceleration but come with worse performance
degradation. This paper follows the structured pruning of LLMs, proposing a new depth compression
method that balances performance and efficiency.

Depth compression aims to reduce the number of layers and speed up inference. Layer pruning
approaches use layer importance metrics to remove redundant layers from the model (Men et al.}|2024;
Samragh et al., [2023; |Kim et al., [2024; Song et al., |2024; Zhong et al.| 2024} [Zhang et al.| 2024a)).
These methods remove the weights and knowledge of the entire layer, limiting the performance of
the pruned model. Layer merging methods fuse the parameters of different layers by addition (Yang
et al.} 2024; |Liu et al.l |2024; Ding et al., |2025)). While this type of method uses information from
different layers, simple addition can cause sharp performance degradation. LLM-Streamline (Chen
et al.,2025) This paper proposes FlattenGPT, a novel depth compression method that rearranges the
layers, which reduces the model depth while retaining the information of each layer and maintains
the performance well.

Width Compression reduces the number of parameters by reducing the width of the network.
LLM-Pruner (Ma et al.,|2023) uses gradient magnitudes to estimate the importance of neurons and
efficiently fine-tune the performance of the recovery model with parameters. SliceGPT (Ashkboos
et al.} 2024) and ModeGPT (Lin et al., 2024)) employ matrix decomposition to compress the width of
each block in the Transformer. The attention head pruning and sharing methods (Michel et al.l 2019)
were used to reduce the width of the attention module. However, these methods cannot compress
model depth, leading to higher inference latency. Our method bridges the gap between channel
pruning and layer pruning, which provides a fine-grained layer pruning method and improves the
performance.

6 CONCLUSION

We propose a novel LLM depth compression method, FlattenGPT, to address the challenges of
performance degradation under high-granularity layer pruning. Upon the high similarity of cross-
layer input features, we design a layer flattening operation to reduce the model depth with minimal
performance loss. Then we adopt channel pruning methods to reduce the number of parameters
and calculations in the model. Our proposed method performs well on LLM depth compression,
showcasing the effectiveness of fine-grained depth compression. We hope this work can inspire more
future efforts in depth compression on neural architectures from the perspective of layer flattening.
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A PROOFS

A.1 PROOF OF THEOREM[2.]]

Proof. Let oay, denote the standard deviation of Attn (LNfI (H ¢ )), and oy p denote the standard
deviation of MLP (LNi7 (H é)) . Given equation equationmwe have:
Var (H') = Var (H') + Var (Attn (LN (H"))) + Cov (Attn (LN (H)) , HY)

(15)
= U%ﬂ + U/Q\m + p10He  OAm,

Var (H') = Var (B*) + Var (MLP (LN (8°) )) + Cov (MLP (LN (7)), ') o

2 2
=0fe T OMLP + P2 Tge - OMLP,
where p1, p1 is the correlation factor. Thus, the evolve from Var (H*™) to Var (H*) becomes
2 _ 2 2 2
Ofe+1 = Ofpt + Oapn T OMp +P1 - O - OAun + P2 - O e - OMLP- (17)

Let n denote the number of head and d},¢,q denote the dimension of each head. Following results in
Sun et al.[(2025), based on the independent distribution assumption of weights, we have

1« 1
Var (Attn (Q,k,V)) ~ = Y dheaa Var (Vi) = = - - 0% - dheas = Oy (18)
n n
i=1
Using the conclusion obtained by Wang et al.| (2024)), we get

2 2 2
Ofpe = Oppe T 0w +p2-0ge - ow

2
2 ow w
= 1 .
OH¢ ( + p— + p2 U%ﬂ) (19)
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UW , We can

For simplicity, we set the numerator part to 1. Substitute 0,y = o gge \/ 1
obtain the variance of

2 2 2 4 12 2
Operr = Ogge Yoy +owd™ +p1-oge - ow + p2 -0y - opyd

4 72 2 3
owd owdo
:0215+U%V+0évd2+p1~aHz~0W+p2~0Hz'0‘2,Vd+p220‘;[; +p2 VI; H
1
H¢
(20)

The variance with regard to %, can be obtained by iteratively apply Equation equation

14

H <1+ U;)) Q1)

k=1

2 2
OFpe = OFp0© (

Following the results in|Sun et al.| (2025), this conclusion could lead to the upper bound and lower
bound. Please refer to Appendix A.1 in|Sun et al.|(2025) for details. O

A.2 PROOF OF THEOREM [2.2]

Proof. For an L-layered Pre-LN Transformer, the partial gradient to the ¢-th hidden states is given by

the chain rule: L
Oy - 8H k1 9Hk
25 -1 (2 05)
From Sun et al.|(2025)), we know that

OHk+1 14 TWLOWY, 14 o?
OHkE — o e (Vd + Vdyp)? o gr(Vd + VdLp)?
From [Papaspiliopoulos| (2020), we get
OH* 1 o?
P2 (14 2dn 24— —(Qd Do, (1 N d)) (4
am(* (ﬁ+ +ﬁ)wo head + (1 + V/dhead/ (24)

where h denotes the number of heads and s denotes the sequence length, respectively. Following the
proof from |Sun et al.|(2025), the target equation can be expressed as

(23)

1 1
H o], < ( At B), 25)
where
o2 1
= 4+ 92dh +24 — ) 0? (dv/dhead + 1 + \V/dhead/d), (26
(\/E+ VdppN)? (\/g \/§>U ( head " d/) (20

B =2dh (\/E +24 }) od\/dhead. (27)

This conclusion indicates that for the deep layers in the model the partial gradlent 557 Will be
bounded. Considering the exponential growth in Theorem[2.1] the partial gradient will be bounded by

Ay L 1 1
Jose], <L (1+ it 28)
L 1 1
<11 ( At B) (28)
iy (of 2 44 O'He

L—¢
1 1
eatar)
(oF 243 O'H(
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Let L — ¢ be a constant number ¢, which implies the c-th layer from the last. As ¢ grows, o e will
grow to infinity. Then we get

Oy
OH!

lim
l—~+o00

1 1 ¢
< lim <1+ A+ — B) — 1. (29)
2 L——+o00 O gt O'H[

O

A.3 PROOFS OF THEOREM[3.1]

Proof. The original solution for linear regression with L2 regularization is defined as follows:

Lemma A.1. Let X € R"*P be the design matrix, y € R™ be the response vector, and A\ > 0 be
the regularization parameter. The L2 regularized linear regression (Ridge Regression) minimizes the
following objective function:

argming | X6 — y|5 + \|0]3, (30)

where 0 € RP is the coefficient vector. The closed-form solution for the optimal coefficient vector 0
is given by:

0=(X"X4+N)'X"y, (1)
provided that the matrix (X " X + M) is invertible. Here, I denotes the p x p identity matrix. This
solution always exists for X > 0, even when X " X is singular.

The proof of this lemma can be found in most linear algebra textbooks (Montgomery et al.,
2021). As for Equation equation substitute § = AWp, X = o4 (X;Wy) Sk, y =
os (X;Wuy) (I — 81,8, ) Wp, and then we will the solutions. O

B EMPIRICAL RESULTS

We present more empirical results in various architectures, including LLaMA-2 (Touvron et al.,
2023b) at {7B, 13B}, Qwen-1.5 (Bai et al.,[2023) at {7B, 14B}, and Baichuan-2 at {7B, 13B} (Yang
et al.|[2023). As shown in Figure[d] the high cross-layer similarity and large feature norm is consistent
across various model types and parameter sizes. According to the theoretical analysis above, this
phenomenon is deeply related to the architecture of transformers.

C IMPLEMENTATIONS

C.1 MODIFIED ALGORITHMS FOR GROUPED QUERY ATTENTION

Some modern LLMs, such as LLaMA-3 (Dubey et al., [2024), utilize a shared key-value strategy
to improve inference efficiency, which is denoted as Grouped Query Attention (GQA). To keep the
pruned architecture the same as the original attention blocks, we modify the channel pruning on MHA.
Instead of finding the least important attention head individually, we find the least important pair of
key and value. Then we delete this pair and its corresponding queries. We apply this modification to
LLaMA-3 8B compression in the paper.

C.2 IMPLEMENTATION DETAILS

Setup We utilize the HuggingFace generation library (Wolf et al., 2020) to implement our LLM
models and use PyTorch (Paszke et al., 2019) Hooks for hidden states recording and correlation
matrix estimations. Unless otherwise specified, the experiments were conducted on 8§ NVIDIA H800
80GB GPUs. The models use the BF16 data format. The calibration set consists of a random sample
of 128 sequences, each of length 2048, from WikiText-2, following the common practice in the
literature (Ashkboos et al., [2024]).

Datasets We consider multiple tasks in LM Evaluation Harness (Gao et al.|[2024), including ARC-e,
ARC-c (Clark et al., 2018)), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al.| [2019), and
HellaSwag (Zellers et al.,|[2019).
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Figure 4: Cross-layer similarity and feature norm in multiple architectures.
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Correlation Matrix Estimations Our algorithms utilize input correlation matrices in the MLP prun-
ing method. We gather the empirical data from the calibration set by registering the PyTorch (Paszke
et al.L 2019) hooks in the model. Our process compresses the MLP blocks from all layers first, then
compresses the MHA blocks from all layers.

Matrix Operations We utilize ‘torch.linalg.solve’ in PyTorch for computing the inverse on tensors
of dtype FP32.

MLP module Our MLP pruning method requires a ridge leverage score parameter A\. We set \ to
10 times the mean singular value of the correlation matrix across all experiments.

MHA module Our MHA pruning method removes the entire group of query, key, and value
matrices.

Recovery Fine-Tuning We use 50K samples of refined Alpaca for instruction tuning. The learning
rate is set to 1 x 10, The other primary hyperparameters used are lora_alpha = 16, lora_r = 8,
and batch_size = 64.

Latency and Throughput We test the throughput and latency results on token generation and
prompt processing, respectively. For token generation, we generate sentences with a length of 128
tokens and a batch size of 64. For prompt processing, we measure the latency when processing an
input sequence with 2048 tokens.

C.3 THROUGHPUT AND LATENCY

Table 5| compares the latency, throughput, and perplexities of the compressed LLaMA-2 (Touvron
et al.,2023b)) models with other pruning methods. We test the throughput and latency results on token
generation and prompt processing, respectively. For token generation, we generate sentences with a
length of 128 tokens and a batch size of 64. For prompt processing, we measure the latency when
processing an input sequence with 2048 tokens. Even with dedicated hardware support, 2:4 pruning
methods still lead to minor speedup (1.10x) and lower throughput (0.98 x with a sparsity ratio of
50%. Width pruning methods, such as SliceGPT (Ashkboos et al.,|2024), are more hardware-friendly
and speed up the pruned model, while still lagging behind depth pruning methods. FlattenGPT
inherits the advantages of acceleration in depth pruning and further improves the performance. Since
the compressed model architecture of FlattenGPT is exactly the same as SLEB, the throughput and
latency results are the same. FlattenGPT outperforms all other methods in throughput (1.27x) and
latency (1.26 x), and achieves a comparable perplexities. These results demonstrate that FlattenGPT
has a better trade-off between speed and performance.

C.4 PRUNING COMPUTATION COST

Table[6|compares the compression times of FlattenGPT with the prevailing pruning methods, including
SliceGPT (Ashkboos et al.,[2024), LLM surgeon (van der Ouderaa et al., |2024)), and MoDeGPT (Lin
et al, 2024). LLM Surgeon requires the gradient information of the LLMs, leading to heavy
computation. SliceGPT and ModeGPT do not leverage gradients, they can compress a model with
fewer GPUs and computation time. Our approach, FlattenGPT, is even faster than these methods,
as we collect the correlation matrix of all layers at the same time. Thus FlattenGPT is an efficient
pruning method in this area.

D EXPERIMENTS

D.1 ADDITIONAL COMPARISON OF TRAINING-FREE PRUNING METHODS

We compare the performance with other training-free pruning methods in Table 4| including both
width compression and depth compression. The width compression includes the 2:4 pruning methods
SparseGPT (Frantar & Alistarh, [2023)) and Wanda (Sun et al.} 2023), and structured channel pruning
methods SliceGPT (Ashkboos et al.l 2024). The depth compression includes LaCo (Yang et al.,
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Table 4: Comparison with training-free pruning methods on WikiText-2 perplexity and accuracies on
zero-shot tasks.

Method | Sparsity | PPL| | WinoG HellaS PIQA ARC-e ARC-c | Avg.

LLaMA-2 7B (original) \ 0% | 547 | 69.06 75.99  79.11 74.58 46.25 | 69.00

SpareGPT (Frantar & Alistarh[2023) | 2:4 (50%) | 10.79 | 6496 5893 7214 6090 3422 | 58.23
)

2:4 (50%) 12.09 62.27 5533 70.84 57.58 31.91 55.59

Width | Wanda (
4 21.45% 7.02 59.91 56.04 72.42 63.64 37.12 57.83

SLEB (Song et al] 2102% | 9.4 | 5896 6247 7307 5648  33.02 | 56.80

LaCo |mmm 21.02% | 5039 | 6046 5408 6834 5539 3584 | 54.82

Depth | RM (Samragh et all 2023 21.02% | 6768 | 4925 2922 5446 3443 2253 | 37.98
P | ShortGPT (Men et ¢ 21.02% | 1845 | 6590 6263 7024 5606  36.09 | 58.18
BlockPruner (Zhong ef al. 2199% | 1151 | 6243 6587 7421 6107 3729 | 60.17
FlattenGPT 21.02% | 8.68 | 6654 6845 7274 6343 4130 | 6249
LLaMA-2 13B (original) \ 0% | 4838 | 7222 7939 8047 7748 4923 | 7176
SpareGPT (Frantar & Alistarh 24(50%) | 875 | 6851 6552 7546 6604 3976 | 63.06

Width | Wanda nw|w. 24(50%) | 899 | 6701 6309 7394 6431 3780 | 6123
SliceGPT (As 1 [2024) 25% 6.63 | 6748 5810 6855 6250  37.88 | 58.90

LaCo (Yang et al 2437% | 1397 | 5927 6044 7242 5434 3456 | 5621

RM ( 1120 2437% | 1008 | 6661 6680 7372 6612 4198 | 63.05

Depth | Short 2437% | 2006 | 7080  67.80 7274 6035 4130 | 62.60

BlockPruner y 25.12% 8.16 66.30 72.20 76.93 65.82 41.38 64.53

FlattenGPT 2437% | 668 | TLI1 7344 7633 7210 4454 | 67.50
LLaMA-2 70B (original) \ 0% | 332 | 7798 8384 8270 8098  57.34 | 76.57
SpareGPT (Frant 24(50%) | 570 | 7656 7609 8003 7694  49.74 | 71.87
Width | Wanda 24(50%) | 548 | 7466 7922 8030 7635 5119 | 7234
SliceGP '» 20% 444 | 7492 7298 7661 8051 5520 | 72.34
SLEB [Song et al | (2024) 19.84% | 488 | 7293 7721  80.14 7538 4838 | 70.81
Depth | ShortGPT|Ashkboos et al (2024) 1984% | 6633 | 7196 7887 7602 7602 5295 | 7168
FlattenGP 1984% | 479 | 7735 8142 8036 7748 5307 | 73.94
Baichuan-2 7B (original) | 0% | 604 | 6827 7218 7748 7298 4275 | 66.73

21.57% 26.46 58.56 51.50 68.28 52.90 28.50 | 51.95
21.57% 189.8 52.33 30.87 59.96 38.17 23.63 40.99

Depth 2157% | 31.05 | 6267 5001 6371 4731  30.72 | 50.88
2245% | 1538 | 6148 5809 6975  58.08  33.02 | 56.08

2157% | 2055 | 6433 6150 6942 5627 3524 | 5735

| 0% | 666 | 7040 7523 7884 7407 4770 | 69.25

22.68% | 27.07 | 5801 5400 7089  S7.11  32.94 | 54.59

2268% | 1770 | 6788  63.78 6899 5749 3754 | 59.14

Depth 2268% | 2069 | 6827  6L71 6931 5652  36.69 | 58.50
24.19% | 1536 | 6401 6420 7144 5981  37.88 | 59.47

FlattenGPT 2268% | 1371 | 68.19 6527 7122 5875  37.03 | 60.09
Qwen-1.5 7B (original) | 0% | 795 | 6646 7692 71922 6216 4266 | 6548

2097% | 3923 | 5864 5635 7040 4689  32.85 | 53.03

2097% | 2026 | 49.88 4200 6736  S4.17 2858 | 48.40

Depth 2097% | 49.88 | 62.12 5887  69.53 4360 3217 | 53.26
2183% | 2058 | 5556 5931 7171 5370 3328 | 54.71

2097% | 1605 | 5927 6280 6839 5699  37.46 | 57.00

| 0% | 744 | 7056 7941 7987 6848  47.01 | 69.07

2225% | 1632 | 5833  60.16 71.55 5370  34.04 | 5556

2225% | 5599 | 5328 4208 67.08 5072  29.01 | 48.43

Depth 22.25% 1237 | 5596 3616 5860  38.09 3481 | 44.72

BlockPruner - 23.72% 15.67 61.48 66.92 75.24 59.51 39.08 60.45
22.25% 11.55 65.59 68.57 74.10 65.03 40.78 62.81

FlattenGPT

2024), SLEB (Song et al., [2024), Relative magnitude (Samragh et al [2023)), ShortGPT (Men et al,
2024), and BlockPruner (Zhong et all,[2024). FlattenGPT outperforms these methods on WikiText-2

perplexity and accuracy on the zero-shot downstream tasks, showcasing the effectiveness of our
method.

D.2 ADDITIONAL COMPARISON OF RECOVERY FINE-TUNING

Table[7]shows the impact of Recovery Fine-Tuning (RFT). Our method outperforms previous methods
after RFT. This is because the flattening method retains the knowledge from all layers and makes it
easier for fine-tuning.
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Table 5: Throughput (tokens/s), latency (ms), and perplexity on WikiText-2 test split results. Through-
put and latency are measured with LLaMA-2-70B on 2 NVIDIA A100 GPUs.

Pruning q Throughput Latency LLaMA-2

Method Unit Sparsity (Tokens/s) Improve 1 () Speedup 1 7B 13B 70B
Dense | - 0% | 299 1.00x | 17184 1.00x | 547 4.88 3.32
SparseGPT 2:4 50% 293 0.98 x 1555.5 1.10x 10.79 8.75 5.70
Wanda 2:4 50% 293 0.98 x 1555.5 1.10x 12.09 8.99 5.48
DSnoT 2:4 50% 293 0.98 x 1555.5 1.10x 11.97 8.87 5.49

LLM-Pruner Width 20% 314 1.05x 1534.3 1.12x 10.58 8.56 -
SliceGPT Width 20% 314 1.05x 1658.7 1.04x 6.87 6.01 4.44
SliceGPT Width 25% 331 1.11x 1440.7 1.19%x 7.55 6.63 4.89
SliceGPT Width 30% 343 1.15% 1364.2 1.26x 8.59 7.44 5.44
SLEB Depth 20% 381 1.27x 1364.1 1.26 x 9.14 6.80 4.88
FlattenGPT Depth 20% 381 1.27x 1364.1 1.26x 8.68 6.50 4.79

Table 6: Computation cost of pruning 20% with FlattenGPT and recovery fine-tuning on a NVIDIA
HB800 80GB. The calibration dataset consists of 128 samples with a sequence length of 2048.

Pruning RFT
Witsi il ‘ Wikt ‘ Time GPUs ‘ Time GPUs ‘ el
SliceGPT LLaMA-2 7B 44m 1 H100 80GB 23m 1 H100 80GB 1h07m
LLaMA-2 13B 1h08m 1 H100 80GB 44m 1 H100 80GB 1h52m
LLM LLaMA-2 7B 17h08m 4 H100 80GB
surgeon LLaMA-2 13B 1d9h26m 8 H100 80GB
ModeGPT LLaMA-2 7B 4h09m 1 A100 80GB 31m 1 A100 80GB 4h40m
ode LLaMA-2 13B 8h26m 1 A100 80GB - - -
—— LLaMA-2 7B 7m 1 H800 80GB 25m 1 H800 80GB 32m
atten LLaMA-2 13B 24m 1 H800 80GB 45m 1 H800 80GB 1h09m

D.3 EFFECTIVENESS OF FLATTENING

Flattened layer indices: We show which transformer blocks are chosen to be flattened in Figure 5]
The location of flattened transformer blocks is highly consistent across various target models. The
late blocks are almost flattened except the last one or two, whereas the early blocks are rarely selected.
This is related to the similarity distribution in the model, where the late blocks have more similar
input features.

Performance after flattening: We need to answer the question: How does flattening improve
the performance of the depth-compressed model? The answer is that Flattening preserves more
knowledge. Compared with the layer pruning methods, flattening preserves the parameters and thus
preserves the knowledge in the parameters. This knowledge facilitates performance maintenance
during depth compression. Figure[6]illustrates the comparison of layer pruning and layer flattening on
LLaMA-2 7B. We use the same layer index in both settings, i.e., to prune the selected layer or merge
the selected layer with the prior layer. In the flattening experiments, the model performance gradually
drops as the number of flattened layers increases. After flattening 8 layers, it has maintained 98%
of accuracy on zero-shot tasks and has a 19% degradation on perplexity. This result leaves plenty
of room for channel pruning. However, on the contrary, layer pruning quickly loses performance
with merely one or two pruned layers. It only maintains 80% of accuracy on zero-shot tasks and
319% degradation on perplexity! With such information loss, layer-pruning-based methods are very
limited and cannot achieve high performance. Our flattening method has alleviated this problem, thus
providing an effective way of depth compression.

D.4 EFFECTIVENESS OF OUR CHANNEL PRUNING METHOD

The flattening operation changes the depth compression task into a channel pruning task. This method
shows an advantage of fine-grained depth compression, whereas it relies on the performance of the
channel pruning method. In this paper, we use a simple yet effective channel pruning method. To
validate the effectiveness of our channel pruning method, we conduct experiments with channel
pruning only. We use the sparsity distribution described in ModeGPT (Lin et al.| [2024), and compare
the channel pruning performance with other channel pruning methods. As shown in Table |8 our
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Table 7: Zero-shot task performance of recovery fine-tuning. T indicates fine-tuned on Alpaca
et al.,[2023) dataset.

Method | Sparsity | WinoG  HellaS PIQA ARC-e ARC-c | Avg.

LLaMA-2 7B (original) | 0% | 69.06 75.99 79.11 74.58 46.25 | 69.00

‘Wanda-sp ( 18.81% 63.77 70.66 76.44 69.61 42.15 64.53

Width | FLAP (An et al.}[2024) 19.19% 64.72 64.69 73.39 62.25 32.51 59.51
Ma et al.}[2023) 18.82% 61.17 66.13 76.66 64.86 37.88 61.34
LLM-Pruner’ (Ma et al}[2023

18.82% 61.88 67.13 77.48 65.78 38.48 62.15
SLEB (Song et al
Shortened LLaMA

18.02% 59.75 63.95 73.94 63.47 35.15 59.25
18.02% 57.46 63.36 73.78 64.02 33.19 58.36

Shortened LLaMA 18.02% 5880  67.99 7606  68.81 3788 | 6191

Depth | SLM ( 18.02% 66.30 6510 7024  61.45 3831 | 60.28
SLMT 18.02% 67.09 7048 7367  69.11 4121 | 6431

Flatten! 18.02% 6740 7074 7459 6444 4198 | 63.83
FlattenGPT" 18.02% 68.75 7301 7497 6740 4505 | 66.24
LLaMA-2 13B (original) | 0% | 7222 7939 8047 7748 4923 | 7176

19.49% 67.01 7475 7748 7348 4411 | 6737

Width 19.47% 68.35 69.07 7465 7083 4061 | 64.70
19.48% 64.17 7202 7851  69.99 4360 | 65.66

19.48% 6732 7484 7916 7349 4377 | 61.72

SLEB (Song et al 19.50% 6496 7055 7661  64.35 3831 | 62.96
Shortened LLaMA (K 2024) 19.50% 70.48 7119 7503 6953 43.09 | 65.86
Shortened LLaMA 19.50% 71.11 7520 7628 7479 46.67 | 68.81

Depth | SLM (Ding et all[2023) 19.50% 7080 6773 7236 6482 39.68 | 63.08
SLM' (Ding ct al.|[2025 19.50% 71.67 7637 7742 7656 4855 | 70.11
FlattenGP 19.50% 71.43 7526 7758 7168 4539 | 6827
FlattenGPT" 19.50% 7182 7785 7873 7508  49.15 | 70.53
LLaMA-3 8B (original) | 0% | 7340  79.07 7949  80.09 5324 | 73.08

Width 16.30% 4996 2636 5218 2681 2483 | 36.03
15.39% 68.67 6779 7704 6860  39.08 | 64.23

15.39% 7032 7427 7949 7429 4659 | 68.99

Shortened LLaMA ( 2024) 16.30% 57.85 60.99 7323 6540  34.04 | 5830
Shortened LLaMA ' Jp024) | 16.30% 62.75 7270 7807 7530 4480 | 66.72

Depth | SLM (Ding etall[2075 16.30% 69.61 618 7198 6604 4181 | 6225
SLM' (Ding ct al.|[2025 16.30% 7174 7377 7164 7660 5094 | 70.14
FlattenGP 16.30% 7182 7063 7291 69.1 4659 | 66.21
FlattenGPT" 16.30% 73.09 7593 7709 7572 5034 | 7043

Table 8: Zero-shot task performance of channel pruning methods calibrated with 128 samples from
WikiText-2.

Method | Sparsity | WinoG HellaS PIQA ARC-e ARC-c | Avg
LLaMA-2 7B (original) | 0% | 69.06 75.99 79.11 74.58 46.25 | 69.00
SliceGPT 20% 62.74 49.78 64.25 51.47 31.06 51.86
ModeGPT 20% 68.03 69.05 74.05 69.07 42.06 64.46
Our MLP pruning 20% 66.06 66.54 73.23 65.19 38.91 61.99
Our MHA pruning 21.02% 66.93 69.64 73.94 63.97 42.24 63.34
Our MHA + MLP Pruning 21.07% 68.03 71.64 76.17 68.98 44.28 65.82
LLaMA-2 13B (original) | 0% | 72.22 79.39 80.47 77.48 49.23 | 7176
SliceGPT 20% 67.17 53.58 65.83 55.81 35.84 55.65
ModeGPT 20% 70.32 68.96 74.53 74.07 46.16 66.81
Our MHA + MLP Pruning | 21.07% ‘ 7143 75.26 77.58 71.68 45.39 | 68.94

channel pruning approach has a clear advantage over previous pruning methods. By combining the
MHA pruning and MLP pruning, our method achieves the best performance, surpassing the previous

channel pruning method, including SliceGPT (Ashkboos et al, 2024) and ModeGPT
2024).

We further make ablations on the effectiveness of Nystrom approximation. As shown in Table[T0]
Nystrom approximation outperforms the channel selection only method, demonstrating the effective-
ness of adjusting the down projection.
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Figure 5: Flattened Layer indices. Figure 6: Comparison of layer pruning and flattening.

Table 9: Zero-shot task performance of channel pruning methods calibrated with 128 samples from
WikiText-2. T indicates fine-tuned on Alpaca (Taori et al., 2023) dataset. ModeGPT (Lin et al., [2024)
employs Alpaca as the calibration dataset. LLM Surgeon (van der Ouderaa et al.,|2024) does not
show the results but claims that LoRA cannot improve the performance.

Method | Sparsity | WinoG HellaS PIQA ARC-e ARC-c | Avg
LLaMA-2 7B (original) | 0% | 69.06 75.99 79.11 74.58 46.25 | 69.00
LLM-Pruner 18.82% 61.17 66.13 76.66 64.86 37.88 61.34
LLM-Pruner’ 18.82% 61.88 67.13 77.48 65.78 38.48 62.15
LLM Surgeon 20% 66.30 71.30 77.09 71.36 41.89 65.59
ModeGPT 20% 68.19 69.59 76.22 71.71 41.89 65.52
ModeGPT* 20% 66.30 68.07 77.20 70.45 42.92 64.99
FlattenGPT 20% 67.40 70.74 74.59 64.44 41.98 63.83
FlattenGPTT 20% 68.75 73.01 74.97 67.40 45.05 66.24

D.5 ADVANTAGES OF DEPTH COMPRESSION OVER WIDTH COMPRESSION

In this paper, we focus on the depth compression tasks. Although previous depth compression methods
perform much worse than the width compression ones, FlattenGPT has built a novel approach to
improve this performance greatly. In the main paper, we have shown that FlattenGPT achieves a
better trade-off between performance and speed. In this part, we will further show that FlattenGPT
shows promising performance compared with the latest width compression method after recovery
fine-tuning. Table [0 shows the performance with or without RFT. LLM-pruner (Ma et al.| [2023)
shows little improvement with RFT. LLM Surgeon (van der Ouderaa et al., 2024)) does not show
the results, but it claimed that LoRA improves compression performance in the smallest OPT-125m
model, but not in larger models. ModeGPT (Lin et al., [2024)) even demonstrates performance loss
after RFT, which illustrates that the model probably suffers from overfitting. FlattenGPT unifies the
two tasks of deep compression and channel compression, making the pruned model more suitable for
fine-tuning. This is more practical than previous pruning methods.

D.6 LOCATIONS OF FLATTENED LAYERS

We show which transformer blocks are chosen to be flattened in Table[[Il The location of flattened
transformer blocks is highly consistent across various target models. The late blocks are almost
flattened, except the last one or two, whereas the early blocks are rarely selected. This is related to
the similarity distribution in the model, where the late blocks have more similar input features.

D.7 DEPENDENCY ON CALIBRATION DATASET

We evaluate the dependency on the calibration dataset in Table[T2] We use the calibration set size
of 128 and sequence length of 2048 for WikiText-2 (Merity et al.,2016) and Alpaca datasets. The
results show that WikiText-2 has a slightly better performance, probably due to the dataset quality.
The alpaca dataset is not as representative as a high-quality dataset, thus the performance is slighter
lower than WikiText-2.
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Table 10: Comparison of channel selection and Nystrom approximation.

Method |  Sparsity WinoG HellaS PIQA ARC-e ARC-c Avg.
Channel Selection 20% 66.46 65.48 71.22 63.13 39.93 61.24
+ Nystrom approximation 20% 66.54 68.45 72.74 63.43 41.30 62.49

Table 11: Locations of flattened Transformer blocks with target sparsity of 20%.
Models \ Merged Layer Index

LLaMA-2 7B \ [[17, 18], [19, 201, [21, 221, [23, 24], [25, 26], [27, 28], [29, 30]]

LLaMA-2 13B \ [[23, 241, [25, 261, [27, 28], [29, 301, [31, 321, [33, 341, [35, 361, [37, 38]]
o
LLaMA-3 8B \ [[16. 171, [18, 191, [20, 211, [23, 24], [25, 26], [27, 28], [29, 30]]

Qwen-1.5 7B \ [[3, 41, [20, 211, [22, 23], [24, 25], [26, 27], [28, 29, 30]]

Qwen-1.5 14B \ [[7, 8], [10, 111, [19, 20], [24, 25], [26, 27], [28, 29], [30, 311, [32, 33], [34, 351, [36, 37]]

D.8 DEPENDENCY ON THE CALIBRATION DATASET SIZE

We test the size of the calibration dataset from 64 to 1024 samples as shown in Table[I3] Results
confirm that 128 samples suffice, as larger sets yield marginal gains (< 0.2%).

D.9 GENERALIZATION ON OTHER TASKS

We conduct experiments on InternVL-C 6B, which is a large vision transformer that exhibits a similar
cross-layer similarity pattern to the LLMs. The results in Table [I4]show that our method has good
generalization ability on vision transformers. The multimodal transformers are usually composed
of an LLM transformer and a vision encoder transformer. Therefore, it is reasonable to apply our
method to the LLM and the vision encoder individually.

D.10 GENERALIZATION BEYOND TRANSFORMER ARCHITECTURE

Considering the various architectures available, it is far beyond the scope of this paper. Yet we
can provide an analysis of the generalization of our method. Since most architectures use skip
connections, the flattening stage is very general and should work on these architectures as well.
However, there are not always appropriate channel pruning methods for these architectures. If there
is an appropriate channel pruning method, our method would work on various architectures. Besides,
transformer is a widespread baseline for many tasks, and our experiments on multiple transformer
architectures and tasks have shown the effectiveness of our method.

E LIMITATION

FlattenGPT provides a novel approach for fine-grained LLMs depth compression, yet there are still
some limitations. First, FlattenGPT is performed on uniform architectures, where flattening will not
change the model architecture significantly. It is not trivial to compress the hybrid architectures, such
as a combination of transformer Vaswani et al.| (2017) and mamba (Gu & Daol, [2023). However,
it is still worth researching the fine-grained depth compression method, as layer pruning methods
operate on a very high granularity and cause performance degradation. Second, we use one of the
channel pruning methods to implement our FlattenGPT, while our framework is not constrained to
specific channel pruning methods. Developing better channel pruning methods will improve our
depth compression method as well.
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Table 12: Results on different calibration dataset.

Method | Dataset PPL | Sparsity | WinoG HellaS PIQA ARC-e ARC-c | Avg
LLaMA-2 7B (original) | - | 0% | 5.47 | 69.06 75.99 79.11 74.58 46.25 | 69.00
FlattenGPT WikiText-2 21.02% 8.68 67.40 70.74 74.59 64.44 41.98 63.83
FlattenGPT Alpaca 21.02% 11.84 67.64 67.92 72.31 62.54 39.25 61.93

Table 13: The zero-shot accuracies on LLaMA-2 7B with different calibration dataset size.

128 256

Num of Samples | 64

512

1024

Accuracy 61.17 62.49 62.25

62.58

62.60

Table 14: The zero-shot accuracies on InternVL-C 6B.

Model \ Method IN-1K IN-A IN-R
Dense 83.2 83.8 95.5

InternVL-C ShortGPT 79.7 579 90.4
FlattenGPT 81.6 74.6 93.7
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