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Abstract

This paper studies the problem of safe meta-reinforcement learning (safe meta-
RL), where an agent efficiently adapts to unseen tasks while satisfying safety
constraints at all times during adaptation. We propose a framework consisting
of two complementary modules: safe policy adaptation and safe meta-policy
training. The first module introduces a novel one-step safe policy adaptation
method that admits a closed-form solution, ensuring monotonic improvement,
constraint satisfaction at every step, and high computational efficiency. The second
module develops a Hessian-free meta-training algorithm that incorporates safety
constraints on the meta-policy and leverages the analytical form of the adapted
policy to enable scalable optimization. Together, these modules yield three key
advantages over existing safe meta-RL methods: (i) superior optimality, (ii) anytime
safety guarantee, and (iii) high computational efficiency. Beyond existing safe
meta-RL analyses, we prove the anytime safety guarantee of policy adaptation
and provide a lower bound of the expected total reward of the adapted policies
compared with the optimal policies, which shows that the adapted policies are
nearly optimal. Empirically, our algorithm achieves superior optimality, strict
safety compliance, and substantial computational gains—up to 70% faster training
and 50% faster testing—across diverse locomotion and navigation benchmarks.

1 Introduction

Reinforcement learning (RL) [47] has achieved significant successes in various domains, from
video games [37, 46, 26] to robotics [28, 27, 35, 36]. The RL problem is formulated as a Markov
decision process (MDP) and aims to maximize the expected total reward. Safe RL [58, 55, 15, 57]
addresses additional safety requirements, such as collision avoidance for robots [51, 21] and operation
restrictions in financial management [1]. Typically, the safe RL problem is formulated as a constrained
MDP (CMDP) [4], which aims to maximize the expected total reward while ensuring that the expected
safety costs are below given thresholds. As noted in [15], the goals of reward maximization and
constraint enforcement are not completely aligned, aggravating the challenge of the inherent trade-off
between exploration and exploitation.

Meta-reinforcement learning (meta-RL) [5] aims to extract common knowledge from multiple existing
RL tasks, accelerating the learning process and increasing the data efficiency of RL algorithms. Safe
meta-RL [24, 55, 59] integrates safe RL and meta-RL and inherits the benefits of both. On the
other hand, existing safe meta-RL methods face three new challenges: optimality, computational
efficiency, and anytime safety. Meta-CRPO [24] considers an online safe meta-RL problem. In
each round, it computes the task-specific policy by CRPO [55] and updates the meta-policy that
has the minimal average distance to the task-specific policies of all previous tasks. However, the
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Table 1: Comparison with existing safe meta-RL methods

Theoretical results Experimental results

Methods Safety Bounded
optimality gap Efficiency OptimalityConstraint violation Target policy

[24] Positive Safety for final policy ✓ Low Low
[12] Positive Safety for adapted policy × Low Medium
Ours Zero Anytime safety ✓ High High

meta-training does not optimize the performance of the task-specific policy adaptation, and the
policies adapted from the learned meta-policy may be sub-optimal for new tasks. Meta-CPO [12]
optimizes the policies adapted from the meta-policy by constraint policy optimization (CPO) [2].
Nevertheless, its computational complexity is high in both the meta-training and meta-test stages.
Specifically, during the meta-training, meta-CPO solves a constrained bilevel optimization problem
[52] where the constraints are present at both the upper and lower levels. The computation involved,
particularly the inverse of the Hessian, is computationally expensive. During the meta-test, each
policy adaptation step solves a nonconvex constrained optimization problem.

In applications of (safe) meta-RL [38, 6], during the meta-test, the agent collects the rewards/costs
of state-action pairs by exploring a new, unknown CMDP and optimizes the policy based on the
collected data. Therefore, it is important to guarantee anytime safety, i.e., the safety constraints must
be satisfied for every policy used for the exploration. However, the anytime safety is overlooked
in all existing safe meta-RL algorithms [24, 12]. Specifically, during the meta-test, they start with
the meta-policy and repeatedly adapt the most recent policy into a new one by the policy adaptation
algorithm, which generates a sequence of policies. Except for the final policy in the sequence,
each policy, including the initial meta-policy, is used to explore the environment and collect data.
Meta-CRPO [24] only quantifies the safety constraint violation of the final convergent policy in the
sequence, neglecting that of intermediate policies for data collection. Meta-CPO [12] applies the
CPO [2] as the policy adaptation algorithm, which can quantify the safety constraint violation of
policies that have undergone at least one adaptation step. However, the safety of the meta-policy is
ignored. Moreover, both meta-CRPO and meta-CPO provide positive upper bounds of the constraint
violation, which do not guarantee zero violation of the safety constraints.

1.1 Main contribution

This paper develops a safe meta-RL framework consisting of two modules: safe policy adaptation
and safe meta-policy training. Specifically, we introduce a novel safe policy adaptation method,
which guarantees monotonic improvement, ensures safety, and provides a closed-form solution for
a single safe policy adaptation step. For the meta-policy training, we impose safety constraints on
the meta-policy, derive the meta-gradient, simplify its computation by leveraging the closed-form
expression of the adapted policy, and develop a Hessian-free meta-training algorithm.

The proposed algorithms offer three key advantages over existing safe meta-RL methods. (i) Superior
optimality. Our safe meta-policy training algorithm maximizes the expected accumulated reward
of the policies adapted from the meta-policy, and then improves the optimality of meta-CRPO [24]
and naive transfers from meta-RL, which do not consider the task-specific safe policy adaptation
in the meta-training. (ii) Anytime safety guarantee during the meta-test. With the imposed safety
constraint on the meta-policy, the safe meta-policy training produces a safe initial meta-policy.
Moreover, as mentioned in (b), the safe policy adaptation guarantees safety for each step when
the initial policy is safe. By integrating these two modules, anytime safety is achieved. (iii) High
computational efficiency in both the meta-test and meta-training stages. As mentioned in (c),
we derive the close-formed solution for the policy adaptation. It makes the meta-test much more
efficient than those in meta-CRPO [24] and meta-CPO [12], which solve constrained optimization
problems. In the meta-training, the close-formed solution of the policy adaptation is used to derive a
Hessian-free meta-gradient and reduces the computation complexity of the proposed algorithm to
approach that in the single-level optimization, making it more efficient than meta-CPO [12] and many
meta-RL algorithms [16, 30] with the bi-level optimization steps and the computation of Hessian
and Hessian inverse. We conduct experiments on seven scenarios including navigation tasks with
collision avoidance and locomotion tasks to verify these advantages of the proposed algorithms.
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Another major contribution of the paper is that it is the first to derive a comprehensive theoretical
analysis regarding near optimality and anytime safety guarantees for safe meta-RL. First, we establish
the theoretical basis of the algorithm design that guarantees anytime safety, i.e., zero constraint
violation for any policy during the policy adaptation. Second, we derive a lower bound of the
expected accumulated reward of the adapted policies compared to that of the task-specific optimal
policies, which shows the near optimality of the proposed safe meta-RL framework. Finally, we
demonstrate a trade-off between the optimality bound and constraint violation when the allowable
constraint violation varies, which enables the algorithm to be adjusted to prioritize either safety or
optimality.

Table 1 compares both the theoretical and experimental results between this paper and previous works
[24, 12]. First, we study anytime safety and provide a zero constraint violation guarantee. In previous
works, they only provided positive upper bounds for the constraint violation, and the upper bounds
only work for the final policy [24] or the adapted policies [12]. Second, although [24] provides an
upper bound of the optimality gap, the experimental optimality is the worst. On the other hand, [12]
does not provide an optimality bound. In contrast, our method exhibits high optimality and provides
a near-optimality guarantee, outperforming existing approaches in terms of both experimental and
theoretical outcomes. Third, our method is more efficient than the existing methods [24, 12].

Related works. Due to the space limit, we include a section of related works in Appendix A.

1.2 Notations

Denote the l2 norm of vectors and the spectral norm (2-norm) of matrices by ∥ · ∥. Denote the
Kullback–Leibler divergence (KL-divergence) of probability distributions p and q defined on the
same sample space X by DKL(p∥q) ≜

∫
X ln

(
p(dx)
q(dx)

)
p(dx).

2 Problem Statement

CMDP. A CMDP M ≜ {S,A, γ, ρ, P, r, {ci}pi=1, {di}
p
i=1} is defined by the state space S, the

action space A, the discount factor γ, the initial state distribution ρ over S , the transition probability
P (s′|s, a) : S × A× S → [0, 1], the reward function r : S × A× S → [0, rmax], p cost functions
where the i-th cost function is defined as ci : S × A × S → [0, cmax

i ] for i = 1, · · · , p, and the
constant di, which is the limit of constraint i. The state space S could be either a discrete space or a
bounded continuous space. The action space A could be either discrete or continuous.

Policy. A stochastic policy π : S → P(A) is a mapping from states to probability distributions over
action. When A is discrete, π(a|s) denotes the probability of choosing action a in state s; when
A is continuous, π(a|s) denotes the probability density. Denote the policy space as Π. In addition,
a softmax policy parameterized by θ ∈ Rn is denoted as πθ, where πθ(a|s) ≜ exp(fθ(s,a))∫

A exp(fθ(s,a′))da′ ,

∀(s, a) ∈ S ×A, for continuous action space A, or πθ(a|s) ≜ exp(fθ(s,a))∑
a′∈A exp(fθ(s,a′)) , for discrete action

space A, and fθ : S ×A → R is a continuous function for any θ.

Safe RL. For a policy π, the value function is defined as V π(s) ≜ E[
∑∞

t=0 γ
t r(st, at, st+1)|s0 =

s, π]. The action-value function is defined as Qπ(s, a) ≜ E[
∑∞

t=0 γ
tr(st, at, st+1)|s0 = s, a0 =

a, π]. The advantage function is defined as Aπ(s, a) ≜ Qπ(s, a) − V π(s). The accumulated
reward function is J(π) ≜ Es∼ρ[V

π(s)]. Similarly, for each i = 1, · · · , p, we define V π
ci (s) ≜

E[
∑∞

t=0 γ
tci(st, at, st+1)|s0 = s, π], Qπ

ci(s, a) ≜ E[
∑∞

t=0 γ
tci(st, at, st+1)|s0 = s, a0 = a, π],

Aπ
ci(s, a) ≜ Qπ

ci(s, a) − V π
ci (s), and Jci(π) ≜ Es∼ρ

[
V π
ci (s)

]
. The discounted state visitation

distribution of π is defined as νπ(s) ≜ (1− γ)Es0∼ρ[
∑∞

t=0 γ
t P (st = s|π)]. The safe RL problem

is to maximize the accumulated reward function while the accumulated cost functions satisfy the
constraints, i.e., solving the problem maxπ∈Π J(π) s.t. Jci,τ (π) ≤ di, ∀i = 1, · · · , p.

Safe meta-RL with anytime safety. Safe meta-RL targets multiple safe RL tasks. Consider a space
of safe RL tasks Γ, where each task τ ∈ Γ is modeled by a CMDP Mτ ≜ {S,A, γ, ρτ , Pτ , rτ ,
{ci,τ}pi=1, {di,τ}

p
i=1}. Following the notions in the above subsections, the notations ρτ , Pτ , rτ , ci,τ ,

di,τ , as well as V π
τ , V π

ci,τ , Qπ
τ , Qπ

ci,τ , Aπ
τ , Aπ

ci,τ , Jτ , Jci,τ , and νπτ are defined for task τ . Consider a
set of safe RL tasks in Γ following a probability distribution P(Γ). Safe meta-RL aims to learn the
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meta-prior from P(Γ) which can be used to train a policy for an unseen task τnew ∼ P(Γ) by a small
number of new environment explorations with anytime safety. In specific, during the meta-training,
tasks can be sampled from P(Γ), i.e., {τj}Tj=1 ∼ P(Γ) and the tasks’ CMDPs {Mτj}Tj=1 can be
explored. During the meta-test, a new task τnew is given, and the agent explores the CMDP Mτnew

and produces the task-specific policy. Note that we consider the meta-training to be an offline stage,
e.g. done in simulated environments, the safety constraints may be violated. In contrast, the policies
are deployed to practical environments during the meta-test. Any policy used to explore Mτnew

or
used to execute the task τnew should satisfy the safety constraints.

3 Safe Meta-RL Framework

The proposed safe meta-RL framework aims to learn a meta-policy πϕ such that it can adapt to new
tasks with anytime safety guarantee. The framework includes two modules: safe policy adaptation, by
which the task-specific policy πτ for task τ is adapted from the meta-policy πϕ, and safe meta-training,
which identifies the meta-policy πϕ.

Considering that the amount of data collection is limited, we expect that the task-specific policy
πτ is adapted from the meta-policy πϕ by a few safe policy adaptation steps and can achieve good
performance and guarantee safety on the new tasks. To achieve this goal, we design the one-step safe
policy adaptation in Section 3.1, which achieves significant policy improvement, guarantees safety,
and holds high computational efficiency. In Section 3.2, the meta-policy training is to optimize the
task-specific policy, which is adapted from the meta-policy πϕ by one-step safe policy adaptation.

3.1 One-step safe policy adaptation

Since data collection is limited when a new task is revealed, performing numerous policy adaptation
steps to solve the original RL problem becomes impractical, as each step requires collecting a batch
of data using the corresponding policy. Accordingly, we define one-step policy adaptation as the
policy adaptation that only needs to collect the data by a single policy and derive the method for
one-step safe policy adaptation in the remainder of this section.

We derive the optimization problem to achieve a one-step safe policy adaptation from the meta-policy.
For task τ , the policy πτ is adapted from the meta-policy πϕ by the safe policy adaptation As:

πτ = As(πϕ,Λ,∆, τ) ≜ argmax
π∈Π

E
s∼ν

πϕ
τ ,a∼π(·|s)

[
A

πϕ
τ (s, a)

]
− λ E

s∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ,

s.t. Jci,τ (πϕ) + E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
ci,τ (s, a)

1− γ

]
+ λci Es∼ν

πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ≤ di,τ + δci , (1)

where i = 1, · · · , p, Λ ≜ {λ, λc1 , · · · , λcp} and ∆ ≜ {δc1 , · · · , δcp} are the hyper-parameters of
As. The safe policy adaptation As in problem (1) is inspired by the derivation of CPO [2], where
both problem (1) and CPO aim to approximate the original safe RL problem. Specifically, the
objective and constraint functions of problem (1) serve as upper bounds of the true objective and
constraint functions Jτ (π) and Jci,τ (π) of the safe RL problem. More details about the upper bounds
will be discussed in Lemma 1 of Section 5.1. More importantly, problem (1) only needs to collect
state-action data points and evaluate A

πϕ
τ for a single policy πϕ, which keeps the same requirement

of data collection as one-step of gradient ascent in MAML [16]. Therefore, As is the one-step safe
policy adaptation. On the other hand, considering a single gradient ascent in MAML is usually
insufficient to identify a policy with good performance and safety, As is to completely solve (1).

The existence of the solution, the safety, and the monotonic improvement are guaranteed for As.
Specifically, when setting ∆ = 0, given that the meta-policy πϕ is safe for task τ , i.e., Jci,τ (πϕ) ≤
di,τ ,∀i = 1, · · · , p, for an appropriate hyper-parameter Λ, we have following properties: (i) the
feasibility set of problem (1) is not empty; (ii) πτ is safe for task τ , i.e., Jci,τ (π

τ ) ≤ di,τ ,∀i =
1, · · · , p; (iii) the performance of πτ is better than the meta-policy πϕ, i.e., Jτ (πτ ) ≥ Jτ (πϕ). The
complete statements and proofs of property (i) are shown in Proposition 1 of Section 4.1; properties (ii)
and (iii) under selected hyper-parameter Λ are shown in Section 5. Moreover, when the requirement
of the constraint satisfaction is not strict, setting δci = 0 for all i in problem (1) may overly restrict
the policy update step. To enhance the algorithm’s flexibility, we set 0 ≤ δci ≤ δmax as an allowable
constraint violation in problem (1).
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As mentioned in the above properties (ii) and (iii), both CPO and problem (1) can achieve policy
improvement and safety guarantee. However, the computational complexity of directly solving
CPO or the constrained optimization problem (1) is high. CPO [2] and meta-CPO [12] solve an
approximate problem to mitigate the issue, but the computational complexity is still high, meanwhile
the safety constraint violation cannot be avoided in theory and also usually appears in practice. In
contrast, the safe policy adaptation in (1) is designed to have the closed-form solution under certain
Lagrangian multipliers, and then can be efficiently solved, which will be discussed in Section 4.1.

Note that problem (1), for the first time, simultaneously offers two key advantages: (a) constraint
satisfaction guarantee for a single policy optimization step (policy optimization using data collected
on a single policy), which enables anytime safety in each policy adaptation step during the meta-test,
and (b) the closed-form solution, which significantly reduces the computational complexity of the
meta-policy training. The details of the two benefits to the safe meta-RL problem will be discussed
in Sections 4.1 and 5. Consequently, it is particularly well-suited for the safe meta-RL problem
formulation. As the existing safe policy optimization algorithms, such as primal-dual-based algorithm
in RCPO [? ], PPO-Lagrangian [43], and CRPO [55] used by meta-CRPO, do not hold any of these
two benefits, and therefore (1) cannot be replaced by these algorithms. Moreover, although some
prior works [61, 34] also derive closed-form solutions of safe policy optimization, safety cannot be
guaranteed in each step. Instead, safety is only guaranteed for the final convergent policy, where the
trust region size ϵ is reduced to 0.

3.2 Safe meta-policy training

We obtain the optimal meta-policy πϕ∗ by solving the following optimization problem:

max
ϕ

Eτ∼P(Γ)[Jτ (As(πϕ,Λ,∆, τ))], s.t. Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p and ∀τ ∈ Γ. (2)

Here, Eτ∼P(Γ)[Jτ (As(πϕ,Λ,∆, τ))] is the meta-objective function and is defined by the expected
accumulated reward after the parameter is adapted by the policy adaptation, which evaluates the
optimality of the meta-policy πϕ. We choose the constraints Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p
for any task τ (similar to problem (1), we set δci as the allowable error). There are two reasons to set
the constraints. First, as shown in Proposition 1, Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p is a sufficient
condition for that the safe policy adaptation algorithm As(πϕ,Λ,∆, τ) has a solution, and further
assure the safe meta-policy training (2) is well-defined. Second, the exploration of the CMDP by the
meta-policy πϕ should be safe for each task τ to guarantee the initial policy of the policy adaptation
is safe. As mentioned in Section 3.1, As(πϕ,Λ,∆, τ) is guaranteed to be safe for task τ when πϕ is
safe, and iterative policy adaptation using As is guaranteed to be safe. Therefore, the anytime safety
of the policy adaptation is guaranteed. Its formal statement is shown in Section 5.

4 Algorithm

This section introduces the efficient algorithmic solutions to solve problems (1) and (2), respectively.

4.1 Closed-form solution for safe policy adaptation

Based on the design of problem (1), we can derive its closed-form solution under certain Lagrangian
multipliers, and then solve the Lagrangian multipliers to obtain the overall solution. We first derive
the closed-form solution of problem (1) and show its existence in the following proposition.

Proposition 1. Suppose that the softmax policy πϕ satisfies Jci,τ (πϕ) ≤ di,τ+δci ,∀i = 1, · · · , p, the
solution πτ of the optimization problem (1) exists. Under certain mild constraint qualifications, there
exists Lagrangian multipliers {u∗

ci,τ}
p
i=1 with 0 ≤ u∗

ci,τ < ∞, such that πτ (·|s) ∝ exp(fϕ(s, ·) +
η−1(A

πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τA

πϕ
ci,τ (s, ·))), for any s ∈ S, where η ≜ λ+ (1− γ)

∑p
i=1 u

∗
ci,τλci .

The complete statement of Proposition 1 that includes the sufficient condition for the existence of
{u∗

ci,τ}
p
i=1, as well as the proof of the proposition are shown in Appendix F.2.1. Proposition 1 shows

that, when the meta-policy πϕ is softmax, the closed-form solution of the policy adaptation (1) is
also softmax. The approximate function fϕ for the meta-policy πϕ is adapted to fϕ + η−1(A

πϕ
τ −∑p

i=1u
∗
ci,τA

πϕ
ci,τ ) of πτ . With this computation, the approximate function of πτ can be directly
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obtained, which is much simpler than solving problem (1). More importantly, it can significantly
reduce the computational complexity of the meta-gradient, which will be discussed in Section 4.2.

In addition, the closed-form solution in Proposition 1 implies the safe policy adaptation (1) can be
reduced to the policy adaptation for an unconstrained MDP under the penalized reward function.
Specifically, when we define a comprehensive reward function r̄τ ≜ rτ −

∑p
i=1u

∗
ci,τ ci,τ , then the

term A
πϕ
τ −

∑p
i=1u

∗
ci,τA

πϕ
ci,τ is the advantage function of πϕ for r̄τ . This implies that problem (1) is

equivalent to an unconstrained policy optimization problem, where the reward rτ is penalized by the
negative costs −ci,τ and the weights of the cost penalty are given by the Lagrangian multiplier u∗

ci,τ .

Proposition 2. Suppose that the assumption in Proposition 1 holds. Let πu (u ≜ [u1, · · · , up]) be the
policy with πu(·|s) ∝ exp(fϕ(s, ·)+ (λ+(1− γ)

∑p
i=1 uiλci)

−1(A
πϕ
τ (s, ·)−

∑p
i=1uiA

πϕ
ci,τ (s, ·))).

Then, the Lagrangian multipliers {u∗
ci,τ}

p
i=1 in Proposition 1 is the solution of the dual problem of

(1), i.e.,

min
u∈Rp

≥0

E
s∼ν

πϕ
τ

a∼πu

[(A
πϕ
τ −

∑p
i=1uiA

πϕ
ci,τ )(s, a)−DKL (πu(·|s)∥πϕ(·|s))] +

∑p
i=1uid

′
i,τ , (3)

where ηu ≜ λ+ (1− γ)
∑p

i=1 uiλci and d′i,τ ≜ (1− γ)(di,τ + δci − Jci,τ (πϕ)).

Proposition 2 shows the derivation of the Lagrangian multiplier u∗
ci,τ . Its proof is shown in Appendix

F.2.2. With u∗
ci,τ . Note that problem (3) is the dual problem of (1), which is always convex. As a

result, we can apply convex optimization approaches [9] to solve problem (3), and then the solution
of safe policy adaptation (1) can be obtained immediately by Proposition 1. We provide an optional
algorithm for solving problem (3) and its computational complexity analysis in Appendix E.1.

Algorithm 1 Safe meta-policy training algorithm
Require: Initial meta-policy πϕ0 ; allowable constraint violation δci defined in Problems (1) and (2).
1: for n = 0, · · · , N − 1 do
2: Sample a task τ with the CMDPMτ from the task distribution P(Γ)
3: Evaluate Jci,τ (πϕn), A

πϕn
τ (·, ·) and A

πϕn
ci,τ (·, ·) by sampling data using the meta-policy πϕn on task τ

4: if Jci,τ (πϕn) ≤ di,τ + δci ,∀i = 1, · · · , p then
5: Solve the task-specific policy πτ and the Lagrangian multipliers u∗

ci,τ (πϕn) with meta-policy πϕn

6: Evaluate Qπτ

τ (·, ·) by sampling data using the task-specific policy πτ on task τ
7: Compute the meta-gradient∇ϕJτ (π

τ ) by (4)
8: Take a step of TRPO [44] with using∇ϕJτ (π

τ ) towards maximize Jτ (π
τ ) to obtain ϕn+1

9: else
10: Choose any in ∈ {1, · · · , p} such that JCin

(πϕn) > din,τ + δcin
11: Compute the policy gradient∇ϕJCin ,τ (πϕn) ∝ E

s∼ν
πϕn
τ ,a∼πϕn (·|s)[∇ϕfϕn(s, a)A

πϕn
Cin ,τ (s, a)].

12: Take a step of TRPO with using∇ϕJCin ,τ (πϕn) towards minimize JCin ,τ (πϕ) to obtain ϕn+1

13: end if
14: end for
15: Return πϕN

4.2 Safe meta-policy training algorithm

To solve the optimization problem (2) for meta-training, we first consider the computation of the meta-
gradient, i.e., ∇ϕEτ∼P(Γ)[Jτ (As(πϕ,Λ,∆, τ))]. The following proposition provides the computation
of ∇ϕJτ (As(πϕ,Λ,∆, τ)). Notice that the Lagrangian multipliers {u∗

ci,τ}
p
i=1 in Propositions 1 and

2 are solved by problem (3), and thus depend on the meta-policy πϕ. We denote the solved Lagrangian
multipliers with πϕ as u∗

ci,τ (πϕ) in the following sections.

Proposition 3. Suppose the assumption in Proposition 1 holds. Let πτ = As(πϕ,Λ,∆, τ).
Under certain conditions, we have that ∇ϕJτ (π

τ ) exists and ∇ϕJτ (π
τ ) =

1
1−γEs∼νπτ

τ ,a∼πτ (·|s)[(∇ϕη(πϕ)
−1Q̄

πϕ
τ (s, a) + η(πϕ)

−1 ∇ϕQ̄
πϕ
τ (s, a) + ∇ϕfϕ(s, a))Q

πτ

τ (s, a)],

where η(πϕ) ≜ λ+ (1− γ)
∑p

i=1 u
∗
ci,τ (πϕ)λci , and Q̄

πϕ
τ ≜ Q

πϕ
τ −

∑p
i=1u

∗
ci,τ (πϕ)Q

πϕ
ci,τ .

We show the computations of ∇ϕQ
πϕ
τ (·), ∇ϕQ

πϕ
ci,τ (·) and ∇ϕu

∗
ci,τ (πϕ) in Appendices F.3.2 and

F.3.3. The complete statement of Proposition 3 that includes the sufficient condition of the existence
of ∇ϕJτ (π

τ ), as well as the proof of the proposition are shown in Appendix F.3.1. In Proposition
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3, the gradient ∇ϕu
∗
ci,τ (πϕ) w.r.t ϕ, is the gradient of the solved Lagrangian multipliers, i.e. the

optimal solution of problem (3). We apply the implicit gradient theorem for constrained optimization
in [17, 52] to show the existence and the computation of ∇ϕu

∗
ci,τ (πϕ), which is shown in Appendix

F.3.3. We further simplify the computation of the meta-gradient as

∇ϕJτ (π
τ ) ≈ Es∼νπτ

τ ,a∼πτ (·|s)[(∇ϕfϕ(s, a) + η(πϕ)
−1∇̃ϕQ̄

πϕ
τ (s, a))Qπτ

τ (s, a)], (4)

where η(πϕ) ≜ λ+ (1− γ)
∑p

i=1 u
∗
ci,τ (πϕ)λci and ∇̃ϕQ̄

πϕ
τ = ∇ϕQ

πϕ
τ −

∑p
i=1u

∗
ci,τ (πϕ)∇ϕQ

πϕ
ci,τ .

In (4), we take ∇ϕu
∗
ci,τ (πϕ) = 0 in Proposition 3 approximately. On one hand, the computation

complexity of ∇ϕu
∗
ci,τ (πϕ) is high, as shown in Appendix F.3.3. On the other hand, under this

approximation, we only omit the small change of the Lagrangian multiplier u∗
ci,τ (πϕ) around the

meta-policy πϕ, i.e., we keep the penalty to constraint violation but treat the weight of the penalty
to constraint violation unchanged over a small neighbor of πϕ. Therefore, the omitted term is a
higher-order term with a smaller impact on the meta-gradient. Note that, the meta-gradients in
many meta-learning approaches include the Hessian computation, such as supervised meta-learning
approaches, like MAML and iMAML [16, 42, 53], meta-RL [16, 30] and safe meta-RL approach
meta-CPO [12]. In contrast, thanks to the closed-form solution (shown in Proposition 1) of the
policy adaptation problem (1), the meta-gradient in (4) does not include the computations of Hessian
and inverse of Hessian w.r.t. ϕ, which holds a comparable computational complexity as the policy
gradient, and therefore is more computationally efficient than the above meta-learning approaches.

The safe meta-policy training algorithm aims to solve the optimization problem in (2) and is stated in
Algorithm 1. To handle the constraint imposed on the meta-policy πϕ in problem (2), we use the idea
similar to CRPO [55]. Specifically, we first check the constraint violation in line 4. If the constraints
are not violated, we maximize the meta-objective; otherwise, we minimize the constraint functions.
Under this procedure, we always have Jci,τ (πϕn

) ≤ di,τ + δci ,∀i = 1, · · · , p when computing the
task-specific policy πτ = As(πϕn

,Λ,∆, τ), and therefore the solution of πτ always exists, according
to Proposition 1. To stabilize the training, we use the TRPO for the policy update in lines 8 and 12,
which only needs the gradient information.

5 Theoretical Results

In this section, we introduce the theoretical results of the safe meta-RL framework. Note that problem
(2) is a constrained bilevel optimization problem, and the convergence and optimality analysis
of solving the problem and obtaining πϕ∗ are widely studied in [52, 7, 31]. So we analyze the
performance of the solved meta-policy πϕ∗ in our theoretical results. In particular, we introduce the
necessary assumptions and notations, derive the performance guarantee for safe policy adaptation As

in Section 5.1, and then derive the optimality and safety guarantee of the safe meta-RL framework in
Section 5.2. We introduce an assumption and several notations used in the theoretical results.
Assumption 1. The feasible set of problem (2) is not empty and bounded.

Assumption 1 supposes problem (2) is well defined and its optimal meta-parameter ϕ∗ exists.
Since the reward rτ ≤ rmax and ci,τ ≤ cmax

i , then |Aπ
τ (s, a)| ≤ rmax/(1− γ) and |Aπ

ci,τ (s, a)|
≤ cmax

i /(1− γ) are upper bounded. We denote Amax ≜ maxτ∈Γ,π∈Π |Aπ
τ (s, a)| and Amax

ci ≜
maxτ∈Γ,π∈Π |Aπ

ci,τ (s, a)| for each i = 1, · · · , p.

5.1 Monotonic improvement and anytime safety for policy adaptation

We first introduce a key lemma and show its proof in Appendix F.4.1. Here, we define
DTV (π(·|s)||π′(·|s)) ≜ 1

2

∑
a∈A |π(a|s)− π′(a|s)|.

Lemma 1. For any task τ , and any policies π and π′ ∈ Π with maxs∈S DTV (π||π′) ≤ α
Es∼νπ

τ
[DTV (π(·|s) ||π′(·|s))]}, we have

Jτ (π
′) ≤ Jτ (π) + Es∼νπ

τ ,a∼π′(·|s)

[
Aπ

τ (s, a)

1− γ

]
+

2γαAmax

(1− γ)2
Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))]

Jτ (π
′) ≥ Jτ (π) + Es∼νπ

τ ,a∼π′(·|s)

[
Aπ

τ (s, a)

1− γ

]
− 2γαAmax

(1− γ)2
Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))] .
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The inequalities also holds when Aπ
τ , Aπ′

τ , Amax and Jτ are replaced by Aπ
ci,τ , Aπ′

ci,τ , Amax
ci , and

Jci,τ , for all i = 1, · · · , p.

The right-hand sides of the inequalities in Lemma 1 are the objective function and constraint functions
of problem (1). The first inequality in Lemma 1 (applied to Jci,τ (π

′)) shows that the constraint
function of problem (1) is the upper bound of the accumulated cost Jci,τ . Therefore, the constraint
functions in problem (1) limit the upper bound of Jci,τ (π

′) to be below the constraint limit, which
also applies to Jci,τ (π

′) itself. The second inequality in Lemma 1 (applied to Jτ ) shows that the
objective function of problem (1) is the lower bound of Jτ (π

′). Then, As in problem (1) is to
maximize the lower bound of Jτ (π′), which guarantees monotonic improvement. We formalize the
results in Proposition 4 and show the proofs in Appendix F.4.2.

Proposition 4. Suppose πϕ satisfies that ϕ is bounded and Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p.
There exists a constant α such that, when πτ = As(πϕ,Λ,∆, τ) with λ ≥ 2γαAmax

1−γ and λci ≥
2γαAmax

ci

(1−γ)2 for each i = 1, · · · , p, then Jci,τ (π
τ ) ≤ di,τ + δci for each i, and Jτ (π

τ ) ≥ Jτ (πϕ).

With this proposition, we can derive the properties of monotonic improvement and anytime safety
guarantee for the policy adaptation, which is stated in Corollary 1. As Assumption 1 assumes the
feasible set of problem (2) is bounded, we fix the constant α in Proposition 4 for the bounded set.

Corollary 1. Suppose that Assumptions 1 holds. Let λ ≥ 2γαAmax

1−γ and λci ≥ 2γαAmax
ci

(1−γ)2 for each
i. Let πτ

[k+1] = As(πτ
[k],Λ,∆, τ) with δci = 0 for k ∈ N, where πτ

[0] = πϕ∗ being the solution of
problem (2). Then, for all k ∈ N, Jci,τ (π

τ
[k]) ≤ di,τ for each i and Jτ (π

τ
[k+1]) ≥ Jτ (π

τ
[k]).

When a new task τ ∈ Γ is given, we start from the meta-policy πϕ∗ , iteratively implement As, and
generate a policy sequence {πτ

[k]}
N
k=0. As indicated in Corollary 1, the constraints are satisfied for

each policy in the policy sequence, which shows the anytime safety of the policy adaptations.

5.2 Near-optimality and safety guarantee for one-step policy adaptation

In Section 5.1, we show the policy is always monotonically improved from πϕ∗ and satisfies the safety
constraints during policy adaptation. On the other hand, πϕ∗ is learned from the task distribution P(Γ),
which should be a good initial policy for the task sampled from P(Γ). In this section, we consider
the policy that is obtained from using only one step of policy adaptation from πϕ∗ and compare its
optimality with the task-specific optimal policy to verify the near-optimality of the proposed safe
meta-RL framework. We start by introducing several definitions.

Definitions. Define the optimal policy πτ
∗ for task τ as πτ

∗ ≜ argmaxπ∈Π Jτ (π) s.t. Jci,τ (π) ≤ di,τ .
Define the ϵ-conservatively optimal policy πτ

∗,[ϵ], which is optimal for τ under conservative safety

constraints, i.e., πτ
∗,[ϵ] ≜ argmaxπ∈Π Jτ (π) s.t. Jci,τ (π) ≤ di,τ −ϵ, where the conservative constant

ϵ ≥ 0, and πτ
∗ = πτ

∗,[0]. We define the variance of a task distribution P(Γ) as Var(P(Γ)) ≜
minϕ Eτ∼P(Γ)Es∼ν

πϕ
τ

[DKL(π
τ
∗ (·|s)||πϕ(·|s))], which the minimal mean square of the distances

among the optimal task-specific policies πτ
∗ , and the minimal point is denoted as ϕ̂. Similarly, the

task variance under the conservative safety constraints is defined as Varϵ(P(Γ)) ≜ minϕ Eτ∼P(Γ)

E
s∼ν

πϕ
τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ(·|s))], and the minimal point is denoted as ϕ̂[ϵ]. The radius of P(Γ)

is defined as R(P(Γ)) ≜ maxτ∈Γ,ϵ∈E E
s∼ν

π
ϕ̂[ϵ]

τ

[DKL(π
τ
∗,[ϵ](·|s) ||πϕ̂[ϵ](·|s))], where the set E is

defined by E ≜ {ϵ ≥ 0 : πτ
∗,[ϵ] exists for all τ ∈ Γ}. Note that the task variance Var[ϵ] and the radius

R is the inherent property of P(Γ), which measures the similarity of tasks sampled from P(Γ). For
example, if the reward function r and cost ci among tasks are similar, optimal policies πτ

∗,[ϵ] are close,
then Var[ϵ] and R are close to 0. With the definitions, the near-optimality and safety guarantee of the
safe meta-RL is shown in Theorem 1.

Theorem 1. Suppose that Assumptions 1 holds. Let λ = 2γαAmax

1−γ , λci =
2γαAmax

ci

(1−γ)2 and δci =
4γαAmax

ci

(1−γ)2 R(P(Γ))− ϵ for all i = 1, · · · , p, where ϵ is chosen from
[
0,

4γαAmax
ci

(1−γ)2 R(P(Γ))
]
. Let ϕ∗ be

8



the solution of problem (2). The solution of As(πϕ∗ ,Λ,∆, τ) exists, and we have

Eτ∼P(Γ)[Jτ (As(πϕ∗ ,Λ,∆, τ))] ≥ Eτ∼P(Γ)[Jτ (π
τ
∗,[ϵ])]−

4γαAmax

(1− γ)2
Varϵ(P(Γ)), (5)

Jci,τ (As(πϕ∗ ,Λ,∆, τ))− di,τ ≤
4γαAmax

ci

(1− γ)2
R(P(Γ))− ϵ, for any τ ∈ Γ. (6)

Theorem 1 is proven in Appendix F.4.3. The theorem derives (i) the lower bound of the expected
accumulated reward of the policy πτ adapted by one time of As from the meta-parameter πϕ∗ with
the comparison to the task-specific (conservatively) optimal policy πτ

∗,[ϵ]. It also derives (ii) the upper
bound of the constraint violation for each task τ . We further discuss the tightness of the derived
bounds in Appendix G. Next, we explore two specific cases of δci to illustrate Theorem 1.
Case 1 (Safety guaranteed). When δci = 0, the safe constraint is strictly satisfied, i.e., Jci,τ (π

τ )−
di,τ ≤ 0 for any τ , but the optimality comparator Jτ (π

τ
∗,[ϵ]) with ϵ =

4γαAmax
ci

(1−γ)2 R(P(Γ)) in (5) is
conservatively optimal (ϵ-conservatively optimal).

Case 2 (Near-optimality). When δci =
4γαAmax

ci

(1−γ)2 R(P(Γ)), the optimality comparator Jτ (πτ
∗,[0]) =

Jτ (π
τ
∗ ) in (5) is all-task optimum, but the constraint is violated at most

4γαAmax
ci

(1−γ)2 R(P(Γ)).

As shown in Cases 1 and 2, there is a trade-off between the optimality of accumulated reward and
the safety constraint satisfaction when the allowable constraint violation thresholds δci vary. In
particular, when δci is increased, the optimality is improved while the constraint violation increases.
As indicated by the optimality-safety trade-off, in the implementation of the proposed algorithm, we
choose a large δci when the constraint satisfaction is not required to be strict, and a small δci ≈ 0
when the constraint satisfaction is prioritized. The reason for the trade-off is that the constraint
function in problem (1) approximate the true constraints Jci,τ (π) − di,τ ≤ 0 for any π by only
knowing the information (the advantage functions Aπϕ

ci,τ ) at a single policy πϕ, and therefore are more
conservative than the true constraints, which leads to loss of optimality. To the best of our knowledge,
as anytime safety cannot be guaranteed in the existing framework [24, 12], it is the first time to show
the trade-off between optimality and safety, and is also the first to provide an optimality bound with
the anytime safe guarantee. Moreover, when choosing ϵ = 0, Theorem 1 is reduced to the results in
[54] for the unconstrained meta-RL.

Next, we delve into the optimality bound. Consider fixing δci and ϵ and then fixing the upper bound
of the constraint violation Jci,τ (π

τ ). Theorem 1 shows that, the performance of meta-RL is improved
when the variance of the task distribution Varϵ(P(Γ)) is reduced, as πτ approach the task-specific
optimal policy πτ

∗,[ϵ]. It corresponds to the intuition of meta-learning, which is that, when the variance
of a task distribution is smaller, the tasks are more similar, and then the experience learned from the
task distribution works better for new tasks sampled from the task distribution.

6 Experiments

Our experiments aim to validate three claimed benefits of the proposed algorithms for safe meta-RL:
(i) superior optimality, i,e, the accumulated rewards of the proposed algorithms can exceed those of
baselines; (ii) anytime safety, i,e, all the learned meta-policy and the adapted policies should satisfy
the safety constraint; (iii) high computational efficiency for both the meta-training and meta-test.

We conduct experiments on four high-dimensional locomotion scenarios, including Half-Cheetah,
Humanoid, Hopper, Swimmer, and three navigation scenarios with collision avoidance, including
Point-Circle, Car-Circle-Hazard, and Point-Button in Gym and Safety-Gymnasium libraries [10, 23].
We compare the proposed method with three benchmarks: (a) MAML [16] with constraint penalty; (b)
meta-CPO [12]; (c) meta-CRPO [24]. In (a), we add a weighted penalty term for constraint violation
to the loss function of the MAML. Note that (c) is originally designed for online safe meta-RL,
where tasks are revealed sequentially during the meta-training. So, we use (3) with all training tasks
provided before the meta-training and it does not have the meta-training stage (Figures 1 and 2 do
not have meta-training for meta-CRPO). For the fairness of the comparison, all the methods have
the same data requirements and task settings. More details about the settings of the tasks, algorithm
implementation, and hyper-parameters are shown in Appendices D.1 and D.2.
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Figure 1: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and
2) and the meta-test (columns 3 and 4) in Half-Cheetah (row 1) and Point-Circle (row 2). The accumulated
reward and cost during meta-training are computed on the policy adapted one step from the meta-policy. The
black dashed line is the constraint of the accumulated cost (below the line means satisfaction).
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Figure 2: Normalized computation time of the meta-training (per
iteration) and meta-test.

Figures 1 and 2 present the experimen-
tal results on Half-Cheetah and Point-
Circle tasks. Due to page limitations,
the results for the other four scenarios
are deferred to Appendix D.3.

Performance on optimality and
Safety. Figure 1 illustrates that the
proposed safe meta-RL algorithm sub-
stantially outperforms all baselines in
terms of optimality, achieving approx-
imately 50% higher accumulated re-
wards than the best-performing baseline during both the meta-training and meta-test phases. Moreover,
as depicted in the fourth column of Figure 1, our method ensures anytime safety during meta-testing,
i.e., the maximal accumulated costs consistently remain below the prescribed safety thresholds,
whereas all baselines experience constraint violations at various adaptation stages.

Efficiency. Figure 2 demonstrates that the proposed algorithm achieves remarkable computational
efficiency, reducing the meta-training time by about 70% and the meta-testing time by about 50%
relative to meta-CPO. This efficiency gain stems from the closed-form safe policy adaptation and
the Hessian-free meta-gradient, which avoid costly second-order computations common in previous
meta-RL methods.

Trade-off Verification. Finally, we empirically examine the optimality–safety trade-off in Appendix
D.4, confirming our theoretical analysis that relaxing the safety tolerance slightly improves the achiev-
able reward, while strict constraint satisfaction preserves anytime safety with minimal optimality
degradation.

7 Conclusion

This paper presents an efficient framework for safe meta-RL that achieves provable anytime safety
and near-optimality. By integrating a closed-form one-step safe policy adaptation with a Hessian-
free safe meta-policy training scheme, the proposed method ensures zero constraint violation for
every exploration policy, guarantees monotonic performance improvement, and significantly reduces
computational cost. We provide the first formal analysis establishing both an optimality bound and
an explicit safety–optimality trade-off, offering a tunable balance between strict safety enforcement
and reward maximization. Empirically, our approach outperforms existing safe meta-RL methods in
both optimality and efficiency across diverse locomotion and navigation tasks.
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Appendix for "Efficient Safe Meta-Reinforcement Learning:
Provable Near-Optimality and Anytime Safety"

A Related Works

Safety metrics in safe RL. Safe RL aims to handle the safety requirements in the practical applica-
tions of RL. Safe RL typically applies two categories of safety metrics. The first metric is used in
CMDP [4] and is applied in [48, 13, 15, 11, 2, 56, 41, 33, 32]. It introduces costs associated with
state-action pairs based on MDP, and the agent is defined as safe when the expected accumulated
costs satisfy given safety constraints. The second metric is stay in the safety region [49, 57, 39],
which is stricter than the first metric. Specifically, the agent is safe when it remains in a desired safe
set for any sampled trajectory. In this paper, we consider the anytime safety during policy adaptation,
where each policy is required during the exploration of an unknown MDP. It is naturally infeasible to
guarantee anytime safety under the second safety metric, as the action to remain in the safety region
is unknown before the exploration. In contrast, the agent could be safe under the first safety metric
even if it visits some undesired states. As a result, we consider the first safety metric.

Solutions of CMDPs. The solutions of the CMDPs can be categorized into (i) penalty function [18],
(ii) primal-dual approaches [48, 13, 58, 15, 11], (iii) trust-region approaches [2, 56, 61, 34]. Existing
works theoretically establish the safety guarantee for both primal-dual approaches [13, 58, 15] and
trust-region approaches [2]. The primal-dual approaches update the dual variables and the policy
simultaneously. Therefore, they gradually reduce the total cost below the required threshold by
multiple policy optimization steps and can only establish the safety guarantee for the final convergent
policy and cannot guarantee anytime safety during policy optimization. Therefore, they cannot
meet the anytime safety requirement during policy adaptation in the safe meta-RL problems, i.e.,
the safety constraints are satisfied during each step of policy adaptation. In contrast, trust-region
approaches constrain the policy within a safe policy set, potentially ensuring safety for every policy
during the policy optimization process. However, the computational complexity of existing trust-
region approaches is high, especially when applied to the safe meta-RL problem. The safety policy
adaptation in this paper belongs to the category of trust-region approaches. On the other hand, we
propose a novel safe policy adaptation method to address the computational inefficiency issue.

Cautious adaptation and safe meta-RL. Cautious adaptation [60] and safe meta-RL both consider
to learn prior knowledge to improve the safety level of the adaptations in new environments. On
the other hand, cautious adaptation considers the out-of-distribution exploration with the prior
learned safety knowledge. The safe meta-RL focuses on in-distribution few-shot learning with safety
constraints. Therefore, the safe meta-RL requires less exploration data during adaptation than cautious
adaptation, but is limited to in-distribution tasks and less generalizable than cautious adaptation.

Safe meta-RL v.s. multitask/multi-objective safe RL methods. Safe meta-RL, multi-task safe
RL [25], and multi-objective safe RL [20] all consider the multiple tasks in the safe RL setting.
However, the biggest difference between meta-safe RL and multi-task/multi-objective safe RL is that
the agent in meta-safe RL is required to adapt to a new and unknown environment under few-shot
data collection. Therefore, the policy adaptation algorithm is the most important part of meta-safe RL.
This paper designs a novel policy adaptation algorithm that holds several benefits for the few-shot
policy adaptation that the existing methods do not hold. In contrast, the multi-task/multi-objective
safe RL learns the policies for multiple tasks during the training stage, where the policy adaptation is
not required. Therefore, the multi-task/multi-objective can borrow the existing policy optimization
methods and do not need to design a new one.

B Discussion of the relations between CPO [2] and the safe policy adaptation
by problem (1)

The safe policy adaptation As in (1) is inspired by the derivation of CPO, the first optimization
problem in Section 5.3 of [2], and replaces the term

√
DKL (π(·|s)∥πϕ(·|s)) in the objective and the

constraint functions of the optimization problem by DKL (π(·|s)∥πϕ(·|s)). Similarly, we derive the
inequalities in Lemma 1 replace the term maxs DKL(π

′(·|s)||π(·|s) in Theorem 1 in [44] and replace
the term

√
Es∼νπ

τ
[DKL(π′(·|s)||π(·|s))] in Corollary 3 in [2] by Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))] in
the right-hand side of the inequalities.
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The modification from [2] to the safe policy adaptation As holds two benefits: (i) performance
guarantee and (ii) computational efficiency. First, as Corollary 3 in [2] enables the feasibility, the
monotonic improvement, and the constraint satisfaction to hold for the solution of the first optimization
problem in Section 5.3 of [2], Lemma 1 enables the feasibility, the monotonic improvement, and the
constraint satisfaction to hold for the safe policy adaptation As. Second, the modification to the safe
policy adaptation As enables us to derive its closed-form solution, which significantly reduces the
computational complexity of the meta-safe RL algorithm, as mentioned in Section 4.1. On the other
hand, one cannot derive the closed-form solution for the first optimization problem in Section 5.3 of
[2], and the computational complexity is high. Paper [2] solves an approximate problem to mitigate
the issue, but the computational complexity is still high, meanwhile, the safety constraint violation
cannot be avoided in theory and also usually appears in practice.

C Comparisons between the proposed safe policy adaptation method and
existing Lagrangian-based safe RL algorithms

The Lagrangian-based policy optimization algorithm, such as RCPO [48], PPO-Lagrangian [43] and
CRPO [55] used in meta-CRPO [24], has been widely used to solve safe RL. However, although both
the proposed method in Section 4.1 and the primal-dual method in RCPO, PPO-Lagrangian, and
CRPO, are Lagrangian-based safe policy optimization algorithms, they are different. The primal-dual
method is much worse than the proposed method and is not suitable for this safe meta-RL problem.

The method in Section 4.1 is to solve the safe policy adaptation problem in (1). As mentioned in
Section 3.1, the safe policy adaptation (1) holds several benefits similar to CPO, including the safety
guarantee for a single policy optimization step (using data collected on a single policy) and the
monotonic improvement. Moreover, we derive the closed-form solution under certain Lagrangian
multipliers for the optimization problem (1). Based on the derived closed-form solution of (1) (shown
in Proposition 1), we can use the method shown in (3) and (7) to solve the safe policy adaptation
problem in (1), which significantly reduces the computational complexity during the meta-training.

In contrast, RCPO and PPO-Lagrangian do not hold any of the benefits shown in CPO and the
proposed algorithm. First, RCPO and PPO-Lagrangian use the gradient ascent steps on the Lagrangian,
which do not have the safety guarantee and the monotonic improvement in each policy optimization
step, and therefore cannot guarantee anytime safety in the meta-test stage. Moreover, there is no
closed-form solution for the policy optimization step in RCPO and PPO-Lagrangian, which leads the
high computational complexity during the meta-training.

D Experimental Supplements

All experiments are executed on a computer with a 5.20 GHz Intel Core i12 CPU.

D.1 Task settings

We conduct experiments on totally seven scenarios, which include four high-dimensional locomotion
scenarios (Half-Cheetah, Humanoid, Hopper, and Swimmer) in Gym library [10], and three navigation
scenarios with collision avoidance (Point-Circle, Car-Circle-Hazard, and Point-Button) in Safety-
Gymnasium library [23]. The scenarios are visually illustrated in Figure 3. We use the task setups
similar to those used in previous works on meta-RL and safe meta-RL [12, 16, 24]. We provide the
details of the task setups as follows.

Half-Cheetah. Half-Cheetah (Figure 3.a) has a 17-dimensional state space and a 6-dimensional
action space. In the experiment of Half-Cheetah, the reward is the negative absolute value between
the agent’s current velocity and a goal velocity, where the goal velocity characterizes the task. The
task distribution is defined by the distribution of the goal velocity, which is a uniform distribution
from 0.0 to 2.0. The cost is defined by hcheetah − h0 ≤ dτ , i.e. the cost is positive when its head is
higher than h0.

Humanoid. Humanoid (Figure 3.b) has a 376-dimensional observation space and a 17-dimensional
action space. In the experiment of Humanoid, the reward is set as vy sin θ + vx cos θ, where vx and
vy are the velocities along the x-axis and y-axis, and θ is the walking direction of the humanoid. So
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(a) Half-Cheetah (b) Humanoid (c) Hopper

(d) Swimmer (e) Car-Circle-Hazard (f) Point-Button

(g) Point-Circle

Figure 3: High-dimensional locomotion tasks and navigation tasks with collision avoidance.

the reward is the velocity along the direction θ. The task is characterized by the walking direction θ,
which is sampled uniformly from 0 to π/2. The cost is defined by the control cost of the humanoid
robot, i.e.,

∑
i c

2
i , where ci is the torque imposed on each component.

Hopper. Hopper (Figure 3.c) has a 12-dimensional state space and a 3-dimensional action space.
In the experiment of Hopper, the reward is the negative absolute value between the agent’s current
velocity and a goal velocity, where the goal velocity characterizes the task. The task distribution is
defined by the distribution of the goal velocity, which is a uniform distribution from 0.0 to 1.0. The
cost is defined by the control cost of the robot.

Swimmer. Swimmer (Figure 3.d) has a 8-dimensional state space and a 2-dimensional action space.
In the experiment of Swimmer, for different tasks, we add a Gaussian noise to the state transition,
and the variance is uniformly sampled from 0.0 to 0.5 for different tasks; we use the reward defined
as the negative absolute value between the agent’s current velocity and a goal velocity, which is a
uniform distribution from 0.0 to 1.0, we used the cost defined by the control cost of the swimmer
robot, i.e., w

∑
i c

2
i , where ci is the torque imposed on each component and the weight w is sampled

uniformly from 0.5 to 1.

Point-Circle. Point-Circle (Figure 3.e) has a 28-dimensional state space and a 2-dimensional action
space. In the experiment of Point-Circle, a positive reward is given when the agent runs in a circle,
and a positive cost is given when the agent does not stay within the safe region. The setting of the
safe region characterizes the task. The task distribution is defined by the distribution of the circle
radius and the wall distance. The circle radius is a uniform distribution from 1.0 to 1.5 and the wall
distance is a uniform distribution from 0.55 to 0.75.

Car-Circle-Hazard. Car-Circle-Hazard (Figure 3.f) has a 60-dimensional state space and a 2-
dimensional action space. In the experiment of Car-Circle-Hazard, a positive reward is given when
the agent runs in a circle, and a positive cost is given when the agent does not stay within the safe
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Table 2: Hyper-parameter setting in As

scenario λ, λc1 dτ δc1

Half-Cheetah 1.0 10.0 0.0
Humanoid 5.0 20.0 0.0
Hopper 1.0 5.0 0.0
Swimmer 0.2 5.0 0.0
Point-Circle 0.5 10.0 0.0
Car-Circle-Hazard 0.5 10.0 0.0
Point-Button 0.5 10.0 0.0

region or collides with Hazards. The setting of the safe region and the hazards characterize the task.
The task distribution is defined by the distribution of the circle radius, the distribution of the positions,
and the distribution of the number of hazards. The circle radius is a uniform distribution from 0.7 to
1.0 and the number of hazards is a uniform distribution from 3 to 7. the distribution of the position of
the hazard is a uniform distribution over the safety space.

Point-Button. Point-Button (Figure 3.g) has a 56-dimensional state space and a 2-dimensional
action space. In the experiment of Point-Button, a positive reward is given when the agent touches
a goal button, and a positive cost is given when it does not stay within the safe region and touches
any no-goal button or hazards. The setting of the buttons and the hazards characterize the task. The
task distribution is defined by the distribution of the number and the positions of buttons and the
number and the positions of hazards. Both the number of buttons and the number of hazards is
a uniform distribution from 6 to 10, and the distributions of positions of buttons and hazards are
uniform distributions over the safety space.

D.2 Algorithm settings

We apply Algorithm 4. We consider the policy as a Gaussian distribution, where the neural network
produces the means and variances of the actions. The neural network policy has two hidden layers of
size 64, with tanh nonlinearities. The horizon is 200, with 40 rollouts per policy adaptation step for
all problems in the high-dimensional locomotion scenarios. The horizon is 500, with 10 rollouts per
policy adaptation step for all problems in the navigation scenarios. The discount factor γ = 0.99.
In each iteration, we sample 10 tasks from the task distribution. Therefore, for each meta-training
iteration, the number of the sampled state-action pairs is 50k or 80k. The models are trained for up
to 300 meta-iterations in the meta-training. Therefore, the overall number of sampled state-action
pairs is from 15M or 24M. The meta-policy is tested on 20 tasks and is adapted by 20 iterations for
each task in the meta-test. For the TRPO in meta-parameter optimization, we use the KL-divergence
constraint as δ = 1e− 3. We set λ = λc1 in the safe policy adaptation As in problem (1). Table 2
shows the setting of λ and dτ in As for each scenario.

We compare the proposed method with three benchmarks: (a) MAML [16] with constraint penalty,
(b) meta-CPO [12], and meta-CRPO [24]. For all methods, we run each algorithm 5 times, including
meta-training and meta-test, and show the mean and standard deviation of the evaluation quantities.

D.3 Supplemental results

Figures 4 and 5 show the experimental results in Humanoid, Hopper, Car-Circle-Hazard, and Point-
Button. Note that meta-CRPO is not designed for offline optimization of meta-policy, and then there
is no meta-training result for the approach. Due to the high dimension of the Humanoid tasks, the
meta-training of meta-CPO is too slow (10 times slower than the proposed method) in Humanoid
tasks. It is extremely time-consuming to run the meta-training of meta-CPO multiple times on
humanoid tasks and draw its figure. So the result of meta-CPO is not shown in Fig 4.

Figure 4 shows that the proposed safe meta-RL algorithm significantly outperforms all the baseline
methods regarding the optimality, i.e. the accumulated reward during both the meta-training and
the meta-test in all the scenarios. Moreover, it shows that the proposed algorithms achieve anytime
safety during the meta-test, i.e., the maximal accumulated costs always satisfy the constraints, while
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the baselines cannot achieve it. Figure 5 shows that our algorithm is much more efficient than the
baselines in both the meta-training and meta-test stages.

0 50 100 150 200
Number of meta-training iterations

700

800

900

1000

1100

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Humanoid/Meta-training

0 50 100 150 200
Number of meta-training iterations

20

30

40

50

60

70

80

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Humanoid/Meta-training

0 5 10 15
Number of policy adaptation steps

800

900

1000

1100

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Humanoid/Meta-test

0 5 10 15
Number of policy adaptation steps

20

25

30

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Humanoid/Meta-test

0 50 100 150 200 250 300
Number of meta-training iterations

60

80

100

120

140

160

180

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Hopper/Meta-training

0 50 100 150 200 250 300
Number of meta-training iterations

4

6

8

10

12

14
M

ax
 a

cc
um

ul
at

ed
 c

os
t

Hopper/Meta-training

0 5 10 15
Number of policy adaptation steps

120

130

140

150

160

170

180

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Hopper/Meta-test

0 5 10 15
Number of policy adaptation steps

5

10

15

20

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Hopper/Meta-test

0 50 100 150 200
Number of meta-training iterations

-120

-100

-80

-60

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Swimmer/Meta-training

0 50 100 150 200
Number of meta-training iterations

2

3

4

5

6

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Swimmer/Meta-training

0 5 10 15
Number of policy adaptation steps

-85

-80

-75

-70

-65

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Swimmer/Meta-test

0 5 10 15
Number of policy adaptation steps

2

3

4

5

6

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Swimmer/Meta-test

0 100 200 300 400 500
Number of meta-training iterations

0

5

10

15

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Car-Circle-Hazard/Meta-training

0 100 200 300 400 500
Number of meta-training iterations

0

10

20

30

40

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Car-Circle-Hazard/Meta-training

0 5 10 15
Number of policy adaptation steps

6

8

10

12

14

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Car-Circle-Hazard/Meta-test

0 5 10 15
Number of policy adaptation steps

8

10

12

14

16

18

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Car-Circle-Hazard/Meta-test

0 100 200 300 400 500
Number of meta-training iterations

0.0

2.5

5.0

7.5

10.0

12.5

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Point-Botton/Meta-training

0 100 200 300 400 500
Number of meta-training iterations

0.0

2.5

5.0

7.5

10.0

12.5

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Point-Botton/Meta-training

0 5 10 15
Number of policy adaptation steps

4

6

8

10

Av
er

ag
e 

ac
cu

m
ul

at
ed

 re
w

ar
d

Point-Botton/Meta-test

0 5 10 15
Number of policy adaptation steps

4

6

8

10

12

M
ax

 a
cc

um
ul

at
ed

 c
os

t

Point-Botton/Meta-test

Figure 4: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and
2) and the meta-test (columns 3 and 4) in Humanoid (row 1), Hopper (row 2), Swimmer (row 3), Car-Circle-
Hazard (row 4), Point-Botton (row 5). The accumulated reward and cost during meta-training are computed on
the policy adapted one step from the meta-policy. The black dashed line is the constraint of the accumulated cost
(below the line means satisfaction).

D.4 Experimental results on the trade-off between optimality and constraint satisfaction

To investigate the influence of the allowable constraint violation constant δci , in experiments, we
conduct the experiments with δci = 0.0, 1.0, 2.0 and 3.0, on two environments, including Half-
cheetah and Car-Circle-Hazard. The results are shown in Figure 6.

As stated in Section 5.2, the theoretical result shows a trade-off between the optimality and the safety
constraint satisfaction when the allowable constraint violation thresholds δci vary. In particular, when
δci is increased, the optimality is improved while the constraint violation increases. This statement is
verified by Figure 6. Specifically, especially in Car-Circle-Hazard, when the allowable constraint
violation threshold δci varies from 0.0 to 3.0, the performance is improved but the constraint violation
is increased in both the meta-training and the meta-test. Therefore, as indicated in both theoretical
results in Section 5.2 and the experimental results in Figure 6, we choose a large δci when the
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Figure 5: Normalized computation time of the meta-training and the meta-test in Humanoid, Hopper, Swimmer,
Car-Circle-Hazard, and Point-Botton.
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Figure 6: Average accumulated reward (columns 1 and 3, higher is better) and maximal accumulated cost
(columns 2 and 4, higher is worse) across all validation/test tasks during the meta-training (columns 1 and 2)
and the meta-test (columns 3 and 4) in Half-Cheetah (row 1) and Car-Circle-Hazard (row 2). The accumulated
reward and cost during meta-training are computed on the policy adapted one step from the meta-policy. The
black dashed line is the constraint of the accumulated cost (below the line means satisfaction).

constraint satisfaction is not required to be strict, and a small δci → 0 when the constraint satisfaction
is prioritized.

D.5 Selection of hyper-parameter

For the hyper-parameter λ, λci , we set λ = λci and tune them such that, the KL divergence of initial
policy π and the adapted policy π′ solved from the safe policy adaptation problem (1) is close to
0.03. If the KL divergence is too large, the objective and constraint functions of problem (1) are not
good approximations to the accumulated reward/cost functions, as indicated by Lemma 1. If the KL
divergence is too small, the policy adaptation step of problem (1) is too small.

E Algorithm Supplement

E.1 An optional algorithm for solving problem (3)

Algorithm 2 states the algorithm for the safe policy adaptation. We apply the projected gradient
descent (PGD) to solve the optimization problem (3) to obtain the Lagrangian multipliers {u∗

ci,τ}
p
i=1,

then the closed-form solution of problem (1) is immediately obtained. The gradient of the objective
function L̄(u) of problem (3) w.r.t u (used in line 4 of Algorithm 2) can be stated as

∇ui
L̄(u) = −E

s∼ν
πϕ
τ

[Ea∼πu(·|s)[A
πϕ
ci,τ (s, a)] + (1− γ)λciDKL (πu(·|s)∥πϕ(·|s))] + d′i,τ , (7)
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where πu and d′i,τ are defined in Proposition 2, and then the gradient step is projected to Rp
≥0. The

computation in (7) is derived based on the dual method shown in Proposition 6.1.1 in [8], which is
simplified compared with direct computation by the chain rule. The derivation is shown in Appendix
F.2.3. As the optimization problem (3) is the dual problem of (1) and is always convex, the PGD
method in Algorithm 2 can guarantee convergence to the global optimum [22]. Due to the low
dimensionality of the decision variables of problem (3) (the dimension of the Lagrangian multipliers
{u∗

ci,τ}
p
i=1 is the constraint number p) and the simplicity of gradient computation, the computational

complexity of Algorithm 2 is much lower than directly solving problem (1).

Algorithm 2 Safe policy adaptation algorithm
Require: Meta-policy πϕ; Advantage functions A

πϕ
τ and A

πϕ
ci,τ ; step size β.

1: ui = 0 for all i ∈ 1, · · · , p
2: for n = 1, · · · , N do
3: Compute πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

∑p
i=1 uiλci)

−1(A
πϕ
τ (s, ·)−

∑p
i=1uiA

πϕ
ci,τ (s, ·)))

4: ui ← max{0, ui − β∇ui L̄(u)} for each i = 1, · · · , p , where∇uiL(u) is shown in (7)
5: end for
6: u∗

ci,τ = ui for all i = 1, · · · , p
7: πτ (·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

∑p
i=1 u

∗
ci,τλci)

−1(A
πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τA

πϕ
ci,τ (s, ·)))

8: Return {u∗
ci,τ}

p
i=1, πτ

E.2 An alternative algorithm implementation

When the proposed algorithms are applied to high-dimensional continuous state and action spaces,
we provide Algorithms 3 and 4, an alternative algorithm implementation of Algorithms 1 and 2.
Compared with Algorithms 1 and 2, Algorithms 3 and 4 avoid approximating A

πϕn
τ and A

πϕn
ci,τ

during the meta-training, since it is costly to approximate the value functions V πϕn
τ and V

πϕn
ci,τ by

neural networks and use GAE [45] to estimate the advantage functions A
πϕn
τ and A

πϕn
ci,τ for each

sampled task. Instead, Algorithms 3 and 4 only require to approximate Q
πϕn
τ and Q

πϕn
ci,τ , which can

be estimated by Monte-Carlo sampling.

More specifically, in line 3 of Algorithm 3 replace

πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

p∑
i=1

uiλci)
−1(A

πϕ
τ (s, ·)−

∑p

i=1
uiA

πϕ
ci,τ (s, ·)))

in line 3 of Algorithm 2 by

πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

p∑
i=1

uiλci)
−1(Q

πϕ
τ (s, ·)−

∑p

i=1
uiQ

πϕ
ci,τ (s, ·))). (8)

These two equations are equivalent, where the Q function replaces the A function. Similarly, line 10
of Algorithm 3 is also equivalent to line 7 of Algorithm 2.

Line 11 in Algorithm 4 is equivalent to line 11 of Algorithm 1, where the Q function also replaces
the A function. The left problem is how to solve the optimization problem (3) and obtain the the
Lagrangian multipliers u∗

ci,τ (πϕn
) only using the Q functions.

We show the solution next. The gradient of the objective function L̄(u) in problem (3) w.r.t u is

∇ui
L̄(u) = −E

s∼ν
πϕ
τ

[Ea∼πu(·|s)[A
πϕ
ci,τ (s, a)] + (1− γ)λciDKL (πu(·|s)∥πϕ(·|s))] + d′i,τ ,

as shown in (7). Notice that the value of ∇uiL̄(u) is the constraint function in the optimization
problem (1),

−E
s∼ν

πϕ
τ

[Ea∼π(·|s)[A
πϕ
ci,τ (s, a)] + (1− γ)λciDKL (π(·|s)∥πϕ(·|s))] + d′i,τ ,

when π = πu. Moreover, the constraint function in problem (1) is already designed as a replacement
of −Jci,τ (π) + di,τ + δci and it is cheaper to compute than −Jci,τ (π) + di,τ + δci for arbitrary π in
problem (1). However, in the problem of approximating ∇ui

L̄(u), thanks to the derived closed-form
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Algorithm 3 Safe policy adaptation algorithm with the first-order approximation
Require: Meta-policy πϕ; Advantage functions Q

πϕ
τ and Q

πϕ
ci,τ ; step size β.

1: ui = 0 for all i ∈ 1, · · · , p
2: for n = 1, · · · , N do
3: Compute πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

∑p
i=1 uiλci)

−1(Q
πϕ
τ (s, ·)−

∑p
i=1uiQ

πϕ
ci,τ (s, ·)))

4: for i = 1, · · · , p do
5: ui ← max{0, ui − β∇ui L̄(u)} where∇uiL(u) is shown in (9)
6: end for
7: end for
8: u∗

ci,τ = ui for all i = 1, · · · , p
9: πτ (·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

∑p
i=1 u

∗
ci,τλci)

−1(Q
πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τQ

πϕ
ci,τ (s, ·)))

10: Return {u∗
ci,τ}

p
i=1, πτ

Algorithm 4 An alternative algorithm of meta-training
Require: Initial meta-policy πϕ0 ;
1: for n = 0, · · · , N do
2: Sample a task τ with the CMDPMτ from the task distribution P(Γ)
3: Evaluate Jci,τ (πϕn), Q

πϕn
τ (·, ·) and Q

πϕn
ci,τ (·, ·) for the current meta-policy πϕn on task τ

4: if Jci,τ (πϕn) ≤ di,τ + δci ,∀i = 1, · · · , p then
5: Obtain the task-specific policy πτ and the Lagrangian multipliers u∗

ci,τ (πϕn) by Algorithm 3 with the
meta-policy πϕn

6: Evaluate Qπτ

τ (·, ·) for the task-specific policy πτ on task τ

7: Compute the meta-gradient∇ϕJτ (π
τ ) = 1

1−γ
Es∼νπτ

τ ,a∼πτ (·|s)[∇ϕfϕn(s, a)Q
πτ

τ (s, a)]

8: Take a step of TRPO [44] with using∇ϕJτ (π
τ ) towards maximize Jτ (π

τ ) to obtain ϕn+1

9: else
10: Choose any in ∈ {1, · · · , p} such that JCin

(πϕn) > din,τ + δcin
11: Compute the policy gradient∇ϕJCin ,τ (πϕn) ∝ E

s∼ν
πϕn
τ ,a∼πϕn (·|s)[∇ϕfϕn(s, a)Q

πϕn
Cin ,τ (s, a)].

12: Take a step of TRPO [44] with using∇ϕJCin ,τ (πϕn) towards minimize JCin ,τ (πϕ) to obtain ϕn+1

13: end if
14: end for

πτ as πu shown in (8), using the original one −Jci,τ (π
u) + di,τ + δci becomes cheaper. So, we

directly use −Jci,τ (π
u) + di,τ + δci . Therefore, we have

∇uiL̄(u) ≈ (1− γ)(−Jci,τ (π
u) + di,τ + δci). (9)

Next, we use the first-order approximation to approximate −Jci,τ (π
u) + di,τ + δci . Assume the

policy πu is parameterized by πθu , then

1

1− γ
∇ui

L̄(u) ≈ −Jci,τ (π
u) + di,τ + δci

≈ −
(
∇⊤

ϕ Jci,τ (πϕ)(θϕ − ϕ) + Jci,τ (πϕ)
)
+ di,τ + δci

= − 1

1− γ
E
s∼ν

πϕ
τ ,a∼πϕ(·|s)

[∇⊤
u lnπϕ(a|s)Q

πϕ
ci,τ (s, a)](θu − ϕ)− Jci,τ (πϕ) + di,τ + δci

Then,

∇ui
L̄(u) ≈ −E

s∼ν
πϕ
τ ,a∼πϕ(·|s)

[∇⊤
u lnπϕ(a|s)Q

πϕ
ci,τ (s, a)](θu−ϕ)+(1−γ)(Jci,τ (πϕ)−di,τ−δci),

(10)
In this way, we replace all the estimations of the A function with the estimations of the Q functions,
without the requirement of extra data collection.

E.3 Action sampling in algorithm implementation

In Algorithms 2 and 1, we need to sample actions from

πu(·|s) ∝ exp(fϕ(s, ·) + η−1(Q
πϕ
τ (s, ·)−

∑p

i=1
uiQ

πϕ
ci,τ (s, ·))). (11)
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When the action space is discrete (no matter whether the state space is discrete or continuous), it is
trivial to do the sampling. When the action space is high-dimensional and continuous, it is not easy
to do the sampling. Here, we show two solutions. In the implementation of Algorithms 2 and 1, we
apply the second solution.

E.3.1 The first solution

Similar to many widely used RL algorithm implementations, such as [44], we also consider the policy
parameterized by a Gaussian distribution, i.e.,

πϕ(a|s) =
exp (fϕ(s, a))∫

a′ exp (fϕ(s, a′)) da′
= A1 exp

(
− (a− gϕ(s))

2

2δ2ϕ

)
,

where fϕ = − (a−gϕ(s))
2

2δ2ϕ
and gϕ is a neural network with the input s. So the policy is a softmax

policy.

For the policy in (11), we have

πu(a|s) = A2 exp

(
− (a− gϕ(s))

2

2δ2ϕ
− η−1 (a− gQ(s))

2

2δ2Q

)
.

Here, Qπϕ
τ (s, a) −

∑p
i=1uiQ

πϕ
ci,τ (s, a) is approximated by − (a−gQ(s))2

2δ2Q
+ C(s) where gQ(s) and

C(s) are neural networks with the input s.

Then,

πu(a|s) = A3 exp

−

(
a− (

ηδ2Q
ηδ2ϕ+δ2Q

gϕ(s) +
δ2ϕ

ηδ2ϕ+δ2Q
gQ(s))

)2
2

δ2ϕδ
2
Q

ηδ2ϕ+δ2Q

 , (12)

i.e., the πu(a|s) is Gaussian with the mean is
ηδ2Q

ηδ2ϕ+δ2Q
gϕ(s)+

δ2ϕ
ηδ2ϕ+δ2Q

gQ(s) and the standard deviation

is
√

δ2ϕδ
2
Q

ηδ2ϕ+δ2Q
. This can be sampled by many code libraries directly.

We can also treat the approximate function − (a−gQ(s))2

2δ2Q
as Aπϕ

τ (s, a)−
∑p

i=1uiA
πϕ
ci,τ (s, a) and used

in Algorithms (2) and (1), which take πu(·|s) ∝ exp(fϕ(s, ·)+η−1(A
πϕ
τ (s, ·)−

∑p
i=1uiA

πϕ
ci,τ (s, ·))).

E.3.2 The second solution

In the second solution, we also consider the policy parameterized by a Gaussian distribution, i.e.,

πϕ(a|s) =
exp (fϕ(s, a))∫

a′ exp (fϕ(s, a′)) da′
= A1 exp

(
− (a− gϕ(s))

2

2δ2ϕ

)
,

where fϕ = − (a−gϕ(s))
2

2δ2ϕ
and gϕ is a neural network with the input s.

We use the policy parameterized by θ to approximate the policy πu(·|s) ∝ exp(fϕ(s, ·) +
η−1(Q

πϕ
τ (s, ·)−

∑p
i=1uiQ

πϕ
ci,τ (s, ·))), by minimizing the expected KL-divergence, i.e.,

min
θ

loss(θ) = E
s∼ν

πϕ
τ

[
DKL

(
πθ (·|s) ∥

exp(fϕ(s, ·) + η−1(Q
πϕ
τ (s, ·)−

∑p
i=1uiQ

πϕ
ci,τ (s, ·)))

Zϕ (s)

)]
.

As shown in [19], the problem is equivalent to minθ loss(θ) =

E
s∼ν

πϕ
τ ,a∼πθ(·|s)

[
lnπθ (a|s)−

(
fϕ(s, a) + η−1(Q

πϕ
τ (s, a)−

∑p

i=1
uiQ

πϕ
ci,τ (s, a))

)]
.

This optimization problem can be restated as

min
θ

E
s∼ν

πϕ
τ ,a∼πϕ(·|s)

[
πθ(·|s)
πϕ(·|s)

(
lnπθ (a|s)−

(
fϕ(s, a) + η−1(Q

πϕ
τ (s, a)−

∑p

i=1
uiQ

πϕ
ci,τ (s, a))

))]
.
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Therefore, we do not need more data to approximate the expectation E
s∼ν

πϕ
τ ,a∼πϕ(·|s)

. Similarly, we

can also use πθ to approximate πu(·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)
∑p

i=1 uiλci)
−1(A

πϕ
τ (s, ·)−∑p

i=1uiA
πϕ
ci,τ (s, ·))).

F Analysis and Proof

F.1 Auxiliary results

Lemma 2 (Policy gradient [47, 3]). Let πθ be the parameterized policy with the parameter θ. It
holds that

∇θJτ (πθ) =
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θ lnπθ(a|s)Qπθ

τ (s, a)]

=
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θ lnπθ(a|s)Aπθ

τ (s, a)] .

Lemma 3 (Policy gradient of the softmax policy). For the softmax policy πθ as πθ(a|s) =
exp(fθ(s,a))∑

a′∈A exp(fθ(s,a′)) (in discrete action space A) or πθ(a|s) ≜ exp(fθ(s,a))∫
A exp(fθ(s,a′))da′ (in continuous

action space A), ∀(s, a) ∈ S ×A. It holds that

∇θJτ (πθ) =
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θfθ(s, a)A

πθ
τ (s, a)] . (13)

Proof. We prove it under the discrete action space A. The proof under the continuous action space A
is similar.

From Lemma 2, we have

∇θJτ (πθ) =
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θ lnπθ(a|s)Aπθ

τ (s, a)]

=
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s)

[
∇θ ln

(
exp(fθ(s, a))∑

a′∈A exp(fθ(s, a′))

)
Aπθ

τ (s, a)

]
=

1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s)

[
∇θfθ(s, a)−∇θ ln

(∑
a′∈A

exp(fθ(s, a
′))

)
Aπθ

τ (s, a)

]

Here, ∇θ ln
(∑

a′∈A exp(fθ(s, a
′))
)

is independent with a, then ∇θJτ (πθ)

=
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s)

[
∇θfθ(s, a)−∇θ ln

(∑
a′∈A

exp(fθ(s, a
′))

)
Aπθ

τ (s, a)

]

=
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θfθ(s, a)A

πθ
τ (s, a)]−

1

1− γ
Es∼ν

πθ
τ

[
∇θ ln

(∑
a′∈A

exp(fθ(s, a
′))

)
Ea∼πθ(·|s)A

πθ
τ (s, a)

]
.

Since Ea∼πθ(·|s)A
πθ
τ (s, a) = Ea∼πθ(·|s)[Q

πθ
τ (s, a)]− V πθ

τ (s) = 0. Then,

∇θJτ (πθ) =
1

1− γ
Es∼ν

πθ
τ ,a∼πθ(·|s) [∇θfθ(s, a)A

πθ
τ (s, a)] .

F.2 Proofs of closed-form solution of safe policy adaptation

F.2.1 Proof of Proposition 1

We provide the complete statement of Proposition 1 as the following Proposition 5.
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Proposition 5. When the softmax policy πϕ satisfies Jci,τ (πϕ) ≤ di,τ + δci ,∀i = 1, · · · , p, the
solution πτ of the optimization problem (1) exists. Suppose an appropriate constraint qualification
(to be stipulated) holds at πτ , there exists {u∗

ci,τ}
p
i=1 with u∗

ci,τ ≥ 0, such that

πτ (·|s) ∝ exp

(
fϕ(s, ·) + η−1(A

πϕ
τ (s, ·)−

p∑
i=1

u∗
ci,τA

πϕ
ci,τ (s, ·))

)
, ∀s ∈ S,

i.e.,

πτ (a|s) =
exp

(
fϕ(s, a) +

(
λ+

∑p
i=1 u

∗
ci,τλci

)−1 (
A

πϕ
τ (s, a)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a)

))∑
a∈A exp

(
fϕ(s, a′) + η−1

(
A

πϕ
τ (s, a′)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a

′)
)) ,

in discrete action space A, or

πτ (a|s) =
exp

(
fϕ(s, a) +

(
λ+

∑p
i=1 u

∗
ci,τλci

)−1 (
A

πϕ
τ (s, a)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a)

))∫
a′ exp

(
fϕ(s, a′) + η−1

(
A

πϕ
τ (s, a′)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a

′)
))

da′
,

in continuous action space A, where η = (1− γ)λ+
∑p

i=1 u
∗
ci,τλci .

There are many constraint qualifications where each of them assures the validity of the proposition,
including but not limited to Mangasarian-Fromovitz constraint qualification (MFCQ), linear inde-
pendence constraint qualification (LICQ), and Slater’s condition (SC) [17]. Refer to [40] for more
validated constraint qualifications.

The assumption that one constraint qualification holds at πτ is mild. For example, if there exists a
policy π such that ∀i

Jci,τ (πϕ) + E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
ci,τ (s, a)

1− γ

]
+ λci Es∼ν

πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] < di,τ + δci , (14)

then the Slater’s condition holds. Note that when π = πϕ, we have Jci,τ (πϕ)+ E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
ci,τ

(s,a)

1−γ

]
+

λci Es∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ≤ di,τ + δci . It usually exists a π near πϕ such that (14) holds
or the πϕ itself can assure (14) holds. Next, we prove the proposition.

Proofs of Proposition 5. The optimization problem (1) can be restated as

argmin
π∈Π

− E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
τ (s, a)

]
+ λ E

s∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ,

s.t. E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
ci,τ (s, a)

]
+ λ′

ci Es∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] ≤ d′i,τ , i = 1, · · · , p,

where the constants λ′
ci ≜ (1− γ)λci , and d′i,τ ≜ (1− γ)(di,τ + δci − Jci,τ (πϕ)).

First, we consider the discrete state-action space S ×A. Considering the probability at each state-
action pair π(a|s) as the decision variable, the minimization is taken over the probability simplex{
π(·|s) : 0 ≤ π(a|s) ≤ 1,

∑
a∈A π(a|s) = 1

}
. Then the optimization problem is formally stated as

argmin
π

E
s∼ν

πϕ
τ

[∑
a∈A

−π(a|s)Aπϕ
τ (s, a) + λDKL (π(·|s)∥πϕ(·|s))

]
,

s.t. E
s∼ν

πϕ
τ

[∑
a∈A

π(a|s)Aπϕ
ci,τ (s, a) + λ′

ciDKL (π(·|s)∥πϕ(·|s))

]
≤ d′i,τ , i = 1, · · · , p,∑

a∈A
π(a|s) = 1 for any s ∈ S,

π(a|s) ≤ 1 for any a ∈ A, s ∈ S,
− π(a|s) ≤ 0 for any a ∈ A, s ∈ S.

(15)
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Since πϕ ∈ ΠC
τ , we have d′i,τ = (1− γ)(di,τ + δci − Jci,τ (πϕ)) ≥ 0, the solution of (15) exists.

According to Theorem 1 in [17] and theorems in [8, 9], since the constraint qualification holds,
the Karush-Kuhn-Tucker (KKT) conditions hold at πτ , i.e., there exists Lagrangian multipliers
{u∗

ci,τ}
p
i=1, u∗

0(s) for all s ∈ S, u∗
1(s, a) and u∗

2(s, a) for all (s, a) ∈ S ×A, such that

u∗
ci,τ ≥ 0,∀i = 1, · · · , p,

u∗
1(s, a) ≥ 0, u∗

2(s, a) ≥ 0, ∀(s, a) ∈ S ×A, (16)

E
s∼ν

πϕ
τ

[∑
a∈A

πτ (a|s)Aπϕ
ci,τ (s, a) + λ′

ciDKL (πτ (·|s)∥πϕ(·|s))

]
− d′i,τ ≤ 0, ∀i = 1, · · · , p,

πτ (s, a) ≥ 0, πτ (s, a) ≤ 1,∀(s, a) ∈ S ×A, (17)∑
a∈A

πτ (a|s) = 1, ∀s ∈ S, (18)

u∗
ci,τ

(
E
s∼ν

πϕ
τ

[∑
a∈A

πτ (a|s)Aπϕ
ci,τ (s, a) + λ′

ciDKL (πτ (·|s)∥πϕ(·|s))

]
− d′i,τ

)
= 0,

u∗
1(s, a)(π

τ (s, a)− 1) = 0,∀(s, a) ∈ S ×A, (19)

−u∗
2(s, a)π

τ (s, a) = 0,∀(s, a) ∈ S ×A, (20)

∇πL(π
τ , {u∗

ci,τ}
p
i=1, u

∗
0, u

∗
1, u

∗
2) = 0, (21)

where

L(π, {u∗
ci,τ}

p
i=1, u

∗
0, u

∗
1, u

∗
2)) ≜ E

s∼ν
πϕ
τ

[∑
a∈A

−π(a|s)Aπϕ
τ (s, a) + λDKL (π(·|s)∥πϕ(·|s))

]

+

p∑
i=1

u∗
ci,τ

(
E
s∼ν

πϕ
τ

[∑
a∈A

π(a|s)Aπϕ
ci,τ (s, a) + λ′

ciDKL (π(·|s)∥πϕ(·|s))

]
− d′i,τ

)

+
∑
s∈S

u∗
0(s)

(∑
a∈A

π(a|s)− 1

)
+
∑
s∈S

∑
s∈S

u∗
1(s, a)(π(s, a)− 1)− u∗

2(s, a)π(s, a).

(22)
Note that (16) (17) (18) (19) (20)(21) constitute the KKT condition for the following optimization
problem:

argmin
π

E
s∼ν

πϕ
τ

[∑
a∈A

π(a|s)

(
−A

πϕ
τ (s, a) +

p∑
i=1

u∗
ci,τA

πϕ
ci,τ (s, a)

)

+

(
λ+

p∑
i=1

u∗
ci,τλ

′
ci

)
DKL (π(·|s)∥πϕ(·|s))

]
−

p∑
i=1

u∗
ci,τd

′
i,τ

s.t.
∑
a∈A

π(a|s) = 1 for any s ∈ S,

π(a|s) ≤ 1 for any a ∈ A, s ∈ S,
− π(a|s) ≤ 0 for any a ∈ A, s ∈ S.

(23)

i.e., the KKT condition for the optimization problem (23) holds at πτ with Lagrangian multipliers
u∗
0(s), u

∗
1(s, a) and u∗

2(s, a). Here, {u∗
ci,τ}

p
i=1 are constants for the problem.

Since the terms −E
s∼ν

πϕ
τ

[∑
a∈A π(a|s)Aπϕ

τ (s, a)
]

and E
s∼ν

πϕ
τ

[∑
a∈A π(a|s)Aπϕ

ci,τ (s, a)
]

are lin-
ear; the term E

s∼ν
πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] is convex, the optimization problem (23) is convex.
Moreover, since all the constraint functions are affine, the Slater’s condition holds naturally for the
optimization problem (23), as shown in [9]. Therefore, the strong duality holds. Then, πτ is the
optimal solution for (23).
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In (23), we can omit the term −
∑p

i=1 u
∗
ci,τd

′
i,τ and keep the solution unchanged. Next, we borrow

the conclusion of Proposition 3.1 in [29], we have πτ (a|s) =

exp
(
fϕ(s, a) +

(
λ+

∑p
i=1 u

∗
ci,τλ

′
ci

)−1 (
A

πϕ
τ (s, a)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a)

))
∑

a∈A exp
(
fϕ(s, a′) +

(
λ+

∑p
i=1 u

∗
ci,τλ

′
ci

)−1 (
A

πϕ
τ (s, a′)−

∑p
i=1 u

∗
ci,τA

πϕ
ci,τ (s, a

′)
)) ,

i.e.,

πτ (·|s) ∝ exp

(
fϕ(s, ·) + (λ+

p∑
i=1

u∗
ci,τλ

′
ci)

−1(A
πϕ
τ (s, ·)−

p∑
i=1

u∗
ci,τA

πϕ
ci,τ (s, ·))

)
,

for all s ∈ S. Since λ′
ci = (1− γ)λci , the proof is done.

F.2.2 Proof of Proposition 2

Proof of Proposition 2. For the Lagrangian multiplier variables u, u0, u1, u2, we denote the solution
of minπL(π, u, u0, u1, u2) as π{u,u0,u1,u2} (L is shown in (22)), i.e.,

π{u,u0,u1,u2} = argmin
π

L(π, u, u0, u1, u2).

From the proof of Proposition 1, we have the strong duality for the optimization problem (15) holds.
Then, we have {u∗, u∗

0, u
∗
1, u

∗
2} =

argmax{u,u0,u1,u2}L(π
{u,u0,u1,u2}, u, u0, u1, u2), s.t. u ≥ 0, u1 ≥ 0, u2 ≥ 0. (24)

Next, from the above optimization problem, we set u0, u1, u2 as u∗
0(u), u

∗
1(u), u

∗
2(u) in (24), where

u∗
0(u), u

∗
1(u), u

∗
2(u) are the solution of dual variable (Lagrangian multiplier solution) of the following

problem:

argmin
π

E
s∼ν

πϕ
τ

[∑
a∈A

π(a|s)

(
−A

πϕ
τ (s, a) +

p∑
i=1

uiA
πϕ
ci,τ (s, a)

)

+

(
λ+ (1− γ)

p∑
i=1

uiλci

)
DKL (π(·|s)∥πϕ(·|s))

]
−

p∑
i=1

uid
′
i,τ

s.t.
∑
a∈A

π(a|s) = 1 for any s ∈ S,

π(a|s) ≤ 1 for any a ∈ A, s ∈ S,
− π(a|s) ≤ 0 for any a ∈ A, s ∈ S.

(25)

We have

u∗ = argmaxuL(π
{u,u∗

0(u),u
∗
1(u),u

∗
2(u)}, u, u∗

0(u), u
∗
1(u), u

∗
2(u)), s.t. u ≥ 0. (26)

Similar to solution of (23), we have the solution of (25) is πu, where πu(·|s) ∝ exp(fϕ(s, ·) +
(
∑p

i=1 uiλci)
−1(A

πϕ
τ (s, ·) −

∑p
i=1uiA

πϕ
ci,τ (s, ·))). Moreover, from the strong duality of the opti-

mization problem (25) (linear inequality constraints), we have

π{u,u∗
0(u),u

∗
1(u),u

∗
2(u)} = argmin

π
L(π, u, u∗

0(u), u
∗
1(u), u

∗
2(u)) = πu. (27)

Therefore,
u∗ = argmaxuL(π

u, u, u∗
0(u), u

∗
1(u), u

∗
2(u)), s.t. u ≥ 0.

Moreover, we know∑
s∈S

u∗
0(u)(s)

(∑
a∈A

πu(a|s)− 1

)
+
∑
s∈S

∑
s∈S

u∗
1(u)(s, a)(π

u(s, a)− 1)− u∗
2(u)(s, a)π

u(s, a) = 0.
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Form (26) and (22), we have

u∗ =max
u

E
s∼ν

πϕ
τ ,a∼πu(·|s)[−A

πϕ
τ (s, a) +

p∑
i=1

uiA
πϕ
ci,τ (s, a)] + (λ+

p∑
i=1

uiλ
′
ci)

E
s∼ν

πϕ
τ

[DKL (πu(·|s)∥πϕ(·|s))]−
p∑

i=1

ui(1− γ)(di,τ + δci − Jci,τ (πϕ))

s.t. ui ≥ 0, ∀i = 1, · · · , p.

Then, the proof is done.

F.2.3 Deviation of gradient w.r.t. the dual variables

We derive the gradient of L̄ w.r.t. the dual variables u for (7). Let

L̂(u, πu) ≜ E
s∼ν

πϕ
τ

a∼πu

[A
πϕ
τ (s, a)−

p∑
i=1

uiA
πϕ
ci,τ (s, a)]

− (λ+ (1− γ)

p∑
i=1

uiλci) Es∼ν
πϕ
τ

[DKL (πu(·|s)∥πϕ(·|s))] +
p∑

i=1

uid
′
i,τ

where d′i,τ ≜ (1− γ)(di,τ + δci − Jci,τ (πϕ)). Then,

∇uL̄(u) = ∇1L̂(u, π
u) +∇uπ

u∇2L̂(u, π
u)

Consider ∇2L̂(u, π
u). From (27), we have

π{u,u∗
0(u),u

∗
1(u),u

∗
2(u)} = argmin

π
L(π, u, u∗

0(u), u
∗
1(u), u

∗
2(u)) = πu

where L is shown in (22) and u∗
0(u), u

∗
1(u), u

∗
2(u) are the solution of dual variable of (25). Then

∇1L(π
u, u, u∗

0(u), u
∗
1(u), u

∗
2(u)) = 0.

Moreover, we know∑
s∈S

u∗
0(u)(s)

(∑
a∈A

πu(a|s)− 1

)
+
∑
s∈S

∑
s∈S

u∗
1(u)(s, a)(π

u(s, a)− 1)− u∗
2(u)(s, a)π

u(s, a) = 0.

Thus,
∇2L̂(u, π

u) = ∇1L(π
u, u, u∗

0(u), u
∗
1(u), u

∗
2(u)) = 0.

Then, we have
∇uL̄(u) = ∇1L̂(u, π

u).

Therefore,

∇ui
L̄(u) = −E

s∼ν
πϕ
τ

[Ea∼πu(·|s)[A
πϕ
ci,τ (s, a)] + (1− γ)λciDKL (πu(·|s)∥πϕ(·|s))] + d′i,τ .

F.3 Meta-Gradient

F.3.1 Computation of meta-gradient

Proposition 6. Let πτ = As(πϕ,Λ,∆, τ). Suppose all the assumptions in Proposition (5) hold. Sup-
pose the LICQ and the strict complementary slackness condition (SCSC) [17, 52] for the optimization
problem (3.1) holds at πτ . Then, ∇ϕJτ (π

τ ) exists and

∇ϕJτ (π
τ ) =

1

1− γ
Es∼νπτ

τ ,a∼πτ (·|s)[
(
∇ϕη(πϕ)

−1Q̄
πϕ
τ (s, a)

+η(πϕ)
−1∇ϕQ̄

πϕ
τ (s, a) +∇ϕfϕ(s, a)

)
Qπτ

τ (s, a)],

where η(πϕ) ≜ λ+ (1− γ)
∑p

i=1 u
∗
ci,τ (πϕ)λci , and Q̄

πϕ
τ ≜ Q

πϕ
τ −

∑p
i=1u

∗
ci,τ (πϕ)Q

πϕ
ci,τ .
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Proof. For any meta-policy πϕ, the objective function of the optimization problem (3.1) is strongly
concave and the constraint function is convex. The LICQ and the SCSC hold at πτ . According to
Theorem 2 in [52], ∇ϕJτ (π

τ ) exists.

We have
πτ (·|s) ∝ exp(fϕ(s, ·) + η(πϕ)

−1(A
πϕ
τ (s, ·)−

∑p

i=1
u∗
ci,τA

πϕ
ci,τ (s, ·)))

is equivalent to

πτ (·|s) ∝ exp(fϕ(s, ·) + η(πϕ)
−1(Q

πϕ
τ (s, ·)−

∑p

i=1
u∗
ci,τQ

πϕ
ci,τ (s, ·))).

From Lemma 3, we have

∇ϕJτ (π
τ ) =

1

1− γ
Es∼νπτ

τ ,a∼πτ (·|s)[∇ϕ

(
η(πϕ)

−1Q̄
πϕ
τ (s, a) + fϕ(s, a)

)
Qπτ

τ (s, a)]

=
1

1− γ
Es∼νπτ

τ ,a∼πτ (·|s)[
(
∇ϕη(πϕ)

−1Q̄
πϕ
τ (s, a)

+η(πϕ)
−1∇ϕQ̄

πϕ
τ (s, a) +∇ϕfϕ(s, a)

)
Qπτ

τ (s, a)].

F.3.2 Computation of ∇ϕQ
πϕ
τ (s, a)

We have
∇ϕQ

πϕ
τ (s, a) =

γ

1− γ
· E

(s′,a′)∼σ
(s,a)
τ,πϕ

[
∇ϕfϕ (s

′, a′)Q
πϕ
τ (s′, a′)

]
. (28)

where the state-action visitation probability σ
(s,a)
τ,πθ initialized at (s, a) ∈ S ×A is defined by

σ(s,a)
τ,πϕ

(s′, a′) = (1− γ)

∞∑
t=0

γtP (st = s′, at = a′|πϕ, s0 ∼ Pτ (·|s, a)) .

Proof. As shown in [50],

∇ϕQ
πϕ
τ (s, a) = ∇ϕ

(
(1− γ) · rτ (s, a) + γ · Es′∼Pτ (·|s,a)

[
V

πϕ
τ (s′)

])
=

γ

1− γ
· E

(s′,a′)∼σ
(s,a)
τ,πϕ

[
∇ϕ lnπϕ (a

′|s′) ·Qπϕ
τ (s′, a′)

]
.

By Lemma 3, from (13), we can obtain (28).

F.3.3 Gradient of Lagrangian multipliers

We show the existence and the computation of ∇ϕu
∗
ci,τ (πϕ) in the following proposition.

Proposition 7. Let πτ = As(πϕ,Λ,∆, τ). Suppose all the assumptions in Proposition (5) hold. Sup-
pose the LICQ and the strict complementary slackness condition (SCSC) [17, 52] for the optimization
problem (3.1) holds at πτ . Then, the Lagrangian multipliers u∗

ci,τ (πϕ) is unique for any given πϕ,
∇ϕu

∗
ci,τ (πϕ) exists. For i ∈ {1, · · · , p}, if u∗

ci,τ (πϕ) = 0, then ∇ϕu
∗
ci,τ (πϕ) = 0. Let ū∗

ci,τ (πϕ) be
the vector includes all all i ∈ {1, · · · , p} with u∗

ci,τ (πϕ) > 0,

∇ϕu
∗
ci,τ (πϕ) = −∇ϕ∇ūL̂(ū, ϕ)∇2

ūL̂(ū, ϕ)
−1

where L̂(ū, ϕ) = E[Aπϕ
τ (s, a) −

∑p
i=1 uiA

πϕ
ci,τ (s, a)] − ηu E

s∼ν
πϕ
τ

[DKL (πu(·|s)∥πϕ(·|s))] +∑p
i=1 ui(di,τ + δci − Jci,τ (πϕ)).

Proof. For any meta-policy πϕ, the objective function of the optimization problem (3.1) is strongly
concave and the constraint function is convex. The LICQ and the SCSC hold at πτ . According to
Theorem 2 in [52], the Lagrangian multipliers u∗

ci,τ (πϕ) is unique for any given πϕ and ∇ϕu
∗
ci,τ (πϕ)

exists. The computation is shown in [52]. For all i ∈ {1, · · · , p} with u∗
ci,τ (πϕ) = 0, we have

∇ϕu
∗
ci,τ (πϕ) = 0.
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F.4 Optimality and constraint satisfaction analysis

F.4.1 Lemmas for optimality and safe analysis

Lemma 4. For any task τ , and any policies π and π′ ∈ Π, the following bound holds:
1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)]−Cπ

τ (π
′) ≤ Jτ (π

′)−Jτ (π) ≤
1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)]+Cπ

τ (π
′) (29)

where

Cπ
τ (π

′) =
4γmaxs,a A

π
τ (s, a)

(1− γ)2
Dmax

TV (π||π′)Es∼νπ
τ
[DTV (π(·|s)||π′(·|s))] .

Here, we define DTV (π(·|s)||π′(·|s)) ≜ 1
2

∑
a∈A |π(a|s) − π′(a|s)| and Dmax

TV (π||π′) ≜
maxs∈S DTV (π(·|s)||π′(·|s)).

The inequalities (29) also holds for each i = 1, · · · , p, when Aπ
τ and Aπ′

τ are replaced by Aπ
ci,τ and

Aπ′

ci,τ , maxs,a A
π
τ (s, a) is replaced by maxs,a A

π
ci,τ (s, a), Jτ is replaced by Jci,τ .

Proof. The proof follows similar lines of Theorem 1 in [44] and Corollary 1 and 2 in [2]. For the
sake of self-containedness, we provide the complete proof.

Let Pπ
τ is a matrix where Pπ

τ (i, j) = Ea∼π(·|si)Pτ (sj |si, a) and Pπ′

τ is a matrix where Pπ′

τ (i, j) =

Ea∼π′(·|si)Pτ (sj |si, a). Let G = (1 + γPπ
τ + (γPπ

τ )
2 + . . .) = (1 − γPπ

τ )
−1, and similarly

G̃ = (1+ γPπ′
τ + (γPπ′

τ )2 + . . .) = (1− γPπ′
τ )−1. Let ρ be a density vector on state space and rτ

is a reward function vector on state space, thus r⊤τ ρ is a scalar meaning the expected reward under
density ρ. Note that Jτ (π) = r⊤τ Gρτ , and Jτ (π

′) = r⊤τ G̃ρτ . Here, ρτ is the initial state distribution
for task τ . Let ∆ = Pπ′

τ − Pπ
τ .

Follow the proof in Appendix B in [44], we have

G−1 − G̃−1 = (1− γPπ)− (1− γPπ̃) = γ∆.

Left multiply by G̃ and right multiply by G,

G̃ = γG̃∆G+G. (30)

Left multiply by G and right multiply by G̃,

G̃ = γG∆G̃+G. (31)

Substituting the right-hand side in (30) into G̃ in (31), then

G̃ = G+ γG∆G+ γ2G∆G̃∆G.

So we have

Jτ (π
′)− Jτ (π) = r⊤τ (G̃−G)ρτ = γr⊤τ G∆Gρτ + γ2r⊤τ G∆G̃∆Gρτ . (32)

Note that r⊤τ G = vπτ
⊤, where v is the value function on the state space. We also have Gρτ = 1

1−γ ν
π
τ ,

where νπτ is the state visitation distribution vector. So,

Jτ (π̃)− Jτ (π) = r⊤τ (G̃−G)ρτ =
γ

1− γ
vπτ

⊤∆νπτ +
γ2

1− γ
vπτ

⊤∆G̃∆νπτ .

Consider the first term γ
1−γ v

π
τ
⊤∆νπτ , similar to Equation (50) in [44], we have

γvπτ
⊤∆νπτ = vπτ

⊤(Pπ′

τ − Pπ
τ )ν

π
τ

=
∑
s

νπτ (s)
∑
s′

∑
a

(π′(a|s)− π(a|s))Pτ (s
′|s, a) γvπτ (s′)

=
∑
s

νπτ (s)
∑
a

(π′(a|s)− π(a|s))

[
r(s) +

∑
s′

Pτ (s
′|s, a) γvπτ (s′)− v(s)

]
=
∑
s

νπτ (s)
∑
a

(π′(a|s)− π(a|s))Aπ
τ (s, a)

(33)
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Since we have
∑

a π(a|s)Aπ
τ (s, a) = 0, we have

γvπτ
⊤∆νπτ =

∑
s

νπτ (s)
∑
a

π′(a|s)Aπ
τ (s, a) = E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] .

Combine (32) and the above equation, we have the following for the second term:

γ2

1− γ
vπτ

⊤∆G̃∆νπτ = Jτ (π
′)− Jτ (π)−

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] .

Then we need to show ∣∣∣∣ γ2

1− γ
vπτ

⊤∆G̃∆νπτ

∣∣∣∣ ≤ Cπ
τ (π

′).

First, ∣∣∣∣ γ2

1− γ
vπτ

⊤∆G̃∆νπτ

∣∣∣∣
≤
∣∣∣∣ γ2

1− γ

(
vπτ

⊤∆
)
Sv

(
G̃∆νπτ

)
Sv

∣∣∣∣+ ∣∣∣∣ γ2

1− γ

(
vπτ

⊤∆
)
S/Sv

(
G̃∆νπτ

)
S/Sv

∣∣∣∣
By Hölder’s inequality,∣∣∣∣ γ2

1− γ
vπτ

⊤∆G̃∆νπτ

∣∣∣∣ ≤ γ

1− γ
∥γvπτ

⊤∆∥∞∥G̃∆νπτ ∥1.

Similar to (33), each element in the vector γvπτ
⊤∆ is

∑
a(π

′(a|s)− π(a|s))Aπ
τ (s, a), then we have∥∥∥γvπτ ⊤∆

∥∥∥
∞

≤ max
s∈S

∑
a

|π′(a|s)− π(a|s)|Aπ
τ (s, a) ≤ 2max

s,a
Aπ

τ (s, a)D
max
TV (π||π′).

From the Lemma 3 of [2], we have

∥G̃∆νπτ ∥1 ≤ 2

1− γ
Es∼νπ

τ
[DTV (π(·|s)||π′(·|s))] .

Therefore, we have∣∣∣∣ γ2

1− γ
vπτ

⊤∆G̃∆νπτ

∣∣∣∣ ≤ Cπ
τ (π′)

=
4γmaxs,a A

π
τ (s, a)

(1− γ)2
Dmax

TV (π||π′)Es∼νπ
τ
[DTV (π(·|s)||π′(·|s))]

Then the bounds hold.

Lemma 5 (Restatement of Lemma 1). For any task τ , and any policies π and π′ ∈ Π with
maxs∈S DTV (π||π′) ≤ α Es∼νπ

τ
[DTV (π(·|s) ||π′(·|s))]}, the following bound holds:

Jτ (π
′)− Jτ (π) ≤

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] +

2γαAmax

(1− γ)2
Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))]

and

Jτ (π
′)− Jτ (π) ≥

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)]−

2γαAmax

(1− γ)2
Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))] .

These two inequalities also holds for each i = 1, · · · , p, when Aπ
τ and Aπ′

τ are replaced by Aπ
ci,τ and

Aπ′

ci,τ , Amax is replaced by Amax
ci , Jτ is replaced by Jci,τ .
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Lemma 5 is a variant of Theorem 1 in [44] and Corollary 1 and 2 in [2]. The difference
is that, the inequalities in Lemma 5 replace the term maxs DKL(π

′(·|s)||π(·|s) in Theorem 1
in [44] and replace the term

√
Es∼νπ

τ
[DKL(π′(·|s)||π(·|s))] in Corollary 1 and 2 in [2] by

Es∼νπ
τ
[DKL(π

′(·|s)||π(·|s))] in the right-hand side of the inequalities.

Proof. We show the first inequality. The second inequality can be proven similarly. From Lemma 4,

Jτ (π
′)− Jτ (π)−

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)]

≤4γmaxs,a A
π
τ (s, a)

(1− γ)2
Dmax

TV (π||π′)Es∼νπ
τ
[DTV (π(·|s)||π′(·|s))] .

We have Dmax
TV (π||π′) ≤ αEs∼νπ

τ
[DTV (π(·|s)||π′(·|s))]. Therefore, we have

Jτ (π
′)−Jτ (π)−

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] ≤

4γαmaxs,a A
π
τ (s, a)

(1− γ)2
Es∼νπ

τ
[DTV (π(·|s)||π′(·|s))]2 .

From Jensen’s inequality, we have

Es∼νπ
τ
[DTV (π(·|s)∥π′(·|s))]2 ≤ Es∼νπ

τ

[
D2

TV (π(·|s)∥π′(·|s))
]
.

From the above inequalities, we have

Jτ (π
′)− Jτ (π)−

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] ≤

4γαAmax

(1− γ)2
Es∼νπ

τ

[
D2

TV (π(·|s)||π′(·|s))
]
. (34)

From [14], we have

D2
TV (π(·|s)||π′(·|s)) ≤ 1

2
DKL(π

′(·|s)||π(·|s)).

Therefore,

Jτ (π
′)− Jτ (π) ≤

1

1− γ
E

s∼νπ
τ

a∼π′(·|s)

[Aπ
τ (s, a)] +

2γαAmax

(1− γ)2
Es∼νπ

τ
[DKL(π

′(·|s)||π(·|s))]

F.4.2 Proof of Propostion 4

Before we prove Proposition 4, we first show a lemma.

Lemma 6. There exists a constant α such that, for any bounded ϕ, maxs∈S DTV (πϕ||πτ ) ≤ α

E
s∼ν

πϕ
τ

[DTV (πϕ(·|s) ||πτ (·|s))]} where πτ = As(πϕ,Λ,∆, τ) with λ ≥ 2γαAmax

1−γ and λci ≥
2γαAmax

ci

(1−γ)2 for each i.

Proof. Consider πτ = As(πϕ,Λ,∆, τ) with λ ≥ 2γαAmax

1−γ and λci ≥ 2γαAmax
ci

(1−γ)2 for each i. From
Lemma 1, we have

πτ (·|s) ∝ exp(fϕ(s, ·) + (λ+ (1− γ)

p∑
i=1

u∗
ci,τλci)

−1(A
πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τA

πϕ
ci,τ (s, ·))).

When λ ≥ 2γαAmax

1−γ and λci ≥
2γαAmax

ci

(1−γ)2 ,

(λ+ (1− γ)

p∑
i=1

u∗
ci,τλci)

−1 ≤ 1− γ

2αγ

1

Amax +
∑p

i=1u
∗
ci,τA

max
ci

.
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Then, ∣∣∣∣∣(λ+ (1− γ)

p∑
i=1

u∗
ci,τλci)

−1(A
πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τA

πϕ
ci,τ (s, ·)))

∣∣∣∣∣ ≤ 1− γ

2αγ
.

Next, we denote λ+ (1− γ)
∑p

i=1 u
∗
ci,τλci as λnew, denote (A

πϕ
τ (s, ·)−

∑p
i=1u

∗
ci,τA

πϕ
ci,τ (s, ·)) as

Anew(s, ·), and denote Amax +
∑p

i=1u
∗
ci,τA

max
ci as Amax

new . Then, we have |λ−1
newAnew(s, ·)| ≤ 1−γ

2αγ .

Consider α is sufficiently large, then 1−γ
2αγ could be sufficiently small. From

πτ (·|s) ∝ exp(fϕ(s, ·) + λ−1
newAnew(s, ·)),

we have

πτ (·|s) =
exp

(
fϕ(s, a) + λ−1

newAnew(s, ·)
)∑

a∈A exp
(
fϕ(s, a′) + λ−1

newAnew(s, ·)
) =

exp
(
fϕ(s, a) + λ−1

newAnew(s, ·)
)∑

a∈A exp (fϕ(s, a′))

= πϕ(·|s) exp(λ−1
newAnew(s, ·)) = πϕ(·|s)(1 + λ−1

newAnew(s, ·))
Therefore,

DTV (πϕ(·|s)||πτ (·|s)) = 1

2

∑
a∈A

|πϕ(a|s)− πτ (a|s)| = 1

2
λ−1
new

∑
a∈A

|Anew(s, a)|πϕ(a|s)

For a policy with a bounded parameter ϕ, πϕ(a|s) is non-trivial larger than 0. Then∑
a∈A |Anew(s, a)|πϕ(a|s) is non-trivial larger than 0 if there exists a with |Anew(s, a)| > 0.

If |Anew(s, a)| = 0 for any s ∈ S and a ∈ A, then α could any constant. If there is s ∈ S and
a ∈ A |Anew(s, a)| > 0, since Anew(s, a) is continuous, there exists a closed set S, such that∑

a∈A |Anew(s, a)|πϕ(a|s) is non-trivial larger than 0. Therefore, there exists a constant α such that

max
s∈S

DTV (πϕ||πτ ) ≤ αE
s∼ν

πϕ
τ

[DTV (πϕ(·|s)||πτ (·|s))]}.

Next, we prove Proposition 4.

Proof of Propostion 4. From Lemma 1 and Lemma 6, we have

Jτ (π) ≤ Jτ (πϕ) + Es∼νπ
τ ,a∼π(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
+

2γαAmax

(1− γ)2
E
s∼ν

πϕ
τ

[DKL(π(·|s)||πϕ(·|s))]

Since λci ≥
2γαAmax

ci

(1−γ)2 , we have

Jci,τ (π
τ )

≤ Jci,τ (πϕ) + E
s∼ν

πϕ
τ

a∼πτ (·|s)

[
A

πϕ
ci,τ (s, a)

1− γ

]
+

2γαAmax
ci

(1− γ)2
E
s∼ν

πϕ
τ

[DKL (πτ (·|s)∥πϕ(·|s))]

≤ Jci,τ (πϕ) + E
s∼ν

πϕ
τ

a∼πτ (·|s)

[
A

πϕ
ci,τ (s, a)

1− γ

]
+ λci Es∼ν

πϕ
τ

[DKL (πτ (·|s)∥πϕ(·|s))]

≤ di,τ + δci .

Also, we have

Jτ (π) ≥ Jτ (πϕ) + Es∼νπ
τ ,a∼π(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− 2γαAmax

(1− γ)2
E
s∼ν

πϕ
τ

[DKL(π(·|s)||πϕ(·|s))]

Since λ ≥ 2γαAmax

1−γ , we have

Jτ (π) ≥ Jτ (πϕ) + Es∼νπ
τ ,a∼π(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− λ

1− γ
E
s∼ν

πϕ
τ

[DKL(π(·|s)||πϕ(·|s))] .
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For the solution πτ of problem (1), we have

Jτ (π
τ ) ≥ E

s∼ν
πϕ
τ

a∼πτ (·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− λ

1− γ
E
s∼ν

πϕ
τ

[DKL (πτ (·|s)∥πϕ(·|s))] + Jτ (πϕ)

= max
π∈ΠC

τ

E
s∼ν

πϕ
τ

a∼π(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− λ

1− γ
E
s∼ν

πϕ
τ

[DKL (π(·|s)∥πϕ(·|s))] + Jτ (πϕ)

≥ E
s∼ν

πϕ
τ

a∼πϕ(·|s)

[
A

πϕ
τ (s, a)

1− γ

]
− λ

1− γ
E
s∼ν

πϕ
τ

[DKL (πϕ(·|s)∥πϕ(·|s))] + Jτ (πϕ) = Jτ (πϕ).

where ΠC
τ is the feasible set of problem (1). The last inequality comes from πϕ ∈ ΠC

τ .

F.4.3 Proof of Theorem 1

Recall the notations defined in Section 5.2 and used in this section: the optimal task-specific policy
πτ
∗ for task τ as

πτ
∗ ≜ argmaxπ∈Π Jτ (π) s.t. Jci,τ (π) ≤ di,τ ;

the conservative task-specific optimal policy πτ
∗,[ϵ], which is optimal for τ under conservative safety

constraints, i.e.,
πτ
∗,[ϵ] ≜ argmaxπ∈Π Jτ (π) s.t. Jci,τ (π) ≤ di,τ − ϵ,

where the conservative constant ϵ ≥ 0; the task variance

Var(P(Γ)) ≜ minϕ Eτ∼P(Γ)Es∼ν
πϕ
τ

[DKL(π
τ
∗ (·|s)||πϕ(·|s))];

the task variance under the conservative safety constraints

Varϵ(P(Γ)) ≜ minϕ Eτ∼P(Γ)Es∼ν
πϕ
τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ(·|s))],

and its minimal point

ϕ̂[ϵ] ≜ argminϕ Eτ∼P(Γ)Es∼ν
πϕ
τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ(·|s))],

the radius of the task distribution P(Γ)

R(P(Γ)) ≜ maxτ∈Γ,ϵ∈E E
s∼ν

π
ϕ̂[ϵ]

τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))],

where the set E is defined by {ϵ ≥ 0 : πτ
∗,[ϵ] exists for all τ ∈ Γ}.

We also define

R[ϵ](P(Γ)) ≜ maxτ∈Γ E
s∼ν

π
ϕ̂[ϵ]

τ

[DKL(π
τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))].

We first show some lemmas for the proof of Theorem 1.

Lemma 7. For any ϵ, the policy πτ
∗,[ϵ] belongs to the set {π ∈ Π : Jci,τ (πϕ̂[ϵ])+

E
s∼ν

π
ϕ̂[ϵ]

τ

a∼π(·|s)

[
A

π
ϕ̂[ϵ]

ci,τ
(s,a)

1−γ

]
+

2γαAmax
ci

(1−γ)2 E
s∼ν

π
ϕ̂[ϵ]

τ

[DKL(π(·|s)||πϕ̂[ϵ](·|s))] ≤ di,τ − ϵ +

4γαAmax
ci

(1−γ)2 R(P(Γ)) for all i = 1, · · · , p}

Proof. From the second inequality in Lemma 1, Jci,τ (π
τ
∗,[ϵ]) ≥

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]
−

2γαAmax
ci

(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
.
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Since Jci,τ (π
τ
∗,[ϵ]) ≤ di,τ − ϵ, we have

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]

−
2γαAmax

ci

(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
≤ di,τ − ϵ.

Then,

Jci,τ (πϕ̂[ϵ]) + E
s∼ν

π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)

1− γ

]
+

2γαAmax
ci

(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]

≤ di,τ − ϵ+
4γαAmax

ci

(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
≤ di,τ − ϵ+

4γαAmax
ci

(1− γ)2
R[ϵ](P(Γ))

≤ di,τ − ϵ+
4γαAmax

ci

(1− γ)2
R(P(Γ)).

Lemma 8. We have

πϕ̂[ϵ] ∈
{
π ∈ Π : Jci,τ (π) ≤ di,τ − ϵ+

4γαAmax
ci

(1− γ)2
R(P(Γ)) for all i = 1, · · · , p and τ ∈ Γ

}
.

Proof. From the second inequality in Lemma 1, Jci,τ (π
τ
∗,[ϵ]) ≥

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]
−

2γαAmax
ci

(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
.

Since Jci,τ (π
τ
∗,[ϵ]) ≤ di,τ − ϵ, we have

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]

≤ di,τ − ϵ+
2γαAmax

ci

(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
.

Also, from (33) and the proof of Lemma 1, we have

1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]

=
1

1− γ

∑
s

ν
π
ϕ̂[ϵ]

τ (s)
∑
a

(πτ
∗,[ϵ](a|s)− πϕ̂[ϵ](a|s))A

π
ϕ̂[ϵ]

ci,τ (s, a)

≤
2αAmax

ci

1− γ
Dmax

TV (πτ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))2

≤
4αAmax

ci

1− γ
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
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Then,

Jci,τ (πϕ̂[ϵ]) +
1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]

≤ di,τ − ϵ+
2αAmax

ci

(1− γ)2
E
s∼ν

π
ϕ̂[ϵ]

τ

[
DKL(π

τ
∗,[ϵ](·|s)||πϕ̂[ϵ](·|s))

]
≤ di,τ − ϵ+

4γαAmax
ci

(1− γ)2
R[ϵ](P(Γ))

≤ di,τ − ϵ+
4γαAmax

ci

(1− γ)2
R(P(Γ)).

Here, we assume γ ≥ 0.5, which is commonly used.

Theorem 2. Suppose that Assumptions 1 holds. Let πτ (ϕ̂[ϵ]) = As(πϕ̂[ϵ] ,Λ,∆, τ) with λ =

2γαAmax

1−γ , λci =
2γαAmax

ci

(1−γ)2 and δci =
2γαAmax

ci

(1−γ)2 R(P(Γ))− ϵ. We have

Eτ∼P(Γ)[Jτ (π
τ
∗,[ϵ])− Jτ (As(πϕ∗ ,Λ,∆, τ))] ≤ 4γαAmax

(1− γ)2
Varϵ(P(Γ)).

Proof. From Lemma 7, we have that πτ
∗,[ϵ] ∈ ΠB , where ΠB ≜ {π ∈ Π : Jci,τ (πϕ̂[ϵ])+

1
1−γ E

s∼ν
π
ϕ̂[ϵ]

τ

a∼π(·|s)

[
A

π
ϕ̂[ϵ]

ci,τ (s, a)
]
+λci,τEs∼ν

π
ϕ̂[ϵ]

τ

[DKL(π(·|s)||πϕ̂[ϵ](·|s))] ≤ di,τ + δci ,∀i}.

Also, πτ (ϕ̂[ϵ]) ∈ ΠB . Therefore, from the definition of As in problem (1), we have

E
s∼ν

π
ϕ̂[ϵ]

τ

a∼πτ (ϕ̂[ϵ])(·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
−λD̄KL(π

τ (ϕ̂[ϵ]), πϕ̂[ϵ]) ≥ E
s∼ν

π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
−λD̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]),

where we use D̄KL(π1(·|s), π2(·|s)) to represent Es∼ν
π2
τ
[DKL(π1(·|s), π2(·|s))].

From the second inequality in Lemma 1 and the above inequality,

Jτ (π
τ (ϕ̂[ϵ]))− Jτ (πϕ̂[ϵ]) ≥

1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ (ϕ̂[ϵ])(·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
− λ

1− γ
D̄KL(π

τ (ϕ̂[ϵ]), πϕ̂[ϵ])

≥ 1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
− λ

1− γ
D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]).

From the first inequality in Lemma 1,

Jτ (π
τ
∗,[ϵ])− Jτ (πϕ̂[ϵ]) ≤

1

1− γ
E

s∼ν
π
ϕ̂[ϵ]

τ

a∼πτ
∗,[ϵ](·|s)

[
A

π
ϕ̂[ϵ]

τ (s, a)
]
+

2γαAmax

(1− γ)2
D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]).

From the last two inequalities,

Jτ (π
τ (ϕ̂[ϵ]))− Jτ (π

τ
∗,[ϵ]) ≥ −(

2γαAmax

(1− γ)2
+

λ

1− γ
)D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]),

i.e.,

Jτ (π
τ
∗,[ϵ])− Jτ (As(πϕ̂[ϵ] ,Λ,∆, τ)) ≤ (

2γαAmax

(1− γ)2
+

λ

1− γ
)D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ]).
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Then,
Eτ∼P(Γ)[Jτ (π

τ
∗,[ϵ])− Jτ (As(πϕ̂[ϵ] ,Λ,∆, τ))]

≤ (
2γαAmax

(1− γ)2
+

λ

1− γ
)Eτ∼P(Γ)[D̄KL(π

τ
∗,[ϵ], πϕ̂[ϵ])]

= (
2γαAmax

(1− γ)2
+

λ

1− γ
)Varϵ(P(Γ)).

Moreover, from Lemma 8,

πϕ̂[ϵ] ∈ ΠC ≜ {π ∈ Π : Jci,τ (π) ≤ di,τ + δci for all i = 1, · · · , p and τ ∈ Γ} .

From the definition of ϕ∗, we have

Eτ∼P(Γ)[Jτ (As(πϕ∗ ,Λ,∆, τ))] ≥ max
π∈ΠC

Eτ∼P(Γ)[Jτ (As(π,Λ,∆, τ))]

≥ Eτ∼P(Γ)[Jτ (As(πϕ̂[ϵ] ,Λ,∆, τ))]

Then, we have
Eτ∼P(Γ)[Jτ (π

τ
∗,[ϵ])− Jτ (As(πϕ∗ ,Λ,∆, τ))]

≤ Eτ∼P(Γ)[Jτ (π
τ
∗,[ϵ])− Jτ (As(πϕ̂[ϵ] ,Λ,∆, τ))]

≤ (
2γαAmax

(1− γ)2
+

λ

1− γ
)Varϵ(P(Γ))

≤ 4γαAmax

(1− γ)2
Varϵ(P(Γ)).

Proof of Theorem 1. Theorem 1 is proven by combining Theorem 2 with Corrolary 1.

G Discussion on the Tightness of the Derived Lower Bound in Theorem 1

Notice that the meta-safe RL aims to extract common knowledge from multiple existing RL tasks. The
tasks in the task distribution are usually correlated, and their near-optimal policies usually produce
similar actions on a large part of the state space. For example, in the experiments of navigation
scenarios with collision avoidance, although optimal policies under different environments should
produce different actions when meeting different obstacles, the actions in free space should be similar.
As Var(P(Γ)) is defined as minϕ Eτ∼P(Γ)Es∼ν

πϕ
τ

[DKL(π
τ
∗ (·|s)||πϕ(·|s))], which computes the

expectation over the entire state space, it could be small, especially when the state space is large.
Moreover, Var(P(Γ)) ≜ minϕ Eτ∼P(Γ)Es∼ν

πϕ
τ

[DKL(π
τ
∗ (·|s)||πϕ(·|s))] is the minimal average

distance between policies. According to our experiment, 0.05 is a sufficiently large number for the
quantity for the KL divergence between two policies and the value of Var(P(Γ)) under this KL
divergence is about 1

4 × 0.05.

Next, we roughly evaluate the quantity of the optimality bound 4γαAmax

(1−γ)2 Varϵ(P(Γ)) and show it can
be relatively tight. We set γ = 0.99, the reward/cost r ∈ [0, 1] and c ∈ [0, 1]. The max advantage
function value Amax ≤ 1 is generally not very small. However, as indicated in the proof of Lemma
F.4.1, we actually can replace Amax by maxs,a A

π∗
ϕ

τ (s, a), which is computed on the meta-policy and
is usually much smaller than 1, we set it as 0.05. Then, the optimality bound of 4γαAmax

(1−γ)2 Varϵ(P(Γ))
is about 25. Note that, the quantity of the total reward/cost is about

∑∞
n=1 γ

n = 1
γ = 100. Therefore,

the bound is about 25% of the total reward/cost, which is relatively tight.

It is standard in RL and safe RL to derive a lower bound with an order of quantity similar to the
optimality bound 4γαAmax

(1−γ)2 Varϵ(P(Γ)) in this paper. For example, in TRPO [44] and CPO [2], the

lower bounds also include the term Amax

(1−γ)2DKL. Moreover, for conciseness and broad applicability,
we have to derive a general optimality bound, which makes the bound looser. When the used condition
and target problem are specified, a tighter optimality bound can be derived. For example, when a
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large task distribution is specified, i.e., Var(P(Γ)) is large, we can also make some inequalities (such
as those in lines 1573 to 1585) tighter. However, when the target problem is required to be specified,
the generality of the optimality bound will be lost and it will become harder to understand and less
intuitive.

H Limitations and Future Works

In this paper, we consider the safety metric of CMDP, i.e., the expected accumulated costs satisfy the
given safety threshold. This metric is generally less rigorous than the safe control research, where
safety is defined as persistently satisfying certain state constraints. A future work is establishing a
safe meta-RL algorithm with the rigorous safety metric. Another limitation is that we assume the
solution of problem (2) exists, i.e., there exists a policy such that it is safe for all tasks as the initial
policy for policy adaptation steps. A future work is to release this assumption and identify a safe
task-specific meta-policy for each given task.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction, including the main contribution statement and
related works, accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations in the Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All proofs are provided in Appendix.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all details of the information needed to reproduce the main
experimental results in the experiment section and in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide open access to the data and code with sufficient instructions in the
supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all training details in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide it in the section of the experiment.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Justification: We provide the information at the beginning of the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: the NeurIPS Code of Ethics is followed.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper presents work whose goal is to advance the field of Machine
Learning. There is no potential societal consequence.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as any important, original, or non-
standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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