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ABSTRACT

This work proposes FlattenGPT, a novel depth compression method for transform-
ers. Recent works have observed redundancy across transformer blocks, prompting
the research of depth compression to prune less crucial blocks. However, existing
works mostly follow the entire-block pruning paradigm and suffer from risks of
discarding knowledge learned in those blocks, leading to substantial performance
degradation. On the other hand, channel pruning can better preserve performance,
while it cannot compress model depth and is challenged by inconsistent pruning
ratios for each layer. To address those issues, this paper introduces a novel compres-
sion strategy named layer flattening, which bridges the gap between layer pruning
and channel pruning. By converting two adjacent blocks into one, it compresses
the network depth and enables more effective parameter redundancy detection
and removal. FlattenGPT strives to preserve the knowledge learned in all blocks
and remain consistent with the original architecture, enhancing model efficiency
with a decent trade-off to performance. Extensive experiments demonstrate that
FlattenGPT outperforms existing pruning methods in both zero-shot accuracies
and WikiText-2 perplexity across various model types and parameter sizes. It also
outperforms other pruning methods in accelerating LLM inference, making it a
promising approach for enhancing the efficiency of transformers.
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Figure 1: Comparison of pruning methods. (a) The original architecture. (b) Layer pruning removes
the entire block and discards all knowledge in it. (c) Channel pruning cannot compress model depth
and leads to inconsistent architecture across layers. (d) Our method bridges the gap, producing a
compact model with little performance degradation. (e) A comprehensive comparison.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Brown et al., 2020; Zhang et al., 2022;
Chowdhery et al., 2023; Touvron et al., 2023a;b; Dubey et al., 2024) have led to breakthroughs in
understanding and generation of natural language (Hadi et al., 2023; Zhao et al., 2023; Minaee et al.,
2024). However, the cost of heavy computation and extremely large memory consumption makes it
very challenging to deploy on resource-limited devices. To mitigate these issues, model compression
has emerged as a popular post-training solution, reducing model size and complexity by removing
model redundancy (Gupta & Agrawal, 2022; Zhu et al., 2023).

Depth compression (Song et al., 2024; Men et al., 2024) is a technique aimed at reducing the
redundancy across transformer blocks. This redundancy manifests itself in the cross-layer similar-
ity (Gromov et al., 2024; Sun et al., 2024; 2025). Figure 2(a) illustrates that the input of adjacent
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blocks has high similarity in LLMs, which is caused by the residual path spanning the entire LLM.
This similarity is particularly evident in LLMs, indicating that there is a certain amount of redundancy
within them. Depth compression methods aim to reduce this cross-layer redundancy to achieve
a compact network architecture. Besides, compared to other pruning methods such as channel
pruning (Ma et al., 2023; Ashkboos et al., 2024) or 2:4 pruning (Frantar & Alistarh, 2023; Sun et al.,
2023), depth compression methods have an evident advantage in inference speed with the same
number of parameters (Song et al., 2024).However, previous depth comparison methods usually
adopt layer or block pruning, which removes the entire block selected by measuring how crucial the
blocks are (Men et al., 2024; Samragh et al., 2023; Kim et al., 2024; Song et al., 2024; Zhong et al.,
2024; Zhang et al., 2024a). It may also remove the useful knowledge learned in the pruned blocks
simultaneously, leading to serious performance degradation.

Channel pruning (Ma et al., 2023; Ashkboos et al., 2024; van der Ouderaa et al., 2024; Lin et al.,
2024), on the other side, conducts a fine-grained parameter preservation and thus leads to better
performance. However, these methods usually assign different pruning ratio for each layer. This
inconsistency in module architecture will cause inconvenience in hyperparameter tuning or model
deployment, such as LoRA hyperparameters (Hu et al., 2022). Moreover, channel pruning cannot
utilize the redundancy across layers, resulting in a deeper architecture and higher latency in practice.

In this paper, we propose a fine-grained depth compression method called FlattenGPT, which
preserves crucial knowledge while reducing the model depth. FlattenGPT is composed of two stages.
In the first stage, we propose a new operation named flattening, to merge adjacent transformer blocks
by concatenating their parameters and hidden states. This operation changes the sequential execution
of transformer blocks to parallel execution, with only the input of the blocks being altered. Since the
input features of each layer in LLMs are inherently of high similarity, flattening the blocks has little
impact on the model’s performance. The subsequent stage employs a channel pruning method to
streamline the merged transformer blocks. Channel pruning can identify the critical channels within
the merged blocks, allowing for a fine-grained removal of redundancy while preserving the learned
knowledge of each block.

FlattenGPT has clear advantages over previous pruning methods. As shown in Figure 1, unlike layer
pruning methods, flattening preserves the knowledge embedded in each layer, raising the performance
ceiling of the depth compression. Compared with channel pruning, FlattenGPT produces a consistent
architecture with lower depth, leading to higher efficiency and easier tuning and deployment. This
method bridges the gap between depth compression and channel pruning, allowing for a more
comprehensive model compression. Extensive experiments demonstrate that FlattenGPT preserves up
to 96% of zero-shot performance with a compression rate of 20% on LLaMA 2 (Touvron et al., 2023b),
outperforming prior depth compression approaches. To the best of our knowledge, FlattenGPT is an
original effort on transformer compression through layer flattening. It shows potential to establish a
novel comprehensive framework that enhances the depth compression of transformer architectures.

2 PRELIMINARY AND ANALYSIS

2.1 PRELIMINARY OF TRANSFORMER ARCHITECTURE

The Pre-LN transformer architecture in LLMs (Touvron et al., 2023a) consists of multiple decoder
layers, each composed of two blocks, i.e., Multi-Head Attention (MHA) and Multi Layer Perceptron
(MLP). Concretely, let l ∈ {0, 1, · · · , L− 1} denote the layer index, T , dh, dint and H denote the
sequence length, hidden dimension, intermediate dimension, and the number of attention heads,
respectively. The formulation of a Transformer layer is denoted as

H̃ℓ−1 = Hℓ−1 +MHAℓ
(
LNℓ

a

(
Hℓ−1

))
,Hℓ = H̃ℓ−1 +MLPℓ

(
LNℓ

p

(
H̃ℓ−1

))
, (1)

where Hℓ ∈ RT×dh denotes the output of the l-th layer, MHAℓ, MLPℓ, LNℓ
a, and LNℓ

p denote the
MHA block, MLP block, MHA normalization, and MLP normalization of the l-th Transformer layer,
respectively. The normalization layers are usually composed of a root mean square normalization and
an element-wise affinement:

LNℓ
a (X) = RMSNorm (X) diag

(
αℓ

a

)
,LNℓ

p (X) = RMSNorm (X) diag
(
αℓ

p

)
, (2)

where RMSNorm (X) applies X ←X/ ∥X∥ to each row of X , αa ∈ Rdh and αp ∈ Rdh are the
parameters of affinement.
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(c) Unraveled view of Transformer(a) Cross-layer Similarity (b) Feature L2 norm

MHA

MLP

Input

MHA

MLP

⋯

Output
Identity Mapping

(d) Acceleration

Figure 2: Redundancy in transformer blocks. (a) LLaMA-2 7B exhibits high cross-layer similarity.
(b) The scale of the residual path grows faster than the MHA/MLP blocks, which dominates the
deep hidden states. (c) The unraveled view of transformer architecture, where the residual path
traversing the entire network leads to the cross-layer similarity. (d) The acceleration comparison
between different pruning methods.

MHA block The MHA block is defined as

MHAℓ (X) =

H∑
i=1

Softmax
(
σr

(
XW ℓ

Q,i

)
σ⊤
r

(
XW ℓ

K,i

))
XW ℓ

V,iW
ℓ
O,i, (3)

where X ∈ RT×dh denotes the input feature, W ℓ
Q,i, W

ℓ
K,i, W

ℓ
V,i ∈ Rdh×

dh
H , and W ℓ

O,i ∈ R
dh
H ×dh

denote the query, key, value, and output matrices of the i-th head in the l-th layer, respectively. For
similicity, we denote WQ = [WQ,1 WQ,2 · · · WQ,H ] as the horizontal concatenation of query pa-
rameters from all heads, and similar to WK and WV . We denote WO =

[
W⊤

O,1 W
⊤
O,2 · · · W⊤

O,H

]⊤
as the vertical concatenation of output parameters. σr denotes the positional embedding function.

MLP block The MLP block is defined as

MLPℓ (X) = σs

(
XW ℓ

U

)
W ℓ

D, (4)

where W ℓ
U ∈ Rdh×dint and W ℓ

D ∈ Rdint×dh denotes the up and down matrix and σs is the non-
linear activation function. X ∈ RT×d is the input matrix. Prevailing LLMs (Touvron et al., 2023a;b;
Bai et al., 2023) employ a gated MLP. Its up matrix is composed of a up matrix and gate matrix
W ℓ

U = [Wu Wg], where the non-linear function is defined as σs

(
XW ℓ

U

)
= XW ℓ

u ⊙ σg

(
XW ℓ

g

)
.

For the following discussions, we take the gated MLP as the baseline architecture.

2.2 ANALYSIS ON THE REDUNDANCY IN DEPTH

As illustrated in Figure 2(a), deep transformer architecture exhibits high cross-layer similarity. This
is caused by the curse of depth (Sun et al., 2025), which implies that the deep layers are dominated
by the residual path, i.e., identity mapping. As shown in Figure 2(b), the L2 norm of the residual path
is much larger than the MHA/MLP output in deep layers, dominating the forward propagation. An
intuitive interpretation is shown in the triangle-shaped unraveled view of transformer architecture in
Figure 2(c). The amount of residual features increases in deep layers and surpasses the non-linear
blocks, leading to approximately identity mapping. This analysis shows the cross-layer redundancy
in the transformers.

We provide a theoretical analysis of layer redundancy in deep transformers. We assume that the
input feature Hℓ, intermediate vectors H̃ℓ, and the model parameter matrix W ℓ follow normal and
independent distributions with mean 0 for all layers. First, we model the growth of the hidden states
in a transformer architecture:
Theorem 2.1 (The growth of the hidden state variance). Let σ2

Hℓ and σ2
H̃ℓ denote the variance of

Hℓ and H̃ℓ, respectively. These two variances exhibit the same growth trend, which is

Θ(ℓ) ≤ σ2
Hℓ = σ2

H0Θ

(
ℓ∏

k=1

(
1 +

1

σHk

))
≤ Θ(exp(ℓ)), (5)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MHA

(a) Origin model

𝑊𝑄
𝑙−1

Multi-Head Attention

𝑊𝐾
𝑙−1 𝑊𝑉

𝑙−1

𝑊𝑂
𝑙−1

+

𝑊𝑈
l−1

RMSNorm

𝑊𝐷
𝑙−1

RMSNorm

Activation

MLP

MHA

𝑊𝑄
𝑙

Multi-Head Attention

𝑊𝐾
𝑙 𝑊𝑉

𝑙

𝑊𝑂
𝑙

+

𝑊𝐺
𝑙

RMSNorm

𝑊𝐷
𝑙

RMSNorm

Activation

MLP

(b) Stage 1:

Layer Flattening

MHA

Multi-Head Attention

+

RMSNorm

RMSNorm

Activation

MLP

𝑊𝑄
𝑙−1 𝑊𝑄

𝑙 𝑊𝐾
𝑙−1 𝑊𝐾

𝑙 𝑊𝑉
𝑙−1 𝑊𝑉

𝑙

𝑊𝑂
𝑙−1 𝑊𝑂

𝑙

𝑊𝐺
𝑙−1 𝑊𝐺

𝑙

𝑊𝐷
𝑙−1 𝑊𝐷

𝑙

MHA

Multi-Head Attention

+

RMSNorm

RMSNorm

Activation

MLP

𝑊𝐾
𝑙−1,𝑙𝑊𝑄

𝑙−1,𝑙
𝑊𝑉

𝑙−1,𝑙

𝑊𝑂
𝑙−1,𝑙

𝑊𝐺
𝑙−1,𝑙

𝑊𝑈
𝑙−1,𝑙

(c) Stage 2:

Channel Pruning

𝑊𝐺
l−1

·

𝑊𝑈
𝑙

·

𝑊𝑈
𝑙−1 𝑊𝑈

𝑙

·

𝑊𝑈
𝑙−1,𝑙

·

Figure 3: Framework of FlattenGPT. (a) Original stacks of transformer blocks with high similarity. (b)
Layer flattening merges two adjacent blocks into one single block with little performance degradation.
(c) Flattening bridges the gap between depth compression and channel compression.

This theorem implies that the variance of hidden states could grow as an exponential function of ℓ.
This conclusion is verified by the empirical results in Figure 2(b). Then the following theorem gives
the reason why deeper layers are redundant:

Theorem 2.2 (The norm of gradient). Let ∂y
∂Hℓ denote the partial derivative of the model output y to

the ℓ-th hidden states Hℓ. The Euclidean norm of this partial derivative is bounded by∥∥∥∥ ∂y

∂Hℓ

∥∥∥∥
2

≤
L∏

k=ℓ

(
1 +

1

σHℓ

A+
1

σ2
Hℓ

B

)
, (6)

where A and B are constants for the Transformer network. Specifically, when ℓ = L− c, where c is
a constant number, the limitation of the right-hand side is 1.

This conclusion implies that for very large L, the gradient of deeper layers xℓ,
∥∥∥ ∂y
∂Hℓ

∥∥∥
2

is domi-
nated by identity mapping, thereby limiting the model’s expressivity and hindering its ability to
learn meaningful transformations. This conclusion is verified by the empirical results as shown in
Figure 2(a), where deeper layers exhibit high cross-layer similarity. The complete proof and more
empirical results are given in Appendix A and B, respectively.

Due to this redundancy, previous layer pruning methods delete the entire redundant blocks, i.e.,
MHAℓ or MLPℓ (Song et al., 2024; Men et al., 2024). Although these methods achieve promising
acceleration as shown in Figure 2(d), pruning at such high granularity will inevitably remove the
useful knowledge within the blocks, resulting in a massive performance degradation.

3 FLATTENGPT

FlattenGPT strives for a fine-grained parameter removal in depth compression. As illustrated in
Figure 3, FlattenGPT employs a two-stage approach to compress the depth in a fine-grained manner.
In the first stage, FlattenGPT merges the selected adjacent layers into a single wide layer, flattening the
arrangement of layers. Due to the high similarity across layers, the flattening operation hardly alters
the inner calculation, reducing the model depth with minimal performance degradation. In the second
stage, FlattenGPT adaptively prunes the redundant parameters for the flattened layers, demonstrating
less information loss compared with entire layer pruning methods. FlattenGPT produces the same
architecture as layer pruning, but preserves important parameters from all layers. It not only runs fast
in inference but also maintains high performance, which is a promising way for model compression.
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3.1 ITERATIVE LAYER FLATTENING

Layer flattening aims to merge layers with high similarity. Since the inputs of the two layers are
highly similar, the inner calculation will not be significantly changed by the flattening, therefore
preserving better performance. We need to address two issues in this stage: 1) how to select the layers
to flatten, and 2) how to merge the selected layers.

Layer Selection: We collect cross-layer feature similarity on a small calibration dataset. Then
we design a greedy algorithm to find adjacent layers with the highest similarities iteratively. The
algorithm is shown in Algorithm 1. Let S ∈ RL×L denote the similarity matrix, where Si,j denote
the cosine similarity between the input feature of layer i and layer j. We try to find the two adjacent
layers {l − 1, l} with the highest similarity for each iteration. Then we need to modify the similarity
matrix to S for the next iteration. If the next flattened layers m − 1 and m are not adjacent to the
current flattened layers l − 1 and l, there is no problem with directly merging these layers. However,
if the next flattened layer are consecutive to the current ones, i.e. flattening {l − 2, l − 1, l} (where
m = l − 1) or {l − 1, l, l + 1} (where m− 1 = l), the similarity between the first and the last layer
need to be considered. If the input similarity between the first and the last layer is too large, the
output of the last layer will be significantly altered, leading to performance degradation. We can
modify the similarity matrix Si,j to avoid this problem. For the layers before l − 1, we remove their
similarity with layer l − 1. Thus, if the flattened layers are consecutive, we can only access their
similarity with layer l. Similarly, for the layers after l, we remove their similarity with the layer l.
The above steps are iterated until the target number of layers is flattened.

Layer Flattening: Flattening aims to merge the selected layers into a single wide layer. To be
compatible with the current implementation and AI infrastructure, we construct the flattened layers
with the same architecture as the original transformers. Let us denote the target layers as layer l − 1
and layer l. First, we fuse the parameters of affinement in the normalization layer LN with the linear
projections in the MHA and MLP. For the MHA layers, we fuse αl−1

a with the query, key, and value
matrix:
W̃ l−1

Q,i = diag
(
αl−1

a

)
W l−1

Q,i , W̃ l−1
K,i = diag

(
αl−1

a

)
W l−1

K,i , W̃ l−1
V,i = diag

(
αl−1

a

)
W l−1

V,i .
(7)

For the MLP layers, we fuse αl−1
p with the up and gate matrix:

W̃ l−1
u = diag

(
αl−1

p

)
W l−1

u , W̃ l−1
g = diag

(
αl−1

p

)
W l−1

g . (8)
Similar fuse operations are conducted on layer l. After these fusions, the affinement parameters are
set to 1dh

. This step does not change the output of the network but facilitates the next flattening steps.

MHA flattening We simply add the output of the two MHA blocks.

MHAl−1,l (X) =

H∑
i=1

Softmax
(
σr

(
XW̃ l−1

Q,i

)
σ⊤
r

(
XW̃ l−1

K,i

))
XW̃ l−1

V,i W l−1
O,i

+

H∑
i=1

Softmax
(
σr

(
XW̃ l

Q,i

)
σ⊤
r

(
XW̃ l

K,i

))
XW̃ l

V,iW
l
O,i.

(9)

It is equivalent to concatenating the attention heads from two layers to form an attention block of
2H heads. The flattened MHA block can also be calculated by the original implementation, which
utilizes a single query, key, value, and output projection matrix.

W l−1,l
Q =

(
W̃ l−1

Q,1 W̃ l−1
Q,2 · · · , W̃

l−1
Q,H W̃ l

Q,1 W̃
l
Q,2 · · · , W̃ l

Q,H

)
(10)

and similar to the matrix W̃ l−1,l
K , W̃ l−1,l

V and W̃ l−1,l
O .

MLP flattening We simply add the output of two MLP blocks.

MLPl−1,l (X) = XW̃ l−1
u σg

(
XW̃ l−1

g

)
W l−1

D +XW̃ l
uσg

(
XW̃ l

g

)
W l

D (11)

It is equivalent to concatenating the hidden states from two layers to form an MLP layer of 2dint
hidden channels. The full process of layer flattening is shown in Algorithm 1. These steps flatten the
layers, which reduces the layers of the original parameters. Flattening does not change the number of
parameters and calculations, thus we need a further pruning method to compress the models. We
adopt a channel pruning method to compress the parameters in the following part.
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Algorithm 1 Iterative layer flattening
Require: Base model, number of layers to flatten N , calibration set D
1: Calculate the input similarity between each pair of layers S ∈ RL×L

2: while N ≥ 0 do ▷ Iterative search
3: Identify the index (l − 1, l) of the largest similarity in S ▷ Select adjacent layers
4: W̃ j

m ← diag
(
αj

a

)
W j

m, for m ∈ {Q,K, V }, j ∈ {l − 1, l} ▷ Fuse affinement parameters in MHA

5: W l−1,l
m ←

[
W̃ l−1

m W̃ l
m

]
, for m ∈ {Q,K, V } ▷ Flatten MHA

6: W l−1,l
O ←

[
W l−1,⊤

O W l,⊤
O

]⊤
7: W̃ j

m ← diag
(
αj

p

)
W j

m, for m ∈ {u, g}, j ∈ {l − 1, l} ▷ Fuse affinement parameters in MLP

8: W l−1,l
m ←

[
W̃ l−1

m W̃ l
m

]
, for m ∈ {u, g} ▷ Flatten MLP

9: W l−1,l
D ←

[
W l−1,⊤

D W l,⊤
D

]⊤
10: Delete {Si,l−1|i < l} and {Sl,i|i > l − 1} from distance matrix S ▷ Prepare for next iteration
11: N ← N − 1
12: end while

3.2 CHANNEL PRUNING

Layer flattening has produced a high-performance model with fewer layers, and then we need to
remove redundant parameters. Previous channel pruning methods are compatible with layer flattening.
However, this paper aims to keep the pruned architecture consistent with the original one, thus
requiring specific pruning methods. This consistency will simplify the implementation, facilitating
the reuse of tuning hyperparameters and deployment. We employ two pruning methods for MHA and
MLP blocks, respectively. For the MHA blocks, we prune redundant heads to keep the number of
heads and head size unchanged. For the MLP blocks, we prune individual channels with nyström
approximation (Gittens & Mahoney, 2016; Musco & Musco, 2017). In this section, we omit the layer
index in the formulation for simplicity.

MHA pruning Since the number of heads in the flattened layer is more than the original layer, we
aim to prune heads to keep the number of heads the same as the other MHA blocks. We design a
metric to compare the importance of head i:

fi = ED

[
Softmax

(
σr (XWQ,i)σ

⊤
r (XWK,i)

)
XWV,i diag

(
WO,iW

⊤
O,i

)1/2]
. (12)

This metric estimates the expectation of the attention activation value by multiplying the L2 norm of
each line of the output matrix. It measures the impact of the head i on the output of this MHA block.
By comparing the impact of each head, we can remove the unimportant heads to prune the MHA
block. The complete compression process is shown in Algorithm 2.

Algorithm 2 MHA pruning by removing heads
Require: Query, key, value matrix WQ,WK ,WV ∈ Rdh×d, output matrix WO ∈ Rd×dh , rank k, calibration

dataset D
1: fi =

N∑
i=1

Softmax
(
σr (XWQ,i)σ

⊤
r (XWK,i)

)
XWV,i diag

(
WO,iW

⊤
O,i

)1/2
, for i ∈ {1, 2, · · · , H}

2: Let Sk ∈ Rd×k be the matrix that selects the top k heads based on fi scores
3: return (WQ,WK ,WV ,WO)←

(
WQSk,WKSk,WV Sk,S

⊤
k WO

)
MLP pruning The MLP blocks conduct important non-linear calculations in the transformer. A
simple channel selection is insufficient to maintain the performance of the original model. We
employ Nyström approximation (Gittens & Mahoney, 2016; Musco & Musco, 2017) to prune this
block. The compression method is shown in Algorithm 3. First, we calculate the ridge leverage
score (Musco & Musco, 2017) as the channel importance measurement. Then we select the important
channels and adjust the down matrix WD to compensate for the information loss with Nyström
approximation (Gittens & Mahoney, 2016). We have the following theorem which illustrates that
Nyström approximation is the best estimation under least squares with L2 regularization. The proof
is shown in Appendix A.3.
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Theorem 3.1. Let Sk denote a k-column selection matrix. Let Cσ denote the covariance∑N
i=1 (σg (XiWU ))

⊤
σs (XiWU ). The optimal estimation of ŴD is defined by:

∆ŴD = argmin
∆WD

∥∥σs (XiWU )Sk

(
S⊤
k WD +∆WD

)
− σs (XiWU )WD

∥∥
2
+ λ ∥∆WD∥2 ,

ŴD = WD + Sk∆ŴD,
(13)

where λ is the coefficient for L2 regularization. ∆ŴD has closed form solution:

∆ŴD =
(
S⊤
k CσSk + λI

)−1
S⊤
k Cσ

(
I − SkS

⊤
k

)
WD. (14)

Algorithm 3 MLP pruning by Nyström approximation
Require: Up and gated Wu,Wg ∈ Rdh×dint , down matrix WD ∈ Rdint×dh , rank k, calibration dataset D,

and ridge intensity λ

1: Calculate activation correlation Cσ =
∑N

i=1 (XiWuσg (XiWg))
⊤ XiWuσg (XiWg)

2: si ← [Cσ (Cσ + λI)]−1, for i ∈ {1, 2, · · · , dint} ▷ Calculate the ridge leverage score
3: Let Sk ∈ Rdint×k be the matrix that selects the top k columns based on si scores
4: return (Wu,Wg,WD)←

(
WuSk,WgSk,WD +

(
S⊤

k CσSk + λI
)−1

S⊤
k Cσ

(
I − SkS

⊤
k

)
WD

)

3.3 PRUNING HYPERPARAMETERS

All architectural hyperparameters, including width/head count, are predefined to preserve structure
consistency with the original transformer block. The target width of the pruned MLP is identical to
the original MLP module, and the number of heads is the same as the original MHA module. This
setting ensures compatibility with the original AI infrastructure, including GPUs, CUDA kernels,
multi-machine communication, inference engine, etc. It is also a clear target for reproducibility.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models: We evaluate FlattenGPT on models that employ a sequential transformer block structure:
LLaMA-2 (Touvron et al., 2023b), LLaMA-3 (Dubey et al., 2024), Qwen-1.5 (Bai et al., 2023), and
Baichuan-2 (Yang et al., 2023), etc. These models share similar architectures of MHA and MLP.

Implementations and environments: All hyperparameters, including width/head count, are pre-
defined to preserve structure consistency with the original transformer block. We implement our
models using the HuggingFace Transformers library (Wolf et al., 2020). Model compression and
performance testing were conducted on 8 NVIDIA A100 80GB GPUs.

Datasets and Evaluations: We follow the setup in previous works (Ashkboos et al., 2024; Song
et al., 2024) for fairness. The calibration dataset is composed of 128 samples with 2048 tokens,
randomly selected from the training split of WikiText-2 (Merity et al., 2016). The evaluation
consists of perplexity and zero-shot task performance. The perplexity is evaluated on the test
split of WikiText-2 (Merity et al., 2016) dataset. The zero-shot accuracies are evaluated with LM
Evaluation Harness (Gao et al., 2024) on Winograd (Sakaguchi et al., 2019), HellaSwag (Zellers
et al., 2019), Physical Interaction Question Answering (PIQA) (Bisk et al., 2020), and AI2 Reasoning
Challenges (ARC-e, ARC-c) (Clark et al., 2018). We also investigate the effectiveness of recovery
finetuning, which employs 50K samples of refined Alpaca (Taori et al., 2023) for instruction tuning
with LoRA (Hu et al., 2022). More detailes are presented in Appendix C.

4.2 COMPARISON WITH DEPTH COMPRESSION

Table 1 shows a comprehensive comparison between FlattenGPT and the other depth compression
methods. These methods (Yang et al., 2024; Song et al., 2024; Men et al., 2024; Samragh et al., 2023;
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Table 1: Comparison of depth compression methods on WikiText-2 perplexity and zero-shot tasks.
Model Method Sparsity PPL ↓ WinoG HellaS PIQA ARC-e ARC-c Avg.

LLaMA-2 7B

Dense 0% 5.47 69.06 75.99 79.11 74.58 46.25 69.00

SLEB (Song et al., 2024) 21.02% 9.14 58.96 62.47 73.07 56.48 33.02 56.80
LaCo (Yang et al., 2024) 21.02% 50.39 60.46 54.08 68.34 55.39 35.84 54.82
RM (Samragh et al., 2023) 21.02% 676.8 49.25 29.22 54.46 34.43 22.53 37.98
ShortGPT (Men et al., 2024) 21.02% 18.45 65.90 62.63 70.24 56.06 36.09 58.18
BlockPruner (Zhong et al., 2024) 21.99% 11.51 62.43 65.87 74.21 61.07 37.29 60.17
FlattenGPT 21.02% 8.68 66.54 68.45 72.74 63.43 41.30 62.49

LLaMA-2 13B

Dense 0% 4.88 72.22 79.39 80.47 77.48 49.23 71.76

LaCo (Yang et al., 2024) 24.37% 13.97 59.27 60.44 72.42 54.34 34.56 56.21
RM (Samragh et al., 2023) 24.37% 10.08 66.61 66.80 73.72 66.12 41.98 63.05
ShortGPT (Men et al., 2024) 24.37% 20.06 70.80 67.80 72.74 60.35 41.30 62.60
BlockPruner (Zhong et al., 2024) 25.12% 8.16 66.30 72.20 76.93 65.82 41.38 64.53
FlattenGPT 24.37% 6.68 71.11 73.44 76.33 72.10 44.54 67.50

Qwen-1.5 7B

Dense 0% 7.95 66.46 76.92 79.22 62.16 42.66 65.48

LaCo (Yang et al., 2024) 20.97% 39.23 58.64 56.35 70.40 46.89 32.85 53.03
RM (Samragh et al., 2023) 20.97% 2026 49.88 42.00 67.36 54.17 28.58 48.40
ShortGPT (Men et al., 2024) 20.97% 49.88 62.12 58.87 69.53 43.60 32.17 53.26
BlockPruner (Zhong et al., 2024) 21.83% 20.58 55.56 59.31 71.71 53.70 33.28 54.71
FlattenGPT 20.97% 16.05 59.27 62.89 68.39 56.99 37.46 57.00

Baichuan-2 7B

Dense 0% 6.04 68.27 72.18 77.48 72.98 42.75 66.73

LaCo (Yang et al., 2024) 21.57% 26.46 58.56 51.50 68.28 52.90 28.50 51.95
RM (Samragh et al., 2023) 21.57% 189.8 52.33 30.87 59.96 38.17 23.63 40.99
ShortGPT (Men et al., 2024) 21.57% 31.05 62.67 50.01 63.71 47.31 30.72 50.88
BlockPruner (Zhong et al., 2024) 22.45% 15.38 61.48 58.09 69.75 58.08 33.02 56.08
FlattenGPT 21.57% 20.55 64.33 61.50 69.42 56.27 35.24 57.35

Table 2: Comparison of pruning methods on through-
put, latency, and mean accuracies on zero-shot tasks.
Throughput and latency are measured with LLaMA-2
70B on 2 NVIDIA A100 80GB.

Throughput Latency LLaMA-2Method Sparsity (Tokens/s) (ms) 7B 13B 70B

Dense 0% 2991.00× 1718.41.00× 69.00 71.76 76.57

2:4 SparseGPT 50% 2930.98× 1555.51.10× 58.23 63.06 71.87
Wanda 50% 2930.98× 1555.51.10× 55.59 61.23 72.34

Width

LLM-Pruner 20% 3141.05× 1534.31.12× 62.15 67.72 -
SliceGPT 20% 3141.05× 1658.71.04× 58.17 63.45 72.34
SliceGPT 25% 3311.11× 1440.71.19× 55.49 58.90 69.75
SliceGPT 30% 3431.15× 1364.21.26× 51.50 55.16 66.11

SLEB 10% 3361.12× 1529.11.12× 62.24 66.77 73.14
SLEB 20% 3811.27× 1364.11.26× 56.80 62.96 70.81Depth

FlattenGPT 20% 3811.27× 1364.11.26× 62.49 68.27 73.94

Table 3: Comparison of mean zero-shot
accuracies with recovery fine-tuning. The
sparsity ratio is 20% and † indicates fine-
tuned on Alpaca (Taori et al., 2023) dataset.

LLaMA-2 LLaMA-2 LLaMA-3Method 7B 13B 8B

Dense 69.00 71.76 73.08

Width

Wanda-sp 64.53 67.37 -
FLAP 59.51 64.70 36.03
LLM-Pruner 61.34 65.66 64.23
LLM-Pruner† 62.15 67.72 68.99

Depth

SLEB 59.25 62.96 -
Shortened LLaMA 58.36 65.86 58.30
Shortened LLaMA† 61.91 68.81 66.72
FlattenGPT 63.83 68.27 66.21
FlattenGPT† 66.24 70.53 70.43

Zhong et al., 2024) remove the entire transformer blocks, resulting in massive information loss. Our
method alleviates this problem by fine-grained parameter removal and shows superior performance on
various model sizes (from 7B to 70B). It achieves the highest perplexity and improves the zero-shot
accuracies by at least 2%. FlattenGPT has built a strong approach for depth compression.

4.3 COMPARISON WITH OTHER PRUNING METHODS

Table 2 compares the latency, throughput, and mean accuracies on zero-shot tasks of the com-
pressed LLaMA-2 (Touvron et al., 2023b) models. 2:4 pruning methods lead to minor speedup
(1.10×) and lower throughput (0.98× with a sparsity ratio of 50%. Width pruning methods, such
as SliceGPT (Ashkboos et al., 2024), are more hardware-friendly and speed up the pruned model,
while still lagging behind depth pruning methods. FlattenGPT inherits the advantages of acceleration
in depth pruning and further improves the performance. Since the compressed model architecture
of FlattenGPT is exactly the same as SLEB, the throughput and latency results are the same. Flat-
tenGPT outperforms all other methods in throughput (1.27×), latency (1.26×), and zero-shot tasks
performance (about 5% higher), yielding a better trade-off between speed and performance.
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4.4 RECOVERY FINE-TUNING

The pruned model of FlattenGPT still contains the useful information from all blocks, making it
easier for the model to recover performance through Recovery Fine-Tuning (RFT). Table 3 presents
the mean accuracies of zero-shot tasks with and without RFT. The results show that the model
compressed by FlattenGPT maintains > 96% zero-shot performance of the dense model, far more
than other depth compression methods and some width pruning methods. Even without RFT, our
method achieves comparable performance with RFT-based methods. These results illustrate the
effectiveness of FlattenGPT.

More experiments: We present more experiments and discussions in Appendix D, including ad-
ditional experiments on various model types and sizes, more pruning methods (van der Ouderaa
et al., 2024; Lin et al., 2024), ablation studies, dependency on calibration dataset, and generalization
beyond language modeling and transformer architectures. Please kindly refer to this part.

5 RELATED WORKS

Model Pruning is an approach to compress the number of parameters and calculations in a deep
model. Unstructured pruning (LeCun et al., 1989; Hassibi et al., 1993; van der Ouderaa et al., 2024;
Dong et al., 2017; Frantar & Alistarh, 2022; 2023; Sun et al., 2023; Zhang et al., 2024b) removes
independent weights without pre-determined patterns, leading to sparse weight matrices within the
model. This sparsity enables a high pruning ratio but results in complex data access patterns, which
are not conducive to hardware acceleration. Structured pruning (Ashkboos et al., 2024; Ma et al.,
2023; An et al., 2024) removes elements to form dense matrices that are more efficiently processed
by hardware. These methods exhibit a remarkable acceleration but come with worse performance
degradation. This paper follows the structured pruning of LLMs, proposing a new depth compression
method that balances performance and efficiency.

Depth compression aims to reduce the number of layers and speed up inference. Layer pruning
approaches use layer importance metrics to remove redundant layers from the model (Men et al., 2024;
Samragh et al., 2023; Kim et al., 2024; Song et al., 2024; Zhong et al., 2024; Zhang et al., 2024a).
These methods remove the weights and knowledge of the entire layer, limiting the performance of
the pruned model. Layer merging methods fuse the parameters of different layers by addition (Yang
et al., 2024; Liu et al., 2024; Ding et al., 2025). While this type of method uses information from
different layers, simple addition can cause sharp performance degradation. LLM-Streamline (Chen
et al., 2025) This paper proposes FlattenGPT, a novel depth compression method that rearranges the
layers, which reduces the model depth while retaining the information of each layer and maintains
the performance well.

Width Compression reduces the number of parameters by reducing the width of the network.
LLM-Pruner (Ma et al., 2023) uses gradient magnitudes to estimate the importance of neurons and
efficiently fine-tune the performance of the recovery model with parameters. SliceGPT (Ashkboos
et al., 2024) and ModeGPT (Lin et al., 2024) employ matrix decomposition to compress the width of
each block in the Transformer. The attention head pruning and sharing methods (Michel et al., 2019)
were used to reduce the width of the attention module. However, these methods cannot compress
model depth, leading to higher inference latency. Our method bridges the gap between channel
pruning and layer pruning, which provides a fine-grained layer pruning method and improves the
performance.

6 CONCLUSION

We propose a novel LLM depth compression method, FlattenGPT, to address the challenges of
performance degradation under high-granularity layer pruning. Upon the high similarity of cross-
layer input features, we design a layer flattening operation to reduce the model depth with minimal
performance loss. Then we adopt channel pruning methods to reduce the number of parameters
and calculations in the model. Our proposed method performs well on LLM depth compression,
showcasing the effectiveness of fine-grained depth compression. We hope this work can inspire more
future efforts in depth compression on neural architectures from the perspective of layer flattening.
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A PROOFS

A.1 PROOF OF THEOREM 2.1

Proof. Let σAttn denote the standard deviation of Attn
(
LNl

a

(
Hℓ
))

, and σMLP denote the standard

deviation of MLP
(
LNl

p

(
Hℓ
))

. Given equation equation 1 we have:

Var
(
H̃ℓ
)
= Var

(
Hℓ
)
+Var

(
Attn

(
LN
(
Hℓ
)))

+Cov
(
Attn

(
LN
(
Hℓ
))

,Hℓ
)

= σ2
Hℓ + σ2

Attn + ρ1 · σHℓ · σAttn,
(15)

Var
(
Hℓ+1

)
= Var

(
H̃ℓ
)
+Var

(
MLP

(
LN
(
H̃ℓ
)))

+Cov
(
MLP

(
LN
(
H̃ℓ
))

, H̃ℓ
)

= σ2
H̃ℓ + σ2

MLP + ρ2 · σH̃ℓ · σMLP,
(16)

where ρ1, ρ1 is the correlation factor. Thus, the evolve from Var
(
Hℓ+1

)
to Var

(
Hℓ
)

becomes

σ2
Hℓ+1 = σ2

Hℓ + σ2
Attn + σ2

MLP + ρ1 · σHℓ · σAttn + ρ2 · σH̃ℓ · σMLP. (17)

Let n denote the number of head and dhead denote the dimension of each head. Following results in
Sun et al. (2025), based on the independent distribution assumption of weights, we have

Var (Attn (Q,k,V )) ∼ 1

n

n∑
i=1

dhead Var (Vi) =
1

n
· n · σ2

V · dhead = σ2
W d. (18)

Using the conclusion obtained by Wang et al. (2024), we get

σ2
H̃ℓ = σ2

Hℓ + σ2
W + ρ2 · σHℓ · σW

= σ2
Hℓ

(
1 +

σW

σHℓ

+ ρ2 ·
σ2
W

σ2
Hℓ

)
= σ2

HℓΘ

(
1 +

1

σHℓ

)
.

(19)
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For simplicity, we set the numerator part to 1. Substitute σx′
ℓ
= σHℓ

√
1 +

σ2
W

σ2

Hℓ
+ ρ2 · σW

σ
Hℓ

., we can

obtain the variance of

σ2
Hℓ+1 = σ2

Hℓ + σ2
W + σ4

W d2 + ρ1 · σHℓ · σW + ρ2 · σx′
ℓ
· σ2

W d

= σ2
Hℓ + σ2

W + σ4
W d2 + ρ1 · σHℓ · σW + ρ2 · σHℓ · σ2

W d+
ρ2σ

4
W d2

2σHℓ

+
ρ22σ

3
W dσHℓ

2

= σ2
HℓΘ(1 +

1

σHℓ

).

(20)
The variance with regard to σ2

H can be obtained by iteratively apply Equation equation 20:

σ2
Hℓ = σ2

H0Θ

(
ℓ∏

k=1

(
1 +

1

σHk

))
. (21)

Following the results in Sun et al. (2025), this conclusion could lead to the upper bound and lower
bound. Please refer to Appendix A.1 in Sun et al. (2025) for details.

A.2 PROOF OF THEOREM 2.2

Proof. For an L-layered Pre-LN Transformer, the partial gradient to the ℓ-th hidden states is given by
the chain rule:

∂y

∂Hℓ
=

L−1∏
k=ℓ

(
∂Hk+1

∂H̃k
· ∂H̃

k

∂Hk

)
. (22)

From Sun et al. (2025), we know that

∂Hk+1

∂H̃k
≤ 1 +

σW ℓ
U
σW ℓ

D

σH̃k(
√
d+
√
dMLP)2

= 1 +
σ2
ℓ

σH̃k(
√
d+
√
dMLP)2

. (23)

From Papaspiliopoulos (2020), we get

∂H̃k

∂Hk
≤
(
1 + 2dh

(√
s+ 2 +

1√
s

)
σ2

σHℓ

(
σ2d
√

dhead +
(
1 +

√
dhead/d

)))
, (24)

where h denotes the number of heads and s denotes the sequence length, respectively. Following the
proof from Sun et al. (2025), the target equation can be expressed as∥∥∥∥ ∂y

∂Hℓ

∥∥∥∥
2

≤
L∏

k=ℓ

(
1 +

1

σHk

A+
1

σ2
Hk

B

)
, (25)

where

A =
σ2

(
√
d+
√
dFFN)2

+ 2dh

(√
s+ 2 +

1√
s

)
σ2
(
d
√
dhead + 1 +

√
dhead/d

)
, (26)

B = 2dh

(√
s+ 2 +

1√
s

)
σ4d
√

dhead. (27)

This conclusion indicates that for the deep layers in the model, the partial gradient ∂y
∂Hℓ will be

bounded. Considering the exponential growth in Theorem 2.1, the partial gradient will be bounded by∥∥∥∥ ∂y

∂Hℓ

∥∥∥∥
2

≤
L∏

k=ℓ

(
1 +

1

σHk

A+
1

σ2
Hk

B

)

≤
L∏

k=ℓ

(
1 +

1

σHℓ

A+
1

σ2
Hℓ

B

)

=

(
1 +

1

σHℓ

A+
1

σ2
Hℓ

B

)L−ℓ

.

(28)
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Let L− ℓ be a constant number c, which implies the c-th layer from the last. As ℓ grows, σHℓ will
grow to infinity. Then we get

lim
ℓ→+∞

∥∥∥∥ ∂y

∂Hℓ

∥∥∥∥
2

≤ lim
ℓ→+∞

(
1 +

1

σHℓ

A+
1

σ2
Hℓ

B

)c

= 1. (29)

A.3 PROOFS OF THEOREM 3.1

Proof. The original solution for linear regression with L2 regularization is defined as follows:

Lemma A.1. Let X ∈ Rn×p be the design matrix, y ∈ Rn be the response vector, and λ > 0 be
the regularization parameter. The L2 regularized linear regression (Ridge Regression) minimizes the
following objective function:

argminθ ∥Xθ − y∥22 + λ∥θ∥22, (30)

where θ ∈ Rp is the coefficient vector. The closed-form solution for the optimal coefficient vector θ̂
is given by:

θ̂ = (X⊤X + λI)−1X⊤y, (31)
provided that the matrix (X⊤X + λI) is invertible. Here, I denotes the p× p identity matrix. This
solution always exists for λ > 0, even when X⊤X is singular.

The proof of this lemma can be found in most linear algebra textbooks (Montgomery et al.,
2021). As for Equation equation 13, substitute θ = ∆WD, X = σs (XiWU )Sk, y =
σs (XiWU )

(
I − SkS

⊤
k

)
WD, and then we will the solutions.

B EMPIRICAL RESULTS

We present more empirical results in various architectures, including LLaMA-2 (Touvron et al.,
2023b) at {7B, 13B}, Qwen-1.5 (Bai et al., 2023) at {7B, 14B}, and Baichuan-2 at {7B, 13B} (Yang
et al., 2023). As shown in Figure 4, the high cross-layer similarity and large feature norm is consistent
across various model types and parameter sizes. According to the theoretical analysis above, this
phenomenon is deeply related to the architecture of transformers.

C IMPLEMENTATIONS

C.1 MODIFIED ALGORITHMS FOR GROUPED QUERY ATTENTION

Some modern LLMs, such as LLaMA-3 (Dubey et al., 2024), utilize a shared key-value strategy
to improve inference efficiency, which is denoted as Grouped Query Attention (GQA). To keep the
pruned architecture the same as the original attention blocks, we modify the channel pruning on MHA.
Instead of finding the least important attention head individually, we find the least important pair of
key and value. Then we delete this pair and its corresponding queries. We apply this modification to
LLaMA-3 8B compression in the paper.

C.2 IMPLEMENTATION DETAILS

Setup We utilize the HuggingFace generation library (Wolf et al., 2020) to implement our LLM
models and use PyTorch (Paszke et al., 2019) Hooks for hidden states recording and correlation
matrix estimations. Unless otherwise specified, the experiments were conducted on 8 NVIDIA H800
80GB GPUs. The models use the BF16 data format. The calibration set consists of a random sample
of 128 sequences, each of length 2048, from WikiText-2, following the common practice in the
literature (Ashkboos et al., 2024).

Datasets We consider multiple tasks in LM Evaluation Harness (Gao et al., 2024), including ARC-e,
ARC-c (Clark et al., 2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2019), and
HellaSwag (Zellers et al., 2019).
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Figure 4: Cross-layer similarity and feature norm in multiple architectures.
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Correlation Matrix Estimations Our algorithms utilize input correlation matrices in the MLP prun-
ing method. We gather the empirical data from the calibration set by registering the PyTorch (Paszke
et al., 2019) hooks in the model. Our process compresses the MLP blocks from all layers first, then
compresses the MHA blocks from all layers.

Matrix Operations We utilize ‘torch.linalg.solve’ in PyTorch for computing the inverse on tensors
of dtype FP32.

MLP module Our MLP pruning method requires a ridge leverage score parameter λ. We set λ to
10 times the mean singular value of the correlation matrix across all experiments.

MHA module Our MHA pruning method removes the entire group of query, key, and value
matrices.

Recovery Fine-Tuning We use 50K samples of refined Alpaca for instruction tuning. The learning
rate is set to 1× 10−4. The other primary hyperparameters used are lora alpha = 16, lora r = 8,
and batch size = 64.

Latency and Throughput We test the throughput and latency results on token generation and
prompt processing, respectively. For token generation, we generate sentences with a length of 128
tokens and a batch size of 64. For prompt processing, we measure the latency when processing an
input sequence with 2048 tokens.

C.3 THROUGHPUT AND LATENCY

Table 5 compares the latency, throughput, and perplexities of the compressed LLaMA-2 (Touvron
et al., 2023b) models with other pruning methods. We test the throughput and latency results on token
generation and prompt processing, respectively. For token generation, we generate sentences with a
length of 128 tokens and a batch size of 64. For prompt processing, we measure the latency when
processing an input sequence with 2048 tokens. Even with dedicated hardware support, 2:4 pruning
methods still lead to minor speedup (1.10×) and lower throughput (0.98× with a sparsity ratio of
50%. Width pruning methods, such as SliceGPT (Ashkboos et al., 2024), are more hardware-friendly
and speed up the pruned model, while still lagging behind depth pruning methods. FlattenGPT
inherits the advantages of acceleration in depth pruning and further improves the performance. Since
the compressed model architecture of FlattenGPT is exactly the same as SLEB, the throughput and
latency results are the same. FlattenGPT outperforms all other methods in throughput (1.27×) and
latency (1.26×), and achieves a comparable perplexities. These results demonstrate that FlattenGPT
has a better trade-off between speed and performance.

C.4 PRUNING COMPUTATION COST

Table 6 compares the compression times of FlattenGPT with the prevailing pruning methods, including
SliceGPT (Ashkboos et al., 2024), LLM surgeon (van der Ouderaa et al., 2024), and MoDeGPT (Lin
et al., 2024). LLM Surgeon requires the gradient information of the LLMs, leading to heavy
computation. SliceGPT and ModeGPT do not leverage gradients, they can compress a model with
fewer GPUs and computation time. Our approach, FlattenGPT, is even faster than these methods,
as we collect the correlation matrix of all layers at the same time. Thus FlattenGPT is an efficient
pruning method in this area.

D EXPERIMENTS

D.1 ADDITIONAL COMPARISON OF TRAINING-FREE PRUNING METHODS

We compare the performance with other training-free pruning methods in Table 4, including both
width compression and depth compression. The width compression includes the 2:4 pruning methods
SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023), and structured channel pruning
methods SliceGPT (Ashkboos et al., 2024). The depth compression includes LaCo (Yang et al.,
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Table 4: Comparison with training-free pruning methods on WikiText-2 perplexity and accuracies on
zero-shot tasks.

Method Sparsity PPL ↓ WinoG HellaS PIQA ARC-e ARC-c Avg.

LLaMA-2 7B (original) 0% 5.47 69.06 75.99 79.11 74.58 46.25 69.00

Width
SpareGPT (Frantar & Alistarh, 2023) 2:4 (50%) 10.79 64.96 58.93 72.14 60.90 34.22 58.23
Wanda (Sun et al., 2023) 2:4 (50%) 12.09 62.27 55.33 70.84 57.58 31.91 55.59
SliceGPT (Ashkboos et al., 2024) 21.45% 7.02 59.91 56.04 72.42 63.64 37.12 57.83

Depth

SLEB (Song et al., 2024) 21.02% 9.14 58.96 62.47 73.07 56.48 33.02 56.80
LaCo (Yang et al., 2024) 21.02% 50.39 60.46 54.08 68.34 55.39 35.84 54.82
RM (Samragh et al., 2023) 21.02% 676.8 49.25 29.22 54.46 34.43 22.53 37.98
ShortGPT (Men et al., 2024) 21.02% 18.45 65.90 62.63 70.24 56.06 36.09 58.18
BlockPruner (Zhong et al., 2024) 21.99% 11.51 62.43 65.87 74.21 61.07 37.29 60.17
FlattenGPT 21.02% 8.68 66.54 68.45 72.74 63.43 41.30 62.49

LLaMA-2 13B (original) 0% 4.88 72.22 79.39 80.47 77.48 49.23 71.76

Width
SpareGPT (Frantar & Alistarh, 2023) 2:4 (50%) 8.75 68.51 65.52 75.46 66.04 39.76 63.06
Wanda (Sun et al., 2023) 2:4 (50%) 8.99 67.01 63.09 73.94 64.31 37.80 61.23
SliceGPT (Ashkboos et al., 2024) 25% 6.63 67.48 58.10 68.55 62.50 37.88 58.90

Depth

LaCo (Yang et al., 2024) 24.37% 13.97 59.27 60.44 72.42 54.34 34.56 56.21
RM (Samragh et al., 2023) 24.37% 10.08 66.61 66.80 73.72 66.12 41.98 63.05
ShortGPT (Men et al., 2024) 24.37% 20.06 70.80 67.80 72.74 60.35 41.30 62.60
BlockPruner (Zhong et al., 2024) 25.12% 8.16 66.30 72.20 76.93 65.82 41.38 64.53
FlattenGPT 24.37% 6.68 71.11 73.44 76.33 72.10 44.54 67.50

LLaMA-2 70B (original) 0% 3.32 77.98 83.84 82.70 80.98 57.34 76.57

Width
SpareGPT (Frantar & Alistarh, 2023) 2:4 (50%) 5.70 76.56 76.09 80.03 76.94 49.74 71.87
Wanda Sun et al. (2023) 2:4 (50%) 5.48 74.66 79.22 80.30 76.35 51.19 72.34
SliceGPT Ashkboos et al. (2024) 20% 4.44 74.92 72.98 76.61 80.51 55.20 72.34

Depth
SLEB Song et al. (2024) 19.84% 4.88 72.93 77.21 80.14 75.38 48.38 70.81
ShortGPT Ashkboos et al. (2024) 19.84% 66.33 71.96 78.87 76.02 76.02 52.95 71.68
FlattenGPT 19.84% 4.79 77.35 81.42 80.36 77.48 53.07 73.94

Baichuan-2 7B (original) 0% 6.04 68.27 72.18 77.48 72.98 42.75 66.73

Depth

LaCo (Yang et al., 2024) 21.57% 26.46 58.56 51.50 68.28 52.90 28.50 51.95
RM (Samragh et al., 2023) 21.57% 189.8 52.33 30.87 59.96 38.17 23.63 40.99
ShortGPT (Men et al., 2024) 21.57% 31.05 62.67 50.01 63.71 47.31 30.72 50.88
BlockPruner (Zhong et al., 2024) 22.45% 15.38 61.48 58.09 69.75 58.08 33.02 56.08
FlattenGPT 21.57% 20.55 64.33 61.50 69.42 56.27 35.24 57.35

Baichuan-2 13B (original) 0% 6.66 70.40 75.23 78.84 74.07 47.70 69.25

Depth

LaCo (Yang et al., 2024) 22.68% 27.07 58.01 54.00 70.89 57.11 32.94 54.59
RM (Samragh et al., 2023) 22.68% 17.70 67.88 63.78 68.99 57.49 37.54 59.14
ShortGPT (Men et al., 2024) 22.68% 20.69 68.27 61.71 69.31 56.52 36.69 58.50
BlockPruner (Zhong et al., 2024) 24.19% 15.36 64.01 64.20 71.44 59.81 37.88 59.47
FlattenGPT 22.68% 13.71 68.19 65.27 71.22 58.75 37.03 60.09

Qwen-1.5 7B (original) 0% 7.95 66.46 76.92 79.22 62.16 42.66 65.48

Depth

LaCo (Yang et al., 2024) 20.97% 39.23 58.64 56.35 70.40 46.89 32.85 53.03
RM (Samragh et al., 2023) 20.97% 2026 49.88 42.00 67.36 54.17 28.58 48.40
ShortGPT (Men et al., 2024) 20.97% 49.88 62.12 58.87 69.53 43.60 32.17 53.26
BlockPruner (Zhong et al., 2024) 21.83% 20.58 55.56 59.31 71.71 53.70 33.28 54.71
FlattenGPT 20.97% 16.05 59.27 62.89 68.39 56.99 37.46 57.00

Qwen-1.5 14B (original) 0% 7.44 70.56 79.41 79.87 68.48 47.01 69.07

Depth

LaCo (Yang et al., 2024) 22.25% 16.32 58.33 60.16 71.55 53.70 34.04 55.56
RM (Samragh et al., 2023) 22.25% 55.99 53.28 42.08 67.08 50.72 29.01 48.43
ShortGPT (Men et al., 2024) 22.25% 1237 55.96 36.16 58.60 38.09 34.81 44.72
BlockPruner (Zhong et al., 2024) 23.72% 15.67 61.48 66.92 75.24 59.51 39.08 60.45
FlattenGPT 22.25% 11.55 65.59 68.57 74.10 65.03 40.78 62.81

2024), SLEB (Song et al., 2024), Relative magnitude (Samragh et al., 2023), ShortGPT (Men et al.,
2024), and BlockPruner (Zhong et al., 2024). FlattenGPT outperforms these methods on WikiText-2
perplexity and accuracy on the zero-shot downstream tasks, showcasing the effectiveness of our
method.

D.2 ADDITIONAL COMPARISON OF RECOVERY FINE-TUNING

Table 7 shows the impact of Recovery Fine-Tuning (RFT). Our method outperforms previous methods
after RFT. This is because the flattening method retains the knowledge from all layers and makes it
easier for fine-tuning.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 5: Throughput (tokens/s), latency (ms), and perplexity on WikiText-2 test split results. Through-
put and latency are measured with LLaMA-2-70B on 2 NVIDIA A100 GPUs.

Pruning Throughput Latency LLaMA-2Method Unit Sparsity (Tokens/s) Improve ↑ (ms) Speedup ↑ 7B 13B 70B

Dense - 0% 299 1.00× 1718.4 1.00× 5.47 4.88 3.32

SparseGPT 2:4 50% 293 0.98× 1555.5 1.10× 10.79 8.75 5.70
Wanda 2:4 50% 293 0.98× 1555.5 1.10× 12.09 8.99 5.48
DSnoT 2:4 50% 293 0.98× 1555.5 1.10× 11.97 8.87 5.49

LLM-Pruner Width 20% 314 1.05× 1534.3 1.12× 10.58 8.56 -
SliceGPT Width 20% 314 1.05× 1658.7 1.04× 6.87 6.01 4.44
SliceGPT Width 25% 331 1.11× 1440.7 1.19× 7.55 6.63 4.89
SliceGPT Width 30% 343 1.15× 1364.2 1.26× 8.59 7.44 5.44

SLEB Depth 20% 381 1.27× 1364.1 1.26× 9.14 6.80 4.88
FlattenGPT Depth 20% 381 1.27× 1364.1 1.26× 8.68 6.50 4.79

Table 6: Computation cost of pruning 20% with FlattenGPT and recovery fine-tuning on a NVIDIA
H800 80GB. The calibration dataset consists of 128 samples with a sequence length of 2048.

Pruning RFTMethod Model Time GPUs Time GPUs Total

SliceGPT LLaMA-2 7B 44m 1 H100 80GB 23m 1 H100 80GB 1h07m
LLaMA-2 13B 1h08m 1 H100 80GB 44m 1 H100 80GB 1h52m

LLM surgeon LLaMA-2 7B 17h08m 4 H100 80GB - - -
LLaMA-2 13B 1d9h26m 8 H100 80GB - - -

ModeGPT LLaMA-2 7B 4h09m 1 A100 80GB 31m 1 A100 80GB 4h40m
LLaMA-2 13B 8h26m 1 A100 80GB - - -

LLaMA-2 7B 7m 1 H800 80GB 25m 1 H800 80GB 32mFlattenGPT LLaMA-2 13B 24m 1 H800 80GB 45m 1 H800 80GB 1h09m

D.3 EFFECTIVENESS OF FLATTENING

Flattened layer indices: We show which transformer blocks are chosen to be flattened in Figure 5.
The location of flattened transformer blocks is highly consistent across various target models. The
late blocks are almost flattened except the last one or two, whereas the early blocks are rarely selected.
This is related to the similarity distribution in the model, where the late blocks have more similar
input features.

Performance after flattening: We need to answer the question: How does flattening improve
the performance of the depth-compressed model? The answer is that Flattening preserves more
knowledge. Compared with the layer pruning methods, flattening preserves the parameters and thus
preserves the knowledge in the parameters. This knowledge facilitates performance maintenance
during depth compression. Figure 6 illustrates the comparison of layer pruning and layer flattening on
LLaMA-2 7B. We use the same layer index in both settings, i.e., to prune the selected layer or merge
the selected layer with the prior layer. In the flattening experiments, the model performance gradually
drops as the number of flattened layers increases. After flattening 8 layers, it has maintained 98%
of accuracy on zero-shot tasks and has a 19% degradation on perplexity. This result leaves plenty
of room for channel pruning. However, on the contrary, layer pruning quickly loses performance
with merely one or two pruned layers. It only maintains 80% of accuracy on zero-shot tasks and
319% degradation on perplexity! With such information loss, layer-pruning-based methods are very
limited and cannot achieve high performance. Our flattening method has alleviated this problem, thus
providing an effective way of depth compression.

D.4 EFFECTIVENESS OF OUR CHANNEL PRUNING METHOD

The flattening operation changes the depth compression task into a channel pruning task. This method
shows an advantage of fine-grained depth compression, whereas it relies on the performance of the
channel pruning method. In this paper, we use a simple yet effective channel pruning method. To
validate the effectiveness of our channel pruning method, we conduct experiments with channel
pruning only. We use the sparsity distribution described in ModeGPT (Lin et al., 2024), and compare
the channel pruning performance with other channel pruning methods. As shown in Table 8, our
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Table 7: Zero-shot task performance of recovery fine-tuning. † indicates fine-tuned on Alpaca (Taori
et al., 2023) dataset.

Method Sparsity WinoG HellaS PIQA ARC-e ARC-c Avg.

LLaMA-2 7B (original) 0% 69.06 75.99 79.11 74.58 46.25 69.00

Width
Wanda-sp (Sun et al., 2023) 18.81% 63.77 70.66 76.44 69.61 42.15 64.53
FLAP (An et al., 2024) 19.19% 64.72 64.69 73.39 62.25 32.51 59.51
LLM-Pruner (Ma et al., 2023) 18.82% 61.17 66.13 76.66 64.86 37.88 61.34
LLM-Pruner† (Ma et al., 2023) 18.82% 61.88 67.13 77.48 65.78 38.48 62.15

Depth

SLEB (Song et al., 2024) 18.02% 59.75 63.95 73.94 63.47 35.15 59.25
Shortened LLaMA (Kim et al., 2024) 18.02% 57.46 63.36 73.78 64.02 33.19 58.36
Shortened LLaMA† (Kim et al., 2024) 18.02% 58.80 67.99 76.06 68.81 37.88 61.91
SLM (Ding et al., 2025) 18.02% 66.30 65.10 70.24 61.45 38.31 60.28
SLM† (Ding et al., 2025) 18.02% 67.09 70.48 73.67 69.11 41.21 64.31
FlattenGPT 18.02% 67.40 70.74 74.59 64.44 41.98 63.83
FlattenGPT† 18.02% 68.75 73.01 74.97 67.40 45.05 66.24

LLaMA-2 13B (original) 0% 72.22 79.39 80.47 77.48 49.23 71.76

Width
Wanda-sp (Sun et al., 2023) 19.49% 67.01 74.75 77.48 73.48 44.11 67.37
FLAP (An et al., 2024) 19.47% 68.35 69.07 74.65 70.83 40.61 64.70
LLM-Pruner (Ma et al., 2023) 19.48% 64.17 72.02 78.51 69.99 43.60 65.66
LLM-Pruner† (Ma et al., 2023) 19.48% 67.32 74.84 79.16 73.49 43.77 67.72

Depth

SLEB (Song et al., 2024) 19.50% 64.96 70.55 76.61 64.35 38.31 62.96
Shortened LLaMA (Kim et al., 2024) 19.50% 70.48 71.19 75.03 69.53 43.09 65.86
Shortened LLaMA† (Kim et al., 2024) 19.50% 71.11 75.20 76.28 74.79 46.67 68.81
SLM (Ding et al., 2025) 19.50% 70.80 67.73 72.36 64.82 39.68 63.08
SLM† (Ding et al., 2025) 19.50% 71.67 76.37 77.42 76.56 48.55 70.11
FlattenGPT 19.50% 71.43 75.26 77.58 71.68 45.39 68.27
FlattenGPT† 19.50% 71.82 77.85 78.73 75.08 49.15 70.53

LLaMA-3 8B (original) 0% 73.40 79.17 79.49 80.09 53.24 73.08

Width FLAP (An et al., 2024) 16.30% 49.96 26.36 52.18 26.81 24.83 36.03
LLM-Pruner (Ma et al., 2023) 15.39% 68.67 67.79 77.04 68.60 39.08 64.23
LLM-Pruner† (Ma et al., 2023) 15.39% 70.32 74.27 79.49 74.29 46.59 68.99

Depth

Shortened LLaMA (Kim et al., 2024) 16.30% 57.85 60.99 73.23 65.40 34.04 58.30
Shortened LLaMA† (Kim et al., 2024) 16.30% 62.75 72.70 78.07 75.30 44.80 66.72
SLM (Ding et al., 2025) 16.30% 69.61 61.8 71.98 66.04 41.81 62.25
SLM† (Ding et al., 2025) 16.30% 71.74 73.77 77.64 76.60 50.94 70.14
FlattenGPT 16.30% 71.82 70.63 72.91 69.1 46.59 66.21
FlattenGPT† 16.30% 73.09 75.93 77.09 75.72 50.34 70.43

Table 8: Zero-shot task performance of channel pruning methods calibrated with 128 samples from
WikiText-2.

Method Sparsity WinoG HellaS PIQA ARC-e ARC-c Avg.

LLaMA-2 7B (original) 0% 69.06 75.99 79.11 74.58 46.25 69.00

SliceGPT 20% 62.74 49.78 64.25 51.47 31.06 51.86
ModeGPT 20% 68.03 69.05 74.05 69.07 42.06 64.46

Our MLP pruning 20% 66.06 66.54 73.23 65.19 38.91 61.99
Our MHA pruning 21.02% 66.93 69.64 73.94 63.97 42.24 63.34
Our MHA + MLP Pruning 21.07% 68.03 71.64 76.17 68.98 44.28 65.82

LLaMA-2 13B (original) 0% 72.22 79.39 80.47 77.48 49.23 71.76

SliceGPT 20% 67.17 53.58 65.83 55.81 35.84 55.65
ModeGPT 20% 70.32 68.96 74.53 74.07 46.16 66.81

Our MHA + MLP Pruning 21.07% 71.43 75.26 77.58 71.68 45.39 68.94

channel pruning approach has a clear advantage over previous pruning methods. By combining the
MHA pruning and MLP pruning, our method achieves the best performance, surpassing the previous
channel pruning method, including SliceGPT (Ashkboos et al., 2024) and ModeGPT (Lin et al.,
2024).

We further make ablations on the effectiveness of Nyström approximation. As shown in Table 10,
Nyström approximation outperforms the channel selection only method, demonstrating the effective-
ness of adjusting the down projection.
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LLaMA-2 7B Flattened Layers

Qwen-1.5 7B Flattened Layers
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Figure 5: Flattened Layer indices.
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Figure 6: Comparison of layer pruning and flattening.

Table 9: Zero-shot task performance of channel pruning methods calibrated with 128 samples from
WikiText-2. † indicates fine-tuned on Alpaca (Taori et al., 2023) dataset. ModeGPT (Lin et al., 2024)
employs Alpaca as the calibration dataset. LLM Surgeon (van der Ouderaa et al., 2024) does not
show the results but claims that LoRA cannot improve the performance.

Method Sparsity WinoG HellaS PIQA ARC-e ARC-c Avg.

LLaMA-2 7B (original) 0% 69.06 75.99 79.11 74.58 46.25 69.00

LLM-Pruner 18.82% 61.17 66.13 76.66 64.86 37.88 61.34
LLM-Pruner† 18.82% 61.88 67.13 77.48 65.78 38.48 62.15
LLM Surgeon 20% 66.30 71.30 77.09 71.36 41.89 65.59
ModeGPT 20% 68.19 69.59 76.22 71.71 41.89 65.52
ModeGPT† 20% 66.30 68.07 77.20 70.45 42.92 64.99

FlattenGPT 20% 67.40 70.74 74.59 64.44 41.98 63.83
FlattenGPT† 20% 68.75 73.01 74.97 67.40 45.05 66.24

D.5 ADVANTAGES OF DEPTH COMPRESSION OVER WIDTH COMPRESSION

In this paper, we focus on the depth compression tasks. Although previous depth compression methods
perform much worse than the width compression ones, FlattenGPT has built a novel approach to
improve this performance greatly. In the main paper, we have shown that FlattenGPT achieves a
better trade-off between performance and speed. In this part, we will further show that FlattenGPT
shows promising performance compared with the latest width compression method after recovery
fine-tuning. Table 9 shows the performance with or without RFT. LLM-pruner (Ma et al., 2023)
shows little improvement with RFT. LLM Surgeon (van der Ouderaa et al., 2024) does not show
the results, but it claimed that LoRA improves compression performance in the smallest OPT-125m
model, but not in larger models. ModeGPT (Lin et al., 2024) even demonstrates performance loss
after RFT, which illustrates that the model probably suffers from overfitting. FlattenGPT unifies the
two tasks of deep compression and channel compression, making the pruned model more suitable for
fine-tuning. This is more practical than previous pruning methods.

D.6 LOCATIONS OF FLATTENED LAYERS

We show which transformer blocks are chosen to be flattened in Table 11. The location of flattened
transformer blocks is highly consistent across various target models. The late blocks are almost
flattened, except the last one or two, whereas the early blocks are rarely selected. This is related to
the similarity distribution in the model, where the late blocks have more similar input features.

D.7 DEPENDENCY ON CALIBRATION DATASET

We evaluate the dependency on the calibration dataset in Table 12. We use the calibration set size
of 128 and sequence length of 2048 for WikiText-2 (Merity et al., 2016) and Alpaca datasets. The
results show that WikiText-2 has a slightly better performance, probably due to the dataset quality.
The alpaca dataset is not as representative as a high-quality dataset, thus the performance is slighter
lower than WikiText-2.
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Table 10: Comparison of channel selection and Nyström approximation.
Method Sparsity WinoG HellaS PIQA ARC-e ARC-c Avg.

Channel Selection 20% 66.46 65.48 71.22 63.13 39.93 61.24
+ Nyström approximation 20% 66.54 68.45 72.74 63.43 41.30 62.49

Table 11: Locations of flattened Transformer blocks with target sparsity of 20%.
Models Merged Layer Index

LLaMA-2 7B [[17, 18], [19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30]]

LLaMA-2 13B [[23, 24], [25, 26], [27, 28], [29, 30], [31, 32], [33, 34], [35, 36], [37, 38]]

LLaMA-2 70B [[14, 15], [46, 47], [49, 50], [51, 52], [54, 55], [57, 58], [59, 60, 61],
[62, 63, 64], [65, 66, 67], [68, 69], [70, 71], [72, 73], [74, 75]]

LLaMA-3 8B [[16, 17], [18, 19], [20, 21], [23, 24], [25, 26], [27, 28], [29, 30]]

Qwen-1.5 7B [[3, 4], [20, 21], [22, 23], [24, 25], [26, 27], [28, 29, 30]]

Qwen-1.5 14B [[7, 8], [10, 11], [19, 20], [24, 25], [26, 27], [28, 29], [30, 31], [32, 33], [34, 35], [36, 37]]

D.8 DEPENDENCY ON THE CALIBRATION DATASET SIZE

We test the size of the calibration dataset from 64 to 1024 samples as shown in Table 13. Results
confirm that 128 samples suffice, as larger sets yield marginal gains (< 0.2%).

D.9 GENERALIZATION ON OTHER TASKS

We conduct experiments on InternVL-C 6B, which is a large vision transformer that exhibits a similar
cross-layer similarity pattern to the LLMs. The results in Table 14 show that our method has good
generalization ability on vision transformers. The multimodal transformers are usually composed
of an LLM transformer and a vision encoder transformer. Therefore, it is reasonable to apply our
method to the LLM and the vision encoder individually.

D.10 GENERALIZATION BEYOND TRANSFORMER ARCHITECTURE

Considering the various architectures available, it is far beyond the scope of this paper. Yet we
can provide an analysis of the generalization of our method. Since most architectures use skip
connections, the flattening stage is very general and should work on these architectures as well.
However, there are not always appropriate channel pruning methods for these architectures. If there
is an appropriate channel pruning method, our method would work on various architectures. Besides,
transformer is a widespread baseline for many tasks, and our experiments on multiple transformer
architectures and tasks have shown the effectiveness of our method.

E LIMITATION

FlattenGPT provides a novel approach for fine-grained LLMs depth compression, yet there are still
some limitations. First, FlattenGPT is performed on uniform architectures, where flattening will not
change the model architecture significantly. It is not trivial to compress the hybrid architectures, such
as a combination of transformer Vaswani et al. (2017) and mamba (Gu & Dao, 2023). However,
it is still worth researching the fine-grained depth compression method, as layer pruning methods
operate on a very high granularity and cause performance degradation. Second, we use one of the
channel pruning methods to implement our FlattenGPT, while our framework is not constrained to
specific channel pruning methods. Developing better channel pruning methods will improve our
depth compression method as well.
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Table 12: Results on different calibration dataset.
Method Dataset PPL Sparsity WinoG HellaS PIQA ARC-e ARC-c Avg.

LLaMA-2 7B (original) - 0% 5.47 69.06 75.99 79.11 74.58 46.25 69.00

FlattenGPT WikiText-2 21.02% 8.68 67.40 70.74 74.59 64.44 41.98 63.83
FlattenGPT Alpaca 21.02% 11.84 67.64 67.92 72.31 62.54 39.25 61.93

Table 13: The zero-shot accuracies on LLaMA-2 7B with different calibration dataset size.
Num of Samples 64 128 256 512 1024

Accuracy 61.17 62.49 62.25 62.58 62.60

Table 14: The zero-shot accuracies on InternVL-C 6B.
Model Method IN-1K IN-A IN-R

InternVL-C
Dense 83.2 83.8 95.5

ShortGPT 79.7 57.9 90.4
FlattenGPT 81.6 74.6 93.7
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