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ABSTRACT

Describing skills in natural language has the potential to provide an accessible
way to inject human knowledge about decision-making into an AI system. We
present MaestroMotif, a method for AI-assisted skill design, which yields high-
performing and adaptable agents. MaestroMotif leverages the capabilities of Large
Language Models (LLMs) to effectively create and reuse skills. It first uses an
LLM’s feedback to automatically design rewards corresponding to each skill,
starting from their natural language description. Then, it employs an LLM’s code
generation abilities, together with reinforcement learning, for training the skills
and combining them to implement complex behaviors specified in language. We
evaluate MaestroMotif using a suite of complex tasks in the NetHack Learning
Environment (NLE), demonstrating that it surpasses existing approaches in both
performance and usability.

1 INTRODUCTION

Bob wants to understand how to become a versatile AI researcher. He asks his friend Alice, a
respected AI scientist, for advice. To become a versatile AI researcher, she says, one needs to
practice the following skills: creating mathematical derivations, writing effective code, running and
monitoring experiments, writing scientific papers, and giving talks. Alice believes that, once these
different skills are mastered, they can be easily combined following the needs of any research project.
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Figure 1: Performance across NLE task
categories. MaestroMotif largely outper-
forms existing methods zero-shot, includ-
ing the ones trained on each task.

Alice is framing her language description of how to
be a versatile researcher as the description of a set of
skills. This often happens among people, since this
type of description is a convenient way to exchange
information on how to become proficient in a given
domain. Alice could instead have suggested what piece
of code or equation to write, or, at an even lower level of
abstraction, which keys to press; but she prefers not to do
it, because it would be inconvenient, time-consuming,
and likely tied to specific circumstances for it to be
useful to Bob. Instead, describing important skills is
easy but effective, transmitting large amounts of high-
level information about a domain without dealing with
its lowest-level intricacies. Understanding how to do the
same with AI systems is still a largely unsolved problem.

Recent work has shown that systems based on Large
Language Models (LLMs) can combine sets of skills to
achieve complex goals (Ahn et al., 2022; Wang et al.,
2024). This leverages the versatility of LLMs to solve
tasks zero-shot, after the problem has been lifted from
the low-level control space, which they have difficulty handling, to a high-level skill space grounded
in language, to which they are naturally suited. However, humans cannot communicate skills to
these systems as naturally as Alice did with Bob. Instead, such systems typically require humans
to solve, by themselves, the skill design problem, the one of crafting policies subsequently used by
the LLM. Designing those skills typically entails very active involvement from a human, including
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collecting skill-specific data, developing heuristics, or manually handling reward engineering (Ahn
et al., 2022). Thus, existing frameworks for designing low-level skills controlled by LLMs require
technical knowledge and significant amounts of labor from specialized humans. This effectively
reduces their applicability and generality.

In this paper, we introduce the paradigm of AI-Assisted Skill Design. In this paradigm, skills are
created in a process of human-AI collaboration, in which a human provides a natural language
description of the skills and an AI assistant automatically converts those descriptions into usable
low-level policies. This strategy fully leverages the advantages of both human-based and AI-based
skill design workflows: it allows humans to inject important prior knowledge about a task, which may
enhance safety and performance for the resulting agents even in the absence of optimal AI assistants;
at the same time, it automates the lowest-level and more time-consuming aspects of skill design.

Based on this paradigm, we propose MaestroMotif, a method that uses LLMs and reinforcement
learning (RL) to build and combine skills for an agent to behave as specified in natural language.
MaestroMotif uses an LLM’s feedback to convert high-level descriptions into skill-specific reward
functions, via the recently-proposed Motif approach (Klissarov et al., 2024). It then crafts the skills
by writing Python code using an LLM: first, it generates functions for the initiation and termination
of each skill; then, it codes a policy over skills which is used to combine them. During RL training,
the policy of each skill is optimized to maximize its corresponding reward function by interacting
with the environment. At deployment time, MaestroMotif further leverages code generation via an
LLM to create a policy over skills that can combine them almost instantaneously to produce behavior,
in zero-shot fashion, as prescribed by a human in natural language.

MaestroMotif thus takes advantage of RL from AI feedback to lift the problem of producing policies
from low-level action spaces to high-level skill spaces, in a significantly more automated way than
previous work. In the skill space, planning becomes much easier, to the point of being easily handled
zero-shot by an LLM that generates code policies. These policies can use features of a programming
language to express sophisticated behaviors that could be hard to learn using neural networks. In
essence, MaestroMotif crafts and combines skills, similarly to motifs in a composition, to solve
complex tasks.

We evaluate MaestroMotif on a suite of tasks in the Nethack Learning Environment (NLE) (Küttler
et al., 2020), created to test the ability to solve complex tasks in the early phase of the game. We
show that MaestroMotif is a powerful and usable system: it can, without any further training, succeed
in complex navigation, interaction and composite tasks, where even approaches trained for these
tasks struggle. We demonstrate that these behaviors cannot be achieved by baselines that maximize
the game score, and we perform an empirical investigation of different components our method.

2 BACKGROUND

A language-conditioned Markov Decision Process (MDP) (Liu et al., 2022) is a tuple M =
(S,A,G, r, p, γ, µ), where S is the state space, A is the action space, G is the space of natural
language task specifications, r : S × G → R is the reward function, p : S × A → ∆(S) is the
transition function, γ ∈ (0, 1] is the discount factor, µ ∈ ∆(S) is the initial state distribution.

A skill can be formalized through the concept of option (Sutton et al., 1999; Precup, 2000). A
deterministic Markovian option ω ∈ Ω is a triple (Iω, πω, βω), where Iω : S → {0, 1} is the
initiation function, determining whether the option can be initiated or not, πω : S → ∆(A) is the
intra-option policy, and βω : S → {0, 1} is the termination function, determining whether the option
should terminate or not. Under this mathematical framework, the skill design problem is equivalent
to constructing a set of options Ω that can be used by an agent. The goal of the agent is to provide a
policy over options π : G × S → Ω. Whenever the termination condition of an option is reached, π
selects the next option to be executed, conditioned on the current state. The performance of such a
policy is defined by its expected return J(π) = Eµ,π,Ω[

∑∞
t=0 γ

tr(st)].

In the AI-Assisted Skill Design paradigm, an agent designer provides a set of natural language
prompts X = {x1, x2, . . . , xn}. Each prompt consists of a high-level description of a skill. An AI
system should implement a transformation f : X → Ω to convert each prompt into an option. Note
that the ideas and method presented in this paper generalize to the partially-observable setting and, in
our experiments, we learn memory-conditioned policies.
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Init./Term. functions

Training Policy 
Over Skills

Figure 2: AI-assisted Skill Design with MaestroMotif. 1. An agent designer provides skills de-
scriptions, which get converted to reward functions rφ1

by training on the preferences of an LLM
on a dataset of interactions. 2. The agent designer describes initiation and termination functions,
Iω{1,...,n} and βω{1,...,n} to the LLM, which instantiates them by generating code. 3. The agent
designer describes a train-time policy over skills πT which the LLM generates via coding. 4. Each
skill policy πωi is trained to maximize its corresponding reward rφi . Whenever a skill terminates
(see open/closed circuit), the policy over skills chooses a new one from the set of available skills.

3 METHOD

MaestroMotif leverages AI-assisted skill design to perform zero-shot control, guided by natural
language prompts. To the best of our knowledge, it is the first method that, while only using language
specifications and unannotated data, is able to solve end-to-end complex tasks specified in language.
Indeed, RL methods trained from scratch cannot typically handle tasks specified in language (Touati
et al., 2023), while LLM-based methods typically feature labor-intensive methodologies for learning
low-level control components (Ahn et al., 2022; Wang et al., 2024). MaestroMotif combines the
capability of RL from an LLM’s feedback to train skills with an LLM’s code generation ability which
allows it to compose them at will. We first introduce MaestroMotif as a general method, describing
its use for AI-assisted skill design and zero-shot control, then discussing its implementation.

3.1 AI-ASSISTED SKILL DESIGN WITH MAESTROMOTIF

MaestroMotif performs AI-assisted skill design in four phases shown in Figure 2. It leverages LLMs
in two ways: first to generate preferences, then to generate code for initiation/termination functions
and for a training-time policy over skills. It then uses these components to train skills via RL.

Automated Skills Reward Design In the first phase, an agent designer provides a description for
each skill, based on their domain knowledge. Then, MaestroMotif employs Motif (Klissarov et al.,
2024) to create reward functions specifying desired behaviors for each skill: it elicits preferences
of an LLM on pairs of interactions sampled from a dataset D, forming for each skill a dataset of
skill-related preferences Dωi , and distilling those preferences into a skill-specific reward function rφi

by minimizing the negative log-likelihood, i.e., using the Bradley-Terry model:

L(φi) = −E(s1,s2,y)∼Dωi

[
1[y = 1] logPφi

[s1 ≻ s2] + 1[y = 2] logPφi
[s2 ≻ s1]

]
, (1)

where y is an annotation generated by an LLM annotator and Pφ[sa ≻ sb] =
erφi

(sa)

erφi
(sa)+erφi

(sb)
is the

estimated probability of preferring a state to another (Bradley & Terry, 1952).
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Policy Over Skills

Skill index

State

Action

"You are to write code which defines the 
method "select skill" of the NetHack Player 
class that selects amongst a set of skills in the 
videogame of NetHack. [...]

You are faced with the task following task. 
Alternate between the first three levels of […]”

Figure 3: Generation of policy over skills during deployment. The LLM takes a task description and
a template as an input, and implements the code for the policy over skills as a skill selection function.
Running the code yields a policy over skills that commands a skill neural network by sending the
appropriate skill index. Initiation and termination functions, determining which skills can be activated
and when a skill execution should terminate, are omitted from the diagram.

Generation of Skill Initiation/Termination While a reward function can steer the behavior of
a skill when it is active, it does not prescribe when the skill can be activated or when it should
be terminated. In the options framework, this information is provided by the skill initiation and
termination functions. MaestroMotif uses an LLM to transform a high-level specification into code
that defines the initiation function Iωi

and termination function βωi
for each skill.

Generation of training-time policy over skills To be able to train skills, MaestroMotif needs a way
to decide which skill to activate at which moment. While skills could be trained in isolation, having
an appropriate policy allows one to learn skills using a state distribution closer to what will be needed
during deployment, and to avoid redundancies. For instance, suppose the agent designer decided to
have a two-skill decomposition, such that skill A’s goal can only be achieved after skill B’s goal is
achieved; if they are not trained together, skill A would need to learn to achieve also the goal of skill
B, nullifying any benefits from the decomposition. To avoid this, MaestroMotif leverages the domain
knowledge of an agent designer, which gives a language specification of how to interleave skills for
them to be learned more easily. From this specification, MaestroMotif crafts a policy over skills to be
used at training time, πT , which, as with the previous phase, is generated as code by an LLM.

Skills training via RL In the last phase of AI-assisted skill design, the elements generated in
the previous phases are combined to train the skill policies via RL. Following the call-and-return
paradigm (Sutton et al., 1999), the training policy πT decides which skill to execute among the ones
deemed as available by the initiation functions Iω{1,...,n} . Then, the skill policy πωi

of the selected
skill gets executed in the environment and trained to maximize its corresponding reward function rφi

until its termination function βωi
deactivates it. Initialized randomly at the beginning of the process,

each skill policy will end up approximating the behaviors originally specified in natural language.

3.2 ZERO-SHOT CONTROL WITH MAESTROMOTIF

After AI-assisted skill design, MaestroMotif has generated a set of skills, available to be combined.
During deployment, a user can specify a task in natural language; MaestroMotif processes this
language specification with a code-generating LLM to produce and run a policy over skills π that,
without any additional training, can perform the particular task.

The policy over skills π is then used, together with the skill policies πω{i,...,n} , initiation functions
Iω{i,...,n} , and termination functions βω{i,...,n} , built through AI-assisted skill design, to compose the
skills and implement the behavior specified by the user. This process follows the same call-and-return
strategy, and recomposes the skills without any further training. It is illustrated in Figure 3, which
shows concrete examples of prompts and outputs. More examples are reported in appendix.
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3.3 MAESTROMOTIF ON NETHACK

We benchmark MaestroMotif on the NetHack Learning Environment (NLE) (Küttler et al., 2020).
In addition to being used in previous work on AI feedback, NetHack is a prime domain to study
hierarchical methods, due to the fact that it is a long-horizon and complex open-ended system,
containing a rich diversity of situations and entities, and requiring a vast array of strategies which
need to be combined for success. To instantiate our method, we mostly follow the setup of Motif
(Klissarov et al., 2024), with some improvements and extensions. We now describe the main choices
for instantiating MaestroMotif on NetHack, reporting additional details in Appendix A.

Skills definition Playing the role of agent designers, we choose and describe the following skills:
the Discoverer, the Descender, the Ascender, the Merchant and the Worshipper. The
Discoverer is tasked to explore each dungeon level, collect items and survive any encounters.
The Descender and Ascender are tasked to explore and specifically find staircases to either go
up, or down, a dungeon level. The Merchant and the Worshipper are instructed to find specific
entities in NetHack and interact with them depending on the context. These entities are shopkeepers
for the Merchant, such that it attempts to complete transactions, and altars for the Worshipper,
where it may identify whether items are cursed or not. The motivation behind some of these skills
(for example the Descender and Ascender pair) can be traced back to classic concepts such as
bottleneck options (Iba, 1989; McGovern & Barto, 2001; Stolle & Precup, 2002).

Datasets and LLM choice To generate a dataset of preferences Dωi
for each one of the skills,

we mostly reproduce the protocol of Klissarov et al. (2024), and independently annotate pairs of
observations collected by a Motif baseline. Additionally, we use the Dungeons and Data dataset of
unannotated human gameplays (Hambro et al., 2022b). We use Llama 3.1 70B (Dubey et al., 2024)
via vLLM (Kwon et al., 2023) as the LLM annotator, prompting it with the same basic mechanism
employed in Klissarov et al. (2024).

Annotation process In the instantiation of Motif presented in Klissarov et al. (2024), preferences
are elicited from an LLM by considering a single piece of information provided by NetHack, the
messages. Although this was successful in deriving an intrinsic reward that was generally helpful
to play NetHack, our initial experiments revealed that this information alone does not provide enough
context to obtain a set of rewards that encode more specific preferences for each skill. For this reason,
we additionally include some of the player’s statistics (i.e., dungeon level and experience
level), as contained in the observations, when querying the LLM. Moreover, we leverage the idea
proposed by Piterbarg et al. (2023a) of taking the difference between the current state and a state
previously seen in the trajectory, providing the difference between states 100 time steps apart as the
representation to the LLM. This provides a compressed history (i.e. a non-Markovian representation)
to LLM and reward functions, while preventing excessively long contexts.

Coding environment and Policy Over Skills A fundamental component of MaestroMotif is an
LLM coder that generates Python code (Van Rossum & Drake Jr, 1995). MaestroMotif uses Llama 3.1
405b to generate code that is executed in the Python interpreter to yield initiation and termination
functions for the skills, the train-time policy over skills, and the policies over skills employed during
deployment. In practice, we find it beneficial to rely on an additional in-context code refinement
procedure to generate the policies over skills. This procedure uses the LLM to write and run unit tests
and verify their results to improve the code defining a policy over skill (see Appendix A.2 for more
details). In our implementation, a policy over skills defines a function that returns the index of the skill
to be selected. For the training policy, the prompt given to the LLM consists of the list of skills and
a high-level description of an exploratory behavior of the type “alternate between the Ascender
and the Descender; if you see a shopkeeper activate the Merchant...”, effectively transforming
minimal domain knowledge to low-level information about a skill’s desired state distributions.

RL algorithm and skill architecture To train the individual skills, we leverage the standard
CDGPT5 baseline based on PPO (Schulman et al., 2017) using the asynchronous implementation
of Sample Factory (Petrenko et al., 2020). Instead of using a separate neural network for each skill,
we train a single network, with the standard architecture implemented by Miffyli (2022), and an
additional conditioning from a one-hot vector representing the skill currently being executed. This
enables skills to have a shared representation of the environment, while at the same time reducing
potential negative effects from a multi-head architecture (see Section 4.3).
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4 EXPERIMENTS

Dungeons of Doom

Gnomish Mines

Minetown

Shopkeeper

Altar

Delphi

Overview of  the early game of NetHack

Figure 5: Simplified depiction of the early NetHack game where
significant areas (such as branches) and entities are labeled.

We perform a detailed evaluation
of the abilities of MaestroMotif
on the NLE and compare its per-
formance to a variety of base-
lines. Unlike most existing meth-
ods for the NLE, MaestroMotif
is a zero-shot method, which pro-
duces policies entirely through
skill recomposition, without any
additional training. We empha-
size this in our evaluation, by
first comparing MaestroMotif to
other methods for behavior spec-
ification from language on a
suite of hard and composite tasks.
Then, we compare the resulting
agents with the ones trained for
score maximization, and further
analyze our method. We report
all details related to the experi-
mental setting in Appendix A.5.
All results are averaged across
nine seeds (for MaestroMotif, three repetitions for skill training and three repetitions for software
policy generation), with error bars representing the standard error. All MaestroMotif results are
obtained by recombining the skills without training, and the skills themselves were learned only
through LLM feedback, without access to other types of reward signals.

Evaluation suite As NetHack is a complex open-ended environment (Hughes et al., 2024), it allows
for virtually limitless possibilities in terms of task definition and behavior specification. To capture
this complexity and evaluate zero-shot control capabilities beyond what has been done in previous
work, we define a comprehensive benchmark. We consider a set of relevant, compelling, and complex
tasks related to the early part of the game, deeply grounded in both the original NLE paper (Küttler
et al., 2020) and the broader NetHack community (Moult, 2022). Our benchmark includes three
types of tasks: navigation tasks, asking an agent to reach specific locations in the game; interaction
tasks, asking an agent to interact with specific entities in the game; composite tasks, asking the agent
to reach sequences of goals related to its location in the game and game status. In navigation and
composite tasks, we evaluate methods according to their success rate; in interaction tasks, we evaluate
methods according to the number of collected objects. Figure 5 presents an overall depiction of
navigation and interaction tasks, and Appendix A.6 explains in detail each of the tasks.

4.1 PERFORMANCE EVALUATION

Baselines We measure the performance of MaestroMotif on the evaluation suite described above.
For MaestroMotif to generate a policy, it is sufficient for a user to specify a task description in natural
language. For this reason, we mainly compare MaestroMotif to methods that are instructable via
language: first, to using Llama as a policy via ReAct (Yao et al., 2022), which is an alternative
zero-shot method; second, to methods that require task-specific training via RL, with reward functions
generated by using either AI feedback or cosine similarity according to the embedding provided
by a pretrained text encoder (Fan et al., 2022). In addition, we also compare to an agent trained to
maximize a combination of the task reward and the game score (as auxiliary objective), which has
thus access to privileged reward information compared to the other approaches. For all non-zero-shot
methods, training runs of several GPU-days are required for each task before obtaining a policy.

Results on navigation and interaction tasks Table 1 shows that MaestroMotif outperforms all the
baselines, which struggle to achieve good performance, in navigation and interaction tasks. Notice
that this happens despite the disadvantage to which MaestroMotif is subject when compared to
methods that are specifically trained for each task. The poor performance of the LLM Policy confirms
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Zero-shot Task-specific training Reward Information

Task MaestroMotif LLM Policy Motif Emb. Simil. RL w/ task reward + score

Gnomish Mines 46%± 1.70% 0.1%± 0.03% 9%± 2.30% 3%± 0.10% 3.20%± 0.27%
Delphi 29%± 1.20% 0%± 0.00% 2%± 0.70% 0%± 0.00% 0.00%± 0.00%
Minetown 7.2%± 0.50% 0%± 0.00% 0%± 0.00% 0%± 0.00% 0.00%± 0.00%

Transactions 0.66± 0.01 0.00± 0.00 0.08± 0.00 0.00± 0.00 0.01%± 0.00%
Price Identified 0.47± 0.01 0.00± 0.00 0.02± 0.00 0.00± 0.00 0.00%± 0.00%
BUC Identified 1.60± 0.01 0.00± 0.00 0.05± 0.00 0.00± 0.00 0.00%± 0.00%

Table 1: Results on navigation tasks and interaction tasks. MaestroMotif and LLM policy are
zero-shot methods requiring no data collection or training on specific tasks; task-specific training
methods generate rewards from text specifications (based on AI feedback or embedding similarity)
and train an agent with RL; the last column reports the performance of a PPO agent using privilged
reward information, a combination of the task reward and the game score (not accessible to the other
methods). MaestroMotif largely outperforms all baselines, which struggle with complex tasks.

the trend observed by previous work (Klissarov et al., 2024): even if the LLM has enough knowledge
and processing abilities to give sensible AI feedback, that does not mean that it can directly deal with
low-level control and produce a sensible policy via just prompting. At the same time, methods that
automatically construct a single reward function that captures a language specification break apart for
complex tasks, resulting in a difficult learning problem for an agent trained with RL. MaestroMotif,
instead, still leverages the ability of LLMs to automatically design reward functions, but uses code to
decompose complex behaviors into sub-behaviors individually learnable via RL.

Results on composite tasks A feature of language is its compositionality. Since, in the type
of system we consider, a user specifies tasks in language, different behavior specifications can be
composed. For instance, an agent can be asked to first achieve a goal, then another one, then a last
one. The composite category in our benchmark captures this type of task specifications. In Table 2,
we compare MaestroMotif to other promptable baselines, showing the task description provided to
the methods and their success rate. MaestroMotif has lifted the problem of solving a task to the
one of generating a code policy: thus, even if the tasks entail extremely long-term dependencies,
simple policies handling only a few variables can often solve them. In contrast, defining rewards that
both specify complex tasks and are easily optimizable by RL is extremely hard for existing methods,
because exploration and credit assignment in such a complex task become insurmountable challenges
for a single low-level policy. To the best of our knowledge, MaestroMotif is the first approach to
be competitive at decision-making tasks of this level of complexity, while simultaneously learning
to interact through the lowest-level action space. Figure 6 reports an example of complex behavior
exhibited by an agent created by MaestroMotif while solving one of the tasks. The overall results,
aggregated over navigation, interaction and composite tasks, are presented in Figure 1.

“Alternate between the first 
three levels of the Dungeons 
of Doom (at least once) 
until you collect a minimum 
of 20 gold pieces and defeat 
25 monsters; finally try to 
quit NetHack”

“Do not leave the first 
dungeon level until you 
achieve XP level 4, then find 
a shopkeeper and sell an 
item that you have collected; 
finally survive for another 
300 steps.”

“Reach the oracle level (the 
Delphi) in the Dungeons of 
Doom, but not before 
discovering the Gnomish 
Mines and eating some food 
there after getting hungry.”

Golden Exit Level Up & Sell Discovery Hunger

MaestroMotif
LLM Policy
Motif
Embedding Similarity

24.80 % ± 1.18 %
0% ± 0.00%
0% ± 0.00%
0% ± 0.00%

7.09% ± 0.99%
0% ± 0.00%
0% ± 0.00%
0% ± 0.00%

7.91% ± 1.47%
0% ± 0.00%
0% ± 0.00%
0% ± 0.00%

Tasks

Methods

Table 2: Description of the composite tasks and success rate of MaestroMotif and baselines. Using a
code policy allows MaestroMotif to compose skills by applying sophisticated logic, requiring memory
or reasoning over a higher-level time abstraction. This is impossible to achieve for a zero-shot LLM
policy, and hard to learn via a single reward function, which explains the failures of the baselines.
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Figure 5: Performance of MaestroMotif and score-maximizing baselines in interaction tasks (first row)
and navigation tasks (second row). Despite collecting significant amounts of score, score-maximizing
approaches only rarely exhibit any interesting behavior possible in our benchmarking suite.

4.2 COMPARISON TO SCORE MAXIMIZATION

The vast majority of previous work on the NetHack Learning Environment has focused on agents
trained to maximize the score of the game (Sypetkowski & Sypetkowski, 2021; Piterbarg et al.,
2023b; Wolczyk et al., 2024). Although the score might seem like a potentially rich evaluation signal,
it has been observed by previous work that a high-performing agent in terms of its score does not
necessarily exhibit complex behaviors in the game (Hambro et al., 2022a). To illustrate this fact in
the context of our work, we compare MaestroMotif’s performance in the navigation and interaction
tasks to the one achieved by agents trained to maximize the in-game score via different methods.

Figure 5 reports the performance of these methods, showing that, even if maximizing the score might
seem a good objective in NetHack, it does not align to the NetHack community’s preferences, even
when the source of training signal is an expert, such as in the behavioral cloning case.

Minimap

Dungeons of 
Doom

Gnomish 
Mines

A staircase      leading to the Mines is found.

Dungeons of 
Doom

Gnomish 
Mines

Minimap

It ascends back to the Dungeons of Doom.

Dungeons of 
Doom

Gnomish 
Mines

Minimap

The agent      searches for the Gnomish Mines.

Minimap

Dungeons of 
Doom

Gnomish 
Mines

It fights Gnomes      and collects items     .

Minimap

Dungeons of 
Doom

Gnomish 
Mines

After feeling hungry, the agent eats       .

Dungeons of 
Doom

Gnomish 
Mines

Minimap

Finally, the agent descends to the Delphi.

Figure 6: Illustration of MaestroMotif on the composite task Hunger Discovery. We show
screenshots from the game as well as an accompanying Minimap, where the agent’s position is shown
as a red dot ■. To complete the task, the agent needs to find the entrance to the Gnomish Mines,
which is a staircase randomly generated anywhere between the levels 2 to 4 in the main branch, the
Dungeons of Doom. After exploring the first few levels, the agent finally finds the hidden entrance
and descends into the Mines, where it fights monsters and collects items to help it survive. After a
few hundred turns, the agent’s hunger level increases to hungry, prompting it to eat a comestible
item. Finally, it has to ascend back into the main branch, before beginning the perilous journey down
to the Delphi, which appears anywhere, randomly, between the level 5 to 9 in the Dungeons of Doom.
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(c) Skill reward learning curves
(skills learned simultaneously).

Figure 8: (a) Goal-conditioning as an architecture for skill selection and synchronous alternation of
the skills using an exploration policy is essential for obtaining good performance. (b) When learning
skills asynchronously (alternating them in different episodes), some important skills do not manage
to be learned. (c) Learning skills synchronously automatically induces an emergent skill curriculum,
in which basic skills are learned before the most complex ones.

4.3 ALGORITHM ANALYSIS

Having demonstrated the performance and adaptability of MaestroMotif, we now investigate the im-
pact of different choices on its normalized performance across task categories. Additional experiments
can be found in Appendix A.8.

Scaling behavior Central to the approach behind MaestroMotif is an LLM producing a policy
over skills in code, re-composing a set of skills for zero-shot adaptation. It is known that the code
generation abilities of an LLM depend on its scale (Dubey et al., 2024): therefore, one should expect
that the quality of the policy over skills generated by the LLM coder will be highly dependent on
the scale of the underlying model. We verify this in Figure 7, showing a clear trend of performance
improvement for large models. In Appendix A.4, we also investigate the impact of code refinement
on the performance of MaestroMotif.
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Figure 7: Impact of scaling for the
LLM code generator on final per-
formance across tasks.

Hierarchical architecture As illustrated in Figure 10 of
Appendix A.7, the neural network used to execute the skill poli-
cies follows almost exactly the same format as the PPO base-
line (Miffyli, 2022), with the only difference of an additional
conditioning via a one-hot vector representing the skill currently
being executed. We found that this architectural choice to be
crucial for effectively learning skill policies. In Figure 8a, we
compare this choice to representing the skills through different
policy heads, as is sometimes done in the literature (Harb et al.,
2017; Khetarpal et al., 2020). This alternative approach leads
to a collapse in performance. We hypothesize that this effect
comes from gradient interference as the different skill policies
are activated with different frequencies.

Emergent skill curriculum In Figure 8a, we also verify the importance of learning all the skills
simultaneously. We compare this approach to learning each skill in a separate episode. We notice
that without the use of the training-time policy over skills, the resulting performance significantly
degrades. To better understand the reason behind this, we plot in Figure 8b and Figure 8c, for each
skill, the corresponding reward during training. Learning each skill in isolation leads to a majority
of the skills not maximizing their own rewards. On the other hand, learning multiple skills in the
same episode leaves space to learn and to leverage simpler skills, opening the possibility of using
those simple skills to get to the parts of the environment where it is relevant to use more complex and
context-dependent ones, such as the Merchant or the Worshipper. This constitutes an emergent
skill curriculum, which is naturally induced by the training-time policy over skills. The curriculum
emerges because of the data distribution in which each skill is initiated: a skill expressing a more
advanced behavior will only be called by the policy over skills when the appropriate situation can be
reached, which will only happen once sufficient mastery of more basic skills is acquired. We discuss
in Appendix A.9 how modifying the skill selection strategy, for example by adapting it through online
interactions, could further improve the ability to learn skills.
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5 RELATED WORK

LLM-based hierarchical control methods Our method relates to a line of work which also uses
LLMs to coordinate low-level skills in a hierarchical manner. SayCan and Palm-E (Ahn et al.,
2022; Driess et al., 2023) also use an LLM to execute unstructured, natural language commands by
recomposing low-level skills in a zero-shot manner. A key difference in our work is how the skills
are obtained: whereas they leverage a combination of large human teleoperation datasets of language-
conditioned behaviors and hand-coded reward functions, we train skills from intrinsic rewards which
are automatically synthesized from unstructured observational data and natural language descriptions.
MaestroMotif is particularly related to those approaches in which a high-level policy is generated
as a piece of code by an LLM (Liang et al., 2023). Voyager (Wang et al., 2024) also uses an LLM
to hierarchically create and coordinate skills, but unlike our method, assumes access to control
primitives which handle low-level sensorimotor control. LLMs have also been used for planning in
PDDL domains (Silver et al., 2023), see Appendix A.10 for a detailed discussion.

Hierarchical reinforcement learning There is a rich literature focusing on the discovery of skills
through a variety of approaches, such as empowerment-based methods (Klyubin et al., 2008; Gregor
et al., 2017), spectral methods (Machado et al., 2017; Klissarov & Machado, 2023), and feudal
approaches (Dayan & Hinton, 1993; Vezhnevets et al., 2017). Most of these methods are based on
learning a representation, which is then exploited by an algorithm for skill learning (Machado et al.,
2023). In MaestroMotif, we instead work in the convenient space of natural language by leveraging
LLMs, allowing us to build on key characteristics such as compositionality and interpretability. This
abstract space also allows the possibility to define skills through high-level human intuition, a notion
for which it is very hard to define an formal objective. Interestingly, some of the skills we leverage in
our NetHack implementation are directly connected to early ideas on learning skills, such as those
based on notions of bottleneck and in-betweeness (Iba, 1989; McGovern & Barto, 2001; Menache
et al., 2002; Şimşek & Barto, 2004). Such intuitive notions had not been scaled yet as they are hard
to measure in complex environments. This is precisely what the LLM feedback for skill training
provides in MaestroMotif: a bridge between abstract concepts and low-level sensorimotor execution.

HRL approaches with code policies MaestroMotif is particularly related to approaches that
combine code to define policies over skills and RL to learn low-level policies, such as concurrent
hierarchical Q-learning (Marthi et al., 2005), policy sketches (Andreas et al., 2017), and program-
guided agents (Sun et al., 2020). MaestroMotif employs LLMs as generators of reward functions,
termination/initiation functions, and policies over skills, significantly simplifying the interaction
between humans and the AI system which is used in existing hierarchical RL methods.

6 DISCUSSION

Modern foundation models possess remarkable natural language understanding and information
processing abilities. Thus, even when they are not able to completely carry out a task on their own, they
can be effectively integrated into human-AI collaborative systems to bring the smoothness and efficacy
of the design of agents to new heights. In this paper, we showed that MaestroMotif is an effective
approach for AI-assisted skill design, allowing us to achieve untapped levels of controllability for
sequential decision making in the challenging NetHack Environment. MaestroMotif takes advantage
of easily provided information (i.e., a limited number of prompts) to simultaneously handle the
highest-level planning and the lowest-level sensorimotor control problems, linking them together by
leveraging the best of the LLM and the RL worlds. In MaestroMotif, LLMs serve as pivotal elements,
allowing to overcome two of the most labor-intensive recurring needs in agent design: manually
programming control policies and manually designing reward functions.

Like other hierarchical approaches, MaestroMotif is limited in the behaviors it can express by the
set of skills it has at its disposal; given a set of skills, a satisfactory policy for a task might not be
representable through their composition. Therefore, an agent designer should perform AI-assisted
skill design while keeping in mind what behaviors should be eventually expressed by the resulting
agents. Despite this inherent limitation, we believe our work provides a first step towards a new class
of skill design methods, more effective and with a significantly higher degree of automation than
existing ones. More broadly, MaestroMotif also constitutes evidence for the benefits of a paradigm
based on human-AI collaboration, which takes advantage of the complementary strengths of both.
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Özgür Şimşek and Andrew G. Barto. Using relative novelty to identify useful temporal abstractions in
reinforcement learning. In Proceedings of the Twenty-First International Conference on Machine
Learning, ICML ’04, pp. 95, New York, NY, USA, 2004. Association for Computing Machinery.
ISBN 1581138385. doi: 10.1145/1015330.1015353. URL https://doi.org/10.1145/
1015330.1015353.

Christian Daniel, Malte Viering, Jan Metz, Oliver Kroemer, and Jan Peters. Active reward learning.
In Robotics: Science and Systems, 2014. URL https://api.semanticscholar.org/
CorpusID:16043466.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in neural information
processing systems, pp. 271–278, 1993.

Gary L. Drescher. Made-up minds - a constructivist approach to artificial intelligence. 1991. URL
https://api.semanticscholar.org/CorpusID:3099707.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
multimodal language model. In arXiv preprint arXiv:2303.03378, 2023.

Abhimanyu Dubey, Abhinav Jauhri, and Abhinav Pandey et al. The llama 3 herd of models.
ArXiv, abs/2407.21783, 2024. URL https://api.semanticscholar.org/CorpusID:
271571434.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?
id=rc8o_j8I8PX.

11

https://arxiv.org/abs/2204.01691
https://api.semanticscholar.org/CorpusID:221094080
https://api.semanticscholar.org/CorpusID:8310565
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:125209808
https://api.semanticscholar.org/CorpusID:4787508
https://doi.org/10.1145/1015330.1015353
https://doi.org/10.1145/1015330.1015353
https://api.semanticscholar.org/CorpusID:16043466
https://api.semanticscholar.org/CorpusID:16043466
https://api.semanticscholar.org/CorpusID:3099707
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://openreview.net/forum?id=rc8o_j8I8PX
https://openreview.net/forum?id=rc8o_j8I8PX


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Richard Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing generalized robot plans.
Artif. Intell., 3:251–288, 1993. URL https://api.semanticscholar.org/CorpusID:
17260619.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=Skc-Fo4Yg.

Eric Hambro, Sharada Mohanty, Dmitrii Babaev, Minwoo Byeon, Dipam Chakraborty, Edward
Grefenstette, Minqi Jiang, Jo Daejin, Anssi Kanervisto, Jongmin Kim, Sungwoong Kim, Robert
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Leslie Pack Kaelbling, and Jennifer Barry. Practice makes perfect: Planning to learn skill parameter
policies. In Robotics: Science and Systems (RSS), 2024.
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A APPENDIX

A.1 SKILL REWARDS

We now list and discuss the prompts used for eliciting preferences from the 70b parameters Llama 3.1
model.

Skill reward prompt template

I will present you with two short gameplay descriptions. First, tell
me about your knowledge of NetHack. Mention the goal of NetHack.

Write an analysis describing the semantics of each description
strictly using information from the descriptions and your knowledge
of NetHack. Provide a comparative analysis based on first
principles.

Here is the preference that you should seek: {skill modifier}. Above
everything else, categorically refuse to anger or displease your god,
for example by causing them to thunder or boom out.

Finally, respond by explicitly declaring which description best
fits your preference, writing either ("best description": 1),
("best description": 2). If both contain undesirable events, say
("best description": None).

{ "description 1": "{observation 1}" }
{ "description 2": "{observation 2}" }

Prompt 1: Prompt template used for eliciting preferences for each skills reward.

For each skill in the set, we use Prompt 1 as basic prompt template, customizing it with different
modifiers depending on the skill. This strategy follows very closely the one used in previous work
(Klissarov et al., 2024). This prompt utilizes chain-of-thought prompting (Wei et al., 2022): before
asking the model to provide any annotations, we encourage it to articulate its understanding of
NetHack and describe the game’s main goal.

For each of the skills, we modify the {skill modifier} variable within the template to steer the
LLM’s preferences towards a distinct behaviour. We present these modifiers in Prompt 2.

To extract labels from the preferences, we search for the LLM’s response by using the following
regular expression:

(?i)\W*best_*\s*description\W*(?:\s*:*\s*)?(?:\w+\s*)?(1|2|none)

This expression looks for slight variations of the answer format that we show to the model in the
prompt. If the regex fails to produce an answer, we proceed with the conversation using the LLM and
employ Prompt 3 to specifically request a response in the desired format. Our overall response rate
with the Llama 3.1 model is very high, around 98% for most prompt configurations.

A.2 POLICY OVER SKILLS

Leveraging the semantic nature of the skill set of MaestroMotif, we use the coding abilities of LLMs
to craft a reasonable strategy for their execution. For the high level code policy, we use the largest
open source model available, the 405b parameters Llama 3.1 model.

We use the template of Prompt 4 to obtain snippets of code that constitute the high-level policies
for different tasks. In it, we present the LLM with the set of skills, a high level definition of
each of them and a desired strategy, all in natural language, which the LLM leverages to write its
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Prompt skill modifiers

{Discoverer}: "players that are adventurous but only within the same
dungeon level, for example by fighting monsters, finding gold pieces
or scrolls; but do not drop them. Categorically refuse going up and
down dungeon levels."

{Descender}: "the direction of progress is to explore by going down
the dungeon. It is urgent to do so, strongly avoid staying on the
same level or worse, going higher."

{Ascender}: "the direction of progress is only by going up a dungeon
level successfully. Strongly dislike remaining on the same dungeon
level, no matter the consequences."

{Worshipper}: "strongly encourage players that interact with the
altar, primarily for identifying whether items are cursed or blessed,
rather than for praying to or pleasing their god."

{Merchant}: "prefer players that negotiate, sell and interact with
shopkeepers. Be careful not to steal from stores."

Prompt 2: Skill modifiers used for instantiating variations of Prompt 1.

Retry prompt

So, which one is the best? Please respond by saying
("best description": 1), ("best description": 2), or
("best description": None).

Prompt 3: Prompt provided to the LLM to continue the conversation when the regular expression
does not find a valid annotation in the LLM’s answer to the original prompt.

NetHackPlayer class, representing the high level policy. We employ a form of chain-of-thought
prompting to obtain an initial version of this policy defined in code, an example is given in Output 1.

In many situations, this initial attempt does not capture an adequate strategy for skill execution. To
avoid such undesirable outcomes, we leverage the LLM’s capability for self-refinement through the
help of a self-generated unit test. An initial attempt is passed through a unit test, producing a trace
of execution as shown in Output 2. We then ask the model whether the produced trace satisfies the
strategy. If the answer is yes, the self-refinement procedure stops. If the answer is no, we ask the
LLM to reflect on the code it has previously proposed, identify potential flaws in its logic and write
an improved version (as shown in Prompt 5). This process is repeated for a maximum of 3 iterations.
Such a process is similar to standard refinement prompting strategies for LLMs (Shinn et al., 2023;
Madaan et al., 2023).

A key element of the self-refinement strategy is to leverage a unit test that generates traces of
execution. This unit test is itself crafted by the LLM through Prompt 6, which presents the LLM with
the same list of skills, their description in natural language and a blueprint of the unit test’s structure.

This strategy is employed to generate the code exploration policy used to learn the skill policies.
This is done by first defining a general select skill method for selecting skills. This method is
then leveraged to define the reach dungeons of doom and reach gnomish mines methods
which steer the agent between the different branches of NetHack (as shown in 5). We present in
Output 3 one of the obtained explorative code policies. In Output 4, we present one the code policies
for achieving the Discovery Hunger composite task.
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Prompt for the train-time policy over skills

You are to write code which defines the method "select skill" of the
NetHack Player class that selects amongst a set of skills in the
videogame of NetHack. The set of skills corresponds to {"discoverer",
"descender", "ascender", "merchant", "worshipper"}.

When activated, the Discoverer fully explores the current dungeon,
while fighting off enemies. The Descender makes its way to a
staircase and goes down. The Ascender makes its way to a staircase
and goes up. The Merchant interacts with shopkeepers by selling
its items. The Worshipper interacts with altars by identifying its
items.

Find a strategy that will let the player explore fully each of the
first few dungeon levels, alternating directions between going all
the way down towards the maximum depth, then going up towards the
first dungeon. This might get interrupted by the end of the loop or
if the preconditions of worshipper and merchant allow for it.

You can keep track of any other information by assigning values to
other class attributes, but only if that really helps.

Your code will be verified through this unit test.

###
{unit test}
###

Before writing the code, write a few questions for yourself, and
answer them to make sure you understand the assignment.
In your response make sure to include the code for the class
definition and the unit test in a python markdown.

Prompt 4: Description of the coding task for the LLM to code the train-time policy over skills.

Retry prompt for code policy

Go through your code, line by line, and reflect on where the issue
arises from. Use this to modify your code, remove unnecessary parts
or add new elements.
In your response make sure to include the code for the class
definition and the unit test in a python markdown.

Prompt 5: Prompt used for code self-refinement while producing code policies.

As shown in Prompt 4, the LLM is allowed to create additional attributes to define the code policy
over skills. When the LLM defines such attributes, it is afterwards queried to write code for these
attributes such that their values are gathered from the NLE.

The average amount of tokens produced for a policy over skills is 9030 tokens according to the
Llama 3 tokenizer. Similarly, the average amount of tokens used for the termination and initiation
functions is 810 tokens. To query the 405B model, there exists many solutions online and locally,
with throughput as high as 969 tokens/second (generating a policy in largely less than a minute even
including the refinement process) and cost as low as $3/1M (generating a policy for a few cents).
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Initial policy over skills

class NetHackPlayer:
def __init__(self, max_depth):

self.max_depth = max_depth
self.skills = ["discoverer", "descender", "ascender",

"merchant", "worshipper"]
self.direction = 1 # 1 for down, -1 for up

def merchant_precondition(self):
# For the purpose of this example, it always returns False
return False

def worshipper_precondition(self):
# For the purpose of this example, it always returns False
return False

def select_skill(self, current_skill, dungeon_depth,
merchant_precondition, worshipper_precondition):

if merchant_precondition:
return’merchant’

elif worshipper_precondition:
return ’worshipper’

elif current_skill == ’discoverer’:
if dungeon_depth < self.max_depth and self.direction == 1:

return ’descender’
elif dungeon_depth > 1 and self.direction == -1:

return ’ascender’
else:

self.direction *= -1
if self.direction == 1:

return ’descender’
else:

return ’ascender’
elif current_skill == ’descender’:

return ’discoverer’
elif current_skill == ’ascender’:

return ’discoverer’

Output 1: Example of generated policy over skills before any refinement.

A.3 INITIATION AND TERMINATION

Finally, we leverage the coding abilities of the LLM to also define the termination and initiation
functions of the skills. These quantities, together with the skill policies, define the option tuple
from the options framework (see Section 2). The termination function indicates when a skill should
finish its execution and the initiation function when it can be selected by the high level policy. As
these functions are significantly simpler than the high level policy, we do not leverage the same
self-refinement through unit tests. In Prompt 8, we present the prompt used to define the termination
function and in Prompt 9 the one to define the initiation function.

A.4 CODE REFINEMENT

In Figure 9, we further compare the importance of leveraging code refinement through self-generated
unit tests. We notice that this leads to improved results when using the 405b LLM, however no
significant difference is observed for the smaller models.
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Unit test execution trace

Turn 1: Skill = discoverer, Dungeon depth = 1
Turn 2: Skill = descender, Dungeon depth = 2
Turn 3: Skill = discoverer, Dungeon depth = 2
Turn 4: Skill = descender, Dungeon depth = 3
Turn 5: Skill = discoverer, Dungeon depth = 3
Turn 6: Skill = descender, Dungeon depth = 4
Turn 7: Skill = discoverer, Dungeon depth = 4
Turn 8: Skill = descender, Dungeon depth = 5
Turn 9: Skill = discoverer, Dungeon depth = 5
Turn 10: Skill = ascender, Dungeon depth = 4
Turn 11: Skill = discoverer, Dungeon depth = 4
Turn 12: Skill = ascender, Dungeon depth = 3
Turn 13: Skill = discoverer, Dungeon depth = 3
Turn 14: Skill = ascender, Dungeon depth = 2
Turn 15: Skill = discoverer, Dungeon depth = 2
Turn 16: Skill = ascender, Dungeon depth = 1
Turn 17: Skill = discoverer, Dungeon depth = 1
Turn 18: Skill = descender, Dungeon depth = 2
Turn 19: Skill = discoverer, Dungeon depth = 2
Turn 20: Skill = descender, Dungeon depth = 3

Output 2: Example of output from a unit test written by the LLM.

8b 70b 405b
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Figure 9: Refining the LLM Coder outputs through a self-generated unit tests yields significant
improvements for the 405b parameter Llama model.

A.5 ENVIRONMENT AND METHOD DETAILS

We base our implementation on the NetHack Learning Environment (Küttler et al., 2020) and Chaotic
Dwarven GPT-5 baseline (Miffyli, 2022), which itself was defined on the fast implementation of PPO
(Schulman et al., 2017) within Sample Factory (Petrenko et al., 2020). As discussed in Klissarov
et al. (2024), although some actions are available to the agent (like the ‘eat’ action), it is not possible
for the agent to actually eat most of the items in the agent’s inventory. This limitation is also true for
other key actions such as the action for drinking, or the ‘quaff’ action in NetHack terms. To overcome
this limitation, we make a simple modification to the environment by letting the agent eat and quaff
any of its items, at random, by performing a particular command (the action associated with the key
y). We also include standard actions such as pray, cast and enhance. All agents that we train are
evaluated using these same conditions, except the behaviour cloning based agents in Figure 5 which
have access to an even larger action set.

For the skill reward training phase of MaestroMotif, we use the message encoder from the Elliptical
Bonus baseline (Henaff et al., 2022). Similar to Klissarov et al. (2024), we train the intrinsic reward
rϕ with the following equation,
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Unit test prompt

You are to write code for a unit test of the NetHackPlayer class and
its "select skill" method. This method takes as input the skill,
"dungeon depth" and "branch number" arguments and outputs a skill.
You must write code that simulates how the environment reacts to the
"select skill" method.

The skills consist of "discoverer", "descender", "ascender",
"merchant", "worshipper". When activated, the Discoverer fully
explores the current dungeon, while fighting off enemies. The
Descender makes its way to a staircase and goes down. The Ascender
makes its way to a staircase and goes up. The Merchant interacts
with shopkeepers by selling its items. The Worshipper interacts with
altars by identifying its items.

Here is the template:

" max depth = 1
player = NetHackPlayer(max depth)
skill = ’discoverer’
dungeon depth = 1

for turn in range(20):
print(f"Turn {{turn + 1}}: Skill = {{skill}}, Dungeon depth =
{{dungeon depth}}")
merchant precondition = player.merchant precondition()
worshipper precondition = player.worshipper precondition()
skill = player.select skill(skill, dungeon depth,
merchant precondition, worshipper precondition)

# the environment updates the dungeon depth
# Code here

You are to write the unit test only in its current form, not the
NetHackPlayer class. Do not create new classes, functions or import
anything.

Prompt 6: Prompt given to the LLM code generator for coding up the unit test used during refinement.

L(φ) = −E(o1,o2,y)∼Dpref

[
1[y = 1] logPφ[o1 ≻ o2] + 1[y = 2] logPφ[o2 ≻ o1]

+ 1[y = ∅] log

(√
Pφ[o1 ≻ o2] · Pφ[o2 ≻ o1]

)]
,

(2)

where Pφ[oa ≻ ob] =
erφ(oa)

erφ(oa)+erφ(ob)
is the probability of preferring an observation to another. This

is the Bradley-Terry model often used in preference-based learning (Thomaz et al., 2006; Knox &
Stone, 2009; Christiano et al., 2017). The work on Motif adopted this reward transformation,

rint(observation) = 1[rφ(observation) ≥ ϵ] ·rφ(observation)/N(observation)β ,
(3)

where N(observation) was the count of how many times a particular observation has been
previously found during the course of an episode. We adopt the same reward transformation, although
we relax the requirement that N() is a function over the full course of the episode, but rather over
the last 20 steps. This opens the opportunity to leverage this transformation on a larger spectrum

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

of environments by keeping a short memory of transitions rather than functional forms of counting
which are difficult to achieve in many practical settings (Bellemare et al., 2016).

Hyperparameter Value

Reward Scale 0.1
Observation Scale 255
Num. of Workers 24

Batch Size 4096
Num. of Environments per Worker 20

PPO Clip Ratio 0.1
PPO Clip Value 1.0

PPO Epochs 1
Max Grad Norm 4.0
Value Loss Coeff 0.5
Exploration Loss entropy

Table 2: PPO hyperparameters.

To obtain the LLM-based reward, we train for 20 epochs using a learning rate of 1 × 10−5. As
Equation 3 shows, we further divide the reward by an episodic count and we only keep values above a
certain threshold. The value of the count exponent was 3 whereas for the threshold we used the 85th
quantile of the empirical reward distribution for each skill, except the Discoverer which used the
95th quantile. For the Motif and Embedding Similarity baseline, we perform a similar transformation
on their reward, using a count exponent was 3 whereas for the threshold we used the 50th quantile.
For all methods, before providing the LLM-based reward function to the RL agent, we normalize
it by subtracting the mean and dividing by the standard deviation. In the Motif paper, the authors
additively combine both the LLM-based intrinsic reward and a reward coming from the environment
with a hyperparameter α, leading to different trade-offs for different values. In MaestroMotif we
completely remove this hyperparameter and instead learn completely through the intrinsic reward
coming from the LLM. Finally, in Table 2, we report the remaining standard values of the RL agent’s
hyperparameters.

A.6 BENCHMARK DESIGN AND MOTIVATION

We note that out of the original tasks from the NLE paper, the Staircase (and closely related
Pet) tasks have by now been solved (Zhang et al., 2021; Klissarov et al., 2024). The Score task
is effectively unbounded, but as noted in (Wolczyk et al., 2024), it is possible to achieve very high
scores by adopting behaviors which correlate poorly with making progress in the game of NetHack
(for example, by staying at early levels and killing weak monsters). This is also an observation
corroborated by our experiments in Section 4.2.

To define a set of compelling and useful tasks in the NLE, we take inspiration from the NetHack
community, in particular, from the illustrated guide to NetHack Moult (2022). This guide describes
various landmarks that every player will likely experience while making progress in the game. Some
of these landmarks were also suggested in the original NLE release Küttler et al. (2020). The first
such landmark is the Gnomish Mines which constitutes the first secondary branch originating
in the main branch, the Dungeons of Doom (see Figure 5). The second landmark is Minetown, a
deeper level into the Gnomish Mines in which players might interact with Shopkeepers and gather
items. The third landmark is the Delphi, which is a level that appears somewhere between depth
5 and 9 in the main branch and is the home to the Oracle, a famous character in the game. It is not
necessary to interact with the Oracle to solve the game of NetHack, but reaching the Delphi is a
necessary step towards it, which is the reason we include it and not the Oracle task.

As these tasks are navigation oriented, we additionally include a set of tasks that require the agent to
interact with entities found across the dungeons of NetHack. The interactions we select are chosen
because they key to the success to any player playing the NetHack game. For this reason, we focus
on interactions that will give the agent more information about its inventory of items. In NetHack,
most items that are collected have only partially observable characteristics. For example, a ring
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that is found could be blessed or cursed, and its magical effects are not revealed (it could be ring of
levitation, a ring of cold resistance, etc.).

The first type of interactions are those where the agent interacts with altars associated with the
NetHack gods. These offer many benefits, the most common one is the possibility to identify the
blessed/cursed/uncursed (B/U/C) status of an item. The difference between a cursed and uncursed
item can have deadly consequences in NetHack. The second type of interactions are those where the
agent finds a shopkeeper to either sell an item and collect gold, or attempts to sell an item to get an
offer from the shopkeeper. When getting a price offer from the shopkeeper, it is possible to identify
the kind of item that the agent has in its possession (i.e. a wand of death or a wand of enlightenment).

Overall, we believe that these tasks are well-aligned with making progress towards the goal of
NetHack. It is also important to note that even though these tasks are very hard for current AI agents,
they only represent a fraction of the complexity of NetHack.

A.7 HIERARCHICAL ARCHITECTURE

(a) Skill-conditioned policy (b) Multi-head policy

Figure 10: Neural network architectures. The architecture on left, used throughout the paper, was key
for the the successful training of the skill policies.

In Figure 10a we present the architecture used to learn the skill policies, which simply consist of a
single neural network conditioned on a one-hot vector. This one-hot vector represents the skill index
(i.e. the first entry in this vector is associated with the Discoverer skill and the last one with the
Merchant skill). This implementation is not only efficient in terms of the number of parameters
needed to represent a diversity of behaviours, but also was also crucial for successfully learning these
behaviours. We explored alternative architectures, such as adding multiple heads to the network, each
for one of the skills, as shown in Figure 10b. Results in Figure 8a show that this lead to a collapse in
performance which we attribute to a catastrophic interference between the gradients coming from
different skills. It is important to notice that the skills are activated with very different frequencies
(for example the Discoverer is activated almost 50 times more often than the Worshipper).
Another possibility in terms of architecture would be to consider more sophisticated conditioning
mechanism such as FiLM (Perez et al., 2017) which has been successful in various applications.

A.8 ADDITIONAL ABLATIONS

Preference elicitation In Section 3.3, we have presented the ways in which the annotation process
used in the NetHack implementation of MaestroMotif differs from the one presented in Klissarov
et al. (2024). In Figure 11, we verify how each of these choices affects the final performance of our
algorithm. The importance of providing the player statistics within the prompt eliciting preferences
from the LLM is made apparent, as without such information the performance drops to almost 30%
of its full potential. When the player statistics are provided but no information about how they differ
from recent values (i.e. diffStats), the resulting performance is similarly decreased. This is explained
by the non-Markovian nature of observations in NetHack: as an example, a status shown as hungry
could be the result of being previously satiated or fainting, which present two quite different
ways of behaving and would produce difference preferences. Finally, our preference elicitation phase
integrates episodes from the Dungeons and Data dataset (Hambro et al., 2022b), which provides
greater coverage of possible interactions and observations of NetHack. We notice that this choice is
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Figure 11: Ablation studies on MaestroMotif’s design choices.

important to obtain the full performance of MaestroMotif. This result illustrates how AI feedback
can be an effective strategy for leveraging action-free and reward-free datasets.

A.9 CONSIDERATIONS FOR THE SKILL SELECTION

In this work, we have leveraged an LLM to define a training-time high-level policies, termination
and initiation functions in order to learn the skills. These components defining the skills selection
strategy were then fixed during the skill learning process. As we have seen in Section 4.3, this led to
an emerging curriculum over skills, where easier skills developed first and harder skills developed
later on. However, we could see significant improvements in skill learning efficiency if the high-level
policies, termination and initiation functions were instead adapted online. This could be done, for
example, by deciding what skills to select and how to improve them (Kumar et al., 2024). Ideas from
active learning (Daniel et al., 2014; Mendez-Mendez et al., 2023) would be of particular value for
pursuing this research direction. Another consideration with respect to the high-level policy is its
robustness. Currently, before the high-level policy is deployed, it is verified through a self-generated
unit test. This strategy was generally successful to avoid particular failure modes and obtain good
strategies. However, it is not a full-proof strategy, and adapting the high-level policy through online
interactions could be significantly more robust. One way to approach to adapt the high-level policy
would be to provide in-context execution traces from the environment through which the LLM
could iterate on a proposed strategy. Another approach would be through RL, for example through
intra-option value learning (Sutton et al., 1999). We are then faced with the following question: what
reward would this high level policy optimize? A possible answer would be to apply Motif to define
such reward function on a per-task basis.

A.10 CONNECTIONS TO THE PLANNING LITERATURE

MaestroMotif learns skills through RL and, when faced with a particular task, re-composes them
zero-shot through code that defines the execution strategy. To do so, the LLM writing the code needs
to specify where skills can initiate, where they should terminate and how to select between them.
MaestroMotif is in fact an instantiation of the options formalism (Sutton et al., 1999; Precup, 2000),
which defined the necessary quantities for learning skills in RL. However, the idea to abstract behavior
over time in the form of skills has a long history in AI, for example through STRIPS planning (Fikes
et al., 1993), macro-operators Iba (1989), Schemas Drescher (1991) and Planning Domain Definition
Language (PDDL) (McDermott et al., 1998). The structure behind the option triple can also be seen
in related fields, such as formal systems through the Hoare logic (Hoare, 1969). Silver et al. (2023)
recently investigate how LLMs can be used as generalized planners by writing programs in PDDL
domains, which is similar to how MaestroMotif write code to sequence skills. Their results show that
LLMs are particularly strong planners. Another promising direction would be to use LLMs to convert
natural language into PDDL, to then leverage classical planning algorithms (Liu et al., 2023). Further
investigating the connections between the options framework and symbolic representations would be
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Zero-shot Task-specific training

Task MaestroMotif LLM Policy LLM Policy (Eq. Prompting) Motif Motif (Eq. Prompting)

Gnomish Mines 46%± 1.70% 0.1%± 0.03% 0.3%± 0.03% 9%± 2.30% 9%± 2.30%
Delphi 29%± 1.20% 0%± 0.00% 0%± 0.00% 2%± 0.70% 1.7%± 0.70%
Minetown 7.2%± 0.50% 0%± 0.00% 0%± 0.00% 0%± 0.00% 0%± 0.00%

Transactions 0.66± 0.01 0.00± 0.00 0.00± 0.00 0.08± 0.00 0.09± 0.00
Price Identified 0.47± 0.01 0.00± 0.00 0.00± 0.00 0.02± 0.00 0.02± 0.00
BUC Identified 1.60± 0.01 0.00± 0.00 0.00± 0.00 0.05± 0.00 0.04± 0.00

Table 3: Results on navigation tasks and interaction tasks. We provide all prior knowledge given to
MaestroMotif to two additional baselines, LLM Policy (Equivalent Prompting) and Motif (Equivalent
Prompting). Results indicate that this additional information does not increase the performance.
Learning how and when to leverage this information, from context, makes it very challenging.

particularly promising (Konidaris et al., 2018; Bagaria et al., 2021), in particular in the context of
LLMs.

A.11 ADDITIONAL PROMPTING EXPERIMENTS

We further verify the hypothesis that the hierarchical structure of the MaestroMotif algorithm is key
to obtain performance. In Table 3, we present two additional baselines. LLM Policy (equivalent
prompting) based the LLM Policy baseline but its prompt contains all the information that used
within the different prompts of MaestroMotif. This includes skill descriptions, high-level descriptions
of the task and also the generated code by the policy-over-skills that is used within MaestroMotif.
We also investigate Motif (equivalent prompting), which similarly builds on the Motif baseline
but provides all the prior knowledge given to MaestroMotif. Despite giving significantly more
information to both baselines, the performance does not improve. Although additional information
is provided, the burden on how and when to leverage this information, from context, makes it very
challenging.
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Code for train-time policy over skills

class NetHackPlayer:
def __init__(self, max_depth, branch_depth):

self.max_depth = max_depth
self.branch_depth = branch_depth
self.explored_levels = set()
self.direction = ’down’ # Start by going down

def merchant_precondition(self):
# Placeholder for actual merchant precondition logic
return False

def worshipper_precondition(self):
# Placeholder for actual worshipper precondition logic
return False

def select_skill(self, current_skill, dungeon_depth,
merchant_precondition, worshipper_precondition):

if merchant_precondition:
return ’merchant’

if worshipper_precondition:
return ’worshipper’

if current_skill == ’discoverer’:
self.explored_levels.add(dungeon_depth)
if self.direction == ’down’:

if dungeon_depth < self.max_depth:
return ’descender’

else:
self.direction = ’up’
return ’ascender’

elif self.direction == ’up’:
if dungeon_depth > 1:

return ’ascender’
else:

self.direction = ’down’
return ’descender’

elif current_skill == ’descender’:
return ’discoverer’

elif current_skill == ’ascender’:
return ’discoverer’

else:
return ’discoverer’

def select_skill_dungeons_doom(self, current_skill, dungeon_depth,
branch_number, merchant_precondition, worshipper_precondition):

if dungeon_depth == self.branch_depth:
if branch_number == 2:

return ’ascender’
else:

return ’descender’
elif branch_number == 2 and dungeon_depth == self.branch_depth + 1:

return ’ascender’
else:

return self.select_skill(current_skill, dungeon_depth,
merchant_precondition, worshipper_precondition)

def select_skill_gnomish_mines(self, current_skill, dungeon_depth,
branch_number, merchant_precondition, worshipper_precondition):

if branch_number == 0:
if dungeon_depth == self.branch_depth:

return ’descender’
elif dungeon_depth == self.branch_depth + 1:

return ’ascender’
elif branch_number == 2:

return self.select_skill(current_skill, dungeon_depth,
merchant_precondition, worshipper_precondition)

return self.select_skill(current_skill, dungeon_depth,
merchant_precondition, worshipper_precondition)

Output 3: Code of the train-time policy over skills generated by MaestroMotif.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Prompt for the policy over skills for Discovery Hunger

You are to write code which defines the method "select skill" of the
NetHack Player class that selects amongst a set of skills in the
videogame of NetHack. The set of skills corresponds to {"discoverer",
"descender", "ascender", "merchant", "worshipper"}.

When activated, the Discoverer fully explores the current dungeon,
while fighting off enemies. The Descender makes its way to a
staircase and goes down. The Ascender makes its way to a staircase
and goes up. The Merchant interacts with shopkeepers by selling
its items. The Worshipper interacts with altars by identifying its
items.

Here is your current implementation of the NetHackPlayer class:

###
{current class implementation}
###

You are faced with the task following task.

Reach the oracle level (the Delphi) in the Dungeons of Doom, but not
before discovering the Gnomish Mines and eating some food there after
getting hungry.

The Dungeons of Doom (branch number 0) constitute the main branch
starting from depth 1. At branch depth, a second staircase appears
opening the door towards the Gnomish Mines (branch number 2) at
branch depth+1. Therefore, the Gnomish Mines constitute a second
branch from branch depth+1.

You should make use of the two existing methods. The
"reach gnomish mines" method brings the player to the Gnomish Mines
from the Dungeons of Doom. The "reach dungeons of doom" method brings
the player to the Dungeons of Doom from the Gnomish Mines.

Finding food happens by activating the Discoverer skill in the
Gnomish Mines. Immediately after finding the food, head as fast as
possible for the Oracle level in the Dungeons of Doom (branch number
0), without more exploration.

Your code will be verified through this unit test.

###
{unit test}
###

Before writing the code, write a few questions for yourself, and
answer them to make sure you understand the assignment.

Identify if you need to define any additional attributes. If you
define additional attributes, for each of them you must write methods
that will simulate changes to their values. These methods must
be called upon in the unit test (not in perform task), as if the
environment is updating them. The values should also be printed at
each iteration.

In your response make sure to include the code for the class
definition and the unit test in a python markdown.

Prompt 7: Description of the coding task for the LLM to code the policy over skills at deployment
time when attempting to solve Discovery Hunger.
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Code policy for Discovery Hunger

class NetHackPlayer:
def __init__(self, max_depth, branch_depth):

self.max_depth = max_depth
self.branch_depth = branch_depth
self.skills = ["discoverer", "descender", "ascender", "merchant", "worshipper"]
self.direction = 1 # 1 for down, -1 for up
self.eaten_food = False
self.explored_gnomish_mines = False

[...]
def select_skill(self, current_skill, dungeon_depth,

merchant_precondition, worshipper_precondition):
if merchant_precondition:

return’merchant’
elif worshipper_precondition:

return ’worshipper’
elif current_skill == ’discoverer’:

if dungeon_depth < self.max_depth and self.direction == 1:
return ’descender’

elif dungeon_depth > 1 and self.direction == -1:
return ’ascender’

else:
self.direction *= -1
if self.direction == 1:

return ’descender’
else:

return ’ascender’
elif current_skill == ’descender’:

return ’discoverer’
elif current_skill == ’ascender’:

return ’discoverer’

def reach_gnomish_mines(self, current_skill, dungeon_depth, branch_number,
merchant_precondition, worshipper_precondition):

if dungeon_depth == self.branch_depth:
return ’descender’

elif dungeon_depth == self.branch_depth + 1 and branch_number == 0:
return ’ascender’

else:
return self.select_skill(current_skill, dungeon_depth,

merchant_precondition, worshipper_precondition)

def reach_dungeons_of_doom(self, current_skill, dungeon_depth, branch_number,
merchant_precondition, worshipper_precondition):

if dungeon_depth == self.branch_depth and branch_number == 0:
return ’descender’

elif dungeon_depth == self.branch_depth + 1 and branch_number == 2:
return ’ascender’

elif dungeon_depth > self.branch_depth and branch_number == 0:
return self.select_skill(current_skill, dungeon_depth,

merchant_precondition, worshipper_precondition)
else:

return self.select_skill(current_skill, dungeon_depth,
merchant_precondition, worshipper_precondition)

def perform_task(self, current_skill, dungeon_depth, branch_number,
merchant_precondition, worshipper_precondition):

if not self.explored_gnomish_mines:
if branch_number == 2:

self.explored_gnomish_mines = True
return ’discoverer’

else:
return self.reach_gnomish_mines(current_skill, dungeon_depth,

branch_number, merchant_precondition, worshipper_precondition)
elif not self.eaten_food:

self.eaten_food = True
return ’discoverer’

else:
if branch_number!= 0:

return self.reach_dungeons_of_doom(current_skill, dungeon_depth,
branch_number, merchant_precondition, worshipper_precondition)

elif dungeon_depth < 9:
return ’descender’

else:
return ’discoverer’

Output 4: Example of code generated by MaestroMotif to solve the Discovery Hunger compos-
ite task.
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Termination function prompt

You are to implement the skill termination method of the NetHackPlayer
class. This method determines when any of the skills should
terminate.

Here is a description of the skills. When activated, the Discoverer
fully explores the current dungeon, while fighting off enemies. The
Descender makes its way to a staircase and goes down. The Ascender
makes its way to a staircase and goes up. The Merchant interacts
with shopkeepers by selling its items. The Worshipper interacts
with altars by identifying its items. If the any of preconditions of
the Merchant or Worshipper in the preconditions is true, the current
skill should terminate no matter what.

def skill termination(self, skill, skill time, current depth,
previous depth, preconditions)

Prompt 8: Prompt given to the LLM code generator for the generation of the termination function for
each skill.

Initiation function prompt

You are to implement the precondition method of the NetHackPlayer
class. This method determines when any of the skills can initiate.

Here is a description of the skills. When activated, the Discoverer
fully explores the current dungeon, while fighting off enemies. The
Descender makes its way to a staircase and goes down. The Ascender
makes its way to a staircase and goes up. The Merchant interacts
with shopkeepers by selling its items. The Worshipper interacts with
altars by identifying its items. Define the preconditions only for
the last two skills. Before writing the code, identify the entities
that will be useful to identify: mention their ascii characters and
their ascii encoding number. To correctly identify an entity, you
also have to make use of the the char ascii colors that represents the
color of the ascii character. Refer to color map to fetch the right
color.

def skill precondition(self, char ascii encodings, char ascii colors,
num items, color map):
# char ascii encodings : a numpy array representing the ascii
encoding of the characters surrounding the player
# char ascii colors : a numpy array representing the colors of the
characters surrounding the player
# num items : the number of items the agents has
# color map : a map from common characters to their color

Prompt 9: Prompt given to the LLM code generator for the generation of the initiation function for
each skill.
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