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Abstract

Livestreaming has become a prominent
medium for sharing real-time content, includ-
ing gaming, sports events, financial invest-
ment, and various other forms of live enter-
tainment. However, livestreams can be lengthy,
often spanning several hours, making it time-
consuming and challenging for users to find the
most interesting and engaging moments within
the content. In this work, we formulate the def-
inition of Livestream Highlight Segmentation
and propose the first direct Livestream High-
light Segmentation model AntPivot which al-
leviates the challenges of multi-modal fusion,
long duration, and sparse highlights. Specifi-
cally, 1) to accelerate the highlight segmenta-
tion research in the domain of insurance and
fortune, we release a fully-annotated dataset
AntHighlight; 2) we introduce a multi-modal
fusion module to encode the raw data into the
unified representation and model their tempo-
ral relations to capture clues in a chunked at-
tention mechanism; 3) we propose dynamic-
programming decoding to optimize the detec-
tion of highlight clips by searching for opti-
mal decision sequences. The extensive experi-
ments demonstrate that AntPivot outperforms
text-only models and achieves state-of-the-art
results. Ablation Studies further validate the
effectiveness of our methods. All the codes and
data will be released publicly with the camera-
ready version.!

1 Introduction

With the explosive growth of transmission speed
and storage capacity on the Internet, an increasing
amount of information with different levels of im-
portance and usefulness is interwoven into various
data flows. Meanwhile, there is also an irreversible
tendency that people’s available time is becom-
ing more and more fragmented. As a result, users
rarely have enough time or attention to separate the
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valuable information from the other useless part.
For the sake of efficiency and convenience in the
interaction, it’s essential to extract key information
from unprocessed data to help users get what they
need with little effort. Under this requirement and
circumstance, researchers try to design automatic
algorithms to segment salient or highlight parts in
different kinds of data.

In recent years, significant research (Yu et al.,
2019; Su et al., 2020; Zhang et al., 2021; Yu
et al., 2022) has introduced joint modeling of vi-
sion and language. MCAN (Yu et al., 2019) pro-
poses the deep modular co-attention networks be-
tween vision and language, which performs the
cross-modal alignment by concisely maximizing
the cross-attention. After that, there is a consen-
sus (Wang et al., 2022b,a; Bao et al., 2022) to uti-
lize a cross-attention mechanism to bridge different
modalities. VL-BERT (Su et al., 2020) introduce
modality-aligned representations for generic vision-
language understanding with the MLM paradigm.
Despite these advances, there remain significant
obstacles to designing multi-modal networks due
to differences between modalities, and modeling
livestream inputs. A multi-modal highlight segmen-
tation model may open up a host of practical appli-
cations: locating highlights to provide users with
personalized recommendations, highlight tracking,
or expressing information.

Despite the benefits of multi-modal approaches,
several challenges remain, including (1) contrary
to other kinds of videos, livestreams are usually
extremely long in duration, varying from dozens of
minutes to several hours, (2) a mass of noise and
useless information, such as slips of the tongue,
greetings and chit-chats, which harms the perfor-
mance of methods to a large extent, and (3) there
always exist topic shifts and gaps in the expres-
sions of livestreamers, resulting in low coherence
and cohesion of corpus.

To this end, we first formulate the task of



Livestream Highlight Segmentation as the segmen-
tation and importance evaluation on the temporal
dimension of livestreams. Considering there is no
benchmark dataset available in this area, a bunch
of livestream records in the domain of insurance
and fortune are collected from the platform sup-
ported by AliPay to construct a new dataset called
AntHighlight to facilitate this task. To provide an
elementary solution to accomplish the goal stated
previously, we construct a novel architecture to
extract and analyze the semantic information com-
prehensively and select highlight fragments from
the untrimmed livestreams efficiently. Specifically,
we first encode the raw data in different views and
combine them into the inputs of our model. Af-
terward, we utilize a novel chunked attention mod-
ule, named Pivot Transformer, to capture temporal
dependencies and integrate representations from
different semantic levels. Finally, a series of confi-
dences and probabilities are calculated to determine
the prediction results in a dynamic-programming
manner.

In conclusion, the main contributions of this pa-
per can be summarized in the following aspects:

* We formulate the task of Livestream Highlight
Segmentation and inject the training objectives
and dynamic programming decoding to solve
this problem.

* We release the first fully-annotated livestream
highlight segmentation benchmark dataset An-
tHighlight.

* Through introducing multimodal fusion and
pivot transformer, we propose the first di-
rect livestream highlight segmentation model
AntPivot, which alleviates the problem of long
durations, topic shifts, and sparse highlights.

» Experimental results on the AntHighlight
demonstrate that our model outperforms the
baselines and achieves state-of-the-art perfor-
mances.

2 Related Work

Text / Scene Segmentation The task of text seg-
mentation is to split documents or discourse into
individual parts. In the early stage, researchers tried
to apply some lexicon-based (Hearst, 1997; Choi,
2000) and statistics-based approaches (Utiyama
and Isahara, 2001; Eisenstein, 2009) to tackle this
problem. Afterward, some efficient neural mod-
ules for sequence modeling, such as CRF (Wang

et al., 2018), PointerNetwork (Li et al., 2018)
and BERT (Lukasik et al., 2020), were also em-
ployed to boost better performance and general-
ization. Similarly, there also exist valuable dis-
cussions about the splitting of videos composed
of complex scenes. Among them, early works
(Rasheed and Shah, 2003; Chasanis et al., 2009)
tried to utilize low-level features and carefully de-
sign heuristic methods. To explore supervised-
learning strategies, some researchers constructed
a variety of new datasets based on documentaries
(Baraldi et al., 2015), short films (Rotman et al.,
2017), long movies (Rao et al., 2020) etc. Differ-
ent from text/scene segmentation, livestream high-
light segmentation needs to model and fusion multi-
modal inputs and filter out the useless fragments to
obtain highlights.

Proposal Generation Given an untrimmed
video, the goal of action proposal generation is
to ascertain a set of temporal boundaries with
high probability or confidence to contain action
instances. Current prevailing approaches can be
mainly divided into two categories, namely anchor-
based methods (Gao et al., 2017; Yang et al., 2021)
and boundary-based ones (Tan et al., 2021; Su et al.,
2021). The former first define a group of hand-
crafted proposal pre-definitions and choose candi-
dates from them in a ranking-based manner, while
the latter will directly locate the possible action
boundaries in a classification or regression way.
Compared with this task, livestream highlight ex-
traction mainly focuses on the comprehension and
understanding of streamers’ speech data, which
have a higher semantic gap and lower redundancy
than video data. Besides, the model in our scenario
should not generate overlapping proposals, which
is allowed and sometimes necessary in the task of
action proposal generation.

Multimodal Learning It has been an increas-
ing interest in multimodal modeling on language-
visual (Lei et al., 2021; Bao et al., 2022; Yu
et al., 2022) and audio-visual (Shi et al., 2022;
Huang et al., 2023). BeiT-v3 (Wang et al., 2022a)
proposes to take images in a foreign language
with a more fine-grained cross-modal mask-and-
reconstruction process, sharing partial parameters.
Clip-Bert (Lei et al., 2021) employs sparse sam-
pling to enable affordable end-to-end learning for
video-and-language tasks. In the domain of audio-
visual learning, AV-Hubert (Shi et al., 2022) in-
troduces a self-supervised representation learning
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Figure 1: Overall diagram of our proposed AntPivot architecture. The </> annotation represents zero-pad in the
sequence, and the overall calculations are all conducted in the sentence level.

framework for audio-visual speech. Subsequently,
(Huang et al., 2023) leverage the success of AV-
Hubert and propose the cross-modal distillation to
reduce the data scarcity of visual data. Despite
these advances, most research in multimodal learn-
ing has focused on two modalities, and may not
directly contribute to video, speech, and text mod-
eling.

3 Method
3.1 Problem Definition

Given a long and unprocessed livestream record
R, the task of livestream highlight extraction aims
to retrieve all proposals for highlight topics and
discussions. To be specific, the livestream record
can be annotated as R = (V, A), where V and A
represents visual and audio data respectively. And
our goal is to construct a proper model to generate
a series of proposals covering the most valuable
parts of the entire livestream, which can be given
as

P ={(s1,€1),(s2,€2),---,(sp,€p)}

where p is the number of proposals and (s;,e;)
is the start and end timestamp for i-th proposal
satisfying

()

Si < e < Siv1 < €i41,Vi € {1,2,...,]?—1}.

3.2 Overall Architecture

Figure 1 demonstrates the overall architecture and
calculation procedure of our proposed method. We
introduce a data-to-representation modeling proce-
dure to project data to a final representation. And
then, we apply the pivot transformer to help us

model the context information and estimate high-
light scores for each utterance, and we will use the
final representations to calculate the confidences
of utterances to be boundaries. Finally, the bound-
ary confidences and highlight scores will be ag-
gregated and used as a reference in the dynamic-
programming calculation.

3.3 Data-to-Representation Modeling

We propose a novel multimodal modeling scheme
designed to transform data across various modali-
ties into the final embedding. Because of the lack
of a unified multimodal network to model differ-
ent modalities, We first get the different modality
embeddings and then fuse them. The details of
embedding are as follows.

Semantic Embedding We transform the speech
data into the corresponding transcripts via an auto-
matic speech recognition module. Afterward, a pre-
trained language model is employed to squeeze ev-
ery sentence of transcripts into a single embedding,
which can be annotated as S = {s; }_; where L is
the number of transcripts.

Speaker Embedding We introduce the speaker
information to alleviate the problem of topic shifts.
In practice, we turn to the solution proposed in
(Wang et al., 2021) for effective speaker verifica-
tion and then project the identification label into
speaker embeddings, given by K = {k;}1 ;.

Pattern Embedding Considering that most
streamers tend to switch their mood, stress, or pitch
of voice when talking about something important or
valuable to arouse the audience’s attention and in-
terest, we downsample the mel-frequency spectrum
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Figure 2: Detailed structure of our proposed Pivot Transformer (left part) and gating mechanism (right part). The
blue dashed line represents dataflow between adjacent iterations.

of speech pieces into a fixed length and concate-
nate them sequentially to seek out useful temporal
patterns within every utterance, which is annotated

as P = {pi}le.

Video Embedding To obtain visual information
such as livestream popularity, attention, and charts,
a pre-trained 3D CNNs model is adopted to map
the video fragments into video embeddings, which
is annotated as V = {V,;}£ .

To alleviate the embedding dimension mismatch
among different embeddings, we add the modality
adaptor consisting of a multilayer perceptron and
then include a modality dropout to mask the full
features of one modality before fusing audio and
visual inputs. After that, we compose them in an
addition-based manner. Specifically, the final em-
beddings which are fed into our model can be given
asE = {ei}le, where e; = s; + p; +k; +v; and
all these embeddings are projected into the space
of RY. 2

3.4 Pivot Transformer

Due to the large computation cost of global atten-
tion mechanism, it can be unbearable to utilize a
vanilla transformer to deal with livestreams with
a long duration under some constraints of devices.
Additionally, there also exist massive topic shifts
and irrelevant information, which makes the de-
noising and purification of information significant.
In consideration of this, we devise a novel Pivot
Transformer to alleviate the challenges of long du-
rations, sparse highlights, and topic shifts.

Initialization In the first stage, we employ a bi-
directional gated recurrent unit proposed by (Cho

The dimension of representations keeps the same unless
specified in the following sections.

et al., 2014) to generate the initial individual and
global representations, given by

= Bi-GRU([eq,--- ,er]), (2)

where g € R< and &; € R? are the final state and
output for the i-th step respectively. After that,
the input features will be divided into N multiple
consecutive chunks with the length of M = | £ |,
and the rearranged sequence of utterances can be
ordered as

g, [éh' o 7éL]

) =8 1xmpy, 1<i<N,1<j<M,
3)
where r ;€ R¢ represents the j-th element in the 4-
th chunk And then, an External Gate module (will
be described below) is applied to generate a group
of weights and dynamically aggregate elements
into higher-level features which are called pivots in

this paper. The calculation can be formulated by
w? t) =

R

ExternalGate(r?) T, 4)

7r2M))

where w9 € RM and t{ € RY represent the gating
weights and initial pivot of i-th chunk respectively.

Update Mechanism Given the initialized pivots
and elements, we try to exploit a chunked atten-
tion mechanism to incorporate context information
efficiently. To be specific, in the /-th loop of inter-
action, a multi-head attention mechanism proposed
in (Vaswani et al., 2017) will be first adopted within
every chunk to integrate local information, formu-
lated as

[tzv i1 7ré,M] :MHA([téiaré,ill"" ’réjj\/l[])7
)
where MHA(---) stands for the standard multi-

head attention calculation. Subsequently, the pivot



features will be reaggregated using an Internal
Gate module (will be described below), given by

wl tL = InternalGate(t!, riyl, e ,ré’M), (6)

17 71
After this operation, the pivot representations can
be treated as a reasonable and refined compression
in a local range. To further capture the global con-
text, another attention computation will be carried
on the sequence of pivots, given as

[tllv T 7th] = MHA([(Ell +Ell)ﬂ N (ElN"i_EéV)])

(7
In the next step, the updated pivots will be fed
into the (! 4 1)-th loop to pass information to the
elements within every chunk and the overall proce-
dure mentioned above will be repeated for a total
of B times. In this iterative calculation, the pivots
actually act as a vital role to interact between local
and global ranges. After the updating iterations, we
first flatten the gating weights and updated repre-
sentations as described below to proceed the final
prediction.

~l l ~ B
Wi ynrsg = (Wi)js €u—1)xar+j = Tijr (8)

After this, we calculate the average value of gating
weights in different layers as the highlight con-
fidences, and predict the boundary probabilities
using the final representations, which can be given
by

B
b; = MLP(&;), (9)
=0

1 4
o ~
h; = 5 1]2 o(w/),

where MLP(-) is a multi-layer perceptron mod-
ule and o (-) is the sigmoid function with o(x) =
1

1+ex
It’s worth mentioning that we copy the original

sequence, shift the elements M /2 to the right and
repeat the above operations in practice as shown in
the right part of Figure 1, which is designed to keep
the range of local receptive field at 3M /2 to prevent
the influence caused by absolute element positions.
And all the final predictions will be shifted back
and calculate the average results with the normal
sequence.

Local-Global Gate In this paragraph, we will in-
troduce the gating mechanism used in the structure
of pivot transformer, which is designed to estimate
the importance of every utterance to predict the

highlight score and ensure the essential informa-
tion to be squeezed into the corresponding pivots.
In the calculation, we consider the local context,
global information and individual representation
synthetically. As depicted in the framed region of
Figure 2, a group of global and local features will
be generated and concatenated with the original
sequence and then the gating weights will be pro-
duced via a multi-layer perceptron and be utilized
to form the aggregation features, given as:

e”Ll)

I

(10)
where [; ] is the concatenation operator and g, 1;, r;
stand for the global, local and individual represen-
tations corresponding to the i-th element respec-
tively.

According to the position of the gating unit in the
structure, we further customize different schema
for the external and internal ones. In the former
ones, we utilize a 1D-convolution operator with a
receptive field of M /2 to capture local information
and take the final state of Bi-GRU as the global
information. And for the latter, we directly treat
the pivot features in the previous step as the lo-
cal representations and calculate the global one by
averaging all the elements in the sequence.

w; = MLP([g; Li;r), t=>_

Complexity Analysis and Comparison Given
the description of operations in this architecture,
we analyze and compare the theoretical complexity
of pivot transformer and the vanilla one in this
part. By decomposing the original computation
into a two-step chunked mechanism, the cost of
O(L?d) in the attention layer can be reduced to
O(N - M2d + N2d) = O((% + N2)d). The
complexity achieves the optimum of (’)(L% d) with
N = G)(Lg),butin practice we set N = M = +/L
for better efficiency in parallel computing.

3.5 Training Loss
Two Objectives have been used to optimize the

AntPivot model.

Boundary Loss It is used to guide an accurate
boundary recognition for the highlight clips, which
can be formulated as:

L
Ly=— (bilog(bi) + (1 - b;) log(1 — b)),

i=1
(11)



Highlight Loss It’s still difficult for the model to
address this problem without any extra knowledge
because there are still no adequate clues for the
selection and filter of highlight parts. Therefore,
we further apply the item of Highlight Loss to help
the model discriminate highlight segments from
others, given by

L

Ly=—Y (hilog(hi)+ (1 -

=1

hi)log(1 — hi)),

(12)
where b; € {0,1} and h; € {0,1} are the bound-
ary and highlight indicators for the ground-truth
annotation of i-th utterance respectively.

Finally, the overall loss function in the training
process can be composed in a weighted way, given
as

L=Ly+ ALy, (13)

where A is the hyper-parameter to balance these
two parts.

3.6 Dynamic-programming Decoding

Given the highlight confidences {h;}% ; and the
boundary probabilities {b;}~_,, our goal is to ascer-
tain an optimal prediction sequence to maximize
the accumulative score on the final decision path.
To make it clear, we first categorize all the possible
states of the i-th utterance into four types:(1) the
start boundary of the proposal; (2) the middle po-
sition of the proposal; (3) the end boundary of the
proposal; (4) not contained in any proposal.

And then, we use f; ; to represent the maximal
score accumulated to the i-th element in the j-th
state listed above. Therefore, the state transition
equation can be designed as

max(fi-12, fi-14) +bi  J=
fio = max(fi-1,1, fi-13) +bi  J=
E max(fi—11, fi—1.3) + hibi j=3

max(fi_12, fi—14) + hib; j=4

where h; and b; respectively denote 1—h; and 1—b;,
the initial states are setas f11 = b1, fi2 = fi3 =
—oo and fi 4 = (1 — h1)(1 — by) because only the
start and out state are legal for the first utterance.
Given the states and transition equations defined
above, we can make the predictions in a dynamic-
programming way, and record all the decisions
related to the optimal result along the sequence.
Afterward, we backtrack the optimal decision
path from the better states in f7, 3 or fr, 4 to recover

the entire sequence of choices and predictions. In
this way, we can explore all valid combinations
of decisions holistically and generate a stable and
reliable result. Finally, we will map the sentence-
level predictions to the corresponding timestamps
S0 as to generate results in seconds.

4 Experiment
4.1 Metrics

To evaluate the effectiveness of models objectively
and automatically, we adopt two criteria widely
used in the related fields, namely Average Preci-
sion and Boundary F1 Score.

Average Precision The task of livestream high-
light detection aims to generate proposals to cover
the target highlight parts tightly. Therefore, the
quality of predictions is determined by the over-
lap with the ground-truth intervals. Following the
conventional protocol in the area of action seg-
mentation, we use Average Precision with tloU
thresholds {0.5, 0.6, 0.7, 0.8, 0.9} to measure the
performance.

Boundary F1 Score In addition to the loU-based
metrics, the evaluation of boundary classification
should get concerned as well, because an accurate
boundary prediction can not only boost the over-
all precision but also greatly reduce the expense
of manual modification and revision to the final
results. Considering the application scenarios in
reality, we directly desert the intervals within 10
seconds and treat the predictions with a minimal
difference of fewer than 5 seconds from ground-
truth boundaries as correct ones. Under this cir-
cumstance, every predicted boundary will match
at most one ground-truth one in the metric calcula-
tion. Take the evaluation of start timestamps as an
example, the F1 score can be calculated as

p

p= I( min (|s; —§,]) <5), (15)
DX gnin (s = 55) <)

F1:2><Prec><Rec_ 2p (16)

- (+p)
where () is the indicator function, and {s;, éi}le
and {s;, e;}¥_, stand for the ground-truth proposals
and predicted ones, respectively.

Prec+ Rec

4.2 Implementation Details

Model Setting Considering the maximal se-
quence length reaches about 900, we set N =
VL = 30 as mentioned in the previous section.



Average Precision F1
Method 05 06 07 08 09 |Sart End
Sent-Bert 66.6 57.0 49.2 417 332|427 46.0
XINet 67.1 584 506 43.1 343|413 45.1
Roberta 673 584 509 437 36.1 | 441 479
XL-Transformer 715 619 54.6 465 389|450 49.7
Longformer 71.6 61.0 547 466 394 | 457 493
AntPivot 727 634 557 48.0 395 | 456 50.2
- Pivot 70.7 612 539 455 373 | 47.1 482
- Shift 719 617 543 458 384|459 46.8
- MultiModal Fusion | 70.6 61.2 53.5 45.7 36.5 | 43.8 483

Table 1: Comparison with baselines and ablation studies on the AntHighlight dataset. The best results are given in

bold.bold.

This setting is also available for the situation where
L > 900, and the practical complexity will in-
crease accordingly. The dimension d used in our
model is set as 256. For all transformer-based archi-
tecture, the number of heads is 4 and sandwich lay-
ernorm mechanism (i.e. both pre-LN and post-LN
are utilized) is adopted. In the pivot transformer, B
is set as 3 and the number of attention layer stacked
in every stage is 2. As for the transformers and
GRU in the experiment part, the number of layers
is set as 6 to keep consistency. Apart from this,
the attention length of Transformer-XL and the at-
tention window size of Longformer are all set as
N =L = 30.

Optimization and Inference All the experi-
ments are conducted on one piece of Tesla P100.
In the training procedure, we employ AdamW opti-
mizer proposed by (Loshchilov and Hutter, 2019)
with warmup strategy (Vaswani et al., 2017) and
cosine annealing learning (Loshchilov and Hutter,
2016). The maximal learning rate of is set as 3e-4
and the weight decay is fixed at 5e-5. To prevent
overfitting, a dropout strategy with p = 0.4 is ap-
plied in the structure. The training will last for 20
epochs and we select the checkpoint with the best
performance on the validation dataset. And in the
inference stage, all the scores will be pre-processed
via a min-max normalization to guarantee a stable
prediction. The thresholds in Simple strategy are
setas t, = 0.25 and t;, = 0.7.

4.3 Model Performance

In this study, we conduct a comprehensive
comparison with other systems, including 1)
Sentence-BertForSequenceClassfication (Reimers
and Gurevych, 2020), abbreviated as Sent-Bert;
2) XINetForSequenceClassfication (Yang et al.,

2020), abbreviated as XINet; 3) RobertaForSe-
quenceClassfication (Xu, 2021), abbreviated as
Roberta; 4) Longformer (Beltagy et al., 2020), re-
placing the pivot transformer with longformer; 5)
Transformer-XL (Dai et al., 2019), replacing the
pivot transformer with transformer-x1. The results,
compiled and presented in Table 1, provide valu-
able insights into the effectiveness of our approach:

(1) Our model surpassed all sentence classifi-
cation baselines across all metric scores. This
shows the superiority of our proposed AntPivot
for livestream highlight segmentation compared to
traditional sentence classification models; (2) The
comparison with different model structures demon-
strates that the long-term memory indeed makes a
difference in this task, which can be easily captured
and maintained by Transformer-based architecture.
Moreover, the distant information can be further
denoised and compressed by our proposed mecha-
nism, resulting in better overall performance. (3)
As the tloU thresholds increase, a distinct degrada-
tion could be witnessed in average precision.

4.4 Preliminary Analyses

In this section, we will conduct some experiments
to compare and analyze the performances with
model inputs and prediction strategies.

Analysis on Modal Inputs Table 2 demonstrates
the performance difference between multiple set-
tings of modal input combinations. The capital
letters “S” / “K” / “P”/ “V” represent the usage of
semantic / speaker / pattern embeddings / video
embeddings, respectively. The results are com-
piled and presented in Table 2, and we have the
following observations:(1) Compared with the pat-
tern embedding, the speaker information improves
the performance of livestream highlight segmenta-



Average Precision F1
Method =556 07 08 09 | Stat End
Modal Inputs Analyses
S 70.6 612 535 457 365|438 483
S+V | 709 614 537 455 369 | 444 485
S+P | 71.0 61.6 54.1 453 364|449 488
S+K | 71.0 619 54.6 465 383 | 455 49.7
Prediction Strategy Analyses
Simple | 70.8 60.0 52.6 42.6 349 | 37.8 432
Greedy | 65.5 58.1 512 444 37.1 | 43.8 45.7
Ours | 72.7 634 557 48.0 395 | 45.6 50.2

Table 2: Preliminary analyses on modal inputs and prediction strategy. The best results are given in bold.

tion across almost all metric values, especially in
IOU@0.5 and F1-End. We assume that the speaker
information is helpful to resolve the frequent topic
shifts in livestreams; (2) Integrating all types of
information, rather than just one or two, yields the
best performance in livestream highlight segmen-
tation, as evidenced by significant improvements
across all metrics. Notably, the tloU-0.9 value in-
creased from 36.5 to 39.5, highlighting the impor-
tance of all four types of information and validating
the effectiveness of our proposed data processing
schema.

Analysis on Model Structure We investigate the
inner structure of AntPivot. As shown in Table 1,
we remove the shifting process, multimodal fusion,
and pivot mechanism (i.e. only the attention com-
putation inside each chunk is conducted) to verify
their effects. Without the interaction between pivot
elements, the global information cannot get trans-
mitted and utilized in the calculation, thus hinder-
ing the model from understanding the entire content
comprehensively. Besides, there exists an apparent
margin on the boundary F1 score in the absence
of a shifting procedure, which infers this operation
can alleviate the impact brought by the absolute po-
sition of elements and enhance the discriminative
ability in the local range. The removal of multi-
modal fusion hurts the performance of AntPivot,
which shows the effectiveness of this module.

Analysis on Prediction Strategy To assess the
effect of different prediction approaches in the
inference stage, we further develop two other
baseline strategies to compare with the dynamic-
programming method.

» Simple: we directly pick out all boundary

candidates with the constraint of threshold
tp and select all proposals with an average
highlight score greater than ¢j,.

* Greedy: We convert this task into a multi-
class problem in this setting and make pairs be-
tween positions predicted as “start” and “end”
categories.

From Table 2, our proposed strategy behaves best
among them, and the Simple one is much inferior
to the others. The reason can be inferred intuitively
that the Simple strategy disrupts the order of prece-
dence, thus impeding the model from distinguish-
ing the boundary type (i.e. start or end), and the
assignment of threshold restricts the generalization
of this setting. As for the Greedy approach, it actu-
ally ignores the influence of relative differences in
confidences and probabilities, resulting in a coarse
and inaccurate result.

5 Conclusion

In this paper, we propose a novel livestream high-
light segmentation task to promote the development
of livestream in various fields. To accelerate the de-
velopment of the research community in livestream
highlight segmentation, we collect and release the
first publickly accessile dataset for livestream high-
light segmentation called AntHightlight. To ad-
dress the challenges that live stream presents, such
as extreme durations, large topic shifts, and much
irrelevant information, we develop a chunked atten-
tion mechanism and gating strategy to efficiently
integrate information, and design a dynamic pro-
gramming strategy to generate final predictions.
The comprehensive experiments demonstrate the
practicality of this contributed dataset and the ef-
fectiveness of our proposed method and strategy.



References

Hangbo Bao, Wenhui Wang, Li Dong, Qiang Liu,
Owais Khan Mohammed, Kriti Aggarwal, Sub-
hojit Som, and Furu Wei. 2022. VImo: Uni-
fied vision-language pre-training with mixture-of-
modality-experts.

Lorenzo Baraldi, Costantino Grana, and Rita Cucchiara.
2015. A deep siamese network for scene detection
in broadcast videos. Proceedings of the 23rd ACM
international conference on Multimedia.

1z Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. ArXiv,
abs/2004.05150.

Vasileios Chasanis, Aristidis Likas, and Nikolas P. Galat-
sanos. 2009. Scene detection in videos using shot
clustering and sequence alignment. IEEE Transac-
tions on Multimedia, 11:89-100.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder—decoder for
statistical machine translation. In EMNLP.

Freddy Y. Y. Choi. 2000. Advances in domain indepen-
dent linear text segmentation. In ANLP.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Car-
bonell, Quoc V. Le, and Ruslan Salakhutdinov. 2019.
Transformer-x1: Attentive language models beyond a
fixed-length context. ArXiv, abs/1901.02860.

Jacob Eisenstein. 2009. Hierarchical text segmentation
from multi-scale lexical cohesion. In NAACL.

J. Gao, Zhenheng Yang, Chen Sun, Kan Chen, and
Ramakant Nevatia. 2017. Turn tap: Temporal unit re-
gression network for temporal action proposals. 2017
IEEE International Conference on Computer Vision
(ICCV), pages 3648-3656.

Marti A. Hearst. 1997. Text tiling: Segmenting text into
multi-paragraph subtopic passages. Comput. Linguis-
tics, 23:33-64.

Rongjie Huang, Huadai Liu, Xize Cheng, Yi Ren, Lin-
jun Li, Zhenhui Ye, Jinzheng He, Lichao Zhang,
Jinglin Liu, Xiang Yin, and Zhou Zhao. 2023. Av-
transpeech: Audio-visual robust speech-to-speech
translation.

Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L.
Berg, Mohit Bansal, and Jingjing Liu. 2021. Less is
more: Clipbert for video-and-language learning via
sparse sampling.

J. Li, Aixin Sun, and Shafiq R. Joty. 2018. Segbot: A
generic neural text segmentation model with pointer
network. In IJCAL

Ilya Loshchilov and Frank Hutter. 2016.
Stochastic gradient descent with restarts.
abs/1608.03983.

Sgdr:
ArXiv,

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Michal Lukasik, Boris Dadachev, Gonccalo Simoes, and
Kishore Papineni. 2020. Text segmentation by cross
segment attention. ArXiv, abs/2004.14535.

Anyi Rao, Linning Xu, Yu Xiong, Guodong Xu,
Qingqiu Huang, Bolei Zhou, and Dahua Lin. 2020. A
local-to-global approach to multi-modal movie scene
segmentation. 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
10143-10152.

Zeeshan Rasheed and Mubarak Shah. 2003. Scene de-
tection in hollywood movies and tv shows. 2003
IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 2003. Proceedings.,
2:11-343.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Daniel Rotman, Dror Porat, and Gal Ashour. 2017. Op-
timal sequential grouping for robust video scene de-
tection using multiple modalities. Int. J. Semantic
Comput., 11:193-208.

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Ab-
delrahman Mohamed. 2022. Learning audio-visual
speech representation by masked multimodal cluster
prediction.

Haisheng Su, Weihao Gan, Wei Wu, Junjie Yan, and
Y. Qiao. 2021. Bsn++: Complementary boundary
regressor with scale-balanced relation modeling for
temporal action proposal generation. In AAAL

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. Vl-bert: Pre-training
of generic visual-linguistic representations.

Jing Tan, Jiaqi Tang, Limin Wang, and Gangshan Wu.
2021. Relaxed transformer decoders for direct action
proposal generation. ArXiv, abs/2102.01894.

Masao Utiyama and Hitoshi Isahara. 2001. A statistical
model for domain-independent text segmentation. In
ACL.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Wenhui Wang, Hangbo Bao, Li Dong, Johan
Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subho-
jit Som, and Furu Wei. 2022a. Image as a foreign
language: Beit pretraining for all vision and vision-
language tasks.


http://arxiv.org/abs/2111.02358
http://arxiv.org/abs/2111.02358
http://arxiv.org/abs/2111.02358
http://arxiv.org/abs/2111.02358
http://arxiv.org/abs/2111.02358
http://arxiv.org/abs/2305.15403
http://arxiv.org/abs/2305.15403
http://arxiv.org/abs/2305.15403
http://arxiv.org/abs/2305.15403
http://arxiv.org/abs/2305.15403
http://arxiv.org/abs/2102.06183
http://arxiv.org/abs/2102.06183
http://arxiv.org/abs/2102.06183
http://arxiv.org/abs/2102.06183
http://arxiv.org/abs/2102.06183
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
http://arxiv.org/abs/2201.02184
http://arxiv.org/abs/2201.02184
http://arxiv.org/abs/2201.02184
http://arxiv.org/abs/2201.02184
http://arxiv.org/abs/2201.02184
http://arxiv.org/abs/1908.08530
http://arxiv.org/abs/1908.08530
http://arxiv.org/abs/1908.08530
http://arxiv.org/abs/2208.10442
http://arxiv.org/abs/2208.10442
http://arxiv.org/abs/2208.10442
http://arxiv.org/abs/2208.10442
http://arxiv.org/abs/2208.10442

Yizhong Wang, Sujian Li, and Jingfeng Yang. 2018. To-
ward fast and accurate neural discourse segmentation.
In EMNLP.

Zhiming Wang, Furong Xu, Kaisheng Yao, Yuan Cheng,
Tao Xiong, and Huijia Zhu. 2021. Antvoice neural
speaker embedding system for ffsvc 2020. Inter-
speech 2021.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yu-
lia Tsvetkov, and Yuan Cao. 2022b. Simvlm: Simple
visual language model pretraining with weak super-
vision.

Zhuo Xu. 2021. Roberta-wwm-ext fine-tuning for chi-
nese text classification.

Haosen Yang, Wenhao Wu, Lining Wang, Sheng Jin,
Boyang Xia, Hongxun Yao, and Hujie Huang. 2021.
Temporal action proposal generation with back-
ground constraint.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2020.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Ye-
ung, Mojtaba Seyedhosseini, and Yonghui Wu. 2022.
Coca: Contrastive captioners are image-text founda-
tion models.

Zhou Yu, Jun Yu, Yuhao Cui, Dacheng Tao, and Qi Tian.
2019. Deep modular co-attention networks for visual
question answering.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei
Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jian-
feng Gao. 2021. Vinvl: Revisiting visual representa-
tions in vision-language models.

Shiliang Zhang, Zhifu Gao, Haoneng Luo, Ming Lei,
Jie Gao, Zhijie Yan, and Lei Xie. 2020. Streaming
chunk-aware multihead attention for online end-to-
end speech recognition. ArXiv, abs/2006.01712.

10


http://arxiv.org/abs/2108.10904
http://arxiv.org/abs/2108.10904
http://arxiv.org/abs/2108.10904
http://arxiv.org/abs/2108.10904
http://arxiv.org/abs/2108.10904
http://arxiv.org/abs/2103.00492
http://arxiv.org/abs/2103.00492
http://arxiv.org/abs/2103.00492
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
http://arxiv.org/abs/2205.01917
http://arxiv.org/abs/2205.01917
http://arxiv.org/abs/2205.01917
http://arxiv.org/abs/1906.10770
http://arxiv.org/abs/1906.10770
http://arxiv.org/abs/1906.10770
http://arxiv.org/abs/2101.00529
http://arxiv.org/abs/2101.00529
http://arxiv.org/abs/2101.00529

A The AntHighlight Dataset

A.1 Overview

As a novel task, Livestream Highlight Detection
lacks a proper and available dataset to serve as
a benchmark. In light of this, we construct the
AntHighlight dataset by collecting a series of
livestream records and annotating all the bound-
ary timestamps for the highlight segments within
them. It consists of 3,256 livestream records fo-
cused on the theme of funds and wealth from the
platform supported by Alipay. AntHighlight con-
tains almost 2649 hours of videos recorded in a
real livestream environment with human-annotated
highlight labels. Each video is divided into numer-
ous clips according to sentences, and each clip is
labeled with whether it is a highlight or not. The
major features of AntHighlight include:

* Open source. A lack of data could hinder the
construction of livestream highlight detection
systems, so we release our corpus to acceler-
ate research in the community.

* Authenticity. To address the issue of extract-
ing highlights in real livestream scenearios,
we collect livesreams from Alipay platform.

* High quality. Strict labeling rules and labeling
process ensure the quality of the label, and we
further ensure the quality of the label through
manual review.

A.2 Data Collection and Labeling

Collection Procedure To gather a set of recorded
live videos related to financial topics, we collected
Chinese live streaming data from the Alipay plat-
form for three weeks, which encompassed solo live
broadcasts, two-person live broadcasts, and live
broadcasts with more than two individuals. We
then generate transcripts using LC-SAN-M, which
is pretrained on a 2000 hours Mandarin ASR task
he finetune on a 60 hours Mandarin corpus. In ad-
dition, we have hired 10 annotators to watch the
complete live recordings and formulated strict an-
notation standards and processes to complete the
data annotation.

Labeling Procedure During the data annotation
stage, we first use common phrases such as "HE.
BRIEFTT IR, WO K ZREIHRE A", &AL H
FEEI Bk AT, KRZKIF" to determine the start
position of the live broadcast. Next, we identify the
start and end positions of the topics(i.e. hightlights),
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which are mainly categorized into two situations:
(1)When there is a switch in speakers (which we de-
termine based on the appearance of spkl and spk2
in the transcripts), we consider it as the end position
of the current speaker if spk2 talks about another
subject. (2)When there is no change in speakers,
we rely on our custom annotation rules, such as
defining topic transitions, identifying connecting
words, and using common phrases, to determine
the start and end positions of a topic. In this way,
we ensure that all text is accurately annotated. Fi-
nally, we conduct manual verfication to ensure the
high quality of the annotation results.

A.3 Statistical Analysis

After the data collection and labeling procedure,
we split the dataset and conduct the statistical eval-
uation.

Dataset Split For the purpose of training and
evaluation, we randomly divide the annotated data
into three subsets, including training, validation,
and test dataset with the size of 2656, 100, and 500
respectively, as shown in Figure 3(a).

Record Duration Statistics We classify the
videos in our dataset according to their duration
to better understand their distribution. Specifically,
we custom videos lasting less than 15 minutes as
short, those spanning between 15 to 30 minutes
as medium-length, those between 30 minutes to
one hour as long, and those exceeding one hour
as extremely long. As shown in Figure 3(b), over
78% of the videos in our dataset are longer than
half an hour, with less than 1% of videos lasting
less than 15 minutes. On average, the videos in
our dataset last approximately 49 minutes. As a re-
sult, the presence of extremely long duration pose
a challenge for the livestream highlight detection
task.

Highlight Statistics We also classify the videos
based on the proportion of highlight time to total
talk time to calculate the hot spot time proportion.
Videos with a proportion below 5% are defined as
extremely sparse, those between 5% and 10% as
sparse, those between 10% and 15% as moderate,
and those above 20% as dense. Figure 3(c) shows
that real-time live streaming videos contain a large
amount of redundant and irrelevant information,
with only 8% of videos having a highlight time pro-
portion exceeding 20%. This poses a challenge for
extracting key information in live stream highlight
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a) Dataset Split b) Record Duration Statistics (c) Highlight Statistics (d) Anchor Number Statistics

Figure 3: The statitics of AntHighlight. S, M, L, and XL in the record duration statistics respectively represent the
short video, middle video, long video, and extra long video. XS, S, M, and D represent the extent of highlights in
the entire record as extra sparse, sparse, moderate, and dense, respectively.

detection tasks. them into the 256-d subspace via a multi-layer per-

ceptron.
Anchor Number As shown in Figure 3(d),

we have count the number of anchors among
livestreams and observed that the dataset is primar-
ily composed of one and two speakers. However,
the 49% proportion of dual anchors still pose a
considerable problem of topic shifting for our task.

B Implementation Details

B.1 Data Processing

Semantic Embedding Any off-the-shelf auto-
matic speech recognition module and language
model pretrained on Chinese corpus can be used
to produce semantic embeddings. In our exper-
iments, we employ the LC-SAN-M proposed by
(Zhang et al., 2020) to generate transcripts, which
is pretrained on a 20000-hour Mandarin ASR task
and finetuned in a 60-hour Mandarin corpus, and
we extract the representations corresponding to the
[CLS] token predicted by Sentence-BERT intro-
duced in (Reimers and Gurevych, 2020) as the sen-
tence embeddings. At the last step, we project
the initial 768-d features into 256-d ones using a
multi-layer perceptron.

Speaker Embedding To produce speaker em-
beddings, we first adopt the approach proposed by
(Wang et al., 2021) to generate speaker labels for
every utterance. And then, we use a 256-d lookup-
table to project identification labels into continuous
embeddings.

Pattern Embedding In this part, we first gener-
ate the 128-d logarithm mel-filterbanks from every
utterance and downsample them into a fixed length
of 8, resulting in the representations with the size of
(L, 8,128). Afterwards, we concatenate them into
single vectors with the length of 1024 and project
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