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Abstract

Livestreaming has become a prominent001
medium for sharing real-time content, includ-002
ing gaming, sports events, financial invest-003
ment, and various other forms of live enter-004
tainment. However, livestreams can be lengthy,005
often spanning several hours, making it time-006
consuming and challenging for users to find the007
most interesting and engaging moments within008
the content. In this work, we formulate the def-009
inition of Livestream Highlight Segmentation010
and propose the first direct Livestream High-011
light Segmentation model AntPivot which al-012
leviates the challenges of multi-modal fusion,013
long duration, and sparse highlights. Specifi-014
cally, 1) to accelerate the highlight segmenta-015
tion research in the domain of insurance and016
fortune, we release a fully-annotated dataset017
AntHighlight; 2) we introduce a multi-modal018
fusion module to encode the raw data into the019
unified representation and model their tempo-020
ral relations to capture clues in a chunked at-021
tention mechanism; 3) we propose dynamic-022
programming decoding to optimize the detec-023
tion of highlight clips by searching for opti-024
mal decision sequences. The extensive experi-025
ments demonstrate that AntPivot outperforms026
text-only models and achieves state-of-the-art027
results. Ablation Studies further validate the028
effectiveness of our methods. All the codes and029
data will be released publicly with the camera-030
ready version.1031

1 Introduction032

With the explosive growth of transmission speed033

and storage capacity on the Internet, an increasing034

amount of information with different levels of im-035

portance and usefulness is interwoven into various036

data flows. Meanwhile, there is also an irreversible037

tendency that people’s available time is becom-038

ing more and more fragmented. As a result, users039

rarely have enough time or attention to separate the040

1∗ Equal contribution. † Corresponding author.

valuable information from the other useless part. 041

For the sake of efficiency and convenience in the 042

interaction, it’s essential to extract key information 043

from unprocessed data to help users get what they 044

need with little effort. Under this requirement and 045

circumstance, researchers try to design automatic 046

algorithms to segment salient or highlight parts in 047

different kinds of data. 048

In recent years, significant research (Yu et al., 049

2019; Su et al., 2020; Zhang et al., 2021; Yu 050

et al., 2022) has introduced joint modeling of vi- 051

sion and language. MCAN (Yu et al., 2019) pro- 052

poses the deep modular co-attention networks be- 053

tween vision and language, which performs the 054

cross-modal alignment by concisely maximizing 055

the cross-attention. After that, there is a consen- 056

sus (Wang et al., 2022b,a; Bao et al., 2022) to uti- 057

lize a cross-attention mechanism to bridge different 058

modalities. VL-BERT (Su et al., 2020) introduce 059

modality-aligned representations for generic vision- 060

language understanding with the MLM paradigm. 061

Despite these advances, there remain significant 062

obstacles to designing multi-modal networks due 063

to differences between modalities, and modeling 064

livestream inputs. A multi-modal highlight segmen- 065

tation model may open up a host of practical appli- 066

cations: locating highlights to provide users with 067

personalized recommendations, highlight tracking, 068

or expressing information. 069

Despite the benefits of multi-modal approaches, 070

several challenges remain, including (1) contrary 071

to other kinds of videos, livestreams are usually 072

extremely long in duration, varying from dozens of 073

minutes to several hours, (2) a mass of noise and 074

useless information, such as slips of the tongue, 075

greetings and chit-chats, which harms the perfor- 076

mance of methods to a large extent, and (3) there 077

always exist topic shifts and gaps in the expres- 078

sions of livestreamers, resulting in low coherence 079

and cohesion of corpus. 080

To this end, we first formulate the task of 081
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Livestream Highlight Segmentation as the segmen-082

tation and importance evaluation on the temporal083

dimension of livestreams. Considering there is no084

benchmark dataset available in this area, a bunch085

of livestream records in the domain of insurance086

and fortune are collected from the platform sup-087

ported by AliPay to construct a new dataset called088

AntHighlight to facilitate this task. To provide an089

elementary solution to accomplish the goal stated090

previously, we construct a novel architecture to091

extract and analyze the semantic information com-092

prehensively and select highlight fragments from093

the untrimmed livestreams efficiently. Specifically,094

we first encode the raw data in different views and095

combine them into the inputs of our model. Af-096

terward, we utilize a novel chunked attention mod-097

ule, named Pivot Transformer, to capture temporal098

dependencies and integrate representations from099

different semantic levels. Finally, a series of confi-100

dences and probabilities are calculated to determine101

the prediction results in a dynamic-programming102

manner.103

In conclusion, the main contributions of this pa-104

per can be summarized in the following aspects:105

• We formulate the task of Livestream Highlight106

Segmentation and inject the training objectives107

and dynamic programming decoding to solve108

this problem.109

• We release the first fully-annotated livestream110

highlight segmentation benchmark dataset An-111

tHighlight.112

• Through introducing multimodal fusion and113

pivot transformer, we propose the first di-114

rect livestream highlight segmentation model115

AntPivot, which alleviates the problem of long116

durations, topic shifts, and sparse highlights.117

• Experimental results on the AntHighlight118

demonstrate that our model outperforms the119

baselines and achieves state-of-the-art perfor-120

mances.121

2 Related Work122

Text / Scene Segmentation The task of text seg-123

mentation is to split documents or discourse into124

individual parts. In the early stage, researchers tried125

to apply some lexicon-based (Hearst, 1997; Choi,126

2000) and statistics-based approaches (Utiyama127

and Isahara, 2001; Eisenstein, 2009) to tackle this128

problem. Afterward, some efficient neural mod-129

ules for sequence modeling, such as CRF (Wang130

et al., 2018), PointerNetwork (Li et al., 2018) 131

and BERT (Lukasik et al., 2020), were also em- 132

ployed to boost better performance and general- 133

ization. Similarly, there also exist valuable dis- 134

cussions about the splitting of videos composed 135

of complex scenes. Among them, early works 136

(Rasheed and Shah, 2003; Chasanis et al., 2009) 137

tried to utilize low-level features and carefully de- 138

sign heuristic methods. To explore supervised- 139

learning strategies, some researchers constructed 140

a variety of new datasets based on documentaries 141

(Baraldi et al., 2015), short films (Rotman et al., 142

2017), long movies (Rao et al., 2020) etc. Differ- 143

ent from text/scene segmentation, livestream high- 144

light segmentation needs to model and fusion multi- 145

modal inputs and filter out the useless fragments to 146

obtain highlights. 147

Proposal Generation Given an untrimmed 148

video, the goal of action proposal generation is 149

to ascertain a set of temporal boundaries with 150

high probability or confidence to contain action 151

instances. Current prevailing approaches can be 152

mainly divided into two categories, namely anchor- 153

based methods (Gao et al., 2017; Yang et al., 2021) 154

and boundary-based ones (Tan et al., 2021; Su et al., 155

2021). The former first define a group of hand- 156

crafted proposal pre-definitions and choose candi- 157

dates from them in a ranking-based manner, while 158

the latter will directly locate the possible action 159

boundaries in a classification or regression way. 160

Compared with this task, livestream highlight ex- 161

traction mainly focuses on the comprehension and 162

understanding of streamers’ speech data, which 163

have a higher semantic gap and lower redundancy 164

than video data. Besides, the model in our scenario 165

should not generate overlapping proposals, which 166

is allowed and sometimes necessary in the task of 167

action proposal generation. 168

Multimodal Learning It has been an increas- 169

ing interest in multimodal modeling on language- 170

visual (Lei et al., 2021; Bao et al., 2022; Yu 171

et al., 2022) and audio-visual (Shi et al., 2022; 172

Huang et al., 2023). BeiT-v3 (Wang et al., 2022a) 173

proposes to take images in a foreign language 174

with a more fine-grained cross-modal mask-and- 175

reconstruction process, sharing partial parameters. 176

Clip-Bert (Lei et al., 2021) employs sparse sam- 177

pling to enable affordable end-to-end learning for 178

video-and-language tasks. In the domain of audio- 179

visual learning, AV-Hubert (Shi et al., 2022) in- 180

troduces a self-supervised representation learning 181
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Figure 1: Overall diagram of our proposed AntPivot architecture. The </> annotation represents zero-pad in the
sequence, and the overall calculations are all conducted in the sentence level.

framework for audio-visual speech. Subsequently,182

(Huang et al., 2023) leverage the success of AV-183

Hubert and propose the cross-modal distillation to184

reduce the data scarcity of visual data. Despite185

these advances, most research in multimodal learn-186

ing has focused on two modalities, and may not187

directly contribute to video, speech, and text mod-188

eling.189

3 Method190

3.1 Problem Definition191

Given a long and unprocessed livestream record192

R, the task of livestream highlight extraction aims193

to retrieve all proposals for highlight topics and194

discussions. To be specific, the livestream record195

can be annotated as R = (V,A), where V and A196

represents visual and audio data respectively. And197

our goal is to construct a proper model to generate198

a series of proposals covering the most valuable199

parts of the entire livestream, which can be given200

as201

P = {(s1, e1), (s2, e2), . . . , (sp, ep)} (1)202

where p is the number of proposals and (si, ei)
is the start and end timestamp for i-th proposal
satisfying

si < ei < si+1 < ei+1, ∀i ∈ {1, 2, . . . , p− 1}.

3.2 Overall Architecture203

Figure 1 demonstrates the overall architecture and204

calculation procedure of our proposed method. We205

introduce a data-to-representation modeling proce-206

dure to project data to a final representation. And207

then, we apply the pivot transformer to help us208

model the context information and estimate high- 209

light scores for each utterance, and we will use the 210

final representations to calculate the confidences 211

of utterances to be boundaries. Finally, the bound- 212

ary confidences and highlight scores will be ag- 213

gregated and used as a reference in the dynamic- 214

programming calculation. 215

3.3 Data-to-Representation Modeling 216

We propose a novel multimodal modeling scheme 217

designed to transform data across various modali- 218

ties into the final embedding. Because of the lack 219

of a unified multimodal network to model differ- 220

ent modalities, We first get the different modality 221

embeddings and then fuse them. The details of 222

embedding are as follows. 223

Semantic Embedding We transform the speech 224

data into the corresponding transcripts via an auto- 225

matic speech recognition module. Afterward, a pre- 226

trained language model is employed to squeeze ev- 227

ery sentence of transcripts into a single embedding, 228

which can be annotated as S = {si}Li=1 where L is 229

the number of transcripts. 230

Speaker Embedding We introduce the speaker 231

information to alleviate the problem of topic shifts. 232

In practice, we turn to the solution proposed in 233

(Wang et al., 2021) for effective speaker verifica- 234

tion and then project the identification label into 235

speaker embeddings, given by K = {ki}Li=1. 236

Pattern Embedding Considering that most 237

streamers tend to switch their mood, stress, or pitch 238

of voice when talking about something important or 239

valuable to arouse the audience’s attention and in- 240

terest, we downsample the mel-frequency spectrum 241
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Figure 2: Detailed structure of our proposed Pivot Transformer (left part) and gating mechanism (right part). The
blue dashed line represents dataflow between adjacent iterations.

of speech pieces into a fixed length and concate-242

nate them sequentially to seek out useful temporal243

patterns within every utterance, which is annotated244

as P = {pi}Li=1.245

Video Embedding To obtain visual information246

such as livestream popularity, attention, and charts,247

a pre-trained 3D CNNs model is adopted to map248

the video fragments into video embeddings, which249

is annotated as V = {Vi}Li=1.250

To alleviate the embedding dimension mismatch251

among different embeddings, we add the modality252

adaptor consisting of a multilayer perceptron and253

then include a modality dropout to mask the full254

features of one modality before fusing audio and255

visual inputs. After that, we compose them in an256

addition-based manner. Specifically, the final em-257

beddings which are fed into our model can be given258

as E = {ei}Li=1, where ei = si+pi+ki+vi and259

all these embeddings are projected into the space260

of Rd. 2261

3.4 Pivot Transformer262

Due to the large computation cost of global atten-263

tion mechanism, it can be unbearable to utilize a264

vanilla transformer to deal with livestreams with265

a long duration under some constraints of devices.266

Additionally, there also exist massive topic shifts267

and irrelevant information, which makes the de-268

noising and purification of information significant.269

In consideration of this, we devise a novel Pivot270

Transformer to alleviate the challenges of long du-271

rations, sparse highlights, and topic shifts.272

Initialization In the first stage, we employ a bi-273

directional gated recurrent unit proposed by (Cho274

2The dimension of representations keeps the same unless
specified in the following sections.

et al., 2014) to generate the initial individual and 275

global representations, given by 276

g, [ẽ1, · · · , ẽL] = Bi-GRU([e1, · · · , eL]), (2) 277

where g ∈ Rd and ẽi ∈ Rd are the final state and 278

output for the i-th step respectively. After that, 279

the input features will be divided into N multiple 280

consecutive chunks with the length of M = ⌊ L
N ⌋, 281

and the rearranged sequence of utterances can be 282

ordered as 283

r0i,j = ẽ(i−1)×M+j , 1 ≤ i ≤ N, 1 ≤ j ≤ M,
(3) 284

where r0i,j ∈ Rd represents the j-th element in the i- 285

th chunk. And then, an External Gate module (will 286

be described below) is applied to generate a group 287

of weights and dynamically aggregate elements 288

into higher-level features which are called pivots in 289

this paper. The calculation can be formulated by 290

w0
i , t

0
i = ExternalGate(r0i,1, · · · , r0i,M ), (4) 291

where w0
i ∈ RM and t0i ∈ Rd represent the gating 292

weights and initial pivot of i-th chunk respectively. 293

Update Mechanism Given the initialized pivots 294

and elements, we try to exploit a chunked atten- 295

tion mechanism to incorporate context information 296

efficiently. To be specific, in the l-th loop of inter- 297

action, a multi-head attention mechanism proposed 298

in (Vaswani et al., 2017) will be first adopted within 299

every chunk to integrate local information, formu- 300

lated as 301

[t̃li, r
l
i,1, · · · , rli,M ] = MHA([tl−1

i , rl−1
i,1 , · · · , rl−1

i,M ]),
(5) 302

where MHA(· · · ) stands for the standard multi- 303

head attention calculation. Subsequently, the pivot 304
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features will be reaggregated using an Internal305

Gate module (will be described below), given by306

wl
i, t̂

l
i = InternalGate(t̃li, r

l
i,1, · · · , rli,M ), (6)307

After this operation, the pivot representations can308

be treated as a reasonable and refined compression309

in a local range. To further capture the global con-310

text, another attention computation will be carried311

on the sequence of pivots, given as312

[tl1, · · · , tlN ] = MHA([(t̂l1+ t̃l1), · · · , (t̂lN + t̃lN )])
(7)313

In the next step, the updated pivots will be fed314

into the (l + 1)-th loop to pass information to the315

elements within every chunk and the overall proce-316

dure mentioned above will be repeated for a total317

of B times. In this iterative calculation, the pivots318

actually act as a vital role to interact between local319

and global ranges. After the updating iterations, we320

first flatten the gating weights and updated repre-321

sentations as described below to proceed the final322

prediction.323

ŵl
(i−1)×M+j = (wl

i)j , ê(i−1)×M+j = rBi,j , (8)324

After this, we calculate the average value of gating325

weights in different layers as the highlight con-326

fidences, and predict the boundary probabilities327

using the final representations, which can be given328

by329

hi =
1

B + 1

B∑
j=0

σ(ŵj
i ), bi = MLP(êi), (9)330

where MLP(·) is a multi-layer perceptron mod-331

ule and σ(·) is the sigmoid function with σ(x) =332
1

1 + e−x
.333

It’s worth mentioning that we copy the original334

sequence, shift the elements M/2 to the right and335

repeat the above operations in practice as shown in336

the right part of Figure 1, which is designed to keep337

the range of local receptive field at 3M/2 to prevent338

the influence caused by absolute element positions.339

And all the final predictions will be shifted back340

and calculate the average results with the normal341

sequence.342

Local-Global Gate In this paragraph, we will in-343

troduce the gating mechanism used in the structure344

of pivot transformer, which is designed to estimate345

the importance of every utterance to predict the346

highlight score and ensure the essential informa- 347

tion to be squeezed into the corresponding pivots. 348

In the calculation, we consider the local context, 349

global information and individual representation 350

synthetically. As depicted in the framed region of 351

Figure 2, a group of global and local features will 352

be generated and concatenated with the original 353

sequence and then the gating weights will be pro- 354

duced via a multi-layer perceptron and be utilized 355

to form the aggregation features, given as: 356

wi = MLP([g; li; ri]), t =
∑
i

ewi∑
j e

wj
ri,

(10) 357

where [; ] is the concatenation operator and g, li, ri 358

stand for the global, local and individual represen- 359

tations corresponding to the i-th element respec- 360

tively. 361

According to the position of the gating unit in the 362

structure, we further customize different schema 363

for the external and internal ones. In the former 364

ones, we utilize a 1D-convolution operator with a 365

receptive field of M/2 to capture local information 366

and take the final state of Bi-GRU as the global 367

information. And for the latter, we directly treat 368

the pivot features in the previous step as the lo- 369

cal representations and calculate the global one by 370

averaging all the elements in the sequence. 371

Complexity Analysis and Comparison Given 372

the description of operations in this architecture, 373

we analyze and compare the theoretical complexity 374

of pivot transformer and the vanilla one in this 375

part. By decomposing the original computation 376

into a two-step chunked mechanism, the cost of 377

O(L2d) in the attention layer can be reduced to 378

O(N · M2d + N2d) = O((L
2

N + N2)d). The 379

complexity achieves the optimum of O(L
4
3d) with 380

N = Θ(L
2
3 ), but in practice we set N = M =

√
L 381

for better efficiency in parallel computing. 382

3.5 Training Loss 383

Two Objectives have been used to optimize the 384

AntPivot model. 385

Boundary Loss It is used to guide an accurate 386

boundary recognition for the highlight clips, which 387

can be formulated as: 388

Lb = −
L∑
i=1

(b̄i log(bi) + (1− b̄i) log(1− bi)),

(11) 389

5



Highlight Loss It’s still difficult for the model to390

address this problem without any extra knowledge391

because there are still no adequate clues for the392

selection and filter of highlight parts. Therefore,393

we further apply the item of Highlight Loss to help394

the model discriminate highlight segments from395

others, given by396

Lh = −
L∑
i=1

(h̄i log(hi) + (1− h̄i) log(1− hi)),

(12)397

where b̄i ∈ {0, 1} and h̄i ∈ {0, 1} are the bound-398

ary and highlight indicators for the ground-truth399

annotation of i-th utterance respectively.400

Finally, the overall loss function in the training401

process can be composed in a weighted way, given402

as403

L = Lb + λLh, (13)404

where λ is the hyper-parameter to balance these405

two parts.406

3.6 Dynamic-programming Decoding407

Given the highlight confidences {hi}Li=1 and the408

boundary probabilities {bi}Li=1, our goal is to ascer-409

tain an optimal prediction sequence to maximize410

the accumulative score on the final decision path.411

To make it clear, we first categorize all the possible412

states of the i-th utterance into four types:(1) the413

start boundary of the proposal; (2) the middle po-414

sition of the proposal; (3) the end boundary of the415

proposal; (4) not contained in any proposal.416

And then, we use fi,j to represent the maximal417

score accumulated to the i-th element in the j-th418

state listed above. Therefore, the state transition419

equation can be designed as420

fi,j =


max(fi−1,2, fi−1,4) + bi j = 1

max(fi−1,1, fi−1,3) + bi j = 2

max(fi−1,1, fi−1,3) + hib̄i j = 3

max(fi−1,2, fi−1,4) + h̄ib̄i j = 4
(14)421

where h̄i and b̄i respectively denote 1−hi and 1−bi,422

the initial states are set as f1,1 = b1, f1,2 = f1,3 =423

−∞ and f1,4 = (1− h1)(1− b1) because only the424

start and out state are legal for the first utterance.425

Given the states and transition equations defined426

above, we can make the predictions in a dynamic-427

programming way, and record all the decisions428

related to the optimal result along the sequence.429

Afterward, we backtrack the optimal decision430

path from the better states in fL,3 or fL,4 to recover431

the entire sequence of choices and predictions. In 432

this way, we can explore all valid combinations 433

of decisions holistically and generate a stable and 434

reliable result. Finally, we will map the sentence- 435

level predictions to the corresponding timestamps 436

so as to generate results in seconds. 437

4 Experiment 438

4.1 Metrics 439

To evaluate the effectiveness of models objectively 440

and automatically, we adopt two criteria widely 441

used in the related fields, namely Average Preci- 442

sion and Boundary F1 Score. 443

Average Precision The task of livestream high- 444

light detection aims to generate proposals to cover 445

the target highlight parts tightly. Therefore, the 446

quality of predictions is determined by the over- 447

lap with the ground-truth intervals. Following the 448

conventional protocol in the area of action seg- 449

mentation, we use Average Precision with tIoU 450

thresholds {0.5, 0.6, 0.7, 0.8, 0.9} to measure the 451

performance. 452

Boundary F1 Score In addition to the IoU-based 453

metrics, the evaluation of boundary classification 454

should get concerned as well, because an accurate 455

boundary prediction can not only boost the over- 456

all precision but also greatly reduce the expense 457

of manual modification and revision to the final 458

results. Considering the application scenarios in 459

reality, we directly desert the intervals within 10 460

seconds and treat the predictions with a minimal 461

difference of fewer than 5 seconds from ground- 462

truth boundaries as correct ones. Under this cir- 463

cumstance, every predicted boundary will match 464

at most one ground-truth one in the metric calcula- 465

tion. Take the evaluation of start timestamps as an 466

example, the F1 score can be calculated as 467

p̃ =

p∑
i=1

I( min
j∈{1,··· ,p̄}

(|si − s̄j |) < 5), (15) 468

469

F1 =
2× Prec×Rec

Prec+Rec
=

2p̃

(p̄+ p)
, (16) 470

where I(·) is the indicator function, and {s̄i, ēi}p̄i=1 471

and {si, ei}pi=1 stand for the ground-truth proposals 472

and predicted ones, respectively. 473

4.2 Implementation Details 474

Model Setting Considering the maximal se- 475

quence length reaches about 900, we set N = 476√
L = 30 as mentioned in the previous section. 477
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Method
Average Precision F1

0.5 0.6 0.7 0.8 0.9 Start End

Sent-Bert 66.6 57.0 49.2 41.7 33.2 42.7 46.0
XlNet 67.1 58.4 50.6 43.1 34.3 41.3 45.1

Roberta 67.3 58.4 50.9 43.7 36.1 44.1 47.9
XL-Transformer 71.5 61.9 54.6 46.5 38.9 45.0 49.7

Longformer 71.6 61.0 54.7 46.6 39.4 45.7 49.3
AntPivot 72.7 63.4 55.7 48.0 39.5 45.6 50.2

- Pivot 70.7 61.2 53.9 45.5 37.3 47.1 48.2
- Shift 71.9 61.7 54.3 45.8 38.4 45.9 46.8

- MultiModal Fusion 70.6 61.2 53.5 45.7 36.5 43.8 48.3

Table 1: Comparison with baselines and ablation studies on the AntHighlight dataset. The best results are given in
bold.bold.

This setting is also available for the situation where478

L > 900, and the practical complexity will in-479

crease accordingly. The dimension d used in our480

model is set as 256. For all transformer-based archi-481

tecture, the number of heads is 4 and sandwich lay-482

ernorm mechanism (i.e. both pre-LN and post-LN483

are utilized) is adopted. In the pivot transformer, B484

is set as 3 and the number of attention layer stacked485

in every stage is 2. As for the transformers and486

GRU in the experiment part, the number of layers487

is set as 6 to keep consistency. Apart from this,488

the attention length of Transformer-XL and the at-489

tention window size of Longformer are all set as490

N =
√
L = 30.491

Optimization and Inference All the experi-492

ments are conducted on one piece of Tesla P100.493

In the training procedure, we employ AdamW opti-494

mizer proposed by (Loshchilov and Hutter, 2019)495

with warmup strategy (Vaswani et al., 2017) and496

cosine annealing learning (Loshchilov and Hutter,497

2016). The maximal learning rate of is set as 3e-4498

and the weight decay is fixed at 5e-5. To prevent499

overfitting, a dropout strategy with p = 0.4 is ap-500

plied in the structure. The training will last for 20501

epochs and we select the checkpoint with the best502

performance on the validation dataset. And in the503

inference stage, all the scores will be pre-processed504

via a min-max normalization to guarantee a stable505

prediction. The thresholds in Simple strategy are506

set as tb = 0.25 and th = 0.7.507

4.3 Model Performance508

In this study, we conduct a comprehensive509

comparison with other systems, including 1)510

Sentence-BertForSequenceClassfication (Reimers511

and Gurevych, 2020), abbreviated as Sent-Bert;512

2) XlNetForSequenceClassfication (Yang et al.,513

2020), abbreviated as XlNet; 3) RobertaForSe- 514

quenceClassfication (Xu, 2021), abbreviated as 515

Roberta; 4) Longformer (Beltagy et al., 2020), re- 516

placing the pivot transformer with longformer; 5) 517

Transformer-XL (Dai et al., 2019), replacing the 518

pivot transformer with transformer-xl. The results, 519

compiled and presented in Table 1, provide valu- 520

able insights into the effectiveness of our approach: 521

(1) Our model surpassed all sentence classifi- 522

cation baselines across all metric scores. This 523

shows the superiority of our proposed AntPivot 524

for livestream highlight segmentation compared to 525

traditional sentence classification models; (2) The 526

comparison with different model structures demon- 527

strates that the long-term memory indeed makes a 528

difference in this task, which can be easily captured 529

and maintained by Transformer-based architecture. 530

Moreover, the distant information can be further 531

denoised and compressed by our proposed mecha- 532

nism, resulting in better overall performance. (3) 533

As the tIoU thresholds increase, a distinct degrada- 534

tion could be witnessed in average precision. 535

4.4 Preliminary Analyses 536

In this section, we will conduct some experiments 537

to compare and analyze the performances with 538

model inputs and prediction strategies. 539

Analysis on Modal Inputs Table 2 demonstrates 540

the performance difference between multiple set- 541

tings of modal input combinations. The capital 542

letters “S” / “K” / “P”/ “V” represent the usage of 543

semantic / speaker / pattern embeddings / video 544

embeddings, respectively. The results are com- 545

piled and presented in Table 2, and we have the 546

following observations:(1) Compared with the pat- 547

tern embedding, the speaker information improves 548

the performance of livestream highlight segmenta- 549

7



Method
Average Precision F1

0.5 0.6 0.7 0.8 0.9 Start End

Modal Inputs Analyses

S 70.6 61.2 53.5 45.7 36.5 43.8 48.3
S+V 70.9 61.4 53.7 45.5 36.9 44.4 48.5
S+P 71.0 61.6 54.1 45.3 36.4 44.9 48.8
S+K 71.0 61.9 54.6 46.5 38.3 45.5 49.7

Prediction Strategy Analyses

Simple 70.8 60.0 52.6 42.6 34.9 37.8 43.2
Greedy 65.5 58.1 51.2 44.4 37.1 43.8 45.7

Ours 72.7 63.4 55.7 48.0 39.5 45.6 50.2

Table 2: Preliminary analyses on modal inputs and prediction strategy. The best results are given in bold.

tion across almost all metric values, especially in550

IOU@0.5 and F1-End. We assume that the speaker551

information is helpful to resolve the frequent topic552

shifts in livestreams; (2) Integrating all types of553

information, rather than just one or two, yields the554

best performance in livestream highlight segmen-555

tation, as evidenced by significant improvements556

across all metrics. Notably, the tIoU-0.9 value in-557

creased from 36.5 to 39.5, highlighting the impor-558

tance of all four types of information and validating559

the effectiveness of our proposed data processing560

schema.561

Analysis on Model Structure We investigate the562

inner structure of AntPivot. As shown in Table 1,563

we remove the shifting process, multimodal fusion,564

and pivot mechanism (i.e. only the attention com-565

putation inside each chunk is conducted) to verify566

their effects. Without the interaction between pivot567

elements, the global information cannot get trans-568

mitted and utilized in the calculation, thus hinder-569

ing the model from understanding the entire content570

comprehensively. Besides, there exists an apparent571

margin on the boundary F1 score in the absence572

of a shifting procedure, which infers this operation573

can alleviate the impact brought by the absolute po-574

sition of elements and enhance the discriminative575

ability in the local range. The removal of multi-576

modal fusion hurts the performance of AntPivot,577

which shows the effectiveness of this module.578

Analysis on Prediction Strategy To assess the579

effect of different prediction approaches in the580

inference stage, we further develop two other581

baseline strategies to compare with the dynamic-582

programming method.583

• Simple: we directly pick out all boundary584

candidates with the constraint of threshold 585

tb and select all proposals with an average 586

highlight score greater than th. 587

• Greedy: We convert this task into a multi- 588

class problem in this setting and make pairs be- 589

tween positions predicted as “start” and “end” 590

categories. 591

From Table 2, our proposed strategy behaves best 592

among them, and the Simple one is much inferior 593

to the others. The reason can be inferred intuitively 594

that the Simple strategy disrupts the order of prece- 595

dence, thus impeding the model from distinguish- 596

ing the boundary type (i.e. start or end), and the 597

assignment of threshold restricts the generalization 598

of this setting. As for the Greedy approach, it actu- 599

ally ignores the influence of relative differences in 600

confidences and probabilities, resulting in a coarse 601

and inaccurate result. 602

5 Conclusion 603

In this paper, we propose a novel livestream high- 604

light segmentation task to promote the development 605

of livestream in various fields. To accelerate the de- 606

velopment of the research community in livestream 607

highlight segmentation, we collect and release the 608

first publickly accessile dataset for livestream high- 609

light segmentation called AntHightlight. To ad- 610

dress the challenges that live stream presents, such 611

as extreme durations, large topic shifts, and much 612

irrelevant information, we develop a chunked atten- 613

tion mechanism and gating strategy to efficiently 614

integrate information, and design a dynamic pro- 615

gramming strategy to generate final predictions. 616

The comprehensive experiments demonstrate the 617

practicality of this contributed dataset and the ef- 618

fectiveness of our proposed method and strategy. 619
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A The AntHighlight Dataset762

A.1 Overview763

As a novel task, Livestream Highlight Detection764

lacks a proper and available dataset to serve as765

a benchmark. In light of this, we construct the766

AntHighlight dataset by collecting a series of767

livestream records and annotating all the bound-768

ary timestamps for the highlight segments within769

them. It consists of 3,256 livestream records fo-770

cused on the theme of funds and wealth from the771

platform supported by Alipay. AntHighlight con-772

tains almost 2649 hours of videos recorded in a773

real livestream environment with human-annotated774

highlight labels. Each video is divided into numer-775

ous clips according to sentences, and each clip is776

labeled with whether it is a highlight or not. The777

major features of AntHighlight include:778

• Open source. A lack of data could hinder the779

construction of livestream highlight detection780

systems, so we release our corpus to acceler-781

ate research in the community.782

• Authenticity. To address the issue of extract-783

ing highlights in real livestream scenearios,784

we collect livesreams from Alipay platform.785

• High quality. Strict labeling rules and labeling786

process ensure the quality of the label, and we787

further ensure the quality of the label through788

manual review.789

A.2 Data Collection and Labeling790

Collection Procedure To gather a set of recorded791

live videos related to financial topics, we collected792

Chinese live streaming data from the Alipay plat-793

form for three weeks, which encompassed solo live794

broadcasts, two-person live broadcasts, and live795

broadcasts with more than two individuals. We796

then generate transcripts using LC-SAN-M, which797

is pretrained on a 2000 hours Mandarin ASR task798

he finetune on a 60 hours Mandarin corpus. In ad-799

dition, we have hired 10 annotators to watch the800

complete live recordings and formulated strict an-801

notation standards and processes to complete the802

data annotation.803

Labeling Procedure During the data annotation804

stage, we first use common phrases such as "直805

播正式开始", "欢迎大家来到直播间", "各位直806

播间的伙伴们，大家好" to determine the start807

position of the live broadcast. Next, we identify the808

start and end positions of the topics(i.e. hightlights),809

which are mainly categorized into two situations: 810

(1)When there is a switch in speakers (which we de- 811

termine based on the appearance of spk1 and spk2 812

in the transcripts), we consider it as the end position 813

of the current speaker if spk2 talks about another 814

subject. (2)When there is no change in speakers, 815

we rely on our custom annotation rules, such as 816

defining topic transitions, identifying connecting 817

words, and using common phrases, to determine 818

the start and end positions of a topic. In this way, 819

we ensure that all text is accurately annotated. Fi- 820

nally, we conduct manual verfication to ensure the 821

high quality of the annotation results. 822

A.3 Statistical Analysis 823

After the data collection and labeling procedure, 824

we split the dataset and conduct the statistical eval- 825

uation. 826

Dataset Split For the purpose of training and 827

evaluation, we randomly divide the annotated data 828

into three subsets, including training, validation, 829

and test dataset with the size of 2656, 100, and 500 830

respectively, as shown in Figure 3(a). 831

Record Duration Statistics We classify the 832

videos in our dataset according to their duration 833

to better understand their distribution. Specifically, 834

we custom videos lasting less than 15 minutes as 835

short, those spanning between 15 to 30 minutes 836

as medium-length, those between 30 minutes to 837

one hour as long, and those exceeding one hour 838

as extremely long. As shown in Figure 3(b), over 839

78% of the videos in our dataset are longer than 840

half an hour, with less than 1% of videos lasting 841

less than 15 minutes. On average, the videos in 842

our dataset last approximately 49 minutes. As a re- 843

sult, the presence of extremely long duration pose 844

a challenge for the livestream highlight detection 845

task. 846

Highlight Statistics We also classify the videos 847

based on the proportion of highlight time to total 848

talk time to calculate the hot spot time proportion. 849

Videos with a proportion below 5% are defined as 850

extremely sparse, those between 5% and 10% as 851

sparse, those between 10% and 15% as moderate, 852

and those above 20% as dense. Figure 3(c) shows 853

that real-time live streaming videos contain a large 854

amount of redundant and irrelevant information, 855

with only 8% of videos having a highlight time pro- 856

portion exceeding 20%. This poses a challenge for 857

extracting key information in live stream highlight 858
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Figure 3: The statitics of AntHighlight. S, M, L, and XL in the record duration statistics respectively represent the
short video, middle video, long video, and extra long video. XS, S, M, and D represent the extent of highlights in
the entire record as extra sparse, sparse, moderate, and dense, respectively.

detection tasks.859

Anchor Number As shown in Figure 3(d),860

we have count the number of anchors among861

livestreams and observed that the dataset is primar-862

ily composed of one and two speakers. However,863

the 49% proportion of dual anchors still pose a864

considerable problem of topic shifting for our task.865

B Implementation Details866

B.1 Data Processing867

Semantic Embedding Any off-the-shelf auto-868

matic speech recognition module and language869

model pretrained on Chinese corpus can be used870

to produce semantic embeddings. In our exper-871

iments, we employ the LC-SAN-M proposed by872

(Zhang et al., 2020) to generate transcripts, which873

is pretrained on a 20000-hour Mandarin ASR task874

and finetuned in a 60-hour Mandarin corpus, and875

we extract the representations corresponding to the876

[CLS] token predicted by Sentence-BERT intro-877

duced in (Reimers and Gurevych, 2020) as the sen-878

tence embeddings. At the last step, we project879

the initial 768-d features into 256-d ones using a880

multi-layer perceptron.881

Speaker Embedding To produce speaker em-882

beddings, we first adopt the approach proposed by883

(Wang et al., 2021) to generate speaker labels for884

every utterance. And then, we use a 256-d lookup-885

table to project identification labels into continuous886

embeddings.887

Pattern Embedding In this part, we first gener-888

ate the 128-d logarithm mel-filterbanks from every889

utterance and downsample them into a fixed length890

of 8, resulting in the representations with the size of891

(L, 8, 128). Afterwards, we concatenate them into892

single vectors with the length of 1024 and project893

them into the 256-d subspace via a multi-layer per- 894

ceptron. 895
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