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Abstract

Topological deep learning (TDL) is a rapidly growing field that seeks to leverage topological
structure in data and facilitate learning from data supported on topological objects. Most
TDL architectures can be unified under the framework of higher-order message-passing
(HOMP), which generalizes graph message-passing to higher order domains. In the first
part of the paper, we explore HOMP’s expressive power from a topological perspective,
demonstrating the framework’s inability to express fundamental topological and metric in-
variants such as diameter, orientability, planarity, and homology. In the second part of the
paper, we develop two new classes of TDL architectures – multi-cellular networks (MCN)
and scalable MCN (SMCN) – which draw inspiration from expressive graph architectures.
MCN can reach full expressivity, but scaling it to large data objects can be computa-
tionally expansive. Therefore, SMCN is designed as a more scalable alternative that still
mitigates many of HOMP’s expressivity limitations. In the third part of the paper, we de-
sign benchmarks for evaluating TDL models on their ability to learn topological properties
of complexes. We then evaluate SMCN on these benchmarks as well as real-world graph
datasets, demonstrating improvements both over HOMP baselines and expressive graph
methods, highlighting the value of expressively leveraging topological information.

Keywords: Topological Deep Learning, Higher-Order Message-Passing, Expressivity.

1. Introduction

Topological deep learning (TDL) is an emerging field focused on learning from data sup-
ported on topological objects. Higher-order message-passing (HOMP) (Hajij et al., 2022a,b)
has emerged as a key framework in TDL, unifying architectures designed for various topo-
logical data types. Originally introduced for simplicial complexes (Bodnar et al., 2021b),
HOMP has been successively adapted to cellular complexes (Bodnar et al., 2021a; Hajij
et al.), and more recently to combinatorial complexes (Hajij et al., 2022a,b). The HOMP
framework extends traditional message-passing neural networks (MPNNs) (Gilmer et al.,
2017), widely used in graph learning, to higher-order topological domains.

Despite their widespread adoption, MPNNs are known to struggle with expressivity limita-
tions, often failing to distinguish even simple non-isomorphic graphs (Morris et al., 2019; Xu
et al., 2018). This realization has led to a substantial body of work dedicated to develop-
ing more expressive graph architectures (Morris et al., 2023). Given HOMP’s similarity to
MPNNs, a natural question arises: what are the limitations of higher-order message-passing
architectures in distinguishing topological objects? This question, highlighted in a recent
position paper (Papamarkou et al., 2024), is the main focus of this paper. In the first part
of the paper, we demonstrate HOMP’s inability to differentiate between complexes based
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(a) Diameter (b) Orientability/planarity (c) Homology

Figure 1: Pairs of CCs differing in fundamental metric/topological properties that are
HOMP-indistinguishable . 1(a) tori with different diameters (20 and 22); 1(b) a
Möbius strip and a cylinder differing in both orientability and planarity; 1(c) a
torus and a pair of disconnected tori, differing in all non-trivial homology groups.

on several fundamental topological and metric invariants, including diameter, orientability,
planarity, and homology groups.

In the second part of the paper, we introduce two new classes of TDL architectures, multi-
cellular networks (MCN) and scalable MCN (SMCN), designed to address HOMP’s expres-
sivity limitations. MCN draws inspiration from invariant graph networks (IGNs) (Maron
et al., 2018, 2019; Keriven and Peyré, 2019) and can reach full expressivity, although scaling
it to large structures can be computationally expensive. SMCN is a more scalable alterna-
tive to MCN that applies expressive GNNs to graph structures defined over the cells of the
complex. SMCN still mitigates many of HOMP’s expressivity limitations and can be easily
applied to large scale real-world datasets.

We create two datasets for assessing the ability of TDL architectures to capture topological
information. We empirically evaluate SMCN on these datasets and on real-world graph
benchmarks. SMCN outperforms both standard HOMP architectures and expressive GNNs,
highlighting the value of expressively leveraging topological information.

2. Preliminaries

Combinatorial complexes. Combinatorial complexes (CCs) are a class of higher-order
objects that can flexibly model many types of hierarchical data. Most TDL domains,
including simplicial complexes, cellular complexes, and hypergraphs, are subclasses of com-
binatorial complexes. Therefore, throughout the paper data is assumed to be in the form
of a combinatorial complex.

Definition 2.1 (Combinatorial complex) A combinatorial complex (CC) is a 3-tuple
pS,X , rkq comprised of a node set S, a cell set X Ď PpSqzH, and a rank function rk : X Ñ

Zě0 such that @s P S, tsu P X , rkptsuq “ 0, and @x, y P X x Ď y ñ rkpxq ď rkpyq.

The set of cells of rank r (r-cells) is called the r-skeleton and is denoted by Xr “ rk´1prq.
By slight abuse of notation, we sometimes use X to refer to the entire CC.

Higher-order message-passing. Data supported on a CC can be viewed as a collection
of functions th : Xr Ñ Rdruℓr“0. Higher-order message passing (HOMP) (Hajij et al.,
2022b) is a general computational framework, encompassing many TDL architectures, that
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processes cellular information by exchanging messages among cells. HOMP architectures
are defined via the following update rule:

hpt`1q
x “ β

˜

k
â

i“1

à

yPNipxq

MLP
ptq
i,rkpxq

´

hptq
x ,hptq

y

¯

¸

, (1)

where
Â

and
À

are aggregation functions,
À

is permutation invariant, tNi : X Ñ

PpX quki“1 are a fixed set of neighborhood functions controlling cell connectivity, and β is a
non-linearity. The neighborhood functions used in HOMP are the upper/lower incidence
and (co)adjacency defined in Appendix A.

3. Expressive Power of Higher-Order Message-Passing

As with GNN expressivity, we study HOMP’s ability to distinguish non-isomorphic CCs.
We develop a topological criterion that identifies when a pair of CCs is indistinguishable by
HOMP, extending the results of Bamberger (2022) from graphs to combinatorial complexes.

Theorem 3.1 (HOMP indistinguishability criterion) Let X and X 1 be ℓ-dimensional
CCs such that |X0| “ |X 1

0|. If there exists a CC X̃ that covers each of the connected compo-
nents of both X and X 1, then for every HOMP model M , MpX q “ MpX 1q.

We use Theorem 3.1 to demonstrate HOMP’s inability to distinguish between complexes
based on the following common topological and metric invariants: (1) diameter, which
measures how “spread out” the complex is; (2) orientability, which captures whether a
“side” or “direction” can be consistently defined across the entire space; (3) planarity which
captures whether the complex can be embedded in the plane; (4) homology groups, which
encode the structure of “r-dimensional holes”.

Theorem 3.2 (Topological blindspots) For any invariant I P tdiameter, orientability,
planarity, homologyu there exists a pair of HOMP-indistinguishable CCs that differ in I.

Figure 1 depicts pairs of HOMP-indistinguishable CCs which differ in each of the above
invariants. In addition, Appendix B provides a detailed discussion regarding each invariant,
as well as complete proofs of Theorem 3.2 and Theorem 3.1.

4. (Scalable) Multi-cellular Networks

MCN and SMCN. To mitigate the expressivity limitations outlined in the previous sec-
tion, we design two classes of TDL architectures, inspired by expressive GNN architectures.
The first class, termed Multi-cellular Networks (MCN) adapts the k-IGN framework (Maron
et al., 2018) to CCs by introducing updates over multi-cellular cochain spaces. Similarly to
k-IGNs, MCN can reach full expressivity but is expensive to implement in full generality.
Therefore, we construct scalable MCN (SMCN) by replacing the most computationally ex-
pensive updates with expressive GNNs often used as a practical alternative to k-IGNs. Full
descriptions of both methods are provided in Appendix C.

MCN and SMCN expressive power. As mentioned, MCN is fully expressive – for
every pair of non-isomorphic CCs, X and X 1, there exists an MCN model M such that
MpX q ‰ MpX 1q. For SMCN, every pair of HOMP-indistinguishable CCs listed in Figure 1
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can be separated by an SMCN model. Additionally, SMCN can compute the diameter of
any CC, and the Betti numbers of cellular complexes representing surfaces embeddable in
R3. A detailed discussion of MCN and SMCN’s expressive power appears in Appendix D.

5. Experiments

Model ZINC MOLHIV MOLESOL

MAE (Ó) ROC-AUC (Ò) RMSE (Ó)

GCN (Kipf and Welling, 2016) 0.321 ˘ 0.009 76.06 ˘ 0.97 1.114 ˘ 0.036
GIN (Xu et al., 2018) 0.163 ˘ 0.004 75.58 ˘ 1.40 1.173 ˘ 0.057

CIN (Bodnar et al., 2021a) 0.079 ˘ 0.006 80.94 ˘ 0.57 1.288 ˘ 0.026
CIN++ (Giusti et al., 2023) 0.077 ˘ 0.004 80.63 ˘ 0.94 ´

Cellular Transformer (Ballester et al., 2024) 0.080˚ 79.46˚ ´

PPGN (Maron et al., 2019) 0.079 ˘ 0.005 ´ ´

PPGN++ (6) (Puny et al., 2023) 0.071 ˘ 0.001 ´ ´

DSS-GNN (Bevilacqua et al., 2021) 0.102 ˘ 0.003 76.78 ˘ 1.66 ´

SUN (Frasca et al., 2022) 0.083 ˘ 0.003 80.03 ˘ 0.55 ´

GNN-SSWL+ (Zhang et al., 2023) 0.070 ˘ 0.005 79.58 ˘ 0.35 ´

Subgraphormer (Bar-Shalom et al., 2023) 0.067 ˘ 0.007 80.38 ˘ 1.92 0.832 ˘ 0.043
Subgraphormer + PE (Bar-Shalom et al., 2023) 0.063 ˘ 0.001 79.48 ˘ 1.28 0.826 ˘ 0.010

SMCN (ours) 0.060 ˘ 0.004 81.16 ˘ 0.90 0.809 ˘ 0.037

Table 1: SMCN outperforms MPNNs , HOMP and
expressive GNNs on various graph regres-
sion and classification tasks.

We empirically evaluate SMCN
with two sets of experiments.
First, we evaluate SMCN’s abil-
ity to learn topological and metric
properties of cellular complexes on
two novel benchmarks. Then, we
test SMCN on graph classification
and regression tasks1.

Topological/metric property
prediction. We design two bench-
marks based on the zinc dataset
(Sterling and Irwin, 2015). Graphs
are lifted into CCs by adding cy-
cles of length ď 18 as 2-cells. We test SMCN’s ability to classify the resulting CCs by their
cross diameter (18 possible values) and 2nd Betti number (6 possible values). We compare
CIN (Bodnar et al., 2021a), a custom HOMP architecture designed and tuned for each
task, and SMCN. The results, presented in Table 2, demonstrate SMCN’s superior ability
in learning topological and metric properties of CCs.

Model Cross-diameter 2-nd Betti number

Accuracy (Ò) Accuracy (Ò)

CIN 34.78 ˘ 3.00% 42.15 ˘ 25.22%
Custom HOMP 67.87 ˘ 12.26% 81.76 ˘ 10.06%
SMCN 92.76 ˘ 0.53% 99.61 ˘ 0.12%

Table 2: Accuracy of predicting cross-
diameter and the 2-nd Betti number
of lifted zinc graphs.

Graph benchmarks. On zinc (Sterling
and Irwin, 2015; Dwivedi et al., 2023), mol-
hiv and molesol (Hu et al., 2020) SMCN
outperforms both standard HOMP baselines
as well as expressive graph methods, high-
lighting the value of expressively leveraging
higher-order topological information.

See Appendix E for additional experiments
and further details.

6. Conclusion

We analyze the topological expressivity of HOMP — the dominant framework in TDL.
Despite the fact that HOMP operates on topological data, we prove its inability to express
key topological and metric invariants (diameter, orientability, planarity and homology). To
mitigate this limitation we extend HOMP, constructing two expressive TDL frameworks.
MCN generalizes k-IGNs to CCs and SMCN utilizes efficient and expressive GNNs to in-
crease HOMPs expressivity. MCN can reach full expressivity and that SMCN is strictly
more expressive than HOMP. Experimentally, SMCN outperforms both expressive graph
methods and HOMP architectures on several benchmarks.

1. All graphs lifted to CCs by adding cycles as 2-cells.
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Lió, and Michael Bronstein. Weisfeiler and lehman go topological: Message passing
simplicial networks. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 1026–1037. PMLR, 18–24 Jul 2021b. URL https:

//proceedings.mlr.press/v139/bodnar21a.html.

Michael Bronstein. Using subgraphs for more ex-
pressive gnns. https://towardsdatascience.com/

using-subgraphs-for-more-expressive-gnns-8d06418d5ab, December 2021.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep
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Appendix A. Extended Preliminaries

Notation. We use rns “ t1, . . . , nu.
À

and
Â

denote aggregation functions (i.e. func-
tions Sˆ¨ ¨ ¨ˆS Ñ S).

À

is used for permutation invariant aggregation (i.e. @ps1, . . . , snq P

S ˆ ¨ ¨ ¨ ˆ S,@σ P Sn,
Àn

i“1 sσ´1piq “
Àn

i“1 si), and
Â

denotes aggregations that are not
necessarily permutation invariant. Multisets are denoted by tta1, . . . , anuu. The size of a set
S is denoted by |S|. We use bold lower case letters (e.g. k) for tuples of integers. ei P Nℓ`1,
0-indexed, represents the tuple with one at the ith positions and zeros elsewhere.

Neighborhood functions. Neighborhood functions are a key component in HOMP, facil-
itating dynamic aggregation of information across cells. Formally, a neighborhood function
is a function N : X Ñ PpX q. The most common neighborhood functions are:

1. The pr1, r2q-adjacency and co-adjacency, defined by:

Ar1,r2pxq “ ty P Xr1 | Dz P Xr2 s.t. x, y Ď zu,

coAr1,r2pxq “ ty P Xr1 | Dz P Xr2 s.t. z Ď x, yu,
(2)

for x P Xr1 , and Ar1,r2pxq “ coAr1,r2pxq “ H for x R Xr1 .

2. The pr1, r2q-upper and lower incidence, defined by:

Br1,r2pxq “ ty P Xr2 | x Ď yu, BJ
r1,r2pxq “ ty P Xr2 | y Ď xu, (3)

for x P Xr1 , and Br1,r2pxq “ BJ
r1,r2pxq “ H for x R Xr1 .

We call the above natural neighborhood functions, a collection denoted by N nat. Given
an enumeration of the cells, a neighborhood functions can be represented in matrix form.
E.g. we can represent a graph G “ pV, Eq as a one dimensional combinatorial complex
pV,X0 Y X1, rkq by setting X0 “ ttvu | v P Vu, X1 “ E , and rkpxq “ 0 for nodes and 1
for edges. In this case, the matrix form of the adjacency neighborhood function A0,1 is the
graph adjacency matrix, while the incidence neighborhood function B0,1 corresponds to the
graph incidence matrix.

Cochain spaces. Data defined over an ℓ-dimensional CC can be viewed as a collection
of functions thr : Xr Ñ Rdruℓr“0 (in general, dr1 ‰ dr2 , e.g. for a molecule atoms might
have a different number of features than bonds). Each of these functions is called a cochain
or a cell feature map. The vector space of all cochains on cells of rank r is denoted by
CrpX ,Rdrq, often abbreviated as Cr. The feature associated with a cell x P Xr is denoted
by hrpxq, phrqx, or simply hx when the rank is clear from context.

Higher-order message-passing. Higher-order message passing (HOMP) (Hajij et al.,
2022b) is a general computational framework that processes cellular information defined
on a higher-order domain by exchanging messages among cells using a set of neighborhood
functions. Let N “ tN1, . . . ,Nku be a collection of neighborhood functions, given an initial
cochain hp0q “ h, HOMP is recursively defined via the following update rule:

hpt`1q
x “ β

˜

k
â

i“1

à

yPNipxq

MLP
ptq
i,rkpxq

´

hptq
x ,hptq

y

¯

¸

, (4)
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where h
ptq
x is the feature associated with cell x P X at layer t, β is a non-linear activation, and

tMLP
ptq
i,rui“1,...,k,r“0,...,ℓ,t“0,...T´1 are MLPs, one for each neighborhood function, rank and

layer. In the following, unless specified otherwise we assume N Ď N nat. Similar to graph
message-passing, the HOMP framework encompasses many TDL architectures, including
simplicial complex architectures (Bodnar et al., 2021b), cellular complex architectures (Hajij
et al.; Bodnar et al., 2021a; Giusti et al., 2023) and combinatorial complex architectures
(Hajij et al., 2022a,b).

C0 C2

A0,1

B0,2 BJ
2,0

pcoqA2,0

out

Figure 2: HOMP tensor di-
agram.

Tensor diagrams. To navigate the space of HOMP archi-
tectures Hajij et al. (2022a) introduce tensor diagrams, a nota-
tion scheme for specifying HOMP architectures using DAGs.
Tensor diagrams allow for selective aggregation over different
neighborhood functions for different cochain spaces in different
layers of the network. The nodes of a tensor diagram corre-
spond to cochain spaces, and the edges to neighborhood func-
tions. At each level of the diagram the signal flows from the
source nodes to the target nodes using the update rule speci-
fied in Equation 4, where aggregation is performed only over
neighborhood functions associated with the incoming edges

(this is equivalent to setting MLP
ptq
i,r ” 0 for neighborhood

functions Ni that are not associated with an incoming edge).
See Hajij et al. (2022b) for a detailed overview.

Appendix B. Expressive Limitations of HOMP

The expressivity of graph models is often evaluated based on their ability to distinguish
between pairs of non-isomorphic graphs. Generalizing to other TDL domains, we develop
topological tools to understand when a pair of CCs is indistinguishable by HOMP. Although
CCs are combinatorial objects, they can induce various metric and topological structures.
The shortest path distance with respect to any neighborhood function defines a metric on
the cells of the CC. In addition, if the complex is cellular or simplicial, it can be canonically
associated with a topological space. The topological properties of these spaces are invariants
of the underlying CC, therefore the question of their usefulness in distinguishing CCs is well
defined.

B.1. A Topological Criterion for HOMP-Indistinguishability

We extend the topological graph WL indistinguishability characterization introduced by
Bamberger (2022) to combinatorial complexes. As a first step, we introduce the notion of
a CC cover.

Definition B.1 (CC covering) A X̃ covers X if there exists a surjective rank and in-
clusion preserving map ρ : X̃ Ñ X which is a local isomorphism with respect to natu-
ral neighborhood functions (i.e. ρ bijectivly maps N px1q Ñ N pρpx1qq for all x1 P X̃ and
N P N nat).
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The next theorem, which is a formal restatement of Theorem 3.1, outlines the relationship
between CC covering and HOMP-indistinguishability:

Theorem B.2 (HOMP indistinguishability criterion) Let X , X 1 be two CCs of di-
mension ℓ with no cell features such that |X0| “ |X 1

0|. If X and X 1 admit decompositions
into connected components

X “
ğ

ZPCpX q

Z, X 1 “
ğ

Z 1PCpX 1q

Z 1, (5)

such that DX̃ that is covers each of the connected components Z P CpX q,Z 1 P CpX 1q, then
for every HOMP model M , MpX q “ MpX 1q.

A combinatorial complex X is said to be connected if the Hasse graph, defined by G “ pV, Eq

with V “ X and E “ tpx, yq | x Ď y, rkpxq “ rkpyq´1u, is connected. To prove Theorem B.2,
we first prove two lemmas.

Lemma B.3 Let X and X̃ be CCs of dimension ℓ such that X̃ covers X via the covering

map ρ : X̃ Ñ X . In addition, let M be a HOMP model with T layers, and let h
ptq
x and h̃

ptq
x1

denote the cell feature maps of X and X̃ at layer t evaluated on cells x P X and x1 P X̃
respectively. Under these conditions, h̃

ptq
x1 “ h

ptq
ρpx1q

, for t “ 0, . . . , T , x1 P X̃ .

Proof We use induction on t. For t “ 0, as both CCs have no initial cellular feature maps,

HOMP initializes h
p0q
x , h̃

p0q

x1 by assigning a constant feature to all cells and the claim holds
trivially. Assume the claim holds for some t P t0, . . . , T u. The HOMP update rule reads:

hpt`1q
x “ β

˜

â

NPN nat

à

yPN pxq

MLP
ptq
N ,rkpxq

phptq
x ,hptq

y q

¸

,

h̃
pt`1q

x1 “ β

˜

â

NPN nat

à

y1PN px1q

MLP
ptq
N ,rkpx1q

ph̃
ptq
x1 , h̃

ptq
y1 q

¸

.

(6)

Since ρ is a covering map, N px1q is bjectively mapped to N pρpx1qq for every x1 P X̃ and every
neighborhood function N P N nat. Additionally, rkpρpx1qq “ rkpx1q. This, along with the

fact that
À

is permutation invariant, and the induction hypothesis (h̃
ptq
x1 “ h

ptq
ρpx1q

) implies

that:
à

y1PN px1q

MLP
ptq
N ,rkpx1q

ph̃
ptq
x1 , h̃

ptq
y1 q “

à

yPN pρpx1qq

MLP
ptq
N ,rkpρpx1qq

ph
ptq
ρpx1q

,hptq
y q. (7)

Thus, combining Equation (6) and Equation (7), we get h̃
pt`1q

x1 “ h
pt`1q

ρpx1q
.

Lemma B.4 If X is connected and ρ : X̃ Ñ X is a covering map, @x P X , |ρ´1pxq| “
|X̃0|

|X0|
.

Proof Since ρ is surjective and rank preserving, the above is equivalent to @x, y P X ,
|ρ´1pyq| “ |ρ´1pxq|. Since X is connected, it suffices to show that this equality holds for
any x, y P X such that y P N pxq for some function N P N nat. We first show that for any
natural neighborhood function N P N nat and cell x P X the sets tN px1q | x1 P ρ´1pxqu are
pairwise disjoint. To see this, assume by contradiction that for a pair of cells x1

1, x
1
2 P ρ´1pxq

10
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we have N px1
1q XN px1

2q ‰ H. If z1 P N px1
1q XN px1

2q, then there is a neighborhood function
N ˚ P N nat such that x1

1, x
1
2 P N ˚pz1q. Given that ρpx1

1q “ ρpx1
2q, this would imply that

ρ is not injective on N ˚pz1q, contradicting the definition of a covering map. Now, since
y P N pxq, for any x1 P ρ´1pxq there exists a y1 P N px1q such that ρpy1q “ y. Since the
set tN px1q | x1 P ρ´1pxqu is pairwise disjoint this implies that |ρ´1pyq| ě |ρ´1pxq|. Since
y P N pxq, there exists a neighborhood function N ˚ P N nat such that x P N ˚pyq, implying
by the same reasoning above that |ρ´1pyq| ď |ρ´1pxq|. We thus have |ρ´1pyq| “ |ρ´1pxq|

which concludes the proof.

We are now ready to prove Theorem B.2.

Proof Let X̃ be a combinatorial complex that covers all connected components Z P CpX q

and Z 1 P CpX 1q via maps the maps tρZuZPCpX q and tρZ 1uZ 1PCpX 1q respectively. Let M be a

HOMP model with T layers and let hptq, h1ptq, and h̃ptq denote the cell feature maps of X ,
X 1, and X̃ respectively at layer t. Lemma B.3 implies that for every Z P CpX q, Z 1 P CpX 1q

and every z P Z, z1 P Z 1 we have

hpT q
z “ h̃pT q

y @y P ρ´1
Z pzq,

h
1pT q

z1 “ h̃pT q
y @y P ρ´1

Z 1 pz1q.
(8)

This implies that the sets of unique values corresponding to the multisets tth
pT q
x | x P X uu,

tth
1pT q

x1 | x1 P X 1uu and tth̃
pT q
y | y P X̃ uu are the same. Let ny, n

1
y, ñy be the number of times

the value h̃
pT q
y appear in the multisets tth

pT q
x | x P X uu, tth

1pT q

x1 | x1 P X 1uu and tth̃
pT q
y | y P X̃ uu

respectively. Since each Z,Z 1 are connected, we can use Lemma B.4 to get that @z P Z,

@z1 P Z 1, |ρ´1
Z pzq| “

|X̃0|

|Z0|
and |ρ´1

Z 1 pz1q| “
|X̃0|

|Z 1
0|
. This implies that @y P X̃

ny “ ñy ¨

¨

˝

ÿ

ZPCpX q

|Z0|

|X̃0|

˛

‚, n1
y “ ñy ¨

¨

˝

ÿ

Z 1PCpX 1q

|Z 1
0|

|X̃0|

˛

‚. (9)

Since
ř

ZPCpX q |Z0| “ |X0| “ |X 1
0| “

ř

Z 1PCpX 1q |Z 1
0|, this implies that @y P X̃ , ny “ n1

y.

We have shown the set of unique values corresponding to multisets tth
pT q
x | x P X uu and

tth
1pT q
x | x1 P X 1uu is the same, and that the number of times each value appears in the

multisets is the same, thus the two multisets are equal. Since the readout of a HOMP
model can is a function this multiset, X and X 1 are indistinguishable by HOMP.

B.2. Topological and Metric Limitations of HOMP

In this section, we rigorously state and proof all results presented in Section 3 regrading
HOMPs inability to distinguish CCs based topological/metric properties. We begin by
defining the ℓ-dimensional torus CCs. This class contains examples of indistinguishable
CCs which differ in both the diameter and homology groups.

11
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Torus CCs. An ℓ-dimensional torus is a Cartesian product of ℓ cycles. More formally:

Definition B.5 (ℓ-dimensional torus CCs) For a sequence of integers p1, . . . , pℓ, the
torus Tp1,...,pℓ is a combinatorial complex pS,X , rkq defined by:

S “ rp1s ˆ ¨ ¨ ¨ ˆ rpℓs, (10)

Xr “ tsk | s P S,k P t0, 1uℓ, k1 ` ¨ ¨ ¨ ` kℓ “ ru, (11)

where sk is defined by:
sk “ ts ` k1 | k1 P t0, 1uℓ,k1 ď ku. (12)

The sum s ` k1 is coordinate-wise, where at coordinate j result is taken modulo pj ; we say
that k1 ď k if k1

j ď kj ,@j P t1, . . . , ℓu. See Figure 1(a) for an illustration of a 2-dimensional
torus. Note that Definition B.5 is only one possible realization of the an ℓ-dimensional torus
as a combinatorial complex. As the next lemma shows, all ℓ-dimensional tori are locally
isometric.

Lemma B.6 (Joint covering) Let Tp1,...,pℓ and Tp1
1,...,p

1
ℓ
be two ℓ-dimensional tori such

that @j P t1, . . . , ℓu, pj , p
1
j ě 3. The torus Tp1¨p1

1,...,pℓ¨p1
ℓ
covers both Tp1,...,pℓ and Tp1

1,...,p
1
ℓ
.

Proof Denote p “ pp1, . . . , pℓq, p
1 “ pp1

1, . . . , p
1
ℓq, p̃ “ pp̃1, . . . , p̃ℓq “ pp1 ¨ p1

1, . . . , pℓ ¨ p1
ℓq.

Additionally, denote by S, S1, S̃, and X , X 1, X̃ the nodes and cell sets of Tp, Tp1 and Tp̃

respectively. Define ρ : S̃ Ñ S, ρ1 : S̃ Ñ S1 by:

ρpsq “ s mod p,

ρ1psq “ s mod p1,
(13)

where s mod p “ ps1 mod p1, . . . , sℓ mod pℓq. We extend ρ and ρ1 to X̃ by ρpxq “

tρpsq | s P xu. To prove that ρ is a covering map, we start by showing that @r P t0, . . . ℓu,
ρpX̃rq “ Xr (i.e. ρ is rank preserving). Recall that all elements of X̃r are of the form sk for
some s P S̃ and k P t0, 1uℓ such that k1 ` ¨ ¨ ¨ ` kℓ “ r. Since p ă p̃, for every k1 ď k:

ps ` k1 mod p̃q mod p “ ps mod pq ` k1 mod p “ ρpsq ` k1 mod p. (14)

Therefore, ρpskq “ ρpsqk P Xr, and ρ is rank preserving. Notice that since ρ is defined on
the node set S̃, for every x, y, z P X̃ we have:

• x Ď y ñ ρpxq Ď ρpyq.

• x, y Ď z ñ ρpxq, ρpyq Ď ρpzq.

• z Ď x, y ñ ρpzq Ď ρpxq, ρpyq.

Thus, ρ preserves all natural neighborhood functions. Finally, since p1, . . . , pℓ ě 3 it is easy
to check that for any x1 ‰ y1 P X̃ and N P N nat:

y1 P N px1q ñ ρpx1q ‰ ρpy1q, (15)

so ρ bijectively maps N px1q Ñ N pρpx1qq. This implies that ρ is a covering map. An
equivalent argument shows that ρ1 is also a covering map, completing the proof.

Lemma B.6 gives rise to the following useful corollary.
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Corollary B.7 If Tp1,...,pℓ and Tp1
1,...,p

1
ℓ
are ℓ-dimensional tori such that p1 ¨ ¨ ¨ pℓ “ p1

1 ¨ ¨ ¨ p1
ℓ

(i.e. Tp1,...,pℓ and Tp1
1,...,p

1
ℓ
have the same number of 0-cells) and @j P t1, . . . , ℓu, pj , p

1
j ě 3,

then for every HOMP model M , MpTp1,...,pℓq “ MpTp1
1,...,p

1
ℓ
q.

Proof Both Tp1,...,pℓ and Tp1
1,...,p

1
ℓ
are connected, have the same number of 0-cells (pTp1,...,pℓq0 “

p1 ¨ ¨ ¨ pℓ “ p1
1 ¨ ¨ ¨ p1

ℓ “ pTp1
1,...,p

1
ℓ
q0), and are covered by Tp1¨p1

i,...,pℓ¨p1
ℓ
. Therefore, Theorem B.2

implies that Tp1,...,pℓ and Tp1
1,...,p

1
ℓ
are indistinguishable by HOMP.

Note, that tori with the same number of nodes can still differ on a number of topological
and metric properties. In the following we use the family of ℓ dimensional tori to produces
examples of topologically/metrically distinct CCs that are indistinguishable by HOMP.

Diameter. For a given (co)adjacency neighborhood function pcoqAr1,r2 , the pr1, r2q-diameter
of a combinatorial complex X is defined by

diampcoqAr1,r2
pX q “ max

x,x1PXr1

dpcoqAr1,r2
px, x1q, (16)

where dpcoqAr1,r2
is the shortest path distance with respect to neighborhood function pcoqAr1,r2 .

Additionally, for k P t0, . . . , ℓu, the pr1, r2, kq cross diameter is defined by

diamk
pcoqAr1,r2

pX q “ max
xPXr1
yPXk

min
x1Ďy

dpcoqAr1,r2
px, x1q. (17)

In this section we show that HOMP is unable to compute diameters of CCs, using ℓ-
dimensional tori as a counter example. Corollary B.7 implies that any pair of ℓ-dimensional
tori with the same number of nodes (0-cells) is indistinguishable by HOMP, therefore it is
enough to construct such tori with different diameters. E.g. the tori T4,4,32 and T8,8,8 have
the same number of 0-cells but different diameters and cross-diameters for any (co)adjacency
function and k “ 1, 2, 3. This can be extended to tori of any dimensions. More formally we
have the following proposition for the p0, 1q-diameter.

Proposition B.8 If Tp1,...,pℓ and Tp1
1,...,p

1
ℓ
are ℓ-dimensional tori satisfying

1. p1 ¨ ¨ ¨ pℓ “ p1
1 ¨ ¨ ¨ p1

ℓ,

2. @j P t1, . . . , ℓu, pj , p
1
j ě 3, and

3.
řℓ

j“1t
pj
2 u ‰

řℓ
j“1t

p1
j

2 u,

then

diamA0,1pTp1,...,pℓq ‰ diamA0,1pTp1
1,...,p

1
ℓ
q (18)

but for any HOMP model M ,

MpTp1,...,pℓq “ MpTp1
1,...,p

1
ℓ
q. (19)

Proof Conditions 1 and 2 imply that Tp1,...,pℓ and Tp1
1,...,p

1
ℓ
are indistinguishable by HOMP.

To see that they have different diameters, observe that the graph induced on the nodes of
Tp1,...,pℓ by the adjacency neighborhood A0,1 is the Cartesian product of the cyclic graphs

13
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Cycpp1q, . . . ,Cycppℓq. Consequently, since the diameter of a Cartesian product is equal to
the sum of diameters over the factors of the product, we have:

diamA0,1pTp1,...,pℓq “

ℓ
ÿ

j“1

diampCycppjqq “

ℓ
ÿ

j“1

t
pj
2

u ‰

ℓ
ÿ

j“1

t
p1
j

2
u

“

ℓ
ÿ

j“1

diampCycpp1
jqq

“ diamA0,1pTp1
1,...,p

1
ℓ
q.

(20)

Homology and Betti numbers. The r-th homology group of a cellular complex 2 en-
codes the structure of “r-dimensional holes” in the space (e.g. a circle has a singe 1-
dimensional hole, a sphere has a single 2-dimensional hole etc). We denote the r-th homol-
ogy of a CC X by HrpX q. The rank of the r-th homology group (the size of its minimal
generating set) is called the r-th Betti number, denoted by brpX q.

Proposition B.9 (HOMP cannot distinguish complexes based on homology) Let
T “ Tp1,...,pℓ be an ℓ-dimensional torus and T 1 “ Tp11,...,p

1
ℓ

\ Tp21,...,p
2
ℓ
be a disjoint union of

two disconnected tori. If p1 ¨ ¨ ¨ pℓ “ p11 ¨ ¨ ¨ p1ℓ ` p21 ¨ ¨ ¨ p2ℓ and @j P t1, . . . , ℓu, pj , p
1
j , p

2
j ě 3,

then T and T 1 are HOMP-indistinguishable but have different homology groups and Betti
number of all orders: @r P t0, . . . , ℓu, HrpT q ‰ HrpT 1q, brpT q ‰ brpT 1q.

Proof First, Lemma B.6 implies that the T, T1, and T2 have a common cover. Thus,
since T and T 1 have the same number of cells, Theorem B.2 implies they are HOMP-

indistinguishable. Additionally, for every HrpT q “ Zpℓ
rq (see e.g. Hatcher (2002)) and since,

T 1 is a disjoint union of T1 and T2, HrpT 1q “ HrpT1q ˆ HrpT2q “ Zpℓ
rq ˆ Zpℓ

rq “ Z2pℓ
rq.

Therefore, @r P t0, . . . , ℓu, HrpT q ‰ HrpT 1q and brpT q “
`

ℓ
r

˘

‰ 2
`

ℓ
r

˘

“ brpT 1q.

Orientability. We now turn our attention to HOMPs capability to to detect another
common topological property: orientability. Loosely speaking, a surface is orientable if one
can distinguish between an “inner” and an “outer” side of the surface. A common example
of two locally isomorphic surfaces where one is orientable and the other is not is the Möbius
strip and a cylinder. For an in depth discussion about orientability and the Möbius strip see
Hatcher (2002). We now realize both of these surfaces as cellular complexes. A visualization
of the construction can be seen in Figure 1(b). We begin by defining two auxiliary functions.

Definition B.10 For h, p P N define the following two functions ρh,pcyl , ρ
h,p
möb : Z

2 Ñ Z2:

ρh,pcyl psq “ ps1, s2 mod pq (21)

ρh,pmöbpsq “

#

s1, s2 mod r s2 mod 2p ď p

ph ` 1 ´ s1, s2 mod rq s2 mod 2p ą p.
(22)

2. Homology is not defined for general combinatorial complexes, only for simplicial/cellular complexes.
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Using ρh,pcyl and ρh,pmöb we can construct the cylinder and the Möbius strip.

Definition B.11 (Cylinder as CC) Given a height h and perimeter p, the cylinder Cylh,p
is a 2-dimensional combinatorial complex pS,X , rkq defined by:

S “ rhs ˆ rps, (23)

Xr “ tsk | s P S,k P t0, 1u2, k1 ` k2 “ r, ρh,pcyl ps ` kq P Su, (24)

X “ X0 Y X1 Y X2, (25)

where sk is defined by:

sk “ tρh,pcyl ps ` k1q | k1 P t0, 1u2,k1 ď ku. (26)

Definition B.12 (Möbius strip as a CC) Given two integers h, p, the Möbius strip
Möbh,p is a 2-dimensional combinatorial complex pS,X , rkq defined by:

S “ rhs ˆ rps, (27)

Xr “ tsk | s P S,k P t0, 1u2, k1 ` k2 “ r, ρh,pmöbps ` kq P Su, (28)

X “ X0 Y X1 Y X2, (29)

where sk is defined by:

sk “ tρh,pmöbps ` kq | k1 P t0, 1u2,k1 ď ku. (30)

We now show HOMP is unable to distinguish between CCs based on orientability:

Proposition B.13 (HOMP cannot detect orientability) For any two integers h, p P

N such that h, p ě 3, and for every HOMP model M , Cylh,p and Möbh,p are HOMP-
indistinguishable, but Cylh,p is orientable as a topological space while Möbh,r is not.

Figure 3: Cylh,2p covers both
Cylh,p and Möbh,p.

Proof First, the fact that the cylinder is orientable,
whereas the Möbius strip is not is well known (see
e.g. Hatcher (2002) for proof). As for HOMP-
indistinguishably, consider the wide cylinder Cylh,2p with
height h and perimeter 2p. We show that Cylh,2p cov-
ers both Cylh,p and Möbh,p. Since the two CCs are con-
nected and have the same number of nodes, Theorem B.2
implies that they are HOMP-indistinguishable. Denote
by S̃, Scyl, Smöb and X̃ , X cyl, Xmöb the sets of nodes
and cells of Cylh,2p, Cylh,p and Möbh,p respectively. De-

fine ρ : S̃ Ñ Scyl and ρ1 : S̃ Ñ Smöb by ρ “ ρh,pcyl

ˇ

ˇ

ˇ

S̃
and

ρ1 “ ρh,pmöb

ˇ

ˇ

ˇ

S̃
. It’s easy to verify that ρpS̃q “ Scyl and ρ1pS̃q “ Smöb, thus ρ and ρ1 are well

defined and surjective. ρ, ρ1 induce maps PpS̃q Ñ PpScylq and PpS̃q Ñ PpSmöbq; by abuse
of notation we refer to these maps by ρ, ρ1 as well. To show that ρ and ρ1 are covering maps,
we first show that they are rank preserving (i.e. that ρpX̃rq “ X cyl

r and ρ1pX̃rq “ Xmöb
r ),
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and then show that they are local isomorphisms. Recall that all elements of X̃r are of the
form s̃k for some s̃ P S̃ and k P t0, 1u2 such that k1 ` k2 “ r. For every k1 ď k

ρpρcylh,2pps̃ ` k1qq “ ρcylh,ppρps̃q ` k1q, (31)

so ρps̃kq “ ρps̃qk. Additionally,

ρ1pρh,2pcyl ps̃ ` k1qq “

#

ρh,pmöbpρ1ps̃q ` k1q s̃1 ď p

ρh,pmöbpρ1ps̃q ` p´k1
1, k

1
2qq s̃1 ą p.

(32)

so

ρ1ps̃kq “

#

ρ1ps̃qk s̃1 ď p

pρ1ps̃q ` p´1, 0qqk s̃1 ą p.
(33)

By the definitions X̃r, X cyl and Xmöb we now have ρpX̃rq “ X cyl
r and ρ1pX̃rq “ Xmöb

r as
needed. Since ρ and ρ1 are extended to PpS̃q from S̃, for every x, y, z P X̃

• x Ď y ñ ρpxq Ď ρpyq and ρ1pxq Ď ρ1pyq.

• x, y Ď z ñ ρpxq, ρpyq Ď ρpzq and ρ1pxq, ρ1pyq Ď ρ1pzq

• z Ď x, y ñ ρpzq Ď ρpxq, ρpyq and ρ1pzq Ď ρ1pxq, ρ1pyq.

Therefore, ρ and ρ1 preserves all natural neighborhood functions. Finally, since h, p ě 3,
for x, y P X̃ and N P N nat, y P N pxq ñ ρpxq ‰ ρpyq and ρ1pxq ‰ ρ1pyq. This implies that ρ
and ρ1 are local isomorphisms, completing the proof.

Figure 4: Cylinders are planar.

Planarity. A topological space is considered planar if
it can be continuously embedded in R2. Proposition B.13
provides us with the following corollary.

Corollary B.14 (HOMP cannot detect planarity)
There exist pairs of cellular complexes X ,X 1 such that the
induced topology of X is planar while the induced topology
of X 1 is not, but X and X 1 are HOMP-indistinguishable.

Proof The CCs Cylh,p and Möbh,p for p, h ě are HOMP-indistinguishable according to
Proposition B.13. The Möbius strip is not planar (see e.g., Hatcher (2002)), whereas the
cylinder is.

Appendix C. (Scalable) Multi-cellular Networks

In this section we motivate and formally define the MCN and SMCN architectures.

C.1. Multi-Cellular Networks

In graph learning message-passing expresivity issues have been successfully addressed by
invariant graph networks (IGNs) (Maron et al., 2018, 2019; Keriven and Peyré, 2019; Azizian
and Lelarge, 2020). These models are constructed by stacking equivariant linear layers
between tensor spaces. We propose a similar approach, incorporating equivariant linear
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coA2,0

out

HOMP
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coA2,0 equiv equiv equiv equiv

equiv equiv

equiv equiv

equiv
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MCN

A0,1

B0,2 BJ
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equiv equiv

SCN
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SMCN

Node labels Edge labels

HOMP MCN MCN HOMP MCN SMCN

Ar1,r2 /
pcoqAr1,r2 /
Br1,r2 / BJ

r1,r2

“equiv” label “SCN” label

Ce0 Ce2 Ce0`e1 C2e0 C2e0`e1 C3e0

Neighborhood
function
induced
update

Equivariant
linear layer

Sub complex
network

Figure 5: Example tensor diagrams for HOMP, MCN, and SMCN. HOMP diagrams can
only use nodes labeled with standard cochain spaces. MCN diagram can addi-
tionally use nodes labeled with multi-cellular cochain spaces and edges labeled
with “equiv” updates. SMCN diagrams introduce edges labeled with “SCN”.

layers into the HOMP framework. We integrate these layer by introducing new node and
edge types into existing HOMP tensor diagrams. We first define multi-cellular cochain
spaces which parallel the tensor spaces used in IGNs.

Multi-cellular cochain spaces. The multi-cellular cochain space associated with an
ℓ-dimensional combinatorial complex X and an ℓ ` 1-tuple of integers k “ pk0, . . . , kℓq,
denoted by CkpX ,Rdq, is the space of functions h : X k :“ X k0

0 ˆ ¨ ¨ ¨ ˆ X kℓ
ℓ Ñ Rd. For

brevity, we often denote CkpX ,Rdq by Ck.

Multi-cellular cochain symmetry group. Given enumerations of the skeletons X0 “

tx00, . . . , x
0
n0

u, . . . ,Xℓ “ txℓ0, . . . , x
ℓ
nℓ

u, a multi-cellular cochain h P CkpX ,Rdq can be identi-

fied with the tensor Ah P Rn
k0
0 ˆ¨¨¨ˆn

kℓ
ℓ ˆd, defined by

pAhqi0,...,iℓ,: “ h
´

x0pi0q1
, . . . , x0pi0qk0

, . . . , xℓpiℓq1
, . . . , xℓpiℓqkℓ

¯

(34)

for multi-indices i1 P t1, . . . , n0uk0 , . . . , iℓ P t1, . . . , nℓu
kℓ . Therefore, Ck can be identified

with the space Rn
k0
0 ˆ¨¨¨ˆn

kℓ
ℓ ˆd. The group G “ Sn0 ˆ ¨ ¨ ¨ ˆ Snℓ

acts on Ck by

pσ ¨ hqpx0, . . . ,xℓq “ hpσ0 ¨ x0, . . . , σℓ ¨ xℓq, (35)
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where if xr “

´

xrj1 , . . . , x
r
jkr

¯

P X kr
r , σr ¨x “

´

xr
σ´1
r pj1q

, . . . , xr
σ´1
r pjkr q

¯

, i.e. the action of Snr

changes permutes each of the r-rank cells in the tuple xr. We aim to construct architectures
invariant to the action of G.

Equivariant linear maps between multi-cellular cochain spaces. Following the
construction of other popular permutation invariant architectures Maron et al. (2018); Za-
heer et al. (2017); Hartford et al. (2018); Bronstein et al. (2021) we aim to characterize
the space of linear equivariant maps L : Ck Ñ Ck1

for pairs of ℓ-tuples k “ pk0, . . . , kℓq,

k1 “ pk1
0, . . . , k

1
ℓq. Since Ck can be identified with Rn

k0
0 ˆ¨¨¨ˆn

kℓ
ℓ ˆd, we can use the basis for the

space of equivariant linear layers L : Rn
k0
0 ˆ¨¨¨ˆn

kℓ
ℓ ˆd Ñ Rn

k1
0

0 ˆ¨¨¨ˆn
k1
ℓ

ℓ ˆd1

that was constructed
in Maron et al. (2018). Using this basis, denoted by tLγuγPΓpk,k1,d,d1q, we construct learnable
equivariant layers of the form

Lphq “ β

¨

˝

ÿ

γPΓpk,k1,d,d1q

wγLγpAhq

˛

‚, (36)

where twγuγPΓpk,k1,d,d1q are learnable parameters and β is a non-linearity. We expand the
HOMP framework, adding equivariant layers to the tensor diagram scheme (as depicted in
Figure 5), defining a new class of TDL architecture we call multi-cellular networks (MCNs).
We now formally describe the components of the MCN scheme.

Diagram. Similar to HOMP tensor diagrams, MCN tensor diagrams are layered directed
graphs with labeled nodes and edges. Each node is labeled by a multi-cellular cochain
space, extending the class of node labels used in HOMP tensor diagrams. Directed edges
with source and target nodes labeled by Cer can be labeled by any neighborhood function,
while edges between nodes labeled by other types of multi-cellular cochain spaces are labeled
with the new label “equiv”.

Input. The input to the MCN model is determined by the 0-th layer of the tensor diagram,
whose nodes can be labeled by the following types of multi-cellular cochain spaces: (1) nodes
labeled by Cer which take the r-rank cell features as input; (2) Nodes labeled by Cer1`er2

which take the matrix form of the incidence neighborhood Br1,r2 as input; (3) Nodes labeled
by C2er which take the matrix form of the (co)adjacency matrices pcoqAr,r1 .

Update. The multi-cellular cochains computed at the t-th layer of the network are de-
noted by hptq (i.e. if x P X k0

0 ˆ¨ ¨ ¨ˆX kℓ
ℓ is a multi-cell and there is a node in the t-th layer of

the diagram marked by Ck we use h
ptq
x to denote its multi-cellular feature). For each directed

edge pvt, vt`1q in the diagram we compute a message mvt,vt`1 based on hptq; the message
computation depends on the label of pvt, vt`1q. If the edge is labeled by a neighborhood
function N , (in which case vt and vt`1 are labeled by standard cochain spaces), the message

mvt,vt`1 is computed by
À

yPN pxq M
vt,vt`1ph

ptq
x ,h

pt`1q
y q, where Mvt,vt`1 is parameterized by

an MLP. Note that this is the exact message used in HOMP tensor diagrams. For an edge
labeled by “equiv”, mvt,vt`1 is computed using an equivariant layer as in Equation (36).
After computing the messages for all incoming edges to a target node vt`1 labeled by Ck
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we aggregate them to for form a new multi-cellular cochain defied by

h
pt`1q
x “

â

pu,vt`1q is an
edge in the diagram

m
u,vt`1
x . (37)

for x P X k0
0 ˆ ¨ ¨ ¨ ˆ X kℓ

ℓ . The last layer of the tensor diagram contains a single node
representing a final readout layer.

C.2. Scalable Multi-cellular Networks

X HcoA2,1pX q

coA2,1

Figure 6: HcoA2,1 .

Despite its strong expressive power, implementing MCN in full
generality is impractical. This is because both the computational
complexity and the size of the basis tLγuγPΓpk,k1,d,d1q grow expo-

nentially with k and k1 — |Γpk,k1, d, d1q| “ d ¨ d1 ¨
śℓ

i“1 bpki ` k1
iq

where bpkq is the k-th bell number. SMCN is a more scalable ver-
sion of MCN that still addresses many of the expressivity issues
observed in HOMP. First we restrict the SMCN framework to only
use multi-cellular cochain space for which

řℓ
i“0 ki ď 3. Of these,

the two types of cochain spaces that introduce the largest computa-
tional overheads are C3er and C2er1`er2 . We replace the equivariant
linear updates induced by these multi-cellular cochain spaces with
new updates inspired by expressive GNNs. This provide a middle
ground between expressive power and scalability. The adaptation
of these graph architectures to the domain of CCs is defined using
the augmented Hasse graphs.

Definition C.1 (Augmented Hasse graphs) Given a combinatorial complex X , its
augmented Hasse graph with respect to the (co)adjacency neighborhood pcoqAr,r1, is defined
by HpcoqAr,r1

“ pV, Eq, with V “ Xr1 and E “ tpx, yq | y P Ar,r1pxqu.

See Figure 6 for an example. Intuitively, HpcoqAr,r1
’s graph structure encodes the relational

interactions between r-rank cells given by pcoqAr,r1 . Using augmented Hasse graphs, we
define new multi-cellular updates and use them to create a more scalable version of MCN
called scalable MCN (SMCN).

Replacing C2er1`er2 with Cer1`er2 . Recall that the space C2er1`er2 can be identified with

Rn2
r1

ˆnr2ˆd. Under the action of Snr1
ˆSnr2

, the tensor Hh P Rnr1ˆnr1ˆnr2ˆd can be viewed

as a bag of tensors tHk
h P Rnr1ˆnr1ˆd | k P rnr2su, each of which is considered up-to row

and column Snr -permutations. This is precisely the data structure processed by subgraph
neural networks (Bevilacqua et al., 2021), which operate on a set of adjacency matrices
corresponding to different subgraphs defined over a fixed set of nodes. Subgraph networks
have stronger expressive power than MPNNs and demonstrated strong experimental per-
formance. In addition, They have quadratic runtime complexity as opposed to Opn2

r1 ¨ nr2q

for C2er1`er2 Ñ C2er1`er2 equivariant layers. Therefore, they are a good candidate for re-
placing the latter equivariant updates. For a comprehensive review of subgraph networks,
see Bronstein (2021).
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Following the above discussion we formally define subcomplex network (SCN) updates.
Let vt, vt`1 be tensor diagram nodes which are both labeled by Cer1`er2 and whose tensor
diagram edge pvt, vt`1q is labeled by “SCN”. We compute the message mvt,vt`1 P Cer1`er2 :

mvt,vt`1,r,r1

x,y “ MLPr,r1

ˆ

hptq
x,y,h

ptq
pcoqAr1,rpxq,y,h

ptq
x,pcoqAr2,r

1 pyq
,hx,Br1,r2 pxq,hBJ

r2,r1
pyq,y

˙

,

mvt,vt`1
x,y “

ℓ
â

r“0
r1“0

mvt,vt`1,r,r1

x,y ,
(38)

where if Q1 Ď Xr1 and Q2 Ď Xr2 are sets of cells, hQ1,y :“
ř

x1PQ1
hx1,y and hx,Q2 :“

ř

y1PQ2
hx,y1 . Note that looking at the case r “ r1, the intermediate messages tmvt,vt`1,r,ruℓr“0

can be viewed as applying a subgraph network update to the bag of augmented Hasse graphs
tHx

pcoqgAr1,r
| x P Xru, where Hx

Ar1,r
denotes the graph HAr1,r

with the cells ty P Xr1 | y Ď xu

marked.

Replacing C3er with C2er . Recall that the space C3er can be identified with Rn3
rˆd. Thus,

equivariant linear layers C3er Ñ C3er can be identified with 3-IGN layers which take as input
3-tensors indexed by Xr. The expressive GNN literature offers a few candidates for efficient
3-IGN substitutes. The first option we considered is PPGN (Maron et al., 2019), which
matches 3-IGN’s 3-WL expressive power with a runtime of Op|V|2.pq (run time bottleneck
is |V| ˆ |V| matrix multiplication). The other option is using subgraph networks with node
marking. These network have a runtime of Op|V| ¨ |E |q, are strictly more expressive than
MPNNs (ą 2-WL), but are less powerful than 3-IGNs. We experimented with both versions
and found no significant performance improvement in using PPGN. Therefore, for simplicity
of the method we continue with the subgraph version, which is formally detailed next, but
note that (since PPGN can implement subgraph networks) all theoretical results hold for
the PPGN case as well. The C2er Ñ C2er message is computed using the same update rule
as in Equation (38) with r1 “ r2 “ r, which in this case simplifies to:

m
vt,vt`1,r1,r2

x,x1 “ MLPr1,r2

¨

˝h
ptq
x,x1 ,h

ptq
x,x,h

ptq
x1,x1 ,

ÿ

x2PpcoqAr,r1 pxq

h
ptq
x2,x1 ,

ÿ

x2PpcoqAr,r2 px1q

h
ptq
x,x2

˛

‚,

m
vt,vt`1

x,x1 “

ℓ
â

r1“0
r2“0

m
vt,vt`1,r1,r2

x,x1 .

(39)

Appendix D. MCN and SMCN Expressive Power

D.1. MCN.

In this section, we analyze the expressive power of MCN defined in Section 4. We begin by
formally defining CC isomorphism, as described in Hajij et al. (2022b).

Definition D.1 (CC isomorphism) A pair of CCs pS,X , rkq, pS1,X 1, rk1q are isomor-
phic if there exists a bijective map ρ : X Ñ X 1 such that:

1. rkpxq “ rk1pρpxqq @x P X ,

2. x Ď y ñ ρpxq Ď ρpyq @x, y P X .
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Is there exists an isomorphism ρ : X Ñ X 1 we say that X and X 1 are isomorphic; if such
an isomorphism does not exist, we say taht X and X 1 are non-isomorphic.

Proposition D.2 (MCN expressive power) If X and X 1 are non-isomorphic there ex-
ists an MCN model M such that

MpX q ‰ MpX 1q. (40)

Proof First, letH “ pV, Eq andH1 “ pV 1, E 1q be the Hasse graphs of X and X ˚ respectively,
defined by

V “ X , (41)

V 1 “ X 1, (42)

E “ tpx, yq P X ˆ X | x Ď y, rkpxq “ rkpyq ´ 1u, (43)

E 1 “ tpx1, y1q P X 1 ˆ X 1 | x1 Ď y1, rk1px1q “ rk1py1q ´ 1u. (44)

It was shown in Hajij et al. (2022b) that a pair of CCs is isomorphic if and only if their corre-
sponding Hasse graphs are isomorphic. Therefore, in our case H and H1 are non-isomorphic
graphs. Since any pair of non-isomorphic graphs of size n are n-WL distinguishable, and
k-IGN networks can distinguish between any pair of k-WL indistinguishable graphs (see
Maron et al. (2019)), it is enough to prove that there exists a MCN model which is able to
simulate any k-IGN network on the Hasse graphs. Let A be the adjacency matrix of H and
define n “ |X |, nr “ |Xr| for all r P t0, . . . , ℓu. A can be decomposed into block matrices
Ar1,r2 for r1, r2 P t0, . . . , ℓu defined by:

Ar1,r2 “

#

0niˆnj r1 ‰ r2 ` 1

Br1,r2 r1 “ r2 ` 1,
(45)

where Br1,r2 is the matrix form of neighborhood function Br1,r2 . matrices Ar1,r2 can be view
as a multi-cellular cochains hr1,r2 P Cer1`er2 pX ,Rq so A can be realized as an element of
Q :“

Śℓ
r1“0,r2“0 Cer1`er2 pX ,Rq. Recall that all neighborhood matrices Br1,r2 are given as

input to the MCN model and so we can recover A. To show that MCN can simulate any k-
IGN update on A, we need to show that it can compute LpAq for any Sn-equivariant linear
function L : Qbk Ñ Qbk1

, where Qbk represents taking the tensor product of Q with itself
k times. Let G ă Sn be the subgroup of permutations preserving the subsets t1, . . . , n0u,
tn0 ` 1, . . . , n0 `n1u, . . . , tn0 ` ¨ ¨ ¨ `nℓ´1 ` 1, . . . , n0 ` ¨ ¨ ¨ `nℓu; G – Sn0 ˆ ¨ ¨ ¨ ˆSnℓ

Ď rns.
Since G is a subgroup of Sn, all Sn equivariant linear maps are also G-equivariant. Thus
it is enough to show that we are can compute Lphq for all G-equivariant linear maps L :
Qbk Ñ Qbk1

.

The space Q “
Śℓ

r1“0,r2“0 Cer1`er2 pX ,Rq can be embedded into the multi-cellular cochain

space C1ℓ`1pX ,Rpℓ`1q
2

q via the following map:

T phqpx0, . . . xℓq “
ℓ

}
r1“0,r2“0

hr1,r2pxr1 , xr2q, (46)

where } stands for concatenation, 1ℓ`1 “ p1, . . . , 1q P Rℓ`1 is the all ones vector, xr P Xr is
a cell of rank r and h P Q composed of the multi-cellular cochains hr1,r2 P Cer1`er2 pX ,Rq.
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MCN can use any linear function L : Ck¨1ℓ`1pX ,Rpℓ`1q

2

q Ñ Ck1¨1ℓ`1pX ,Rpℓ`1q
2

q which is
G-equivariant, and so it can compute Lphq for all linear maps as define above, concluding
the proof.

D.2. SMCN

In this section we formally demonstrate the SMCN’s ability to mitigate many of the ex-
pressive limitations demonstrated in Appendix B. We begin by providing a useful lemma
which allows us to leverage several expressivity results from the subgraph GNN literature
in our setting. We then provide an in depth discussion on the ability of SMCN to express
each one of the four aforementioned metric/topological properties: diameter, orientability,
planarity and homology.

Lemma D.3 For any CS-GNN (Bar-Shalom et al., 2024) model M operating on the Hasse
graph HpcoqAr1,r2

using cells of rank r ě r1 as super-nodes, there exits an SMCN model M 1,
such that for any CC X of dimension ě r1, r2, r, MpHpcoqAr1,r2

q “ M 1pX q.

Proof First, note that the incidence matrix Br1,r P Cer1`er is equivalent to the “simple
node marking” defined in Bar-Shalom et al. (2024), so SMCN can recover the input to the
CS-GNN architecture. Second, by taking

MLPr,r1

px, yq “

#

MLPpx, yq if r “ r2 and r1 “ r1,

0 otherwise
(47)

for a fixed MLP, Equation 38 becomes identical to the CS-GNN update.

Remark D.4 For the case where r “ r1 (i.e. super-nodes are regular Hasse graph nodes)
the CS-GNN architecture becomes equivalent to GNN-SSWL+ (Zhang et al., 2023).

Diameter. We first show SMCN is capable to fully leverage the information provided by
the (cross) diameters of an input CC. see Appendix B for a definition.

Proposition D.5 (SMCN can compute diameters) If X ,X 1 are CCs such that

diamr
Ar1,r2

pX q ‰ diamr
Ar1,r2

pX 1q, (48)

for r1, r2, r P N with r1 ď r, then there exists an SMCN model M such that MpX q ‰ MpX 1q

Proof In Zhang et al. (2023), it was shown that GNN-SSWL+, with standard node marking
applied to a graph G “ pV, Eq, can compute a final feature representation:

hpT q
u,v “ dGpu, vq for u, v P V. (49)

By taking the maximum over h
pT q
u,v , GNN-SSWL+ can distinguish between graphs with

different diameters. Similarly, It was shown in Bar-Shalom et al. (2024) that CS-GNN with
standard node marking applied to a graph G “ pV, Eq and super-node set V˚ can compute
a final feature representation

h
pT q

S,v “ dGpS, vq for v P V and S P V˚. (50)
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By taking the maximum over h
pT q

S,v , CS-GNN with standard node marking can distinguish
between graphs with different cross diameters. Thus, applying Lemma D.3 and Remark D.4
on the Hasse graph HAr1,r2

with Xr as ”super-nodes” we get that SMCN can distinguish
between CCs with different (cross) diameters.

Orientability and planarity. We now show SMCN is able to separate the cylinder and
the Möbius strip. This implies that SMCN is strictly better than HOMP at detecting
planarity and orientability. Understanding SMCN’s ability to fully detect orientability or
planarity is still and open question and is left for future work.

Proposition D.6 (SMCN can separate a cylinder and a Möbius strip) For any two
integers h, p P N such that h, p ě 3, there exists an SMCN model M , such that:

MpCylh,pq ‰ MpMöbh,pq. (51)

B

B

Figure 7: Boundary 1-cells.

Proof First, using the terms “edge” and “1-cell” in-
terchangeably, we define two types of edges on Cylh,p
and Möbh,p. An edge x P X1 is called an interior edge
if |B1,2pxq| ą 1, otherwise it’s called a boundary edge.
We denote the boundary edge graph (node set are the
nodes contained in the boundary edges and edge set is
the boundary edges themselves) of a CC X by BX . We
construct the model M by first using a B1,2 aggregation
to get the cochain hp1q P Ce1pX ,Rq

hp1qpxq “ degB1,2
pxq. (52)

Next, we use an equivariant linear update to construct the multi-cellular cochain hp2q P

C2e1pX ,R2q defined by:
hp2q
x1,x2

“ degB1,2
px1q }degB1,2

px2q, (53)

where, } denotes concatenation. Recall that the matrix form of coA1,0 defines a cochain
hcoA1,0 P C2e1 which can be used as input to SMCN. Using hcoA1,0 can now construct

hp3q
x1,x2

“ phcoA1,0qx1,x2 }degB1,2
px1q }degB1,2

px2q. (54)

Finally, using a stack of equivariant linear layers, we can construct a fourth cochain h
p4q
x1,x2 “

mph
p3q
x1,x2q where m is parameterized by an MLP. We use the Memorization Theorem (Yun

et al., 2019), and to construct an MLP MLP that satisfies

MLPpa, b, cq “

#

1 a “ b “ c “ 1

0 otherwise.
(55)

hp4q represents the adjacency matrix of BX . BCylh,p is composed of two disconnected cycles
of length p; BMöbh,p is composed of a single cycle of length 2p. These two graphs are
distinguishable by subgraph architectures like GNN-SSWL+. Thus, using Lemma D.3 and
Remark D.4 we can continue the construction of M so that it will be able to differentiate
between Cylh,p and Möbh,p.
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Homology. We first show that SMCN is able to count the number of connected compo-
nents i.e. the 0-th homology.

Proposition D.7 (SMCN can count connected components) Let X ,X 1 be CCs. If
the number of connected components of the augmented Hasse graphs HAr1,r2

and H1
Ar1,r2

is

different for some r1, r2 P N then there exists an SMCN model M such that MpX q ‰ MpX 1q.

Proof Using Lemma D.3 and Remark D.4, it suffices to show that GNN-SSWL+ can
distinguish graphs with different numbers of connected components. It was shown in Zhang
et al. (2023) that adding an additional aggregation of the form hu,v ÞÑ

ř

v1PV hu,v1 to
GNN-SSWL+ does not effect its capacity to separate graphs. Therefore, for the remainder
of this proof, we include this aggregation in GNN-SSWL+. As previously demonstrated,
GNN-SSWL+ can compute a feature vector of the form:

hptq
u,v “ dGpu, vq for u, v P V. (56)

If u and v are in different connected components, their distance is encoded as ´1. Let
g1 : r´1, |V|s Ñ R be a continuous function such that:

g1pxq “

#

0 if x “ ´1,

1 if x ě ´1
2 .

(57)

We can approximate g1 using an MLP and apply it to h
ptq
u,v to obtain:

hpt`1q
u,v “

#

0 if v R Gu,

1 if v P Gu.
(58)

We now take h
pt`2q
u,v “

ř

v1PV h
pt`1q

u,v1 , to get

hpt`2q
u,v “ |Gu|. (59)

Define g2 : r1, |V|s Ñ R to be

g2pxq “
1

x
. (60)

We can approximate g2 using an MLP and apply it to h
pt`2q
u,v to obtain

hpt`3q
u,v “

1

|Gu|
. (61)

We can now perform a readout of the form hout “
ř

u,vPV h
pt`3q
u,v to obtain

hout “
ÿ

u,vPV

1

|Gu|
“

ÿ

G˚PCpGq

ÿ

uPG˚

|V|

|G˚|
“

ÿ

G˚PCpGq

|V| “ |V||CpGq|. (62)

Now for let G,G1 be a pair of graphs with a different number of connected components.
If these two graphs have a different number of nodes, they can be easily distinguished
by GNN-SSWL+. On the other hand, if they have the same number of nodes they can

24



Extended Abstract Track
Topological Blindspots of Higher-Order Message-Passing

be distinguished by GNN-SSWL+ based on Equation 62. Thus, we have shown that an
augmented GNN-SSWL+model can distinguish betweenHAr1,r2

andH1
Ar1,r2

, and therefore,

there exists an SMCN model M that can separate X and X 1.

Since the 0-th homology satisfies H0pX q “ Z|CpX q| we additionally get the following corol-
lary.

Corollary D.8 (SMCN can compute the 0-th homology) If X ,X 1 are CCs such that
the 0-th homology group of their induced topological spaces are different, then there exists
an SMCN model M such that MpX q ‰ MpX ˚q.

Exploring SMCN’s capacity to differentiate between CCs based on their higher-order ho-
mology groups is left for future work. As a first step, we show that SMCN can successfully
separate a natural family of CCs — two-dimensional surfaces embeddable in R3 — based
on any homology group/Betti number.

Proposition D.9 (SMCN can compute homology groups of surfaces) Let X ,X 1 be
two cellular complexes that are realizations of 2-dimensional manifolds (with or without
boundary) M,M1 which are embeddable in R3. If Dr P N such that HrpMq ‰ HrpM1q then
there is an SMCN model M such that MpX q ‰ MpX 1q.

Proof First, since M is 2-dimensional, the only non-trivial homology groups it may have
are of order 0 ď r ď 2. The 0-th homology group of M, is of the form H0pMq “ Zk0 where
k0 is the number ofM’s connected components. Furthermore, as each connected component
of M is a connected 2-dimensional manifold with boundary that can be embedded in R3, it
must either be orientable or have a non-empty boundary. If such a component is orientable,
then by the Poincaré duality, its 2-nd homology group is Z. On the other hand, if it has a
boundary, it is homotopic to a 1-dimensional cellular complex, and thus its 2-nd homology
group is trivial. Therefore, H2pMq “ Zk2 , where k2 is the number of connected components
of M with no boundary. Finally, since M is embeddable in R3, its 1-st homology groups is
H1pMq “ Zk1 for some integer k1. The Euler characteristic of the manifold M defined by
k0 ´ k1 ` k2 can be computed using the number of cells of X using the following formula:

χpMq “ k2 ´ k1 ` k0 “ |X2| ´ |X1| ` |X0|. (63)

Thus in order to separate X from X 1 we need to be able to construct a SMCN model which
is able to separate CCs which are different in either one of the following three quantities:

1. The Euler characteristic.

2. The number of connected components.

3. The number of connected components with no boundary.

Computing the Euler characteristic is be computed by standard HOMP updates, as it is
a function of the sizes of X0,X1, and X2. For the second quantity, we have seen SMCN
models can separate CCs with a different number of connected components in Proposition
D.7. As for the third quantity, a connected component of X has a boundary if and only if
it contains 1-cells whose degree with respect to the neighborhood function B1,2 is exactly
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1. We can use a stack of standard HOMP layers to compute the 1-cells features

hx “

#

1 x is in the same connected component as a a boundary edge

0 otherwise.
(64)

Using h, we can adjust the proof of Proposition D.7 by summing in Equation 62 only
over 1-cells for which hx “ 0, resulting in the the number of connected components of X
with no boundary. This shows that SMCN can distinguish CCs based on either one of the
aforementioned three properties, concluding the proof.

Appendix E. Experimental Details

The first set of experiments were designed to benchmark TDL architecture on their ability
to learn topological and metric properties of objects. First, we design a synthetic topological
expressivity benchmark where models are tasked with distinguishing pairs of cellular com-
plexes representing disjoint unions of tori. We then task models with predicting topological
and metric properties of cellular complexes constructed by applying cyclic lifting (Bodnar
et al., 2021a) to molecular graphs.

In the second set of experiments we test SMCN on a variety of graph classification and re-
gression tasks, demonstrating performance increase over both higher-order message-passing
architectures (e.g. CW-networks) and expressive graph methods (e.g. subgraph neural
networks).

E.1. Topological and Metric Properties

Torus dataset. To construct the torus dataset we first select three parameters: m which
specifies the number of nodes in the smallest CC in the dataset, M which specifies the
number of nodes in the largest CC, and n, which specifies the maximum number of connected
components in any CC within the dataset. The dataset is then constructed by iterating
over all possible choices for the the number of nodes and connected components, generating
all possible disjoint unions of 2-dimensional tori with the specified parameters. We then
select all the pairs that have the same size (number of nodes). As mentioned in the paper,
each such pair is indistinguishable by HOMP despite differing in basic metric/topological
properties: they either have distinct homology , or they differ in the diameters of some of
the components. In our experiments, we selected m “ 18 (the smallest size that admits
indistinguishable pairs), M “ 40, and n “ 3, resulting in 223 pairs.

Model Pairs distinguished (Ò) Accuracy (Ò)

CIN 0 0%
SMCN 223 100%

Table 3: Pair distinguishing accuracy on the
torus dataset.

To evaluate the ability of both HOMP and
SMCN to distinguish between each pair, we
employ the training and evaluation schemes
proposed in Wang and Zhang (2024). We
require a statistically significant difference
between the outputs of the model on each
the CC in the pair. Our experiments show
that while HOMP is unable to distinguish any of the pairs, SMCN is able to distinguish all
of them as depicted in Table 3.
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Lifted ZINC cross-diameter. We construct a CC dataset by adding cycles of length
ď 18 as 2-cells to graphs taken from the zinc dataset (Sterling and Irwin, 2015). We remove
edge and node features, and predict the (0, 1, 2) cross diameter, computed by

max
xPX0,
yPX2

min
x1Py

dA0,1px, x1q (65)

where dpx, x1q is the shortest path distance. Training targets are normalized to have mean
0 and standard deviation 1. At test time we evaluate the accuracy of predicting the cross-
diameter value (there are 18 possible values). We compare 3 architectures: CIN (Bodnar
et al., 2021a), custom HOMP, and SMCN. Custom HOMP is a CIN variant optimized
for cross-diameter computation and SMCN is implemented using 0-2 subcomplex layers.
Results are presented in Table 2. Results are reported as mean ˘ std across 5 seeds.

Lifted ZINC Betti numbers. For the second topological property prediction task we
tested our model’s ability to learn to predict the 2-nd order Betti numbers- the ranks of
the 2-nd homology group. To this end we constructed our benchmark dataset the following
way: We started with the zinc-full datasets (containing 250k molecular graphs), lifting all
graphs to CCs as in the cross-diameter task. We then computed the 2-nd Betti number for
each of the lifted graphs and randomly selected 850 samples from each of the 6 most common
values (which were 0, 1, 2, 3, 4 and 6), resulting in a balanced dataset of size 5,100. We used a
60%, 20%, 20% random split for training, validation, and test sets. We normalized training
targets to have mean 0 and standard deviation 1 and train using MSE loss. At test time
we evaluated the accuracy of predicting the 2-nd Betti number. Results are presented in
Table 2. Results are reported as mean ˘ std across 5 seeds.

The results of the above three synthetic experiments further solidify SMCN’s superior capa-
bility in capturing topological properties of CCs compared to existing HOMP architectures.
This is demonstrated both for synthetically generated inputs as well as inputs constructed
by applying common lifting procedures on real world graphs. This reinforces our theoreti-
cal findings which also suggest SMCN is more capable in learning both cross diameters and
homology groups presented in Appendix D.

E.2. Graph Benchmarks

ZINC (Sterling and Irwin, 2015; Dwivedi et al., 2023). The zinc dataset com-
prises 12,000 molecular graphs, extracted from the ZINC database, which is a collection of
commercially available chemical compounds. These molecular graphs vary in size, ranging
from 9 to 37 nodes each. In these graphs, nodes correspond to heavy atoms, encompassing
28 distinct atom types. Edges in the graphs represent chemical bonds, with three possible
bond types. We perform regression on the constrained solubility (logP) of the molecules.
The dataset is pre-partitioned into training, validation, and test sets, containing 10,000,
1,000, and 1,000 molecular graphs, respectively.

MOLHIV and MOLESOL (Hu et al., 2020). molhiv and molesol are molec-
ular property prediction datasets, adapted by the Open Graph Benchmark (OGB) from
MoleculeNet. These datasets employ a unified featurization for nodes (atoms) and edges
(bonds), encapsulating various chemophysical properties. The task in molhiv is to predict
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the capacity of compounds to inhibit HIV replication. The task in molesol is regression
on water solubility (log solubility in mols per liter) for common organic small molecules.
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